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Abstract. Formulating cryptographic definitions to protect against software
piracy is an important research direction that has not received much
attention. Since natural definitions using classical cryptography are impossible
to achieve (as classical programs can always be copied), this directs us
towards using techniques from quantum computing. The seminal work
of Aaronson [CCC’09] introduced the notion of quantum copy-protection
precisely to address the problem of software anti-piracy. However, despite
being one of the most important problems in quantum cryptography,
there are no provably secure solutions of quantum copy-protection known
for any class of functions.

We formulate an alternative definition for tackling software piracy,
called secure software leasing (SSL). While weaker than quantum copy-
protection, SSL is still meaningful and has interesting applications in
software anti-piracy.

We present a construction of SSL for a subclass of evasive circuits
(that includes natural implementations of point functions, conjunctions
with wild cards, and affine testers) based on concrete cryptographic
assumptions. Our construction is the first provably secure solution, based
on concrete cryptographic assumptions, for software anti-piracy. To complement
our positive result, we show, based on cryptographic assumptions, that
there is a class of quantum unlearnable functions for which SSL does
not exist. In particular, our impossibility result also rules out quantum
copy-protection [Aaronson CCC’09] for an arbitrary class of quantum
unlearnable functions; resolving an important open problem on the possibility
of constructing copy-protection for arbitrary quantum unlearnable circuits.

1 Introduction

Almost all proprietary software requires a legal document, called software license,
that governs the use against illegal distribution of software, also referred to as
pirating. The main security requirement from such a license is that any malicious
user no longer has access to the functionality of the software after the lease
associated with the software license expires. While ad hoc solutions existed in
the real world, for a long time, no theoretical treatment of this problem was
known.
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This was until Aaronson, who in his seminal work [3] introduced and formalized
the notion of quantum software copy-protection, a quantum cryptographic primitive
that uses quantum no-cloning techniques to prevent pirating of software by
modeling software as boolean functions. Roughly speaking, quantum copy-protection
says3 that given a quantum state computing a function f , the adversary cannot
produce two quantum states (possibly entangled) such that each of the states
individually computes f . This prevents a pirate from being able to create a new
software from his own copy and re-distribute it; of course it can circulate its own
copy to others but it will lose access to its own copy.

Need for Alternate Notions. While quantum copy-protection does provide a
solution for software piracy, constructing quantum copy-protection has been
notoriously difficult. Despite being introduced more than a decade ago, not
much is known on the existence of quantum copy-protection. There are no
known provably secure constructions of quantum copy-protection for any class
of circuits. All the existing constructions of quantum copy-protection are either
proven in an oracle model [3, 5] or are heuristic4 candidates for very simple
functions such as point functions [3]. In a recent blog post, Aaronson [2] even
mentioned constructing quantum copy-protection from cryptographic assumptions
as one of the five big questions he wishes to solve.

This not only prompted us to explore the possibility of copy-protection but
also look for alternate notions to protect against software piracy. Specifically, we
look for application scenarios where the full power of quantum copy-protection
is not needed and it suffices to settle for weaker notions. Let us consider one
such example.

Example: Anti-Piracy Solutions for Microsoft Office. Microsoft Office is one of
the most popular software tools used worldwide. Since Microsoft makes a sizeable
portion of their revenue from this tool [1], it is natural to protect Microsoft Office
from falling prey to software piracy. A desirable requirement is that pirated
copies cannot be sold to other users such that these copies can run successfully
on other Microsoft Windows systems. Importantly, it does not even matter if
the pirated copies can be created as long as they cannot be executed on other
Windows systems; this is because, only the pirated copies that run on Windows
systems are the ones that bite into the revenue of Microsoft. Indeed, there are
open source versions of Office publicly available but our aim is to prevent these
open source versions from being sold off as authentic versions of Microsoft Office
software.

This suggests that instead of quantum copy-protection – which prevents the
adversary from creating any pirated copy of the copy-protected software – we
can consider a weaker variant that only prevents the adversary from being able
to create authenticated pirated copies (for instance, that runs only on specific

3 More generally, Aaronson considers the setting where the adversary gets multiple
copies computing f and not just one.

4 That is, there is no known reduction to concrete cryptographic assumptions.
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operating systems). To capture this, we present a new definition called secure
software leasing.

Our Work: Secure Software Leasing (SSL). Roughly speaking, a secure leasing
scheme allows for an authority (the lessor5) to lease a classical circuit C to a
user (the lessee6) by providing a corresponding quantum state ρC . The user can
execute ρC to compute C on any input it desires. Leases can expired, requiring
ρC to be returned at a later point in time, specified by the lease agreement.
After it returns the state, we require the security property that the lessee can
no longer compute C.

In more detail, a secure software leasing scheme (SSL) for a family of circuits
C is a collection, (Gen, Lessor,Run,Check), of quantum polynomial-time algorithms
(QPT) satisfying the following conditions. Gen(1λ), on input a security parameter
λ, outputs a secret key sk that will be used by a lessor to validate the states being
returned after the expiration of the lease. For any circuit C : {0, 1}n → {0, 1}m in
C, Lessor(sk, C) outputs a quantum state ρC , where ρC allows Run to evaluate C.
Specifically, for any x ∈ {0, 1}n, we want that Run(ρC , x) = C(x); this algorithm
is executed by the lessee. Finally, Check(sk, ρC) checks if ρC is a valid leased state.
Any state produced by the lessor is a valid state and will pass the verification
check.

A SSL scheme can have two different security guarantees depending on
whether the leased state is supposed to be returned or not.

– Infinite-Term Lessor Security : In this setting, there is no time duration
associated with the leased state and hence, the user can keep this leased
state forever7. Informally, we require the guarantee that the lessee, using
the leased state, cannot produce two authenticated copies of the leased state.
Formally speaking, any (malicious) QPT user A holding a leased state A(ρC)
(produced using classical circuit C) cannot output a (possibly entangled)
bipartite state σ∗ such that both σ∗1 = Tr2[σ∗] and σ∗2 = Tr1[σ∗] can be used
to compute C with Run.

– Finite-Term Lessor Security : On the other hand, we could also consider a
weaker setting where the leased state is associated with a fixed term. In
this setting, the lessee is obligated to return back the leased state after the
term expires. We require the property that after the lessee returns back the
state, it can no longer produce another authenticated state having the same
functionality as the leased state.
Formally speaking, we require that any (malicious) QPT user A holding a
leased state ρC (produced using C) cannot output a (possibly entangled)
bipartite states σ∗ such that σ∗1 := Tr2[σ∗]8 passes the lessor’s verification
(Check(sk, σ∗1) = 1) and such that the the resulting state, after the first

5 The person who leases the software to another.
6 The person to whom the software is being leased to.
7 Although the lessor will technically be the owner of the leased state.
8 This denotes tracing out the second register.
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register has been verified by the lessor, on the second register, σ∗2 , can also
be used to evaluate C with the Run algorithm, Run(σ∗2 , x) = C(x).

A SSL scheme satisfying infinite-term security would potentially be useful to
tackle the problem of developing anti-piracy solutions for Microsoft Office. However,
there are scenarios where finite-term security suffices. We mention two examples
below.

Trial Versions. Before releasing the full version of a program C, a software
vendor might want to allow a selected group of people9 to run a beta version
of it, Cβ , in order to test it and get user feedback. Naturally, the vendor would
not want the beta versions to be pirated and distributed more widely. Again,
they can lease the beta version Cβ , expecting the users to return it back when
the beta test is over. At this point, they would know if a user did not return
their beta version and they can penalize such a user according to their lease
agreement.

Subscription Models. Another example where finite-term SSL would be useful
is for companies that use a subscription model for their revenue. For example,
Microsoft has a large library of video games for their console, the Xbox, which
anyone can have access to for a monthly subscription fee. A malicious user could
subscribe in order to have access to the collection of games, then make copies of
the games intending to keep them after cancelling the subscription. The same
user will not be able to make another copy of a game that also runs on Xbox.

1.1 Our Results

We present a construction of SSL for a restricted class of unlearnable circuits;
in particular, our construction is defined for a subclass of evasive circuits. This
demonstrates the first provably secure construction for the problem of software
anti-piracy in the standard model (i.e., without using any oracles).

Our construction does not address the possibility of constructing SSL for
an arbitrary class of unlearnable circuits. Indeed, given the long history of
unclonable quantum cryptographic primitives (see Section A) along with the
recent boom in quantum cryptographic techniques [9,14,21,23–26,36,37,42], one
might hope that existing techniques could lead us to achieve a general result.
We show, rather surprisingly, assuming cryptographic assumptions, there exists
a class of unlearnable circuits such that no SSL exists for this class. This also
rules out the existence of quantum copy-protection for arbitrary unlearnable
functions10; thus resolving an important open problem in quantum cryptography.

9 For instance, they could be engineers assigned to test whether the beta version
contains bugs.

10 Both the notions (quantum copy-protection and secure software leasing) are only
meaningful for unlearnable functions: if a function is learnable, then one could learn
the function from the quantum state and create another authenticated quantum
state computing the same function.
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We explain our results in more detail. We first start with the negative result
before moving on to the positive result.

Impossibility Result. To demonstrate our impossibility result, we identify a
class of classical circuits C that we call a de-quantumizable circuit class. This
class has the nice property that given any efficient quantum implementation of
C ∈ C, we can efficiently ‘de-quantumize’ it to obtain a classical circuit C ′ ∈ C
that has the same functionality as C. If C is learnable then, from the definition of
learnability, there could be a QPT algorithm that finds C ′. To make the notion
interesting and non-trivial, we add the additional requirement that this class
of circuits is quantum unlearnable. A circuit class C is quantum unlearnable if
given black-box access to C ∈ C, any QPT algorithm cannot find a quantum
implementation of C.

We show the existence of a de-quantumizable circuit class from cryptographic
assumptions.

Proposition 1 (Informal). Assuming the quantum hardness of learning with
errors (QLWE), and asssuming the existence of quantum fully homomorphic
encryption11 (QFHE), there exists a de-quantumizable class of circuits.

We show how non-black-box techniques introduced in seemingly different contexts
– proving impossibility of obfuscation [8,13,20] and constructing zero-knowledge
protocols [10,15,17] – are relevant to proving the above proposition. We give an
overview, followed by a formal construction, in Section 3.

We then show that for certain de-quantumizable class of circuis, there does
not exist a SSL scheme (with either finite or infinite-term security) for this class.
Combining this with the above proposition, we have the following:

Theorem 1 (Informal). Assuming the quantum hardness of learning with errors
(QLWE), and asssuming the existence of quantum fully homomorphic encryption
(QFHE), there exists a class of quantum unlearnable circuits C such that there
is no SSL for C.

On the Assumption of QFHE: There are lattice-based constructions of QFHE
proposed by [18,36] although we currently don’t know how to base them solely on
the assumption of LWE secure against QPT adversaries (QLWE). Brakerski [18]
shows that the security of QFHE can be based on QLWE and a circular security
assumption.

Impossibility of Quantum Copy-Protection. Since copy-protection implies SSL,
we have the following result.

Corollary 1 (Informal). Assuming the quantum hardness of learning with
errors (QLWE), and asssuming the existence of quantum fully homomorphic
encryption (QFHE), there exists a class of quantum unlearnable circuits C that
cannot be quantumly copy-protected.
11 We need additional properties from the quantum fully homomorphic encryption

scheme but these properties are natural and satisfied by existing schemes [18, 36].
Please refer to full version for a precise description of these properties.
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Main Construction. Our impossibility result does not rule out the possibility
of constructing SSL schemes for specific circuit classes. For instance, it does not
rule out the feasibility of SSL for evasive functions; this is a class of functions
with the property that given black-box access, an efficient algorithm cannot find
an accepting input (an input on which the output of the function is 1).

We identify a subclass of evasive circuits for which we can construct SSL.
infinite

Searchable Compute-and-Compare Circuits. We consider the following circuit
class C: every circuit in C, associated with a circuit C and a lock α, takes as
input x and outputs 1 iff C(x) = α. This circuit class has been studied in the
cryptography literature in the context of constructing program obfuscation [33,
40]. We require this circuit class to additionally satisfy a searchability condition:
there is an efficient (classical) algorithm, denoted by S, such that given any
C ∈ C, S(C) outputs x such that C(x) = 1.

There are natural and interesting sub-classes of compute-and-compare circuits:

– Point circuits C(α, ·): the circuit C(α, ·) is a point circuit if it takes as input
x and outputs C(α, x) = 1 iff x = α. If we define the class of point circuits
suitably, we can find α directly from the description of C(α, ·); for instance,
α is the value assigned to the input wires of C.

– Conjunctions with wild cards C(S, α, ·): the circuit C(S, α, ·) is a conjunction
with wild card if it takes as input x and outputs C(S, α, x) = 1 iff y = α,
where y is such that yi = xi for all i ∈ S and yi = 0 for all i /∈ S. Again,
if we define this class of circuits suitably, we can find S and α directly from
the description of C(S, α, ·).

On Searchability: We note that the searchability requirement in our result statement
is natural and is implicit in the description of the existing constructions of copy-
protection by Aaronson [3]. Another point to note is that this notion is associated
with circuit classes rather than a function family.

We prove the following result. Our construction is in the common reference
string (CRS) model. In this model, we assume that both the lessor and the
lessee will have access to the CRS produced by a trusted setup. We note that
our impossibility result also holds in the CRS model.

Theorem 2. Assuming the existence of: (a) quantum-secure subspace obfuscators [42]
and, (b) learning with errors secure against sub-exponential quantum algorithms,
there exists an infinite-term secure SSL scheme in the common reference string
model for searchable compute-and-compare circuits.

Notice that for applications in which the lessor is the creator of software,
the lessor can dictate how the circuit class is defined and thus would choose an
implementation of the circuit class that is searchable.

On the Assumptions in Theorem 2. A discussion about the primitives described
in the above theorem statement is in order. A subspace obfuscator takes as input
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a subspace A and outputs a circuit that tests membership of A while hiding A
even against quantum adversaries. This was recently constructed by [42] based on
the quantum-security of indistinguishability obfuscation [29]. Moreover, recently,
there has been exciting progress in constructing quantum-secure indistinguishability
obfuscation schemes [19,31,39] from cryptographic assumptions that hold against
quatum adversaries.

With regards to the assumption of learning with errors against sub-exponential
quantum algorithms, we firstly note that classical sub-exponential security of
learning with errors has been used in the construction of many cryptographic
primitives and secondly, there are no known significant quantum speedups known
to solving this problem.

In the technical sections, we prove a more general theorem.

Theorem 3 (SSL for General Evasive Circuits; Informal). Let C be a
searchable class of circuits. Assuming the existence of: (a) quantum-secure input-
hiding obfuscators [12] for C, (b) quantum-secure subspace obfuscators [42] and,
(c) learning with errors secure against sub-exponential quantum algorithms, there
exists an infinite-term secure SSL scheme in the setup model for C.

An input-hiding obfuscator is a compiler that converts a circuit C into another
functionally equivalent circuit C̃ such that given C̃ it is computationally hard to
find an accepting point. To achieve Theorem 2, we instantiate searchable input-
hiding obfuscators for compute-and-compare circuits from quantum hardness of
learning with errors. However, we can envision quantum-secure instantiations of
input-hiding obfuscators for more general class of searchable evasive circuits; we
leave this problem open.

We admittedly use heavy cryptographic hammers to prove our result, but as
will be clear in the overview given in the next section, each of these hammers
will be necessary to solve the different technical challenges we face.

Concurrent Work on qVBB. Our impossibility result also rules out the existence
of quantum VBB for classical circuits assuming quantum FHE and quantum
learning of errors; this was stated as an open problem by Alagic and Fefferman [8].
Concurrently, [7] also rule out quantum virtual black-box obfuscation under the
assumption of quantum hardness of learning with errors; unlike our work they
don’t additionally assume the existence of quantum FHE.

In hindsight, it shouldn’t be surprising that non-black box techniques developed
in the context of quantum zero-knowledge [10, 17] are relevant to proving the
impossibility of quantum obfuscation; the breakthrough work of Bitansky and
Paneth [16] show how to construct (classical) zero-knowledge protocols with
non-black box simulation using techniques developed in the context of (classical)
obfuscation.

1.2 Overview of Construction of SSL

For this overview, we only focus on constructing a SSL sscheme satisfying finite-
term lessor security. Our ideas can be easily adapted to the infinite-term lessor
security.
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To construct a SSL scheme in the setup model (Setup,Gen, Lessor,Run,Check)
against arbitrary quantum poly-time (QPT) pirates, we first focus on two weaker
class of adversaries, namely, duplicators and maulers. Duplicators are adversaries
who, given ρC generated by the lessor for a circuit C sampled from a distribution
DC , produce ρ⊗2C ; that is, all they do is replicate the state. Maulers, who given
ρC , output ρC⊗ρ∗C , where ρ∗C is far from ρC in trace distance and ρC is the copy
returned by the mauler back to the lessor; that is the second copy it produces is
a modified version of the original copy.

While our construction is secure against arbitrary pirates, it will be helpful to
first focus on these restricted type of adversaries. We propose two schemes: the
first scheme is secure against QPT maulers and the second scheme against QPT
duplicators. Once we discuss these schemes, we will then show how to combine
the techniques from these two schemes to obtain a construction secure against
arbitrary pirates.

SSL against Maulers. To protect SSL against a mauler, we attempt to construct
a scheme using only classical cryptographic techniques. The reason why it could
be possible to construct such a scheme is because maulers never produce a pirated
copy ρ∗C that is the same as the original copy ρC .

A natural attempt to construct a SSL scheme is to use virtual black-box
obfuscation [13] (VBB): this is a compiler that transforms a circuit C into

another functionally equivalent circuit C̃ such that C̃ only leaks the input-output
behavior of C and nothing more. This is a powerful notion and implies almost
all known cryptographic primitives. We generate the leased state ρC to be the
VBB obfuscation of C, namely C̃. The hope is that a mauler will not output
another leased state ρ∗C that is different from C̃.

Unfortunately, this scheme is insecure. A mauler on input C̃, obfuscates C̃

once more to obtain
˜̃
C and outputs this re-obfsuscated circuit. Moreover, note

that the resulting re-obfuscated circuit still computes C. This suggests that
program obfuscation is insufficient for our purpose. In hindsight, this should
be unsurprising: VBB guarantees that given an obfuscated circuit, an efficient
adversary should not learn anything about the implementation of the circuit,
but this doesn’t prevent the adversary from being able to re-produce modified
copies of the obfuscated circuit.

To rectify this issue, we devise the following strategy:

– Instead of VBB, we start with a different obfuscation scheme that has the
following property: given an obfuscated circuit C̃, where C corresponds to an
evasive function, it is computationally infeasible to determine an accepting
input for C.

– We then combine this with a special proof system that guarantees the
property: suppose an adversary, upon receiving C̃ and a proof, outputs a
different but functionally equivalent obfuscated circuit C̃∗ along with a new
proof. Then we can extract an accepting input for C̃ from the adversary’s
proof. But this would contradict the above bullet and hence, it follows that
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its computationally infeasible for the adversary to output a different circuit
C̃∗.

To realize the above strategy, we need two separate cryptographic tools, that we
define below.

Input-Hiding Obfuscators [12]: We recall the notion of input-hiding obfuscators [12].

An input-hiding obfuscator guarantees that given an obfuscated circuit C̃, any
efficient adversary cannot find an accepting input x, i.e., an input x such that
C̃(x) = 1. Of course this notion is only meaningful for an evasive class of
functions: a function is evasive if given oracle access to this function, any efficient
adversary cannot output an accepting point. The work of Barak et al. [12]
proposed candidates for input-hiding obfuscators.

Simulation-Extractable NIZKs [27,38]: Another primitive we consider is simulation-
extractable non-interactive zero-knowledge [27,38] (seNIZKs). A seNIZK system
is a non-interactive protocol between a prover and a verifier with the prover
trying to convince the verifier that a statement belongs to the NP language. By
non-interactive we mean that the prover only sends one message to the verifier
and the verifier is supposed to output the decision bit: accept or reject. Moreover,
this primitive is defined in the common reference string model. In this model,
there is a trusted setup that produces a common reference string and both the
prover and the verifier have access to this common reference string.

As in a traditional interactive protocol, we require a seNIZK to satisfy the
completeness property. Another property we require is simulation-extractability.
Simulation-extractability, a property that implies both zero-knowledge and soundness,
guarantees that if there exists an efficient adversary A who upon receiving a
simulated proof12 for an instance x, produces an accepting proof for a different
instance x′, i.e., x′ 6= x, then there also exists an adversary B that given the same
simulated proof produces an accepting proof for x′ along with simultaneously
producing a valid witness for x′.

Combining Simulation-Extractable NIZKs and Input-Hiding Obfuscators: We
now combine the two tools we introduced above to obtain a SSL scheme secure
against maulers. Our SSL scheme will be associated with searchable circuits;
given a description of a searchable circuit C, an input x can be determined
efficiently such that C(x) = 1.

To lease a circuit C, do the following:

– Compute an input-hiding obfuscation of C, denoted by C̃,

12 A simulated proof is one that is generated by an efficient algorithm, called a
simulator, who has access to some private coins that was used to generate the
common reference string. Moreover, a simulated proof is indistinguishable from
an honestly generated proof. A simulator has the capability to generate simulated
proofs for YES instances even without knowing the corresponding witness for these
instances.
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– Produce a seNIZK proof π that proves knowledge of an input x such that
C(x) = 1. Note that we can find this input using the searchability property.

Output (C̃, π) as the leased circuit. To evaluate on any input x, we first check if

π is a valid proof and if so, we compute C̃ on x to obtain C(x).
To see why this scheme is secure against maulers, suppose an adversary A

given (C̃, π) produces (C̃∗, π∗), where C̃∗ 6= C̃. Since A is a valid mauler we

are guaranteed that C̃∗ is functionally equivalent to C. We first run the seNIZK
simulator to simulate π and once this is done, we no longer need x to generate
π. Now, we invoke the simulation-extractability property to convert A into one
who not only produces (C̃∗, π∗) but also simultaneously produces x such that

C̃∗(x) = 1. Since C̃∗ is functionally equivalent to C, it follows that C(x) = 1
as well. But this violates the input-hiding property which says that no efficient
adversary given C̃ can produce an accepting input.

Issue: Checking Functional Equivalence. There is a subtlety we skipped in the
proof above. The maulers that we consider have multi-bit output which is atypical
in the cryptographic setting where the focus is mainly on boolean adversaries.
This causes an issue when we switch from the honestly generated proof to
a simulated proof. Upon receiving the honestly generated proof, A outputs
(C̃∗, π∗) such that C̃∗ is functionally equivalent to C but upon receiving the

simulated proof, the adversary outputs (C̃∗, π∗) where C̃∗ differs from C on one
point. From A, we need to extract one bit that would help distinguish the real
and simulated proofs. To extract this bit, we rely upon sub-exponential security.
Given C̃∗, we run in time 2n, where n is the input length, and check if C̃∗ is still
functionally equivalent to C; if indeed C̃∗ is not functionally equivalent to C then
we know for a fact that the adversary was given a simulated proof, otherwise
it received an honestly generated proof. We set the security parameter in the
seNIZK system to be sufficiently large (for eg, poly(n)) such that the seNIZK is
still secure against adversaries running in time 2n.

SSL against Duplicators. Next we focus on constructing SSL secure against
duplicators. If our only goal was to protect against duplicators, we could achieve
this with a simple scheme. The lessor, in order to lease C, will output (|ψ〉, C)
where |ψ〉 is a random quantum state generated by applying a random polynomial
sized quantum circuit U on input |0⊗λ〉. Run on input (|ψ〉, C, x) ignores the
quantum state |ψ〉, and outputs C(x). By quantum no-cloning, an attacker
cannot output two copies of (|ψ〉, C), which means that this scheme is already
secure against duplicators.

Recall that we focused on designing SSL for duplicators in the hope that it
will be later helpful for designing SSL for arbitrary pirates. But any SSL scheme
in which Run ignores the quantum part would not be useful for obtaining SSL
secure against arbitrary pirates; an attacker can simply replace the quantum
state as part of the leased state with its own quantum state and copy the
classical part. To overcome this insufficiency, we need to design SSL schemes
where the Run algorithm only computes correctly when the input leased state
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belongs to a sparse set of quantum states. This suggests that the Run algorithm
implicitly satisfies a verifiability property; it should be able to verify that the
input quantum state lies in this sparse set.

Publicly Verifiable Unclonable States. We wish to construct a family of efficiently
preparable states {|ψs〉}s with the following verifiability property. For any state
|ψs〉 in the family, there is a way to sample a classical description ds for |ψs〉 in
such a way that it can be verified that ds is a corresponding description of |ψs〉.
To be more precise, there should be a verification algorithm Ver(|ψs〉, d) that
accepts if d is a valid description for |ψs〉. Furthermore, we want the guarantee
that given a valid pair (|ψs〉, ds), no QPT adversary can produce |ψs〉⊗2.

Our requirement has the same flavor as public-key quantum money, but a key
difference is that we do not require any secret parameters associated with the
scheme. Moreover, we allow anyone to be able to generate such tuples (|ψs〉, ds)
and not just the minting authority (bank).

Given such verifiable family, we can define the Run algorithm as follows,

Run(C, (|ψs〉, d), x):

– If Ver(|ψs〉, d) = 0, output ⊥.
– Otherwise, output C(x).

Any lessor can now lease a state (|ψs〉, ds, C), which would allow anyone to
compute C using Run. Of course, any pirate that is given (|ψs〉, ds, C) can prepare
their own (|ψs′〉, ds′) and then input (|ψs′〉, ds′ , C) into Run. But recall that we
are only interested in ruling out duplicators. From the public verifiable property
of the quantum states, we have the fact that no QPT pirate could prepare |ψs〉⊗2
from (|ψs〉, ds) and thus, it is computationally infeasible to duplicate the leased
state.

Publicly Verifiable Unclonable States from Subspace Hiding Obfuscation. The
notion of publicly verifiable unclonable states was first realized by Zhandry [42].
The main tool used in Zhandry’s construction is yet another notion of obfuscation,
called subspace hiding obfuscation. Roughly speaking, a subspace hiding obfuscator
(shO) takes as input a description of a linear subspace A, and outputs a circuit
that computes the membership function for A, i.e. shO(A)(x) = 1 iff x ∈
A. Zhandry shows that for a uniformly random λ

2 -dimensional subspace A ⊂
Zλq , given |A〉 := 1√

qλ/2

∑
a∈A
|a〉 along with g̃ ← shO(A), g̃⊥ ← shO(A⊥), no

QPT algorithm can prepare |A〉⊗2 with non-negligible probability. Nevertheless,
because g̃ and g̃⊥ compute membership for A and A⊥ respectively, it is possible
to project onto |A〉〈A| using (g̃, g̃⊥). This lets anyone check the tuple (|ψ〉, (g̃, g̃⊥))
by measuring |ψ〉 with the projectors {|A〉〈A|, I − |A〉〈A|}.

Main Template: SSL against Pirates. Our goal is to construct SSL against
arbitrary QPT pirates and not just duplicators or maulers. To achieve this goal,
we combine the techniques we have developed so far.
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To lease a circuit C, do the following:

1. First prepare the state the state |A〉 = 1√
qλ/2

∑
a∈A
|a〉, along with g̃ ← shO(A)

and g̃⊥ ← shO(A⊥).

2. Compute an input-hiding obfuscation of C, namely C̃.
3. Let x be an accepting point of C. This can be determined using the searchability

condition.
4. Compute a seNIZK proof π such that: (1) the obfuscations (g̃, g̃⊥, C̃) were

computed correctly, as a function of (A,A⊥, C), and, (2) C(x) = 1.

5. Output |ψC〉 = (|A〉, g̃, g̃⊥, C̃, π).

The Run algorithm on input (|ψC〉, g̃, g̃⊥, C̃, π) and x, first checks the proof π,
and outputs ⊥ if it does not accept the proof. If it accepts the proof, it knows that
g̃ and g̃⊥ are subspace obfuscators for some subspaces A and A⊥ respectively; it
can use them to project |ψC〉 onto |A〉〈A|. This checks whether |ψC〉 is the same
as |A〉 or not. If it is not, then it outputs ⊥. If it has not output ⊥ so far, then

it computes C̃ on x to obtain C(x).

Proof Intuition: To prove the lessor security of the above scheme, we consider
two cases depending on the behavior of the pirate:

– Duplicator: in this case, the pirate produces a new copy that is of the form
(σ∗, g̃, g̃⊥, C̃, π); that is, it has the same classical part as before. If σ∗ is close
to |A〉〈A|, it would violate the no-cloning theorem. On the other hand, if
σ∗ is far from |A〉〈A|, we can argue that the execution of Run on the copy
produced by the pirate will not compute C. The reason being that at least
one of the two subspace obfuscators g̃, g̃⊥ will output ⊥ on the state σ∗.

– Mauler: suppose the pirate produces a new copy that is of the form (σ∗, g̃∗, g̃⊥
∗
,

C̃∗, π∗) such that (g̃∗, g̃⊥
∗
, C̃∗) 6= (g̃, g̃⊥, C̃). We invoke the simulation-

extractability property to find an input x such that C̃∗(x) = 1. Since C̃∗

is assumed to have the same functionality as C, this means that C(x) = 1.
This would contradict the security of input-hiding obfuscation, since any
QPT adversary even given C̃ should not be able to find an accepting input
x such that C(x) = 1.

Organization. We provide the related works and preliminary background in
the full version. We present the formal definition of secure software leasing in
Section 2. The impossibility result is presented in Section 3. Finally, we present
the positive result in Section 4.

2 Secure Software Leasing (SSL)

We present the definition of secure software leasing schemes. A secure software
leasing (SSL) scheme for a class of circuits C = {Cλ}λ∈N consists of the following
QPT algorithms.
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– Private-key Generation, Gen(1λ): On input security parameter λ, outputs
a private key sk.

– Software Lessor, Lessor (sk, C): On input the private key sk and a poly(n)-
sized classical circuit C ∈ Cλ, with input length n and output length m,
outputs a quantum state ρC .

– Evaluation, Run(ρC , x): On input the quantum state ρC and an input x ∈
{0, 1}n, outputs y, and some state ρ′C,x.

– Check of Returned Software, Check (sk, ρ∗C): On input the private key
sk and the state ρ∗C , it checks if ρ∗C is a valid leased state and if so it outputs
1, else it outputs 0.

Setup. In this work, we only consider SSL schemes in the setup model. In this
model, all the lessors in the world have access to a common reference string
generated using a PPT algorithm Setup. The difference between Setup and Gen
is that Setup is run by a trusted third party whose output is used by all the lessors
while Gen is executed by each lessor separately. We note that our impossibility
result rules out SSL schemes for all quantum unlearnable class of circuits even
in the setup model.

We define this notion below.

Definition 1 (SSL with Setup). A secure software leasing scheme (Gen, Lessor,Run,Check)
is said to be in the common reference string (CRS) model if additionally, it has
an algorithm Setup that on input 1λ outputs a string crs.

Moreover, the algorithm Gen now takes as input crs instead of 1λ and Run
additionally takes as input crs.

We require that a SSL scheme, in the setup model, satisfies the following properties.

Definition 2 (Correctness). A SSL scheme (Setup,Gen, Lessor,Run,Check)
for C = {Cλ}λ∈N is ε-correct if for all C ∈ Cλ, with input length n, the following
two properties holds for some negligible function ε:

– Correctness of Run:

Pr

∀x ∈ {0, 1}n, y = C(x) :

crs←Setup(1λ),
sk←Gen(crs),

ρC←Lessor(sk,C)

(ρ′C,x,y)←Run(crs,ρC ,x)

 ≥ 1− ε

– Correctness of Check:

Pr

[
Check (sk, ρC) = 1 :

crs←Setup(1λ),
sk←Gen(crs)

ρC←Lessor(sk,C)

]
≥ 1− ε
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Reusability. A desirable property of a SSL scheme is reusability: the lessee should
be able to repeatedly execute Run on multiple inputs. A SSL scheme does not
necessarily guarantee reusability; for instance, Run could destroy the state after
executing it just once. But fortunately, we can transform this scheme into another
scheme that satisfies reusability.

We define reusability formally.

Definition 3. (Reusability) A SSL scheme (Setup,Gen, Lessor,Run,Check) for
C = {Cλ}λ∈N is said to be reusable if for all C ∈ C and for all x ∈ {0, 1}n,∥∥ρ′C,x − ρC∥∥tr ≤ negl(λ).

Note that the above requirement
∥∥ρ′C,x − ρC∥∥tr ≤ negl(λ) would guarantee that

an evaluator can evaluate the leased state on multiple inputs; on each input,
the original leased state is only disturbed a little which means that the resulting
state can be reused for evaluation on other inputs.

The following proposition states that any SSL scheme can be converted into
one that is reusable.

Proposition 2. Let (Setup,Gen, Lessor,Run,Check) be any SSL scheme (not
necessarily satisfying the reusability condition). Then, there is a QPT algorithm
Run′ such that (Setup,Gen, Lessor,Run′,Check) is a reusable SSL scheme.

Proof. For any C ∈ C and for any x ∈ {0, 1}n, we have that Run(crs, ρC , x)
outputs C(x) with probability 1 − ε. By the Almost As Good As New Lemma
(see full version), there is a way to implement Run such that it is possible to
obtain C(x), and then recover a state ρ̃C satisfying ‖ρ̃C − ρC‖tr ≤

√
ε. We let

Run′ be this operation.

Thus, it suffices to just focus on the correctness property when constructing a
SSL scheme.

2.1 Security

Our notion intends to capture the different scenarios discussed in the introduction.
In particular, we want to capture the security guarantee that given an authorized
(valid) copy ρC , no pirate can output two authorized copies. We will assume
that these valid copies contain a quantum state and a classical string. The Run
algorithm expects valid copies to have this form; without loss of generality, the
classical part can always be measured before executing Run.

Finite-Term Lessor Security We require the following security guarantee:
suppose a QPT adversary (pirate) receives a leased copy of C generated using
Lessor; denote this by ρC . We require that the pirate cannot produce a bipartite
state σ∗ on registers R1 and R2, such that σ∗1 := Tr2[σ∗] passes the verification
by Check, and the resulting post-measurement state on R2, which we denote by
P2(σ∗), still computes C by Run(P2(σ∗), x) = C(x).
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Before formally stating the definition, let us fix some notation. We will use
the following notation for the state that the pirate keeps after the initial copy
has been returned and verified. If the pirate outputs the bipartite state σ∗, then
we will write

P2(sk, σ∗) ∝ Tr1 [Π1[Check(sk, ·)1 ⊗ I2 (σ∗)]]

for the state that the pirate keeps after the first register has been returned and
verified. Here, Π1 denotes projecting the output of Check onto 1, and where
Check(sk, ·)1 ⊗ I2(σ∗) denotes applying the Check QPT onto the first register,
and the identity on the second register of σ∗. In other words, P2(sk, σ∗) is used to
denote the post-measurement state on R2 conditioned on Check(sk, ·) accepting
on R1.

Definition 4 (Finite-Term Perfect Lessor Security). We say that a SSL
scheme (Setup,Gen, Lessor,Run,Check) for a class of circuits C = {Cλ}λ∈N is
said to satisfy (β, γ,DC)-perfect finite-term lessor security, with respect to
a distribution DC on C, if for every QPT adversary A (pirate) that outputs a
bipartite (possibly entangled) quantum state on two registers, R1 and R2, the
following holds:

Pr


Check(sk,σ∗1 )=1∧

∀x, Pr[Run(crs,P2(sk,σ
∗),x)=C(x)]≥β

:

crs←Setup(1λ),
C←DC(λ),

sk←Gen(crs),

ρC←Lessor(sk,C),

σ∗←A(crs,ρC)

σ∗1=Tr2[σ
∗]

 ≤ γ

Remark 1. The reason why we use the word perfect here is because we require
Run(P2(σ∗), x) = C(x) to hold with probability at least β on every input x.
Note that Run is not necessarily deterministic (for instance, it could perform
measurements) and thus we allow it to output the incorrect value with some
probability.

2.2 Infinite-Term Lessor Security

In the infinite-term lease case, we want the following security notion: given
(σ∗1 , σ

∗
2) generated by a pirate A(ρC), guarantees that if one copy satisfies the

correctness,
∀xPr[Run(crs, σ∗1 , x) = C(x)] ≥ β

for some non-negligible β, then after successfully evaluating C(x) using σ∗1 on
any input x∗, it should be the case that the resulting state on the second register,

which we will denote by E(2)x∗ (σ∗), cannot also satisfy

∀xPr[Run(crs, E(2)x∗ (σ∗), x) = C(x)] ≥ β.

In other words, if one of the copies has already been succesful in computing C
in Run, then there will be inputs in which the second copy cannot evaluate C
with better than negligible probability.
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This security notion would rule out the following scenario. Eve gets a copy
of ρC and gives σ∗1 to Alice and σ∗2 to Bob. Alice now chooses an input xA, and
Bob an input xB . It cannot be the case that for all inputs (xA, xB) they choose,
they will compute (C(xA), C(xB)) with non-negligible probability.

Definition 5 (Infinite-term Perfect Lessor Security). We say that a SSL
scheme (Setup,Gen, Lessor,Run,Check) for a class of circuits C = {Cλ}λ∈N is
said to be (γ, β,DC)-infinite-term perfect lessor secure, with respect to a
distribution DC, if for every QPT adversary A (pirate) that outputs a bipartite
(possibly entangled) quantum state on two registers, R1 and R2, the following
holds:

Pr

∀x,
 Pr[(Run(crs,x,σ∗1 )=C(x)]≥β∧
∀x′,Pr[Run(crs,x′,E(2)x (σ∗))=C(x′)]≥β

 :

crs←Setup(1λ),
C←DC(λ),

sk←Gen(crs),

ρC←Lessor(sk,C),

σ∗←A(crs,ρC)

σ∗1=Tr2[σ
∗]

 ≤ γ.

Remark 2. Both finite and infinite-term security can be extended to the case
where the pirate is given multiple copies, ρ⊗mC , where ρC is the output of Lessor
on C. In the finite-term case, we require the following: if a pirate outputs m+ 1
copies and moreover, the m initial copies are returned and succesfully checked,
computing Run on the remaining copy (that the pirate did not return) will not
be functionally equivalent to the circuit C. In the infinite-term case, the pirate
cannot output m+ 1 copies where Run on each of the m+ 1 copies can be used
to successfully compute C.

3 Impossibility of SSL

To prove the impossibility of SSL, we first construct de-quantumizable class of
circuits.

3.1 De-Quantumizable Circuits: Definition

A de-quantumizable class of circuits C is a class of circuits for which there is
a QPT algorithm that given any quantum circuit with the same functionality
as C ∈ C, it finds a (possibly different) classical circuit C ′ ∈ C with the same
functionality as C. Of course if C is learnable, then it could be possible to just
observe the input-output behavior of the quantum circuit to find such a C ′. To
make this notion meaningful, we additionally impose the requirement that C
needs to be quantum unlearnable; given only oracle access to C, any quantum
algorithm can find a circuit (possibly a quantum circuit and an auxiliary input
state ρ) with the same functionality as C with only negligible probability.
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Definition 6. We say that a collection of QPT algorithms, {UC , ρC}C∈C, computes
C if for any C ∈ C, with input length n and output length m, ρC is a poly(n)-
qubits auxiliary state, and UC a QPT algorithm satisfying that for all x ∈ {0, 1}n,

Pr[UC(ρC , x) = C(x)] ≥ 1− negl(λ),

where the probability is over the measurement outcomes of UC . We also refer
to (UC , ρC) as an efficient quantum implementation of C. A class of classical
circuits C, associated with a distribution DC, is said to be de-quantumizable if
the following holds:

– Efficient de-quantumization: There is a QPT algorithm B such that, for
any {UC , ρC}C∈C that computes C, the following holds:

Pr

[
C′∈C∧

∀x∈{0,1}n,C(x)=C′(x)
:

C←DC
C′(x)←B(UC ,ρC)

]
≥ 1− negl(λ)

– ν-Quantum Unlearnability: For any QPT adversary A, the following
holds:

Pr
[
∀x,Pr[U∗(ρ∗, x) = C(x)] ≥ ν :

C←DC
(U∗,ρ∗)←AC(·)(1λ)

]
≤ negl(λ)

Remark 3. By the Almost As Good As New Lemma (we present the lemma
in the full version), we can assume that the QPT algorithm UC also output a
state ρ′C,x that is negligibly close in trace distance to ρC , i.e. for all C ∈ C and
x ∈ {0, 1}n it holds that

Pr[UC(ρC , x) = (ρ′C,x, C(x))] ≥ 1− negl(λ)

and
∥∥ρ′C,x − ρC∥∥tr ≤ negl(λ).

Remark 4. We emphasize that the efficient de-quantumization property requires
that the circuit C ′ output by the adversary should be in the same circuit class
C.

Remark 5. We can relax the unlearnability condition in the above definition to
instead have a distribution over the inputs and have the guarantee that the
adversary has to output a circuit (U∗, ρ∗) such that it agrees with C only on
inputs drawn from this distribution. Our impossibility result will also rule out
this relaxed unlearnability condition; however, for simplicity of exposition, we
consider the unlearnability condition stated in the above definition.

From the above definition, we can see why a de-quantumizable class C cannot
be copy-protected, as there is a QPT B that takes any (UC , ρC) efficiently
computing C, and outputs a functionally equivalent classical circuit C ′, which
can be copied. In the following theorem we will show that if every circuit C ∈ C
have a unique representation in C, then it is also not possible to have SSL for this
circuit class. To see why we need an additional condition, lets consider a QPT
pirate A that wants to break SSL given (Run, ρC) computing C ∈ C. Then, A can
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run B to obtain a circuit C ′ ∈ C, but in the proccess it could have destroyed ρC ,
hence it wouldn’t be able to return the initial copy. If B takes as input (Run, ρC)
and outputs a fixed C ′ with probability neglibly close to 1, then by the Almost
As Good As New Lemma, it could uncompute and recover ρC . The definition of
de-quantumizable class does not guarantee that B will output a fixed circuit C ′,
unless each circuit in the family has a unique representation in C. If each circuit
has a unique representation, the pirate would obtain C ′ = C with probability
neglibly close to 1, and uncompute to recover ρC . At this point, the pirate can
generate its own leasing keys sk′, and run Lessor(sk′, C ′) to obtain a valid leased
state ρ′C′ . The pirate was able to generate a new valid leased state for C, while
preserving the initial copy ρC , which it can later return to the lessor.

Theorem 4. Let (C,DC) be a de-quantumizable class of circuits in which every
circuit in the support of DC has a unique representation in C. Then there is no
SSL scheme (Setup,Gen, Lessor,Run,Check) (in CRS model) for C satisfying ε-
correctness and (β, γ,DC)-perfect finite-term lessor security for any negligible γ,
and any β ≤ (1− ε).

Proof. Consider the QPT algorithm A (pirate) that is given ρC ← Lessor(sk, C)
for some C ← DC . The pirate will run B, the QPT that de-quantumizes (C,DC),
on input (Run, ρC) to obtain a functionally equivalent circuit C ′ ∈ C. Because
C has a unique representation in C, we have C ′ = C. Since this succeeds with
probability neglibly close to 1, by the Almost As Good As New Lemma, it can
all be done in a way such that it is possible to obtain C and to recover a state
ρ̃C satisfying ‖ρ̃C − ρC‖tr ≤ negl(λ). At this point, the pirate generates its own
key sk′ ← Gen(crs), and prepares ρ′C ← Lessor(sk′, C). It outputs ρ̃C ⊗ ρ′C .

This means that ρ′C is a valid leased state and by correctness of the SSL
scheme,

Pr

∀x ∈ {0, 1}n, Run (crs, ρ′C , x) = C(x) :

crs←Setup(1λ),

sk′←Gen(crs),

ρ′C←Lessor(sk′,C)

 ≥ 1− ε

Furthermore, since ‖ρ̃C − ρC‖tr ≤ negl(λ), the probability that ρ̃C passes the
return check is neglibly close to 1. Putting these together, we have

Pr


Check(sk,ρ̃C)=1∧

∀x, Pr[Run(crs,ρ′C ,x)=C(x)]≥1−ε
:

crs←Setup(1λ),
C←DC(λ),

sk←Gen(crs),

ρC←Lessor(sk,C),

ρ̃C⊗ρ′C←A(crs,ρC)

 ≥ 1− negl(λ)

3.2 De-quantumizable Circuit Class: Construction

All that remains in the proof of impossibility of SSL is the construction of a de-
quantumizable circuits class (C,DC) in which every circuit in the support of DC
has a unique representation in C. We begin with an overview of the construction.
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Constructing de-quantumizable Circuits: Challenges. The starting point is the
seminal work of Barak et al. [13], who demonstrated a class of functions, where
each function is associated with a secret key k, such that: (a) Non-black-box secret
extraction: given non-black-box access to any classical circuit implementation of
this function, the key can be efficiently recovered, (b) Classical Unlearnability of
secrets: but given black-box access to this circuit, any classical adversary who
can only make polynomially many queries to the oracle cannot recover the key.

While the result of Barak et al. has the ingredients suitable for us, it falls
short in many respects:

– The proof of non-black-box secret extraction crucially relies upon the fact
that we are only given a classical obfuscated circuit. In fact there are inherent
difficulties that we face in adapting Barak et al. to the quantum setting;
see [8].

– As is the case with many black-box extraction techniques, the proof of Barak
et al. involves evaluating the obfuscated circuit multiple times in order to
recover the secret. As is typically the case with quantum settings, evaluating
the same circuit again and again is not always easy – the reason being that
evaluating a circuit once could potentially destroy the state thus rendering
it impossible to run it again.

– Barak et al. only guarantees extraction of secrets given black-box access to
the classical circuit implementation of the function. However, our requirement
is qualitatively different: given a quantum implementation of the classical
circuit, we need to find a (possible different) classical circuit with the same
functionality.

– Barak et al.’s unlearnability result only ruled out adversaries who make
classical queries to the oracle. On the other hand, we need to argue unlearnability
against QPT adversaries who can perform superposition queries to the oracle.

Nonetheless, we show that the techniques introduced in a simplified version of
Barak13 can be suitably adapted for our purpose by using two tools: quantum
fully homomorphic encryption (QFHE) and lockable obfuscation. Combining
QFHE and lockable obfuscation for the purpose of secret extraction has been
recently used in a completely different context, that of building zero-knowledge
protocols [10,17] (and in classical setting was first studied by [15]).

Construction. We present the construction of de-quantumizable circuits.

Theorem 5. Assuming the quantum hardness of learning with errors (QLWE),
and assuming that there is a QFHE that supports evaluation of arbitrary polynomial-
sized quantum circuits, and has the following two properties: (a) ciphertexts have
classical plaintexts have classical descriptions and, (b) classical ciphertexts can
be decrypted using a classical circuit,

there exists a de-quantumizable class of circuits (C,DC).
13 See [16] for a description of this simplified version.
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Proof. We define a de-quantumizable class of circuits C = {Cλ}λ∈N, where every
circuit in Cλ is defined as follows:

Ca,b,r,pk,O(x):

1. If x = 0 · · · 0, output QFHE.Enc (pk, a; r) |O|pk.
2. Else if x = a, output b.
3. Otherwise, output 0 · · · 0

We will suitably pad with zeroes such that all the inputs (resp., outputs) are of
the same length n (resp., of the same length m).

Let DC(λ) be the distribution that outputs a circuit from Cλ by sampling

a, b, r
$←− {0, 1}λ, then computing (pk, sk)← QFHE.Gen(1λ), and finally computing

an obfuscationO ← LO.Obf(C[QFHE.Dec(sk, ·), b, (sk|r)]), where C is a compute-
and-compare circuit.

We show that with respect to this distribution: (a) C is quantum unlearnable
(Proposition 3) and, (b) C is efficiently de-quantumizable (Proposition 4).

Proposition 3. For any non-negligible ν, the circuit class C is ν-quantum unlearnable
with respect to DC.

We provide a proof of the above proposition in the full version.

Proposition 4. (C,DC) is efficiently de-quantumizable.

Proof. We will start with an overview of the proof.

Overview : Given a quantum circuit (UC , ρC) that computes Ca,b,r,pk,O(·), first
compute on the input x = 0 · · · 0 to obtain QFHE.Enc(pk, a; r)|O|pk. We then
homomorphically evaluate the quantum circuit on QFHE.Enc(pk, a; r) to obtain
QFHE.Enc(pk, b′), where b′ is the output of the quantum circuit on input a;
this is part where we crucially use the fact that we are given (UC , ρC) and not
just black-box access to the functionality computing (UC , ρC). But b′ is nothing
but b! Given QFHE encryption of b, we can then use the lockable obfuscation to
recover sk; since the lockable obfuscation on input a valid encryption of b outputs
sk. Using sk we can then recover the original circuit Ca,b,r,pk,O(·). Formal details
follow.

For any C ∈ C, let (UC , ρC) be any QPT algorithm (with auxiliary state ρC)
satisfying that for all x ∈ {0, 1}n,

Pr
[
UC(ρC , x) =

(
ρ′C,x, C(x)

)]
≥ 1− negl(λ),

where the probability is over the measurement outcomes of UC , and ρ′C,x is
neglibly close in trace distance to ρC (see Remark 3). We will show how to
constuct a QPT B to de-quantumize (C,DC).
B will perform a QFHE evaluation, which we describe here. Given QFHE.Enc(pk, x),

we want to homomorphically evaluate C(x) to obtain QFHE.Enc(pk, C(x)). To
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do this, first prepare QFHE.Enc(pk, ρC , x), then evaluate UC homomorphically
to obtain the following:

QFHE.Enc(pk, ρ′C,x, C(x)) = QFHE.Enc(pk, ρ′C,x)
∣∣QFHE.Enc(pk, C(x))

Consider the following QPT algorithm B that is given (UC , ρC) for any C ∈ C.

B(UC , ρC):

1. Compute (ρ′, ct1|O′|pk′)← UC(ρC , 0 · · · 0).
2. Compute σ|ct2 ← QFHE.Eval(UC(ρ′, ·), ct1)
3. Compute sk′|r′ ← O(ct2)
4. Compute a′ ← QFHE.Dec(sk′, ct1), b′ ← QFHE.Dec(sk′, ct2).
5. Output Ca′,b′,r′,pk′,O′ .

We claim that with probability negligibly close to 1, (a′, b′, r′, pk′,O′) = (a, b, r, pk,O)
when C := Ca,b,r,pk,O ← DC . This would finish our proof.

Lets analyze the outputs of B step-by-step.

– After Step (1), with probability neglibibly close to 1, we have that ct1 =
QFHE.Enc(pk, a; r) , pk′ = pk, andO′ = O ← LO.Obf(C[QFHE.Dec(sk, ·), b, (sk|r)]).
Furthermore, we have that ρ′ is negligibly close in trace distance to ρC .

– Conditioned on Step (1) computing C(0 · · · 0) correctly, we have that QFHE.Eval(
UC(ρ′, .), ct1) computes correctly with probability negligibly close to 1. This
is because ‖ρ′ − ρC‖tr ≤ negl(λ), and by correctness of both QFHE and
(UC , ρC). Conditioned on ct1 = QFHE.Enc(pk, a; r), when Step (2) evaluates
correctly, we have ct2 = QFHE.Enc(pk, C(a)) = QFHE.Enc(pk, b)

– Conditioned on ct2 = QFHE.Enc(pk, b), by correctness of lockable obfuscation,
we have that O(ct2) outputs sk|r. Furthermore, by correctness of QFHE,
decryption is correct: QFHE.Dec(sk, ct1) outputs a with probability neglibly
close to 1, and QFHE.Dec(sk, ct2) outputs b with probability neglibly close
to 1.

With probability negligibly close to 1, we have shown that (a′, b′, r′, pk′,O′) =
(a, b, r, pk,O).

Note that it is also possible to recover ρ′′ that is neglibly close in trace
distance to ρC . This is because σ = QFHE.Enc(pk, ρ′′) for some ρ′′ satisfying
‖ρ′′ − ρC‖tr. Once sk′ = sk has been recovered, it is possible to also decrypt σ
and obtain ρ′′. To summarize, we have shown a QPT B satisfying

Pr[B(UC , ρC) = (ρ′′, C) : C ← DC ] ≥ 1− negl(λ)

where ‖ρ′′ − ρC‖tr ≤ negl(λ).

Implications to Copy-Protection. We have constructed a class C and an associated
distribution DC that is efficient de-quantumizable. In particular, this means that
there is no copy-protection for C. If for all inputs x, there is a QPT (UC , ρC) to
compute UC(ρC , x) = C(x) with probability 1− ε for some negligible ε, then it
is possible to find, with probability close to 1, a circuit C ′ that computes the
same functionality as C. We also proved that (C,DC) is quantum unlearnable.
We summarize the result in the following corollary,
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Corollary 2. There is (C,DC) that is quantum unlearnable, but C cannot be
copy-protected against DC. Specifically, for any C ← DC with input length n,
and for any QPT algorithm (UC , ρC) satisfying that for all x ∈ {0, 1}n,

Pr[UC(ρC , x) = C(x)] ≥ 1− ε

for some negligible ε, there is a QPT algorithm (pirate) that outputs a circuit
C ′, satisfying C ′(x) = C(x) for all x ∈ {0, 1}n, with probability negligibly close
to 1.

Further Discussion. Notice that in our proof that C is efficient de-quantumizable,
we just need to compute UC(ρC , x) at two different points x1 = 0 · · · 0 and
x2 = a, where the evaluation at x2 is done homomorphically. This means that
any scheme that lets a user evaluate a circuit C at least 2 times (for 2 possibly
different inputs) with non-negligible probability cannot be copy-protected. Such
a user would be able to find all the parameters of the circuit, (a, b, r, pk,O),
succesfully with non-negligible probability, hence it can prepare as many copies
of a functionally equivalent circuit C ′.

In our proof, we make use of the fact that (UC , ρC) evaluates correctly with
probability close to 1. This is in order to ensure that the pirate can indeed
evaluate at 2 points by uncomputing after it computes C(0 · · · 0). Since any
copy-protection scheme can be amplified to have correctness neglibly close to 1
by providing multiple copies of the copy-protected states, our result also rules
out copy-protection for non-negligible correctness parameter ε, as long as the
correctness of (UC , ρC) can be amplified to neglibily close to 1 by providing ρ⊗kC
for some k = poly(λ).

Impossibility of Quantum VBB with single uncloneable state. Our techniques
also rule out the possibility of quantum VBB for classical circuits. In particular,
this rules the possibility of quantum VBB for classical circuits with the obfucated
circuit being a single uncloneable state, thus resolving an open problem by Alagic
and Fefferman [8].

Proposition 5. Assuming the quantum hardness of learning with errors and
assuming that there is a QFHE satisfying the properties described in Theorem 5,

there exists a circuit class C such that any quantum VBB for C is insecure.

Proof. We construct a circuit class C = {Cλ}λ∈N, where every circuit in Cλ is of
the form Ca,b,r,pk,O defined in the proof of Theorem 5.

Given any quantum VBB of Ca,b,r,pk,O, there exists an adversary A that
recovers b and outputs the first bit of b. The adversary A follows steps 1-4 of B
defined in the proof of Proposition 4 and then outputs the first bit of b′. In the
same proof, we showed that the probability that b′ = b is negligibly close to 1
and thus, the probability it outputs the first bit of b is negligibly close to 1.

On the other hand, any QPT simulator Sim with superposition access to
Ca,b,r,pk,O can recover b with probability negligibly close to 1/2. To prove this,
we rely upon the proof of Proposition 3 (see full version for details). Suppose
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T is the number of superposition queries made by Sim to Ca,b,r,pk,O. Let |ψ0〉 is
the initial state of Sim and more generally, let |ψt〉 be the state of Sim after t
queries, for t ≤ T .

We define an alternate QPT simulator Sim′ which predicts the first bit of
b with probability negligibly close to Sim. Before we describe Sim′, we give the
necessary preliminary background. Define |φt〉 = UtUt−1 · · ·U1|ψ0〉. We proved
the following claim.

Claim. |〈φt|ψt〉| = 1− δt for every t ∈ [T ].

Sim′ starts with the initial state |ψ0〉. It then computes |φT 〉. If U is a unitary
matrix Sim applies on |ψT 〉 followed by a measurement of a register D then Sim′

also performs U on |φT 〉 followed by a measurement of D. By the above claim,
it then follows that the probability that Sim′ outputs 1 is negligibly close to
the probability that Sim outputs 1. But the probability that Sim′ predicts the
first bit of b is 1/2. Thus, the probability that Sim predicts the first bit of b is
negligibly close to 1/2.

4 Main Construction

In this section, we present the main construction of SSL satisfying infinite-term
perfect lessor security. We first start by describing the class of circuits of interest.

4.1 Circuit Class of Interest: Evasive Circuits

The circuit class we consider in our construction of SSL is a subclass of evasive
circuits. We recall the definition of evasive circuits below.

Evasive Circuits. Informally, a class of circuits is said to be evasive if a circuit
drawn from a suitable distribution outputs 1 on a fixed point with negligible
probability.

Definition 7 (Evasive Circuits). A class of circuits C = {Cλ}λ∈N, associated
with a distribution DC, is said to be evasive if the following holds: for every
λ ∈ N, every x ∈ {0, 1}poly(λ),

Pr
C←DC

[C(x) = 1] ≤ negl(λ),

Compute-and-compare Circuits. The subclass of circuits that we are interested
in is called compute-and-compare circuits, denoted by Ccnc. A compute-and-
compare circuit is of the following form: C[C,α], where α is called a lock and C
has output length |α|, is defined as follows:

C[C,α](x) =
{
1, if C(x)=α,

0, otherwise
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Multi-bit compute-and-compare circuits. We can correspondingly define the notion
of multi-bit compute-and-compare circuits. A multi-bit compute-and-compare
circuit is of the following form:

C[C,α,msg](x) =
{
msg, if C(x)=α,

0, otherwise
,

where msg is a binary string.
We consider two types of distributions as defined by [40].

Definition 8 (Distributions for Compute-and-Compare Circuits). We
consider the following distributions on Ccnc:

– Dunpred(λ): For any (C[C,α]) along with aux sampled from this unpredictable
distribution, it holds that α is computationally unpredictable given (C, aux).

– Dpseud(λ): For any C[C,α] along with aux sampled from this distribution, it
holds that HHILL (α|(C, aux)) ≥ λε, for some constant ε > 0, where HHILL(·)
is the HILL entropy [34].

Note that with respect to the above distributions, the compute-and-compare
class of circuits Ccnc is evasive.

Searchability. For our construction of SSL for C, we crucially use the fact that
given a circuit C ∈ C, we can read off an input x from the description of C
such that C(x) = 1. We formalize this by defining a search algorithm S that on
input a circuit C outputs an accepting input for C. For many interesting class
of functions, there do exist a corresponding efficiently implementable class of
circuits associated with a search algorithm S.

Definition 9 (Searchability). A class of circuits C = {Cλ}λ∈N is said to be
S-searchable, with respect to a PPT algorithm S, if the following holds: on
input C, S(C) outputs x such that C(x) = 1.

Searchable Compute-and-Compare Circuits: Examples. As mentioned in the introduction,
there are natural and interesting classes of searchable compute-and-compare
circuits. For completeness, we state them again below with additional examples [40].

– Point circuits C(α, ·): the circuit C(α, ·) is a point circuit if it takes as input
x and outputs C(α, x) = 1 iff x = α. If we define the class of point circuits
suitably, we can find α directly from Cα; for instance, α can be the value
assigned to the input wires of C.

– Conjunctions with wild cards C(S, α, ·): the circuit C(S, α, ·) is a conjunction
with wild cards if it takes as input x and outputs C(S, α, x) = 1 iff y = α,
where y is such that yi = xi for all i ∈ S. Again, if we define this class
of circuits suitably, we can find S and α directly from the description of
C(S, α, ·). Once we find S and α, we can find the accepting input.

– Affine Tester: the circuit C(A, α, ·) is an affine tester, with A,y where A has
a non-trivial kernel space, if it takes as input x and outputs C(A, α,x) = 1
iff A ·x = α. By reading off A and α and using Gaussian elimination we can
find x such that A · x = α.
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– Plaintext equality checker C(sk, α, ·): the circuit C(sk, α, ·), with hardwired
values decryption key sk associated with a private key encryption scheme,
message α, is a plaintext equality checker if it takes as input a ciphertext
ct and outputs C(sk, α, ct) = 1 iff the decryption of ct with respect to sk
is α. By reading off α and sk, we can find a ciphertext such that ct is an
encryption of α.

Remark 6. We note that both the candidate constructions of copy-protection
for point functions by Aaronson [3] use the fact that the accepting point of the
point function is known by whoever is generating the copy-protected circuit.

4.2 Ingredients

We describe the main ingredients used in our construction.

Let C = {Cλ} be the class of S-searchable circuits associated with SSL. We
denote s(λ) = poly(λ) to be the maximum size of all circuits in Cλ. And let
DC be the distribution associated with C. All the notions below are described in
detail in the full version.

q-Input-Hiding Obfuscators. The notion of q-input-hiding obfuscators states that
given an obfuscated circuit, it should be infeasible for a QPT adversary to find
an accepting input; that is, an input on which the circuit outputs 1. We denote
the q-input-hiding obfuscator scheme to be qIHO = (qIHO.Obf, qIHO.Eval) and
the class of circuits associated with this scheme is C.

Subspace hiding obfuscation. This notion allows for obfuscating a circuit, associated
with subspace A, that checks if an input vector belongs to this subspace A
or not. In terms of security, we require that the obfuscation of this circuit is
indistinguishable from obfuscation of another circuit that tests membership of
a larger random (and hidden) subspace containing A. We denote the scheme
to be shO = (shO.Obf, shO.Eval). The field associated with shO is Zq and the
dimensions will be clear in the construction.

q-Simulation-Extractable Non-Interactive Zero-Knowledge (seNIZK) System. This
notion is a strengthening of a non-interactive zero-knowledge (NIZK) system. It
guarantees the following property: suppose a malicious adversary, after receiving
a simulated NIZK proof, produces another proof. Then, there exists an extractor
that can extract the underlying witness associated with this proof with probability
negligibly close to the probability of acceptance of the proof. We denote the
seNIZK proof system to be qseNIZK = (CRSGen,P,V) and we describe the NP
relation associated with this system in the construction. We require this scheme
to satisfy sub-exponential security. We refer to the full version for an appropriate
instantiation.
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4.3 Construction

We describe the scheme of SSL below. We encourage the reader to look at the
overview of the construction presented in Section 1.2 before reading the formal
details below.

– Setup(1λ): Compute crs ← CRSGen
(
1λ1
)
, where λ1 = λ + n and n is the

input length of the circuit. Output crs.

– Gen(crs): On input common reference string crs, choose a random λ
2 -dimensional

subspace A ⊂ Zλq . Set sk = A.

– Lessor(sk = A,C): On input secret key sk, circuit C ∈ Cλ, with input length
n,
1. Prepare the state |A〉 = 1√

qλ/2

∑
a∈A
|a〉.

2. Compute C̃ ← qIHO.Obf(C; ro)
3. Compute g̃ ← shO(A; rA).
4. Compute g̃⊥ ← shO(A⊥; rA⊥).
5. Let x = S(C); that is, x is an accepting point of C.
6. Let L be the NP language defined by the following NP relation.

RL :=

((g̃, g̃⊥, C̃) , (A, ro, rA, rA⊥ , C, x)
) ∣∣∣∣∣

g̃=shO(A;rA)

g̃⊥=shO(A⊥;r
A⊥ )

C̃=qIHO.Obf(C;ro),
C(x)=1

 .

Compute π ← P
(
crs,

(
g̃, g̃⊥, C̃

)
, (A, ro, rA, rA⊥ , C, x)

)
7. Output ρC = |ΦC〉〈ΦC | =

(
|A〉〈A|, g̃, g̃⊥, C̃, π

)
.

– Run(crs, ρC , x):

1. Parse ρC as
(
ρ, g̃, g̃⊥, C̃, π

)
. In particular, measure the last 4 registers.

Note: This lets us assume that the input to those registers is just classical,
since anyone about to perform Run might as well measure those registers
themselves.

2. We denote the operation shO.Eval(g̃, |x〉|y〉) = |x〉|y⊕1A(x)〉 by g̃[|x〉|y〉],
where 1A(x) is an indicator function that checks membership in A.
Compute g̃[ρ ⊗ |0〉〈0|] and measure the second register. Let a denote
the outcome bit, and let ρ′ be the post-measurement state.

3. As above, we denote the operation shO.Eval(g̃⊥, |x〉|y〉) = |x〉|y⊕ 1A(x)〉
by g̃⊥[|x〉|y〉]. Compute g̃⊥[FTρ′FT† ⊗ |0〉〈0|] and measure the second
register. Let b denote the outcome bit.
Note: in Step 2 and 3, Run is projecting ρ onto |A〉〈A| if a = 1 and
b = 1.

4. Afterwards, perform the Fourier Transform again on the first register of
the post-measurement state, let ρ′′ be the resulting state.
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5. Compute c← V
(
crs,

(
g̃, g̃⊥, C̃

)
, π
)

6. If either a = 0 or b = 0 or c = 0, reject and output ⊥.

7. Compute y ← qIHO.Eval
(
C̃, x

)
.

8. Output
(
ρ′′, g̃, g̃⊥, C̃, π

)
and y.

– Check(sk = A, ρC):

1. Parse ρC as
(
ρ, g̃, g̃⊥, C̃, π

)
.

2. Perform the measurement {|A〉〈A|, I−|A〉〈A|} on ρ. If the measurement
outcome corresponds to |A〉〈A|, output 1. Otherwise, output 0.

Lemma 1 (Overwhelming probability of perfect correctness). The above
scheme satisfies ε = negl(λ) correctness.

Proof. We first argue that the correctness of Run holds. Since qIHO is perfectly
correct, it suffices to show that Run will not output ⊥. For this to happen, we
need to show that a, b, c = 1. Since g̃ = shO(A), g̃⊥ = shO(A⊥), and the input
state is |A〉〈A|, then a = 1 and b = 1 with probability negligibly close to 1 by
correctness of shO. If π is a correct proof, then by perfect correctness of qseNIZK,
we have that Pr[c = 1] = 1.

To see that the correctness of Check also holds, note that the leased state is
ρ = |A〉〈A|, which will pass the check with probability 1.

Lemma 2. Fix β = µ(λ), where µ(λ) is any non-negligible function. Assuming
the security of qIHO, qseNIZK and shO, the above scheme satisfies (β, γ,DC)-
infinite-term perfect lessor security, where γ is a negligible function.

The proof of the above lemma is presented in the full version.
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A Related Work

Quantum Money and Quantum Lightning. Using quantum mechanics to achieve
unforgeability has a history that predates quantum computing itself. Wiesner [41]
informally introduced the notion of unforgeable quantum money – unclonable
quantum states that can also be (either publicly or privately) verified to be valid
states. A few constructions [3,4,28,30,35] achieved quantum money with various
features and very recently, in a breakthrough work, Zhandry [42] shows how to
construct publicly-verifiable quantum money from cryptographic assumptions.

Certifiable Deletion and Unclonable Encryption. Unclonability has also been
studied in the context of encryption schemes. The work of Gottesman [32] studies
the problem of quantum tamper detection. Alice can use a quantum state to
send Bob an encryption of a classical message m with the guarantee that any
eavsdropper could not have cloned the ciphertext. In a recent work, Broadbent
and Lord [24] introduced the notion of unclonable encryption. Roughly speaking,
an unclonable encryption allows Alice to give Bob and Charlie an encryption of
a classical message m, in the form of a quantum state σ(m), such that Bob and
Charlie cannot ‘split’ the state among them.

In a follow-up work, Broadbent and Islam [23], construct a one-time use
encryption scheme with certifiable deletion. An encryption scheme has certifiable
deletion property, if there is an algorithm to check that a ciphertext was deleted.

Quantum Obfuscation. Our proof of the impossibility of SSL is inspired by the
proof of Barak et al. [11] on the impossibility of VBB for arbitrary functions.
Alagic and Fefferman [8] formalized the notion of program obfuscation via quantum
tools, defining quantum virtual black-box obfuscation (qVBB) and quantum
indistinguishability obfuscation (qiO), as the natural quantum analogues to the
respective classical notions (VBB and iO). They also proved quantum analogues
of some of the previous impossibility results from [11], as well as provided
quantum cryptographic applications from qVBB and qiO.

Quantum One-Time Programs and One-Time Tokens. Another related primitive
is quantum one-time programs. This primitive wasn shown to be impossible
by [22]. This rules out the possibility of having a copy-protection scheme where a
single copy of the software is consumed by the evaluation procedure. Despite the
lack of quantum one-time programs, there are constructions of secure ‘one-time’
signature tokens in the oracle models [14] [9]. A quantum token for signatures is
a quantum state that would let anyone in possession of it to sign an arbitrary
document, but only once. The token is destroyed in the signing process.

Recent Work on Copy-Protection. While finishing this manuscript, we became
aware of very recent work on copy-protection. Aaronson et al. [6] constructed
copy-protection for unlearnable functions relative to a classical oracle. Our work
complements their results, since we show that obtaining copy-protection in the
standard model (i.e., without oracles) is not possible.
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