
Broadcast-Optimal Two-Round MPC?

Ran Cohen1, Juan Garay2, and Vassilis Zikas3

1 Northeastern University
rancohen@ccs.neu.edu

2 Texas A&M University
garay@cse.tamu.edu

3 School of Informatics, University of Edinburgh & IOHK
vzikas@inf.ed.ac.uk

Abstract. An intensive effort by the cryptographic community to mini-
mize the round complexity of secure multi-party computation (MPC) has
recently led to optimal two-round protocols from minimal assumptions.
Most of the proposed solutions, however, make use of a broadcast channel
in every round, and it is unclear if the broadcast channel can be replaced
by standard point-to-point communication in a round-preserving man-
ner, and if so, at what cost on the resulting security.

In this work, we provide a complete characterization of the trade-off be-
tween number of broadcast rounds and achievable security level for two-
round MPC tolerating arbitrarily many active corruptions. Specifically,
we consider all possible combinations of broadcast and point-to-point
rounds against the three standard levels of security for maliciously se-
cure MPC protocols, namely, security with identifiable, unanimous, and
selective abort. For each of these notions and each combination of broad-
cast and point-to-point rounds, we provide either a tight feasibility or an
infeasibility result of two-round MPC. Our feasibility results hold assum-
ing two-round OT in the CRS model, whereas our impossibility results
hold given any correlated randomness.

1 Introduction

Round complexity is an important efficiency measure of secure multi-party com-
putation protocols (MPC) [67, 40], with a large body of research focusing on how
it can be minimized. The “holy grail” in this thread has been two-round proto-
cols, as single-round MPC for a large set of functions cannot be achieved [43].
The first solutions to this problem were based on strong cryptographic assump-
tions (FHE [5, 59], iO [34], witness encryption [42], and spooky encryption [26]),
whereas more recent results showed how to build two-round MPC resilient to
any number of active corruptions from standard assumptions, such as two-round
oblivious transfer (OT) [33, 9, 10] or OT-correlation setup and one-way functions
(OWF) [35] (we discuss the state of the art in Section 1.1).

The advantage of such two-round MPC protocols, however, is often dulled
by the fact that the protocols make use of a broadcast channel in the case of
? The full version of this paper can be found at the IACR Cryptology ePrint Archive,
report 2019/1183.



malicious adversaries. Indeed, in practice such a broadcast channel is typically
not available to the parties, who instead need to use a broadcast protocol over
point-to-point communication for this task. Classical impossibility results from
distributed computing imply that any such deterministic protocol tolerating (up
to) t corruptions requires t+ 1 rounds of communication [28, 27]; these bounds
extend to randomized broadcast, showing that termination cannot be guaranteed
in constant rounds [17, 52]. Even when considering expected round complexity,
randomized broadcast would require Ω(n/(n − t)) rounds [30] when the adver-
sary can corrupt a majority of parties (i.e., t ≥ n/2), and expected two rounds are
unlikely to suffice for reaching agreement, even with weak guarantees, as long as
t > n/4 [24] (as opposed to expected three rounds [58]). Furthermore, while the
above lower bounds consider broadcasting just a single message, known tech-
niques for composing randomized broadcast protocols with non-simultaneous
termination require a multiplicative blowup of c > 2 rounds [55, 7, 53, 22, 20].

The above state of affairs motivated a line of work investigating the effect in
the round complexity of removing the assumption of broadcast from two-round
MPC protocols [49, 51, 60, 2, 4]. In order to do so, however, one needs to settle
for weaker security definitions. In other words, one needs to trade off security
guarantees for lower round complexity.

In this work, we fully characterize the optimal trade-off between security
and use of broadcast in two-round MPC protocols against a malicious adversary
who corrupts any number of parties: In a nutshell, for each of the three standard
security definitions that are achievable against such adversaries in the round-
unrestricted setting—namely, security with identifiable, unanimous, or selective
abort—we provide protocols that use the provably minimal number of broadcast
rounds (a broadcast round is a round in which at least one party broadcasts a
message using a broadcast channel). Our positive results assume, as in the state-
of-the-art solutions, existence of a two-round oblivious transfer (OT) protocol
in the CRS model (alternatively, OT-correlation setup and OWF), whereas our
impossibility results hold for any correlated randomness setup.

1.1 Background

Starting with the seminal works on MPC [67, 40, 8, 16, 65], a major goal has been
to strike a favorable balance between the resources required for the computation
(e.g., the protocol’s round complexity), the underlying assumptions (e.g., the
existence of oblivious transfer), and the security guarantees that can be achieved.

Since in the (potentially) dishonest-majority setting, which is the focus in
this work, fairness (either all parties learn the output or nobody does) cannot
be achieved generically [18], the standard security requirement is weakened by
allowing the adversary to prematurely abort the computation even after learning
the output value. Three main flavors of this definition—distinguished by the
guarantees that honest parties receive upon abort—have been considered in the
literature:
1. Security with identifiable abort [50, 19] allows the honest parties to identify

cheating parties in case of an abort;

2



2. security with unanimous abort [40, 29] allows the honest parties to detect
that an attack took place, but not to catch the culprits; and, finally,

3. security with selective (non-unanimous) abort [41, 49] guarantees that every
honest party either obtains the correct output from the computation or
locally detects an attack and aborts.

We note in passing that the above ordering reflects the strength of the security
definition, i.e., if a protocol is secure with identifiable abort then it is also secure
with unanimous abort; and if a protocol is secure with unanimous abort, then
it is also secure with selective abort. The opposite is not true in general.

A common design principle for MPC protocols, used in the vast majority
of works in the literature, is to consider a broadcast channel as an atomic re-
source of the communication model. The ability to broadcast messages greatly
simplifies protocols secure against malicious parties (see, e.g., the discussion in
Goldreich’s book [39, Sec. 7]) and is known to be necessary for achieving se-
curity with identifiable abort [19]. Indeed, broadcast protocols that run over
authenticated channels exist assuming a public-key infrastructure (PKI) for dig-
ital signatures [27], with information-theoretic variants in the private-channels
setting [63]. Therefore, in terms of feasibility results for MPC, the broadcast re-
source is interchangeable with a PKI setup. In fact, if merely unanimous abort
is required, even this setup assumption can be removed [29].4

However, as discussed above, in terms of round efficiency, removing the
broadcast resource is not for free and one needs to either pay with more rounds
to emulate broadcast [27, 30], or lessen the obtained security guarantees. How-
ever, very few generic ways to trade-off broadcast for weaker security have been
proposed. A notable case is that of Goldwasser and Lindell [41], who showed
how to compile any r-round MPC protocol π that is designed in the broadcast
model into a 2r-round MPC protocol over point-to-point channels at the cost of
settling for the weakest security guarantee of selective abort, even if the original
protocol π was secure with unanimous or identifiable abort. Interestingly, since
as mentioned earlier broadcast protocols are expensive in terms of rounds and
communication, most (if not all) practical implementations of MPC protocols use
this compiler and therefore can only achieve selective abort [56, 57, 44, 54, 66, 45].

But even at this security cost, the compiler from Goldwasser and Lindell [41]
does not achieve a round-preserving reduction as it induces a constant multi-
plicative blowup in the number of rounds. The reason is that, in a nutshell, this
compiler has every broadcast round being emulated by a two-round echo multi-
cast approach, where every party sends the message he intends to broadcast to
all other parties, who then echo it to ensure that if two honest parties received
inconsistent messages everyone can observe. Such a blowup is unacceptable when
we are after protocols with the minimal round complexity of two rounds.

Two-round MPC protocols in the malicious setting were first explored in
[37, 38], while recent years have witnessed exciting developments in two-round

4 In some cases, the PKI assumption can be removed even for the strong notion of
guaranteed output delivery, see [19, 21].

3



MPC [49, 5, 34, 31, 42, 51, 59, 26, 15, 11, 32, 33, 9, 60, 36, 1, 64, 35, 3, 10, 2, 4, 25].
The current state of the art can be summarized as follows:

Garg and Srinivasan [33] and Benhamouda and Lin [9] showed how to bal-
ance between the optimal round complexity and minimal cryptographic as-
sumptions for MPC in the broadcast model, by showing that every function
can be computed with unanimous abort using two broadcast rounds, assum-
ing two-round oblivious transfer (OT) and tolerating t < n corruptions.
In the honest-majority setting, Ananth et al. [2] and Applebaum et al. [4]
showed that security with selective abort can be achieved using two point-
to-point rounds assuming OWF.
Patra and Ravi [60] showed that in the plain model (without any setup as-
sumptions, such as a PKI) security with unanimous abort cannot be achieved
in two point-to-point rounds, and even if the first round can use a broadcast
channel. As pointed out in [62], the lower-bounds proofs from [60] do not
extend to a setting with private-coins setup.
While advancing our understanding of what kind of security can be achieved

in two rounds, the picture derived from the results above is only partial and
does not resolve the question of whether the feasibility results can be pushed
further. For example, is it possible to obtain identifiable abort via two broadcast
rounds for t < n? Is it possible to achieve selective abort via two point-to-point
rounds for t < n? What security can be achieved when broadcast is used only in
a single round in a two-round MPC protocol? This motivates the main question
we study in this paper:

What is the tradeoff between the use of broadcast and achievable security
in two-round MPC?

1.2 Our Contributions

We devise a complete characterization of the feasibility landscape of two-round
MPC against arbitrarily many malicious corruptions, with respect to the above
three levels of security (with abort) depending on availability of a broadcast
channel. Specifically, we consider all possible combinations of broadcast and
point-to-point rounds—where a point-to-point round consists of only point-to-
point communication whereas in a broadcast round at least one party uses
the broadcast channel—i.e., no broadcast round, one broadcast round, and two
broadcast rounds.

Our results are summarized in Table 1. For simplicity we prove our positive
results secure against a static t-adversary, for t < n. Although we do not see
a specific reason why an adaptive adversary cannot be tolerated, treating this
stronger case would need a careful modification of our arguments; we leave a
formal treatment of an adaptive adversary as an open question. All our negative
results hold for a static adversary, and hence also for an adaptive adversary, since
the latter is a stronger adversary. We note that due to the ordering in strength of
the security definitions discussed above, any positive (feasibility) result implies
feasibility for any column to its left in the same row, and an impossibility result
implies impossibility for any column to its right in the same row.

4



rounds security with abort
first second selective unanimous identifiable

BC BC 3 3 GS [33],BL [9] 3 Cor 1 ([33, 9])
P2P BC 3 3 Thm 11 7 Thm 7
BC P2P 3 7 Thm 1 7

P2P P2P 3 Thm 11 7 Thm 1 7

BC - 7 HLP [43] 7 7

Table 1. Feasibility and infeasibility of two-round MPC facing a static, malicious
(n− 1)-adversary. Feasibility results hold assuming two-round OT in the CRS model.
Impossibility results hold given any correlated randomness. A corollary with a citation
of a paper should be interpreted as corollary of the results of the paper that was not
explicitly stated in the paper.

Next, we give a more detailed description of the results and how they com-
plement the current landscape.

Two broadcast rounds MPC. First, as a justification of our search for round-
optimal protocols, we observe that as a straightforward corollary of Halevi et al.
[43], we can exclude the existence of a single-round general MPC protocol—i.e.,
MPC for any function. This is true for any of the three security definitions,
independently of whether or not the protocol uses a broadcast channel. We can
thus focus our attention to protocols with two rounds.

Let us first consider the case where both rounds use a broadcast channel. A
simple observation reveals that in this case the strongest notion of security with
identifiable abort is feasible. Indeed, the recent results by Garg and Srinivasan
[33] and Benhamouda and Lin [9] prove that assuming two-round OT, every
function can be securely computed with unanimous abort, tolerating static, ma-
licious corruptions of any subset of the parties.5 A simple corollary shows that
when starting with an inner protocol that is secure with identifiable abort (e.g.,
the GMW protocol [40]), the compiled protocol will also be secure with identi-
fiable abort. The proof follows directly by inspecting either one of the proofs of
[33, 9]. For completeness, we state this as a corollary below.
Corollary 1 ([33, 9]). Assume the existence of a two-round OT protocol secure
against a static malicious adversary in the CRS model and let t < n. Then, every
efficiently computable n-party function can be securely computed with identifiable
abort in the CRS model using two broadcast rounds tolerating a static malicious
t-adversary.

This leaves open the cases of both rounds being point-to-point rounds, and
of one broadcast round and one point-to-point round, which constitute our main
contributions. Interestingly, in the latter case the order of the rounds makes a
difference on what security can be achieved.
5 In fact, [9] also requires NIZK, but this assumption can be removed (see [10]).

5



Impossibility results. We start our investigation with proving the lower
bounds illustrated in Table 1. Towards this goal, we describe a simple three-
party function which, due to its properties, can be used in all the associated
lower bounds. At a very high level, the chosen function f enjoys two core prop-
erties that will be crucial in our impossibility proofs: First, the function takes two
inputs from a dedicated party, say P3, but in any evaluation, the output depends
on only one of these values (which of the two inputs is actually used is mandated
by the input of the other two parties). Second, f has input independence with
respect to P1’s input, i.e., an adversary corrupting P2 and P3 cannot bias their
inputs depending on P1’s input. (See Section 3 for the function’s definition.)

We note in passing that all our impossibility results hold assuming an ar-
bitrary private-coin setup and are therefore not implied by any existing work.
As a result, wherever in our statements broadcast is assumed for some round,
the impossibility holds even if point-to-point channels are also available in this
round. The reason is that as our proofs hold assuming an arbitrary private-coins
setup (e.g, a PKI), the setup can be leveraged to implement secure point-to-point
communication over broadcast (using encryption). Thus, adding point-to-point
communication in a broadcast round cannot circumvent our impossibilities. This
is not necessarily the case when no setup is allowed by the proof, which is an ad-
ditional justification for proving impossibilities which hold even assuming setup.

Here is how we proceed in gradually more involved steps to complete the
impossibility landscape: As a first, easy step we show, using the line of argu-
mentation of HLP [43], that our function f is one of the functions which cannot
be computed in a single round even against any one party being semi-honest.
This excludes existence of single-round maliciously secure generic MPC protocol
against dishonest majorities, even if the single round is a broadcast round, and
even if we are settling for security with selective abort and assume an arbitrary
correlated-randomness setup (last row in Table 1).

Unanimous abort requires second round over broadcast. Next, we turn to two-
round protocols and prove impossibility for securely computing f with unani-
mous abort when only the first round might use broadcast, i.e., the second round
is exclusively over point-to-point (rows 3 and 4 in Table 1). This implies that
under this communication pattern, security with identifiable abort is also impos-
sible. Looking ahead, this impossibility result is complemented by Theorem 11
(Item 2), which shows that security with selective abort can be achieved in this
setting.

The proof is somewhat involved, although not uncommon in lower bounds,
but can be summarized as follows: We assume, towards a contradiction, that a
protocol π computing f with unanimous abort exists. We then look at an adver-
sary corrupting P1 and define a sequence of worlds in which P1’s second-round
messages are gradually dropped—so that in the last world, (the adversarial) P1
sends no messages to the other parties. By sequentially comparing neighboring
worlds, we prove that in all of them, the parties cannot abort and they have
to output the output of the function evaluated on the original inputs that were
given to the parties. However, as in the last scenario P1 sends no message in

6



the second round, this means that P2 and P3 can compute the output (which
incorporates P1’s input) already in the first round. This enables a rushing adver-
sary corrupting P2 and P3 to evaluate f(x1, x2, x3) on his favorite inputs for x2
and x3 before even sending any protocol message, and depending on the output
y decide whether he wants to continue playing with those inputs—and induce
the output y = f(x1, x2, x3) on P1—or change his choice of inputs to some x′2
and x′3 and induce the output y′ = f(x1, x

′
2, x
′
3) on P1. This contradicts the

second property of f , i.e., input independence with respect to P1’s input against
corrupted P2 and P3.

We note in passing that a corollary of [60, Thm. 5] (explicitly stated in the
full version [61, Cor. 1]) excluded security with unanimous abort for the case of
an honest majority, but only for protocols that are defined in the plain model,
without any trusted setup assumptions. Indeed, as pointed out by the authors
in [62], their proof technique does not extend to the setting with private-coin
setup. In more detail, and to illustrate the difference, consider the setting where
the first round is over broadcast (and possibly point-to-point channels) and the
second is over point-to-point. The argument for ruling out unanimous abort in
[61, Cor. 1] crucially relies on P3 not be able to distinguish between the case
where P2 does not send messages to P1 (over a private channel) and the case
where P1 claims not to receive any message. However, given a PKI and a CRS
for NIZK, the private channel can be emulated over the broadcast message, and
the sender can prove honest behaviour. In this case, P3 can detect the event
where P2 is cheating towards P1 in the first round; hence, P1 and P3 can jointly
detect the attack.

Identifiable abort requires two broadcast rounds. As a final step, we consider the
case where only the second round might use broadcast—i.e., the first round is
over a point-to-point channel. In this case we prove that security with identifiable
abort is impossible (row 2 in Table 1). This result, which constitutes the core
technical contribution of our work, is once again, complemented by a positive
result which shows how to obtain unanimous abort with this communication
pattern (Theorem 11). The idea of the impossibility proof is as follows: Once
again we start with an assumed protocol π (towards contradiction) and compare
two scenarios, where the adversary corrupts P1 in the first and P2 in the second.
The adversary lets the corrupted party run π, but drops any message exchanged
between P1 and P2 in the first (point-to-point) round. By comparing the views
on the two scenarios we show that aborting is not an option. Intuitively, the
reason is that identifiable abort requires the parties to agree on the identity of a
corrupted party; but the transcripts of the two executions are identical despite
the corrupted party’s identity being different, which means that if the parties
try to identify a cheater, they will get it wrong (with noticeable probability) in
one of the two scenarios.

Subsequently, we compare the world where P2 is corrupted with one where
the adversary corrupts also P1 but has him play honestly; the correctness of
the protocol (and the fact that the protocol machines are not aware of who is
corrupted) ensures that despite the fact that P1 is corrupted, his initial input

7



will be used for computing the output of the honest party (which recall cannot
abort as its view is identical to the other two scenarios). In this world, P2 sends
nothing to P3 in Round 1, but P1 and P3 exchange their first-round messages.
Therefore, a rushing adversary can obtain P3’s second-round message before
sending any message on behalf of P2. Using this information, the adversary can
run in its head two executions of the protocol using the same messages for P3
(and same first-round messages for P1) but on different inputs for P2. This will
allow extracting both inputs of P3, thereby violating the first property of the
function discussed above.

Note that this proof is more involved than the previous one excluding unani-
mous abort. For example, while the previous proof merely required the adversary
to “bias” the output, the current proof requires the adversary to extract both
inputs of the honest P3; essentially, we use the indistinguishable hybrids to con-
struct an extractor. Indeed, the above is only a sketch of the argument, and the
formal proof needs to take care of a number of issues: First, since an honest
P3 can detect that P2 is cheating, the security definition only guarantees that
P3’s output will be consistent with some input value of P2. In that case, it is not
clear that the adversary can have strategies which yield both inputs of P3, which
would exclude the possibility of the above attack. We prove that this is not the
case, and that using the honest strategy, the adversary can induce an execution
in which the different input distributions required by the proofs are used in the
evaluation of the function. Second, in order to extract the two inputs of P3, the
adversary needs to know the output as well as the effective corrupted inputs on
which the function is evaluated under our above attack scenarios. We ensure this
by a simple syntactic manipulation of the function, i.e., by requiring each party
to locally (and privately) output its own input as used in the evaluation of the
function’s output.

Observe that although our results are proved for three parties, they can be
easily extended to n parties by a standard player-simulation argument [46]—in
fact, because our adversary corrupts 2 out of the 3 parties, our result exclude
any adversary corrupting t ≥ 2n/3 of the parties.

Feasibility results. Next, we proceed to provide matching upper bounds, show-
ing that security with unanimous abort is feasible when the second round is over
broadcast (even if the first round is over point-to-point), and that security with
selective abort can be achieved when both rounds are over point-to-point chan-
nels. Our results are based on the compiler of Ananth et al. [2], who focused
on information-theoretic security of two-round MPC in the honest-majority set-
ting.6 Ananth et al. [2], initially adjusted the two-round protocol from [1] to
provide information-theoretic security with unanimous abort in the broadcast
model (for NC1 circuits), and then compiled it to provide security with selective
abort over point-to-point channels.7
6 A similar technique was used by Garg et al. [35] to compile two-round MPC to a
client-server MPC, albeit in the semi-honest setting.

7 We note that the approach of Applebaum et al. [4] does not extend to the dishonest-
majority setting in a straightforward way.

8



Compiling two-broadcast-round protocols. We start by presenting an adaptation
of the compiler from [2] to the dishonest-majority setting. Let πbc be a two-round
MPC protocol in the broadcast model that is secure with unanimous abort. We
first discuss how to compile πbc to a protocol in which the first round is over
point-to-point and the second round is over broadcast.

In the compiled protocol, every party Pi starts by computing its first-round
message in πbc, denoted m1

i . In addition, Pi considers its next-message func-
tion for the second round second-msgi(xi, ri,m1

1, . . . ,m
1
n) (that computes

Pi’s second round message based on its input xi, randomness ri, and all
first-round messages). Each party “hard-wires” its input and randomness to
the circuit computing second-msgi such that given all first-round messages as
input, the circuit outputs Pi’s second-round message. Next, Pi garbles this
circuit and secret-shares each input label using an additive secret-sharing
scheme. In the first round of the compiled protocol, each party sends to
each other party over private channels his first-round message from πbc and
one share of each garbled label. (Note that for all the parties, the “ad-
justed” second-round circuits should receive the same input values, i.e., the
first-broadcast-round messages.)
In case Pi didn’t receive messages from all other parties he aborts. Otherwise,
Pi receives from every Pj the messagem1

j→i (i.e., first-round messages of πbc)
and for each input wire of the next-message function of Pj , two shares: one
for value 0 and the other for value 1 (recall that each bit that is broadcasted
in the first round of πbc forms an input wire in each circuit). In the second
round, every party sends to all other parties the garbled circuit as well as
one share from each pair, according to the messages received in the first
round (m1

1→i, . . . ,m
1
n→i).

Next, every party reconstructs all garbled labels and evaluates each garbled
circuit to obtain the second-round messages of πbc. Using these messages the
output value from πbc is obtained.

Proof intuition. Intuitively, if all honest parties receive the same “common part”
of the first-round message (corresponding to the first broadcast round of πbc),
they will be able to reconstruct the garbled labels and obtain the second-round
message of each party by evaluating the garbled circuits. Note that since the
second round is over broadcast, it is guaranteed that all honest parties will
evaluate the same garbled circuits using the same garbled inputs, and will obtain
the same output value. If there exists a pair of parties that received different first-
round messages, then none of the parties will be able to reconstruct the correct
labels.

Given an adversary Aout to the outer protocol (that uses a first point-to-point
round) a simulator Sout is constructed using a simulator Sin for the inner protocol
(in the broadcast model). At a high level, Sout will use Sin to simulate the first-
round messages of the honest parties, send them (with the appropriate synthetic
adjustments) to Aout, and get the corrupted parties’ first-round messages.

In case they are not consistent, Sout will send abort to the trusted party
and resume by simulating garbled circuits that output dummy values in the

9



second round—this is secure since the labels for these garbled circuits will
not be revealed.
In case they are consistent, Sout will use the inner simulator Sin to extract
the input values of the corrupted parties and send them to the trusted party.
Once receiving the output, Sout can hand it to Sin who outputs the second-
round messages for the honest parties. Next, Sout will use these messages to
simulate the garbled circuits of the honest parties and hand them to Aout.
Based on the response from Aout (i.e., the second-round messages) Sout will
send abort or continue to the trusted party and halt.
We remark that the proof in [2] also follows this intuition; however, that

proof uses specific properties of the (simulator for the) broadcast-model protocol
constructed in [2] (which in turn is based on the protocol from [1]). Our goal is
to provide a generic compiler, which works for any two-round broadcast-model
protocol, and so our use of the simulator for the broadcast-model protocol must
be black-box. For that purpose, we devise non-trivial new simulation techniques,
which we believe might be of independent interest. Our proof can be adapted
to demonstrate that the original compilation technique of [2] is, in fact, generic,
i.e., can securely compile any broadcast-hybrid protocol.

To explain the technical challenge and our solution, let us discuss the above
issue in more detail: Recall that the security definition for the stand-alone model8
from [39] guarantees that for every adversary there is a simulator for the ideal
computation (in the current case, ideal computation with unanimous abort).
The simulator is invoked with some auxiliary information, and starts by sending
to the trusted party inputs for the corrupted parties (or abort). Upon receiving
the output value, the simulator responds with abort/continue, and finally gen-
erates its output which is computationally indistinguishable from the view of
the adversary in a protocol (where the honest parties’ outputs are distributed
according to the extracted corrupted-parties’ inputs).

Given an adversary Aout for the compiled protocol π, we would like to use
the security of πbc to construct a simulator Sout and simulate the “common part”
of the honest parties’ messages (i.e., the messages m1

i→j from an honest Pi to a
corrupted Pj). However, the adversary Aout induces multiple adversaries for πbc,
one for every honest party and it is not clear which simulator (i.e., for which
of these adversaries) should be used. In fact, before interacting with Aout and
sending him the first-round messages of honest parties, Sout should first run one
(or a few) of the aforementioned simulators to get the inputs for the corrupted
parties, invoke the trusted party with the input values, and get back the output.
(At this point the simulator is committed to the corrupted parties’ inputs.)9

8 Our choice to describe the results in the stand-alone model is for simplicity and
for providing stronger impossibility results. Our feasibility results extend to the UC
framework [13] via standard technical adjustments, as our simulators are black-box
and straight-line. We note that the same simulation techniques discussed in this
section are also needed for adjusting the proof to the UC model.

9 This is challenging because we use the broadcast-hybrid protocol in a black-box
manner. Restricting to subclasses of protocols with specific properties—e.g., the

10



Only then can Sout send the output back to the inner simulator(s) and get the
view of the inner adversary (adversaries) in the execution, and use it to interact
with Aout.

Receiver-specific adversaries. To solve this conundrum, we construct our simu-
lator as follows: For every honest party Pj we define a receiver-specific adversary
Ajin for πbc, by forwarding the first-broadcast-round messages to Aout and re-
sponding with the messages Aout sends to Pj (recall that Aout can send different
messages to different honest parties in π). By the security of πbc, for every such
Ajin there exists a simulator Sjin.

To define the simulator Sout (for the adversary Aout), we use one of the
simulators Sjin corresponding to the honest parties. Sout initially receives from
Sjin either the corrupted parties’ inputs or an abort message, and forwards the
received message to the trusted party. If Sjin does not abort, Sout receives back
the output value y, forwards y to Sjin and receives the simulated second-round
messages from Sjin’s output. Next, Sout invokes Aout and simulates the first-round
messages of π (using the simulated first-round messages for πbc obtained from
Sjin), receives back the first-round messages from Aout, and checks whether these
messages are consistent. If so, Sout completes the simulation by constructing
simulated garbled circuits that output the correct second-round messages (if
Aout’s messages are consistent, the simulated messages by Sjin are valid for all
honest parties). IfAout’s messages are inconsistent, Sout simulates garbled circuits
that output dummy values (e.g., zeros), which is acceptable since the Aout will
not learn the labels to open them. We refer the reader to Section 4.2 for a detailed
discussion and a formal proof.

Selective abort via two point-to-point rounds. After showing that the compiler
from [2] can be adjusted to achieve unanimous abort when the first round is
over point-to-point and the second is over broadcast, we proceed to achieve
selective abort when both rounds are over point-to-point, facing any number of
corruptions. The main difference from the previous case is that the adversary
can send different garbled circuits to different honest parties in the second round,
potentially causing them to obtain different output values, which would violate
correctness (recall that the definition of security with selective abort permits
some honest parties to abort while other obtain the correct output, but it is
forbidden for two honest parties to obtain two different output values). However,
we reduce this attack to the security of πbc and show that it can only succeed
with negligible probability.

Organization of the paper. Preliminaries are presented in Section 2. In Section 3
we present our impossibility results and in Section 4 our feasibility results. Due
to space limitations, complementary material and some of the proofs can be
found in the full version [23].

view of the adversary in the first round is distributed independently of the function’s
output—may enable more straightforward simulation strategies.

11



2 Preliminaries

In this section, we introduce some necessary notation and terminology. We de-
note by κ the security parameter. For n ∈ N, let [n] = {1, · · · , n}. Let poly denote
the set of all positive polynomials and let PPT denote a probabilistic algorithm
that runs in strictly polynomial time. A function ν : N → [0, 1] is negligible if
ν(κ) < 1/p(κ) for every p ∈ poly and large enough κ. Given a random variable
X, we write x← X to indicate that x is selected according to X.

2.1 Security Model

We provide the basic definitions for secure multiparty computation according to
the real/ideal paradigm (see [39, 12, 13] for further details), capturing in par-
ticular the various types of unsuccessful termination (“abort”) that may occur.
For simplicity, we state our results in the stand-alone setting, however, all of our
results can be extended to the UC framework [13].

Real-world execution. An n-party protocol π = (P1, . . . , Pn) is an n-tuple of
PPT interactive Turing machines. The term party Pi refers to the i’th interac-
tive Turing machine. Each party Pi starts with input xi ∈ {0, 1}∗ and random
coins ri ∈ {0, 1}∗. Without loss of generality, the input length of each party is
assumed to be the security parameter κ. An adversary A is another interactive
TM describing the behavior of the corrupted parties. It starts the execution
with input that contains the identities of the corrupted parties and their private
inputs, and an additional auxiliary input. The parties execute the protocol in
a synchronous network. That is, the execution proceeds in rounds: Each round
consists of a send phase (where parties send their messages from this round) fol-
lowed by a receive phase (where they receive messages from other parties). The
adversary is assumed to be rushing, which means that he can see the messages
the honest parties send in a round before determining the messages that the
corrupted parties send in that round.

The parties can communicate in every round over a broadcast channel or us-
ing a fully connected point-to-point network. The communication lines between
the parties are assumed to be ideally authenticated and private (and thus the
adversary cannot modify messages sent between two honest parties nor read
them).10

Throughout the execution of the protocol, all the honest parties follow the
instructions of the prescribed protocol, whereas the corrupted parties receive
their instructions from the adversary. The adversary is considered to be actively
malicious, meaning that he can instruct the corrupted parties to deviate from
the protocol in any arbitrary way. At the conclusion of the execution, the honest
parties output their prescribed output from the protocol, the corrupted parties
do not output anything and the adversary outputs an (arbitrary) function of its
10 Private channels can be realized over authenticated channels without increasing the

round complexity given a PKI for public-key encryption.

12



view of the computation (containing the views of the corrupted parties). The
view of a party in a given execution of the protocol consists of its input, its
random coins, and the messages it sees throughout this execution.

Definition 1 (Real-world execution). Let π = (P1, . . . , Pn) be an n-party
protocol and let I ⊆ [n] denote the set of indices of the parties corrupted
by A. The joint execution of π under (A, I) in the real model, on input vec-
tor x = (x1, . . . , xn), auxiliary input aux and security parameter κ, denoted
REALπ,I,A(aux)(x, κ), is defined as the output vector of P1, . . . , Pn and A(aux)
resulting from the protocol interaction.

Ideal-world execution (with abort). We now present standard definitions of ideal
computations that are used to define security with identifiable abort, unanimous
abort, and selective (non-unanimous) abort. For further details see [41, 50, 19].

An ideal computation with abort of an n-party functionality f on input x =
(x1, . . . , xn) for parties (P1, . . . , Pn) in the presence of an adversary (a simulator)
S controlling the parties indexed by I ⊆ [n], proceeds via the following steps.

Sending inputs to trusted party: An honest party Pi sends its input xi to the
trusted party. The adversary may send to the trusted party arbitrary inputs
for the corrupted parties. Let x′i be the value actually sent as the input of
party Pi.

Trusted party answers adversary: The trusted party computes y =
f(x′1, . . . , x′n). If there are corrupted parties, i.e., if I 6= ∅, send y to
S. Otherwise, proceed to step Trusted party answers remaining parties.

Adversary responds to trusted party: The adversary S can either select a set of
parties that will not get the output by sending an (abort,J ) message with
J ⊆ [n] \ I, or allow all honest parties to obtain the output by sending a
continue message.

Trusted party answers remaining parties: If S has sent an (abort,J ) message
with J ⊆ [n] \ I and I 6= ∅, the trusted party sends ⊥ to every party Pj
with j ∈ J and y to every Pj with j /∈ J ∪ I. Otherwise, if the adversary
sends a continue message or if I = ∅, the trusted party sends y to Pi for
every i /∈ I.

Outputs: Honest parties always output the message received from the trusted
party while the corrupted parties output nothing. The adversary S outputs
an arbitrary function of the initial inputs {xi}i∈I , the messages received by
the corrupted parties from the trusted party and its auxiliary input.

Definition 2 (Ideal computation with selective abort). Let
f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality and let I ⊆ [n] be
the set of indices of the corrupted parties. Then, the joint execution of f under
(S, I) in the ideal computation, on input vector x = (x1, . . . , xn), auxiliary
input aux to S and security parameter κ, denoted IDEALsl-abort

f,I,S(aux)(x, κ), is defined
as the output vector of P1, . . . , Pn and S resulting from the above described ideal
process.

13



We now define the following variants of this ideal computation:
Ideal computation with unanimous abort. This ideal computation pro-
ceeds as in Definition 2, with the difference that in order to abort the com-
putation, the adversary simply sends abort to the trusted party (without
specifying a set J ). In this case, the trusted party responds with ⊥ to all
honest parties. This ideal computation is denoted as IDEALun-abort

f,I,S(aux)(x, κ).
Ideal computation with identifiable abort. This ideal computation pro-
ceeds as the ideal computation with unanimous abort, with the exception
that in order to abort the computation, the adversary chooses an index of a
corrupted party i∗ ∈ I and sends (abort, i∗) to the trusted party. In this case,
the trusted party responds with (⊥, i∗) to all parties. This ideal computation
is denoted as IDEALid-abort

f,I,S(aux)(x, κ).

Security definitions. Having defined the real and ideal computations, we can
now define security of protocols.

Definition 3. Let type ∈ {sl-abort, un-abort, id-abort}. Let f : ({0, 1}∗)n →
({0, 1}∗)n be an n-party functionality. A protocol π t-securely computes f with
“type” if for every PPT real-world adversary A, there exists a PPT adversary
S, such that for every I ⊆ [n] of size at most t, it holds that{

REALπ,I,A(aux)(x, κ)
}

(x,aux)∈({0,1}∗)n+1,κ∈N
c≡
{

IDEALtype
f,I,S(aux)(x, κ)

}
(x,aux)∈({0,1}∗)n+1,κ∈N

.

3 Impossibility Results

In this section, we prove our impossibility results. Concretely, in Section 3.1,
we argue that there is no single-round maliciously secure generic MPC proto-
col against dishonest majorities, even if the single round is a broadcast round,
and even if we are settling for security with selective abort and we assume an
arbitrary correlated-randomness setup. Subsequently, in Section 3.2, we prove
that no generic two-round MPC protocol can achieve security with identifiable
abort, while making use of broadcast in only one of the two rounds. This holds
irrespective of whether the broadcast round is the first or second one. Towards
this goal, we start by proving that no two-round protocol in which the broadcast
round is first—i.e., the second round is over point-to-point—can achieve identi-
fiable abort. This is proved in Theorem 1; in fact, the theorem proves a stronger
statement, namely, that there is a function f such that no protocol with the
above structure can securely compute f with unanimous abort.11

Theorem 1 implies that the only option for a two-round protocol with only
one broadcast round to securely compute f with identifiable abort, is if the
broadcast round is the second round—i.e., the first round is over point-to-point.
We prove (Theorem 7) that this is also impossible, i.e., f cannot be computed
11 Recall that there is a trivial reduction from security with unanimous abort to security

with identifiable abort: Run the protocol and in case it aborts with the ID of some
party Pi, output abort and ignore the identity of the corrupted party.

14



by such a protocol. This proves that the result from Theorem 11 (Item 1),
which achieves security with unanimous abort in this case, is also tight and
completes the (in)feasibility landscape for two-round protocols. Furthermore,
we note that all the results proved in this section hold for both computational
and information-theoretic security, even if we assume access to an arbitrary
correlated-randomness setup.

A simple function. Before starting our sequence of impossibility results, we first
introduce a simple function which we will use throughout this section. Consider
the following three-party public-output function (i.e., all three parties receive
the output): The parties, P1, P2, and P3, hold inputs x1 ∈ {0, 1} × {0, 1}, x2 ∈
{0, 1} and x3 ∈ {0, 1}κ × {0, 1}κ, respectively, where x1 = (x1,1, x1,2) and x3 =
(x3,1, x3,2). For a bit b we denote by bκ the string resulting from concatenating
κ times the bit b (recall that κ denotes the security parameter). The function is
defined as follows:

f(x1, x2, x3) =
{
xκ1,1 ⊕ xκ2 ⊕ x3,1, if x1,2 = x2

xκ1,1 ⊕ xκ2 ⊕ x3,2, if x1,2 6= x2.

Note that in the above function, the first bit of P1, i.e., x1,1 contributes to the
computed XOR, whereas the relation between the second bit of P1, i.e., x1,2, and
the input-bit x2 of P2 is the one which defines which of the x3,1 or x3,2 will be
used in the output. One can easily verify that the following is a more compact
representation of f :

f(x1, x2, x3) = xκ1,1 ⊕ xκ2 ⊕ x3,1+(x1,2⊕x2).

The latter representation will be useful in the proof of Theorem 7.
As discussed in the introduction, the above function enjoys the following two

useful properties: First, it is impossible in the ideal world (where parties and
an adversary/simulator have access to a TTP for f) for the simulator to learn
both inputs of P3 even if he corrupts both P1 and P2. Second, assuming the
input x1,1 of P1 is chosen uniformly at random, it is impossible for a simulator
corrupting P2 and P3 to fix the output to 0. We prove these two properties in
the corresponding theorems where they are used.

3.1 Impossibility of Single-Round MPC

As a simple corollary of HLP [43] (see also [60]), we can exclude the existence
of a semi-honestly secure MPC protocol for the above function.

Corollary 2 ([43]). The function f cannot be computed with selective abort by
a single-round protocol tolerating one semi-honest corrupted party.

Extending Corollary 2 to the multi-party case (involving more than three
parties) follows using a player-simulation argument, and the following facts that
are implied by our definition of security with selective abort: (1) If the adversary

15



follows his protocol, the evaluation cannot abort even if parties are corrupted;
this follows from the non-triviality condition and the fact that when the adver-
sary follows the protocol with his corrupted parties, the protocol cannot deviate
based on the fact that parties are corrupted; (2) for such an honest-looking ad-
versary [14], the protocol achieves all the guarantees required for semi-honest
security—i.e., there is a simulator which simulates the adversary’s entire view
from the inputs and outputs of corrupted parties.

Corollary 3. For n ≥ 3, there exist an n-party function fn for which there is no
single-round protocol π which securely computes fn with selective abort against
even a single corruption. The statement is true even if π uses a broadcast channel
in its single round.

3.2 Impossibility of Single-Broadcast Two-Round MPC

Having excluded the possibility of single-round MPC protocols, we next turn
to two rounds. Throughout this section, we prove impossibility statements for
three-party protocols (for the function f). As discussed in the introduction, all
our statements can be directly extended to the multi-party setting using the
straightforward extension of f to n parties (cf. function fn in Corollary 3).

Impossibility of Unanimous Abort when Broadcast is First Round.
We start by proving impossibility of security with unanimous abort for f against
corrupted majorities. Analogous to [43] we will say that an adversary learns the
residual function f(x1, ·, ·) to denote the event that the adversary learns enough
information to locally and efficiently compute f(x1, x

∗
2, x
∗
3) on any (and as many)

inputs x∗2 and x∗3 as he wants.

Theorem 1. There exists no two-round protocol π which securely computes f
with unanimous abort against corrupted majorities while making use of the broad-
cast channel only in the first round (i.e., where the second round is over point-
to-point channels). The statement is true even assuming an arbitrary correlated
randomness setup.

Proof. Towards a contradiction, assume that there is protocol π = (π1, π2, π3),
where πi is the code (e.g., interactive Turing machine) of Pi, for computing f
with unanimous abort which uses broadcast in its first round, but only point-
to-point in the second round. Consider executions of π on uniformly random
inputs x1 and x2 for P1 and P2 and on input x3 ∈ {(0κ, 1κ), (1κ, 0κ)} from P3
in the following scenarios (see Figure 1 for an illustration). In all four scenarios,
the adversary uses the honest input for the corrupted party and allows him to
execute his honest protocol on uniform random coins, but might drop some of
the messages the corrupted party’s protocol attempts to send in Round 2.

Scenario 1: The adversary corrupts P1, plays the first round according to π
but sends no messages in the second round.

16



Scenario 1 Scenario 2 Scenario 3 Scenario 4

Round 1

Round 2

π1

π2 π3

π1

π2 π3

π1

π2 π3

π1

π2 π3

π1

π2 π3

π1

π2 π3

π1

π2 π3

π1

π2 π3

Fig. 1. The scenarios from the proof. All protocols are executed as specified; whenever
an arrow is present it indicates that the message that the corresponding protocol would
send is indeed sent; missing arrows indicate that respective messages are dropped.
A shade on the background of a protocol indicates that the corresponding party is
corrupted (but the adversary still executes the respective protocol on the honest input,
but might drop some messages).

Scenario 2: The adversary corrupts P1, plays both rounds according to π, but
does not send his second-round message towards P3; party P2 receives his
second-round message according to the honest protocol.

Scenario 3: The adversary corrupts P1 but plays the honest protocols in both
rounds.

Scenario 4: No party is corrupted.

The proof of the theorem proceeds as follows: By a sequence of comparisons
between the four scenarios we show that in Scenario 1, π2 and π3 cannot abort
and will have to produce output equal to f(x1, x2, x3) with overwhelming prob-
ability despite the fact that P1 sends no message in Round 2. This means that
a (rushing)12 adversary corrupting P2 can learn the residual function f(x1, ·, ·)
already in Round 1 and before committing to any inputs for P2 and P3. This
allows him to choose corrupted inputs depending on (the honest input) x1 vio-
lating the security (in particular the input-independence property)13 of π. The
formal argument follows. For notational clarity, we will denote the message that
Pi sends to Pj over a point to point channel in round ρ by mρ,i→j ; if in round ρ
a party Pi broadcasts a messages, we will denote this message by mρ,i→∗. Due to
space limitations, the proof for these claim are deferred to the full version [23].

12 Our impossibility results consider standard, worst-case and rushing adversaries. One
might investigate how the landscape looks like against non-rushing adversaries, but
this is typically considered too strong an assumption for protocols, as it implies
feasibility of fair exchange (a task impossible in the standard rushing-adversary
with dishonest majority realm) and even in a single round. We do not consider this
theoretical question here.

13 Informally, input independence, a property implied by the standard simulation-based
security definition (see Section 2.1), requires that the adversary cannot choose his
inputs depending on the inputs of honest parties.

17



Claim 2. In Scenario 3, parties P2 and P3 output f(x1, x2, x3) with overwhelm-
ing probability.
Claim 3. In Scenario 2, parties P2 and P3 output f(x1, x2, x3) with overwhelm-
ing probability.
Claim 4. In Scenario 1, parties P2 and P3 output f(x1, x2, x3) with overwhelm-
ing probability.
Claim 5. An adversary corrupting P2 and P3 can learn the residual function
f(x1, ·, ·) before P2 or P3 send any message.

To complete the proof of the theorem, we show that existence of the above
adversary A implies an adversary A′ that can break the security (in particular,
the input independence) of π. Intuitively, A′ will corrupt P2 and P3 and use the
strategy of the adversary A from the above claim to learn the residual function
before committing to his own input to f ; thus A′ is free to choose this inputs
for P2 and P3 depending on x1. We next provide a formal proof of this fact by
describing a strategy for biasing the output (depending on x1) which cannot be
simulated

Concretely, consider the following A′ that corrupts P2 and P3: A′ receives
m1,1→∗ from P1 and using A, for x∗2 = 0 and x3,1∗ = 0κ and x3,2∗ = 1κ, A′ com-
putes y = f(x1, 0, (0κ, 1κ)). Then, dependent on whether y is 0κ or 1κ—observe
that by definition of the function, these are the only two possible outcomes given
the above inputs of P3—A′ distinguishes two cases:
Case 1: If y = 0κ then execute the honest protocol for P2 and P3 with these

inputs, i.e., x2 = 0 and x3,1 = 0κ and x3,2 = 1κ.
Case 2: If y = 1κ, then execute the honest protocol for P2 and P3 with the

inputs of P3 swapped, i.e., x2 = 0 and x3,1 = 1κ and x3,2 = 0κ.
Note that in both cases P1 witnesses a view which is indistinguishable from the
honest protocol with inputs: x2 = 0 and x3,1 = 0κ and x3,2 = 1κ (Case 1)
or x2 = 0 and x3,1 = 1κ and x3,2 = 0κ (Case 2); hence, the correctness of π
implies that with overwhelming probability if y = f(x1, 0, (0κ, 1κ)) = 0κ then
P1 will output it, otherwise, i.e., if y = f(x1, 0, (0κ, 1κ)) = 1κ he will output
y = f(x1, 0, (1κ, 0κ)); but in this latter case y = 0κ by the definition of f . Hence,
this adversary always makes P1 output 0κ.

To complete the proof we prove that in an ideal evaluation of f with an
honest P1 and corrupted P2 and P3, if P1 uses a uniformly random input and no
abort occurs, then the output can be 0κ with probability at most 1/2± negl(κ).
Claim 6. For any simulator S corrupting P2 and P3 and not causing the ideal
execution to abort, if P1’s input is chosen uniformly at random, then for any
choice of inputs for P2 and P3, there exist a string z ∈ {0, 1}κ such that the
output of P1 will be z or z̄ each with probability 1/2± negl(κ).

The above claim implies that for any simulator, with probability at least
1/2 the output will be different than 0κ. Hence the adversary A′ (who, recall,
always fixes the output to 0κ) cannot be simulated which contradicts the assumed
security of π.

18



Impossibility of Identifiable Abort. Next, we proceed to the proof of our
second, and main, impossibility theorem about identifiable abort. For this proof
we make the following modification to f : In addition to its output from f , every
party Pi is required to locally output his own input xi. We denote this function
by f̂ . Specifically, the output of f̂ consists of two parts: A public part that is
identical to f , which is the same for all parties (without loss of generality, we
will use f(x1, x2, x3) to denote this part), and a private part which for each Pi
is its own input.

f̂(x1, x2, x3) =
(
(y, x1), (y, x2), (y, x3)

)
where y = f(x1, x2, x3).

We remark that impossibility for such a public/private output function f̂ implies
impossibility of public output functions via the standard reduction of private to
public input functions (see [39]).

Theorem 7. The function f̂ cannot be securely computed with identifiable abort
by a three-party protocol that uses one point-to-point round and one broadcast
round, tolerating (up to) two corrupted parties. This is true even assuming an
arbitrary correlated-randomness setup.

Proof. Assume, towards a contradiction, that a protocol π exists for the function
f̂ . First, note that due to Theorem 1, the broadcast round cannot be the first
round. (This holds because security with identifiable abort implies security with
unanimous abort.) Hence, the first round of π must be the point-to-point round
and the second can be a broadcast round. In the following, we will assume
that the second round uses only the broadcast channel; this is without loss
of generality as we allow π to be in the correlated-randomness model, which
means that parties might share keys that they can use to emulate point-to-
point communication over the broadcast network. (Proving impossibility in the
correlated-randomness model implies impossibility in the plain model.)

Consider the parties P1, P2, and P3 holding uniformly chosen inputs x1, x2,
and x3 for f̂ . Let πi denote the code executed by Pi in π (i.e., Pi’s protocol
machine), and consider the following scenarios (also illustrated in Figure 2):

Scenario 1: The adversary corrupts only P3 and has him play π3, but drops
the message m1,3→2 that π3 sends to P2 in the first round (i.e., the message
is never delivered to π2) and does not deliver to π3 the message m1,2→3
received from P2 in the first round. Other than this intervention, all machines
execute their prescribed code and all other messages are sent and delivered
as specified by the protocol π.
In particular, the instance of π3 which the adversary emulates is not aware
that the message m1,3→2 (which it generated and tried to send to π2 in the
first round) was never delivered, and is not aware that P2 did send a message
m1,2→3 in the first round, which was blocked. In other words, the internal
state of π2 (resp., π3) reflects the fact that the message to π3 (resp., π2) is
sent, but the message from π3 (resp., π2) did not arrive.

19



Scenario 1 Scenario 2 Scenario 3

Round 1

Round 2

π1

π2 π3

π1

π2 π3

π1

π2 π3

π1

π2 π3

π1

π2 π3

π1

π2 π3

Fig. 2. The scenarios from the proof. All protocols are executed as specified. A shade
on the background of a protocol indicates that the corresponding party is corrupted
(the adversary still executes the respective protocol on the honest input, but may
drop some messages). A solid arrow indicates that the message that the corresponding
protocol would send is indeed sent; cut arrows indicate that respective messages are
dropped, where we illustrate which adversarial behavior is the reason for dropping a
message by scissors; bold arrows indicate that this second-round message depends on
the protocol having seen some incomplete transcript (due to dropped messages) in the
first round and might therefore adapt its behavior accordingly.

Scenario 2: The adversary corrupts only P2 and has him play π2 with the
modification that he drops the first-round message m1,3→2 received from P3
(again, the message is never delivered to π2) and the messagem1,2→3 that π2
sends to P3. Other than this specific intervention, all machines execute their
prescribed code and all other messages are sent and delivered as specified by
the protocol π.
In particular, the simulated instance of π2 is not aware that its first round
message m1,2→3 for P3 was never delivered, and is not aware that P3 did
send the message m1,3→2 in the first round, which was blocked, as above.

Scenario 3: The adversary corrupts P1 and P2. Both parties play exactly the
same protocol as in Scenario 2.

First we observe the following: In all three scenarios the three machines
witness the same interaction— i.e., their (joint) internal states are identically
distributed. Indeed, all three adversarial strategies have the effect of execution
of the prescribed protocol without the first message from π3 to π2 and from
π2 to π3. Since π1, π2, and π3 are protocol-machines (interactive algorithms),
their behavior cannot depend on who is corrupted. This means that their (joint)
output (distribution) in Scenario 1 must be indistinguishable (in fact, identically
distributed) to their output in Scenarios 2 and 3.

Now consider an execution of this protocol on uniformly random inputs.
We consider the following two cases for Scenario 1, where the probabilities are
defined over the choice of the correlated randomness, the random coins used by
the protocols, and the randomness used for selecting the inputs, and analyze
them in turn.

20



Case 1: The honest parties abort (with noticeable probability). We prove that if
an abort occurs with noticeable probability, then the security of the protocol is
violated: Due to the identifiability requirement, if in Scenario 1 there is an abort,
then both π1 and π2 need to output the identity of P3 (as a cheater) as he is the
only corrupted party. However, since as argued above the output distributions
in the two scenarios are indistinguishable, the fact that in Scenario 1, π1 aborts
with the identity of P3 with noticeable probability implies that also in Scenario
2, π1 will also abort identifying P3 with noticeable probability.

By the assumption that π is secure with identifiable abort—which implies
that honest parties agree on the identity of a corrupted party in case of abort—
the latter statement implies that in Scenario 2, with noticeable probability, π3
will abort with the same cheater, i.e., the honest party P3 (who is running π3)
will abort identifying itself as a cheater contradicting the fact that π is secure
with identifiable abort. (Security with identifiable abort only allows an abort
identifying a corrupted party.) This means that the protocol cannot abort with
noticeable probability which leaves Case 2, below, as the only alternative.

Case 2: The honest parties do not abort (with overwhelming probability). We
prove that an adversary corrupting P1 in addition to P2 can learn both x3,1
and x3,2 with noticeable probability, which is impossible in an ideal evaluation
of f̂ , as follows. Observe that since, in this case, the probability of aborting in
Scenario 1 is negligible and the joint views of the parties are indistinguishable
between the two scenarios, the probability that an abort occurs in Scenario 2
or Scenario 3 is also negligible. Furthermore, because Scenario 3 consist of the
same protocols in exactly the same configuration and with the same messages
dropped, the output of the protocols in Scenario 3 is distributed identically to
the output of the protocol in Scenario 2, namely it is the output of the function
on the actual inputs of P1 and P3 and some input from P2.

Next, observe that the security of π for this case implies that for every ad-
versary in Scenario 2 there exists a simulator corrupting P2. Let A2 denote
the adversary that chooses an input for π2 uniformly at random and plays the
strategy specified in Scenario 2, and let S2 denote the corresponding simulator.
Denote by X∗2 the random variable corresponding to the input x∗2 that S2 hands
to the functionality for f̂ on behalf of P2, and denote by X1 = (X1,1, X1,2) and
X3 = (X3,1, X3,2) the random variables corresponding to the inputs of the hon-
est parties. The following claim states that X∗2 might take any of the values 0
or 1 with noticeable probability.

Claim 8. For each b ∈ {0, 1}, Pr [X∗2 = b] is noticeable.

Proof. First we note that due to input independence—i.e., because in the ideal
experiment the simulator needs to hand inputs corresponding to the corrupted
parties before seeing any information about the honest parties’ inputs—it must
hold that Pr [X∗2 = b] = Pr [X∗2 = b | X1, X3]. Hence, it suffices to prove that
Pr [X∗2 = x∗2 | X1, X3] is noticeable for each of the two possible input choices
x∗2 ∈ {0, 1} for the simulator. Assume towards a contradiction that this is not

21



true. This means that with overwhelming probability the simulator always inputs
the same x∗2 = b. Without loss of generality, assume that b = 0 (the argument for
b = 1 is symmetric). Since the protocol aborts only with negligible probability,
security implies that the distribution of the public output for every Pi with
this simulator S2 is (computationally) indistinguishable from f(X1, 0, X3) =
Xκ

1,1 ⊕X3,(1+X1,2).
However, since S2 is a simulator for π with adversary A2 who uses a uniform

input in his π2 emulation, this implies that the interaction of the protocols π1, π2,
and π3 in Scenario 2 must also have as public output a value with distribution
indistinguishable from Xκ

1,1 ⊕ X3,(1+X1,2). Now, using the fact that the views
which the protocol machines in Scenario 2 and 1 are indistinguishable,14 we
can deduce that the public output in Scenario 1 needs to also be distributed
indistinguishably from Xκ

1,1 ⊕X3,(1+X1,2).
However, in Scenario 1, party P2 is not corrupted which means that the

public output distribution needs to be indistinguishable from f(X1, X2, X
∗
3 ),

where X∗3 = (X∗3,1, X∗3,2) is the input distribution of the simulator S3 for the
corrupted P3, existence of which is implied by the security of π. But this means
that S3 will have to come up with X∗3 such that the public-output distribution
f(X1, X2, X

∗
3 ) = Xκ

1,1⊕Xκ
2⊕X∗3,1+(X1,2⊕X2) is distributed indistinguishably from

Xκ
1,1 ⊕X∗3,(1+X1,2). Since X∗3 cannot depend on X1 or X2, this is impossible.

The following claim follows directly from Claim 8 and the security of π (recall
that we are under the assumption that Scenario 2 terminates without abort
except with negligible probability).

Claim 9. For any inputs x1 and x3 for protocol-machines π1 and π3 in Scenario
2, the probability (over the input-choice of x2 and the local randomness r2 given
to π2) that the public output is xκ1,1 ⊕ xκ2 ⊕ x3,1 (i.e., x1,2 = x2) is noticeable,
and so is the probability that the public output xκ1,1⊕xκ2 ⊕x3,2 (i.e., x1,2 6= x2).

The final claim that we prove provides the attack discussed at the beginning
of the proof for Case 2. We refer to the full version [23] for a proof.

Claim 10. An adversary A corrupting both P1 and P2 can learn both x3,1 and
x3,2 with noticeable probability.

Finally, we observe that, by the definition of the function, the probability
that a simulator S for the adversary A from Claim 10 (who corrupts P1 and P2)
outputs both inputs of π3 is negligible. Hence, Claim 10 contradicts the assumed
security of π.

14 Note that although parties P3 and P2 are corrupted in these scenarios, the corre-
sponding adversary still executes π3 and π2, respectively and has some transmitted
message dropped. Hence, we can define the view of these protocols in this concrete
attack scenario although they are controlled by the adversary.

22



4 Feasibility of Two-Round MPC with Limited Use of
Broadcast

In this section, we present our feasibility results, showing how to compute any
function with unanimous abort when only the second round of the MPC protocol
is over broadcast, and with selective abort purely over pairwise channels. More
formally:

Theorem 11. Assume the existence of a two-round maliciously secure OT pro-
tocol, let f be an efficiently computable n-party function, and let t < n. Then,
1. f can be securely computed with unanimous abort, tolerating a PPT static,

malicious t-adversary, by a two-round protocol in which the first round is
over private channels and the second over broadcast.

2. f can be securely computed with selective abort, tolerating a PPT static,
malicious t-adversary, by a two-round protocol over private channels.

The proof of Theorem 11 follows from Lemmas 1 and 2 that show how to com-
pile any two-broadcast-round protocol secure with unanimous (resp., selective)
abort by a black-box straight-line simulation, to the desired result. Theorem 11
follows from that fact, and the two-broadcast-round MPC protocols presented
in [33, 9].

The only cryptographic assumption used in our compiler is a garbling scheme
that is used to garble the second-round next-message function of the protocol.
As observed in [2], for the protocol from [33] the second-round next-message
function is in NC1. Therefore, by using information-theoretic garbling schemes
for NC1 [47, 48] and the information-theoretic two-broadcast-round protocol of
[35] (in the OT-correlation model, where parties receive correlated randomness
for precomputed OT [6]), we obtain the following corollary.

Corollary 4. Let f be an efficiently computable n-party function and let t < n.
Then,
1. f can be computed with information-theoretic security and unanimous abort

in the OT-correlation model, tolerating a static, malicious t-adversary, by
a two-round protocol in which the first round is over private channels and
the second over broadcast.

2. f can be computed with information-theoretic security and selective abort
in the OT-correlation model, tolerating a static, malicious t-adversary, by
a two-round protocol over private channels.

Structure of two-round protocols. Before proving Theorem 11, we present the
notations that will be used for the proof. We consider n-party protocols de-
fined in the correlated-randomness hybrid model, where a trusted party samples
(r1, . . . , rn) ← Dcorr from some predefined efficiently sampleable distribution
Dcorr, and each party Pi receives ri at the onset of the protocol. For simplicity,
and without loss of generality, we assume that the random coins of each party
are a part of the correlated randomness. The probabilities below are over the

23



random coins for sampling the correlated randomness and the random coins of
the adversary.

The two-round n-party protocol is then defined by the set of three func-
tions per party {(first-msgi, second-msgi, outputi)}i∈[n]. Every party Pi operates
as follows:

The first-round messages are computed by the function (m1
i→1, . . . ,m

1
i→n) =

first-msgi(xi, ri), which is a deterministic function of his input xi and ran-
domness ri. If the first round is over broadcast it holds that m1

i→1 = . . . =
m1
i→n, and we denote the unique message as m1

i .
The second-round messages are computed by the next-message function
(m2

i→1, . . . ,m
2
i→n) = second-msgi(xi, ri,m1

1→i, . . . ,m
1
n→i), which is a deter-

ministic function of xi, ri and the first-round message m1
j→i received from

each Pj . As before, if the second round is over broadcast we denote the
unique message as m2

i .
The output is computed by the function y =
outputi(xi, ri,m1

1→i, . . . ,m
1
n→i,m

2
1→i, . . . ,m

2
n→i), which is a determin-

istic function of xi, ri and the first-round and second-round messages.

4.1 Compiling Two-Broadcast-Round Protocols

In this section, we present a compiler which transforms a two-broadcast-round
MPC protocol into a two-round protocol suitable for a point-to-point network.
The compiler is based on the compiler presented in Ananth et al. [2], which con-
sidered information-theoretic honest-majority protocols that are executed over
both private point-to-point channels and a broadcast channel. We adapt this
compiler to the dishonest-majority setting, where the input protocol is defined
purely over a broadcast channel. See the full version [23] for a formal specification
of the compiler.

Let πbc be a two-round MPC protocol in the broadcast model. Initially, ev-
ery party “hard-wires” his input and randomness to the circuit computing the
second-round next-message function second-msgi,x,r(m1, . . . ,mn) on the first-
broadcast-round messages. Next, each party garbles this circuit and secret-shares
each label using an additive secret-sharing scheme.

In the first round, each party sends to each other party over private channels15

his first-round message from πbc and one share of each garbled label. Note that all
of these “adjusted” second-round circuits (one circuit generated by each party)
should receive the same input values, i.e., the first-broadcast-round messages.
For each input wire, corresponding to one broadcast bit, each party receives
two shares (one for value 0 and the other for value 1). In the second round,
every party sends to all other parties the garbled circuit as well as one share
from each pair, according to the messages received in the first round. Since each
party sends the same second-round message to all others, each party can either
send the second-round message over a broadcast channel (in which case it is
15 Private channels can be realized over authenticated channels without additional

rounds assuming a public-key infrastructure (PKI) for public-key encryption.

24



guaranteed that all parties receive the same messages) or multicast the message
over (authenticated) point-to-point channels.

Next, every party reconstructs all garbled labels and evaluates each garbled
circuit to obtain the second-round messages of πbc. Using these messages each
party can recover the output value from πbc.

4.2 Unanimous Abort with a Single Broadcast Round

We start by proving that the compiled protocol π = Comp(πbc) is secure with
unanimous abort when the second-round message is over a broadcast channel.
Intuitively, if all honest parties receive the same “common part” of the first-
round message (corresponding to the first broadcast round of πbc), they will be
able to reconstruct the garbled labels and obtain the second-round message of
each party by evaluating the garbled circuits. Note that since the second round
is over broadcast, it is guaranteed that all honest parties will evaluate the same
garbled circuits using the same garbled inputs, and will obtain the same output
value. If there exist a pair of parties that received different first-round messages,
then none of the parties will be able to reconstruct the correct labels.

The security of the compiled protocol reduces to the security of the broadcast-
model protocol; however, some subtleties arise in the simulation. The simulation
of the garbled circuits requires the simulated second-round messages for πbc
(as this is the output from the garbled circuit). To simulate the second-round
message of πbc, the simulator must obtain the output value that corresponds to
the input values that are extracted from the corrupted parties in the first round.
However, since the adversary can send different first-round messages to different
honest parties over the point-to-point channels, there may be multiple input
values that can be extracted—in fact, the messages received by every honest
party can define a different set of input values for the corrupted parties.

In more detail, given an adversaryA for the compiled protocol π, we construct
a simulator S. We would like to use the security of πbc to simulate the “common
part” of the honest parties’ messages. However, the adversary A induces multiple
adversaries for πbc, one for every honest party. For every honest party Pj we
define a receiver-specific adversary Aj for πbc, by forwarding the first-broadcast-
round messages to A and responding with the messages A sends to Pj (recall
that A can send different messages to different honest parties in π). By the
security of πbc, for every such Aj there exists a simulator Sj .

To define the simulator S (for the adversary A), we use one of the simulators
Sj corresponding to the honest parties (the choice of which simulator to use is
arbitrary). S initially receives from Sj either the corrupted parties’ inputs or
an abort message, and forwards the received message to the trusted party. If Sj
does not abort, S receives back the output value y, forwards y to Sj and receives
the simulated second-round messages from Sj ’s output. Next, S invokes A and
simulates the first-round messages of π (using the simulated first-round messages
for πbc obtained from Sj), receives back the first-round messages from A, and
checks whether these messages are consistent. If so, S completes the simulation
by constructing simulated garbled circuits that output the correct second-round

25



messages (if A’s messages are consistent, the simulated messages by Sj are valid
for all honest parties). If A’s messages are inconsistent, S simulates garbled
circuit that output dummy values (e.g., zeros), which is ok since the A will not
learn the labels to open them.

Lemma 1. Let f be an efficiently computable n-party function and let t < n. Let
πbc be a two-broadcast-round protocol that securely computes f with unanimous
abort by a black-box straight-line simulation and assume that garbling schemes
exist. Consider the protocol π = Comp(πbc) where the first round is over secure
point-to-point channels and the second round is over broadcast. Then, π securely
computes f with unanimous abort.

The proof of Lemma 1 can be found in the full version [23].

4.3 Selective Abort with Two Point-To-Point Rounds

We proceed by proving our second result, that the compiled protocol π =
Comp(πbc) is secure with selective abort when the second-round message is over a
point-to-point channel. The main difference from the previous case (Section 4.2)
is that the adversary can send different garbled circuits to different honest parties
in the second round, potentially causing them to obtain different output values,
which would violate correctness (recall that the definition of security with selec-
tive abort permits some honest parties to abort while other obtain the correct
output, but it is forbidden for two honest parties to obtain two different output
values.)

Lemma 2. Let f be an efficiently computable n-party function and let t < n. Let
πbc be a two-broadcast-round protocol that securely computes f with unanimous
abort by a black-box straight-line simulation and assume that garbling schemes
exist. Consider the protocol π = Comp(πbc) where both rounds are over secure
point-to-point channels. Then, π securely computes f with selective abort.

The proof of Lemma 2 can be found in the full version [23].

Acknowledgements. We would like to thank Prabhanjan Ananth, Arpita Patra,
and Divya Ravi for useful discussions and comments. We also thank the anony-
mous reviewers of Eurocrypt 2020 for pointing us to the client-server protocol
MPC of [35].

Ran Cohen’s research was supported in part by the Office of the Director of
National Intelligence (ODNI), Intelligence Advanced Research Project Activity
(IARPA) under contract number 2019-19-020700009 (ACHILLES). Juan Garay
and Vassilis Zikas were supported in part by the Office of the Director of National
Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA),
via 2019-1902070008.

The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of ODNI, IARPA, DoI/NBC, or the U.S.

26



Government. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright annotation
thereon.

This work was done in part while Vassilis Zikas was visiting the Simons
Institute for the Theory of Computing, UC Berkeley, and UCLA.

Bibliography

[1] P. Ananth, A. R. Choudhuri, A. Goel, and A. Jain. Round-optimal secure mul-
tiparty computation with honest majority. In CRYPTO 2018, Part II, volume
10992 of LNCS, pages 395–424. Springer, Heidelberg, 2018.

[2] P. Ananth, A. R. Choudhuri, A. Goel, and A. Jain. Two round information-
theoretic MPC with malicious security. In EUROCRYPT 2019, Part II, volume
11477 of LNCS, pages 532–561. Springer, Heidelberg, 2019.

[3] B. Applebaum, Z. Brakerski, and R. Tsabary. Perfect secure computation in two
rounds. In TCC 2018, Part I, volume 11239 of LNCS, pages 152–174. Springer,
Heidelberg, 2018.

[4] B. Applebaum, Z. Brakerski, and R. Tsabary. Degree 2 is complete for the round-
complexity of malicious MPC. In EUROCRYPT 2019, Part II, volume 11477 of
LNCS, pages 504–531. Springer, Heidelberg, 2019.

[5] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs.
Multiparty computation with low communication, computation and interaction
via threshold FHE. In EUROCRYPT 2012, volume 7237 of LNCS, pages 483–
501. Springer, Heidelberg, 2012.

[6] D. Beaver. Precomputing oblivious transfer. In CRYPTO’95, volume 963 of LNCS,
pages 97–109. Springer, Heidelberg, 1995.

[7] M. Ben-Or and R. El-Yaniv. Resilient-optimal interactive consistency in constant
time. Distributed Computing, 16(4):249–262, 2003.

[8] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th
ACM STOC, pages 1–10. ACM Press, 1988.

[9] F. Benhamouda and H. Lin. k-round multiparty computation from k-round obliv-
ious transfer via garbled interactive circuits. In EUROCRYPT 2018, Part II,
volume 10821 of LNCS, pages 500–532. Springer, Heidelberg, 2018.

[10] F. Benhamouda, H. Lin, A. Polychroniadou, and M. Venkitasubramaniam. Two-
round adaptively secure multiparty computation from standard assumptions. In
TCC 2018, Part I, volume 11239 of LNCS, pages 175–205. Springer, Heidelberg,
2018.

[11] E. Boyle, N. Gilboa, and Y. Ishai. Group-based secure computation: Optimizing
rounds, communication, and computation. In EUROCRYPT 2017, Part II, volume
10211 of LNCS, pages 163–193. Springer, Heidelberg, 2017.

[12] R. Canetti. Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology, 13(1):143–202, 2000.

[13] R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, 2001.

[14] R. Canetti and R. Ostrovsky. Secure computation with honest-looking parties:
What if nobody is truly honest? (extended abstract). In 31st ACM STOC, pages
255–264. ACM Press, 1999.



[15] R. Canetti, O. Poburinnaya, and M. Venkitasubramaniam. Better two-round
adaptive multi-party computation. In PKC 2017, Part II, volume 10175 of LNCS,
pages 396–427. Springer, Heidelberg, 2017.

[16] D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure pro-
tocols (extended abstract). In 20th ACM STOC, pages 11–19. ACM Press, 1988.

[17] B. Chor, M. Merritt, and D. B. Shmoys. Simple constant-time consensus protocols
in realistic failure models. Journal of the ACM, 36(3):591–614, 1989.

[18] R. Cleve. Limits on the security of coin flips when half the processors are faulty
(extended abstract). In 18th ACM STOC, pages 364–369. ACM Press, 1986.

[19] R. Cohen and Y. Lindell. Fairness versus guaranteed output delivery in secure
multiparty computation. Journal of Cryptology, 30(4):1157–1186, Oct. 2017.

[20] R. Cohen, S. Coretti, J. A. Garay, and V. Zikas. Round-preserving parallel com-
position of probabilistic-termination cryptographic protocols. In ICALP 2017,
volume 80 of LIPIcs, pages 37:1–37:15. Schloss Dagstuhl, 2017.

[21] R. Cohen, I. Haitner, E. Omri, and L. Rotem. Characterization of secure multi-
party computation without broadcast. Journal of Cryptology, 31(2):587–609, Apr.
2018.

[22] R. Cohen, S. Coretti, J. A. Garay, and V. Zikas. Probabilistic termination and
composability of cryptographic protocols. Journal of Cryptology, 32(3):690–741,
July 2019.

[23] R. Cohen, J. A. Garay, and V. Zikas. Broadcast-optimal two-round mpc. Cryp-
tology ePrint Archive, Report 2019/1183, 2019.

[24] R. Cohen, I. Haitner, N. Makriyannis, M. Orland, and A. Samorodnitsky. On the
round complexity of randomized Byzantine agreement. In DISC, pages 12:1–12:17,
2019.

[25] R. Cohen, a. shelat, and D. Wichs. Adaptively secure MPC with sublinear com-
munication complexity. In CRYPTO 2019, Part II, volume 11693 of LNCS, pages
30–60. Springer, Heidelberg, 2019.

[26] Y. Dodis, S. Halevi, R. D. Rothblum, and D. Wichs. Spooky encryption and
its applications. In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part III,
volume 9816 of LNCS, pages 93–122. Springer, Heidelberg, 2016.

[27] D. Dolev and H. R. Strong. Authenticated algorithms for Byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983.

[28] M. J. Fischer and N. A. Lynch. A lower bound for the time to assure interactive
consistency. Information Processing Letters, 14(4):183–186, 1982.

[29] M. Fitzi, D. Gottesman, M. Hirt, T. Holenstein, and A. Smith. Detectable Byzan-
tine agreement secure against faulty majorities. In 21st ACM PODC, pages 118–
126. ACM, 2002.

[30] J. A. Garay, J. Katz, C.-Y. Koo, and R. Ostrovsky. Round complexity of authen-
ticated broadcast with a dishonest majority. In 48th FOCS, pages 658–668. IEEE
Computer Society Press, 2007.

[31] S. Garg and A. Polychroniadou. Two-round adaptively secure MPC from indis-
tinguishability obfuscation. In TCC 2015, Part II, volume 9015 of LNCS, pages
614–637. Springer, Heidelberg, 2015.

[32] S. Garg and A. Srinivasan. Garbled protocols and two-round MPC from bilinear
maps. In 58th FOCS, pages 588–599. IEEE Computer Society Press, 2017.

[33] S. Garg and A. Srinivasan. Two-round multiparty secure computation from mini-
mal assumptions. In EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages
468–499. Springer, Heidelberg, 2018.

28



[34] S. Garg, C. Gentry, S. Halevi, and M. Raykova. Two-round secure MPC from
indistinguishability obfuscation. In TCC 2014, volume 8349 of LNCS, pages 74–
94. Springer, Heidelberg, 2014.

[35] S. Garg, Y. Ishai, and A. Srinivasan. Two-round MPC: Information-theoretic and
black-box. In TCC 2018, Part I, volume 11239 of LNCS, pages 123–151. Springer,
Heidelberg, 2018.

[36] S. Garg, P. Miao, and A. Srinivasan. Two-round multiparty secure computation
minimizing public key operations. In CRYPTO 2018, Part III, volume 10993 of
LNCS, pages 273–301. Springer, Heidelberg, 2018.

[37] R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. The round complexity of
verifiable secret sharing and secure multicast. In 33rd ACM STOC, pages 580–
589. ACM Press, 2001.

[38] R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. On 2-round secure multiparty
computation. In CRYPTO 2002, volume 2442 of LNCS, pages 178–193. Springer,
Heidelberg, 2002.

[39] O. Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cam-
bridge University Press, Cambridge, UK, 2004. ISBN ISBN 0-521-83084-2 (hard-
back).

[40] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In 19th ACM STOC,
pages 218–229. ACM Press, 1987.

[41] S. Goldwasser and Y. Lindell. Secure multi-party computation without agreement.
Journal of Cryptology, 18(3):247–287, July 2005.

[42] S. D. Gordon, F.-H. Liu, and E. Shi. Constant-round MPC with fairness and
guarantee of output delivery. In CRYPTO 2015, Part II, volume 9216 of LNCS,
pages 63–82. Springer, Heidelberg, 2015.

[43] S. Halevi, Y. Lindell, and B. Pinkas. Secure computation on the web: Computing
without simultaneous interaction. In CRYPTO 2011, volume 6841 of LNCS, pages
132–150. Springer, Heidelberg, 2011.

[44] C. Hazay, P. Scholl, and E. Soria-Vazquez. Low cost constant round MPC com-
bining BMR and oblivious transfer. In ASIACRYPT 2017, Part I, volume 10624
of LNCS, pages 598–628. Springer, Heidelberg, 2017.

[45] C. Hazay, E. Orsini, P. Scholl, and E. Soria-Vazquez. Concretely efficient large-
scale MPC with active security (or, TinyKeys for TinyOT). In ASIACRYPT 2018,
Part III, volume 11274 of LNCS, pages 86–117. Springer, Heidelberg, 2018.

[46] M. Hirt and U. M. Maurer. Player simulation and general adversary structures in
perfect multiparty computation. Journal of Cryptology, 13(1):31–60, Jan. 2000.
https://doi.org/10.1007/s001459910003.

[47] Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In 41st FOCS, pages 294–304.
IEEE Computer Society Press, 2000.

[48] Y. Ishai and E. Kushilevitz. Perfect constant-round secure computation via perfect
randomizing polynomials. In ICALP 2002, volume 2380 of LNCS, pages 244–256.
Springer, Heidelberg, 2002.

[49] Y. Ishai, E. Kushilevitz, and A. Paskin. Secure multiparty computation with
minimal interaction. In CRYPTO 2010, volume 6223 of LNCS, pages 577–594.
Springer, Heidelberg, 2010.

[50] Y. Ishai, R. Ostrovsky, and V. Zikas. Secure multi-party computation with iden-
tifiable abort. In CRYPTO 2014, Part II, volume 8617 of LNCS, pages 369–386.
Springer, Heidelberg, 2014.

29

https://doi.org/10.1007/s001459910003


[51] Y. Ishai, R. Kumaresan, E. Kushilevitz, and A. Paskin-Cherniavsky. Secure com-
putation with minimal interaction, revisited. In CRYPTO 2015, Part II, volume
9216 of LNCS, pages 359–378. Springer, Heidelberg, 2015.

[52] A. R. Karlin and A. C. Yao. Probabilistic lower bounds for Byzantine agreement
and clock synchronization. Unpublished manuscript, 1986.

[53] J. Katz and C.-Y. Koo. On expected constant-round protocols for Byzantine
agreement. In CRYPTO 2006, volume 4117 of LNCS, pages 445–462. Springer,
Heidelberg, 2006.

[54] Y. Lindell and A. Nof. A framework for constructing fast MPC over arithmetic
circuits with malicious adversaries and an honest-majority. In ACM CCS 2017,
pages 259–276. ACM Press, 2017.

[55] Y. Lindell, A. Lysyanskaya, and T. Rabin. Sequential composition of protocols
without simultaneous termination. In 21st ACM PODC, pages 203–212. ACM,
2002.

[56] Y. Lindell, B. Pinkas, N. P. Smart, and A. Yanai. Efficient constant round multi-
party computation combining BMR and SPDZ. In CRYPTO 2015, Part II, volume
9216 of LNCS, pages 319–338. Springer, Heidelberg, 2015.

[57] Y. Lindell, N. P. Smart, and E. Soria-Vazquez. More efficient constant-round
multi-party computation from BMR and SHE. In TCC 2016-B, Part I, volume
9985 of LNCS, pages 554–581. Springer, Heidelberg, 2016.

[58] S. Micali. Very simple and efficient byzantine agreement. In C. H. Papadim-
itriou, editor, ITCS 2017, volume 4266, pages 6:1–6:1, 67, Jan. 2017. LIPIcs.
https://doi.org/10.4230/LIPIcs.ITCS.2017.6.

[59] P. Mukherjee and D. Wichs. Two round multiparty computation via multi-key
FHE. In EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 735–763.
Springer, Heidelberg, 2016.

[60] A. Patra and D. Ravi. On the exact round complexity of secure three-party
computation. In CRYPTO 2018, Part II, volume 10992 of LNCS, pages 425–458.
Springer, Heidelberg, 2018.

[61] A. Patra and D. Ravi. On the exact round complexity of secure three-party
computation. Cryptology ePrint Archive, Report 2018/481, 2018.

[62] A. Patra and D. Ravi. Beyond honest majority: The round complexity of fair
and robust multi-party computation. In S. D. Galbraith and S. Moriai, editors,
ASIACRYPT 2019, Part I, volume 11921 of LNCS, pages 456–487. Springer, Hei-
delberg, 2019.

[63] B. Pfitzmann and M. Waidner. Unconditional Byzantine agreement for any num-
ber of faulty processors. In STACS, volume 577 of LNCS, pages 339–350. Springer,
1992.

[64] W. Quach, H. Wee, and D. Wichs. Laconic function evaluation and applications.
In 59th FOCS, pages 859–870. IEEE Computer Society Press, 2018.

[65] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In 21st ACM STOC, pages 73–85. ACM
Press, 1989.

[66] X. Wang, S. Ranellucci, and J. Katz. Global-scale secure multiparty computation.
In ACM CCS 2017, pages 39–56. ACM Press, 2017.

[67] A. C.-C. Yao. Protocols for secure computations (extended abstract). In 23rd
FOCS, pages 160–164. IEEE Computer Society Press, 1982.

30

https://doi.org/10.4230/LIPIcs.ITCS.2017.6

	Broadcast-Optimal Two-Round MPC 
	Bibliography

