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Abstract. Oblivious transfer (OT) is an essential cryptographic tool
that can serve as a building block for almost all secure multiparty func-
tionalities. The strongest security notion against malicious adversaries
is universal composability (UC-secure). An important goal is to have
post-quantum OT protocols. One area of interest for post-quantum cryp-
tography is isogeny-based crypto. Isogeny-based cryptography has some
similarities to Diffie-Hellman, but lacks some algebraic properties that
are needed for discrete-log-based OT protocols. Hence it is not always
possible to directly adapt existing protocols to the isogeny setting.

We propose the first practical isogeny-based UC-secure oblivious transfer
protocol in the presence of malicious adversaries. Our scheme uses the
CSIDH framework and does not have an analogue in the Diffie-Hellman
setting. The scheme consists of a constant number of isogeny computa-
tions. The underlying computational assumption is a problem that we
call the computational reciprocal CSIDH problem, and that we prove
polynomial-time equivalent to the computational CSIDH problem.

1 Introduction

Oblivious transfer (OT) was first introduced by Rabin [35] in 1981 to establish
an exchange of secrets protocol based on the factoring problem. Say the sender
has two messages, oblivious transfer allows the receiver to know one of them and
keeps the sender oblivious to which message has been received. The unchosen
message remains unknown to the receiver.

It has been shown that oblivious transfer is an important building block as
a cryptographic tool. Oblivious transfer can be used to construct other crypto-
graphic primitives [22,15,32]. Several oblivious transfer protocols based on Diffie-
Hellman-related problems were proposed [4,30,34,13,3].

Oblivious transfer protocols exist for various hardness assumptions. However,
cryptographic protocols based on problems subordinate to either the discrete
logarithm problem or the factoring problem will suffer a polynomial-time quan-
tum attack from Shor’s algorithm [37]. Several post-quantum oblivious transfer
schemes have been proposed, including Peikert et al.’s lattice-based OT [34], and
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code-based OTs [19,16,3]. Recently, some isogeny-based OTs have been proposed
[2,17,38].

Concerning security of oblivious transfer, traditional security definitions aim
at guaranteeing privacy for both parties, including one-sided simulation and the
view-based definition for a two-message protocol [30,19,24]. These notions ensure
privacy for both parties in a standalone setting. However, in real world deploy-
ment, protocols are always composed into an enormous and complex construc-
tion. To ensure security of the full system the leading oblivious transfer proposals
[28,34,16,3] follow the real/ideal paradigm and universally-composable security
(UC security) as defined by Canetti [9]. Impossibility results for some protocols
have been given in [11].

The first isogeny-based cryptosystem was proposed by Couveignes [14], which
included a key exchange scheme based on a hard homogeneous space. However,
the paper was not published at that time. The approach was independently re-
discovered by Rostovtsev and Stolbunov [36]. Then, Jao and De Feo proposed
the Supersingular Isogeny Diffie Hellman (SIDH) [26]. Later, SIDH was trans-
formed into the Supersingular Isogeny Key Encapsulation (SIKE) [25] which
includes a public key encryption scheme and a key encapsulation mechanism
and is now one of the third-round alternate candidates in the post-quantum
cryptography standardization competition led by NIST [31]. Castryck et al. [12]
devised an efficient implementation of the Couveignes/Rostovtsev-Stolbunov ap-
proach that they called commutative SIDH (CSIDH). CSIDH is conjectured to
provide post-quantum security with smaller public keys than the candidates in
the NIST competition [31]. In this work, we exploit the structure of CSIDH to
construct our schemes.

In comparison with Diffie-Hellman-based protocols, due to the reduced num-
ber of algebraic operations available, it is arguably more challenging to develop
isogeny-based cryptosystems achieving the desired notion. For example, nei-
ther the randomizing procedure (gsyt, xszt)← RAND(g, x, y, z; s, t←$Fp) used
in [30,34,28], nor the fundamental one-trapdoor setup pk0pk1 = c where c is a
public constant used in [30,3] can be realized in the isogeny-based setting with
current techniques in an efficient way.

We review the aforementioned isogeny-based oblivious transfer proposals
[2,17,38]. Their schemes can be viewed as “tweaks of two Diffie-Hellman key
exchange agreements” or variants of the Diffie-Hellman problem as stated in
[13]. As stated in [13], these schemes, including their scheme, cannot achieve
full-simulatablility, even in the sense of the sequential composition (SC) theo-
rem [8]. This is because a simulator cannot extract the input of the malicious
adversary who delays the decryption.

To get a secure OT against malicious adversaries, an inefficient solution is
embedding a zero-knowledge proof to force the adversary to follow the proto-
col specification, which is the idea of the GMW compiler [22]. But then using
isogenies the ZK proof may require a polynomial number of isogeny computa-
tions [21,6]. Another solution is using the transformation provided by Döttling
et al. [18]. The mechanism can transform a two-round semi-simulatable OT
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into one secure against malicious adversaries and keep the construction round-
optimal (2-round). The cost is a polynomial number of executions of the original
OT scheme. Chou and Orlandi [13] pointed out another potential solution that
the receiver should show a proof of timely decryption while not leaking the secret
input, which was realized by Barreto et al. in their framework in the updated
version of [3].

On the aspect of security, the schemes [2,17,38] are all only proved secure
under either semi-honest models or a non-simulation-based definition. In other
words, the schemes all ensure nothing when executed within a larger environment
against malicious adversaries. Regarding the underlying computational assump-
tion, a reduction to a well-known one is a preferred choice over a reduction to a
weaker variant. For instance, the scheme in [38], as stated in their work, relies on
a non-standard computational assumption that does not hold in the CSIDH set-
ting. In conclusion, before our work, a practical isogeny-based oblivious transfer
protocol proved to be secure under an assumption equivalent to a well-known
problem and with respect to a powerful security notion was missing from the
literature.

1.1 Contributions

We present the first practical construction of a UC-secure isogeny-based oblivi-
ous transfer protocol in the presence of malicious adversaries, hence resolving all
the issues discussed above. To achieve this we introduce a variety of novel tech-
niques. The construction is not only compact with a constant number of isogeny
computations (see Table 1) but also a robust scheme without compromising the
hardness. Our schemes use a feature that is available for isogenies (the quadratic
twist) that does not have an analogue in the DLP setting, but some of our other
techniques are not limited to isogeny-based cryptography, see Section 6.

Firstly, we design a novel 1-out-of-2 oblivious transfer protocol by a small
change to the Diffie-Hellman protocol to achieve a compact OT prototype with
a trusted setup curve (or a public curve). Next, the 3-round protocol is trans-
formed into a 2-round scheme through a new use of quadratic twists. The 2-round
scheme is the most efficient isogeny-based OT scheme in the semi-honest model
so far, see Section 5. Based on this modification, a secure mechanism can be es-
tablished in which the receiver will demonstrate the “ability to decrypt” to the
sender for one-sided simulation, which is based on a similar idea of [13, 3] but
with a different mechanism for group actions. Furthermore, we establish a trap-
door algorithm with a novel use of quadratic twists in the setup to accomplish
the fully-simulatable construction. Finally, we introduce a new assumption, the
reciprocal CSIDH problem, (Problem 5) that looks non-standard, but we prove
equivalence to the computational CSIDH problem with a quantum reduction
using a tool we call “self-reconciling” (Proposition 1).

As pointed out by Canetti et al. [11], it is impossible to achieve a UC-secure
OT scheme without any trusted setup. Our construction is proposed in a hybrid
model with two functionalities, see Table 2 for comparison with the related works
concerning the hybrid models.
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This paper is organized as follows. Section 2 briefly describes CSIDH, the
related functionalities, our new assumptions, and recalls the simulation-based
definition for two-party protocols. Section 3 constructs our oblivious transfer
protocol. Section 4 gives security proofs against the semi-honest adversary and
the malicious adversary. A comparison of our OT with the previous three isogeny-
based OT protocols is given in Section 5. We conclude in Section 6. For com-
prehensibility, the content related to isogenies will frequently be accompanied or
introduced by the counterparts in the Diffie-Hellman setting.

1.2 Related work

There are three aforementioned isogeny-based OT protocols. All the adversary
models are either semi-honest or non-simulation, which are both quite weak
notions. While the semi-honest model cannot reflect vicious attackers in the real
world, the non-simulation-based model cannot enjoy the composition theorems
[8,9], see Section 5.

The first protocol was proposed by Barreto et al. [2] and used the common
reference string (CRS) model along with the random oracle model. They revisited
Chou and Orlandi’s work [13] and proposed an SIDH-based OT. They exploited
the properties of SIDH to mask one party’s public points by randomly (up to
the receiver’s choice) adding shared selective points derived from the common
reference string. However, the claim of security is false. It may not ensure privacy
even in the semi-honest model.

The second protocol was proposed by de Saint Guilhem et al. [17]. They
derived their two constructions from the Shamir-3-Pass key transport scheme and
[13], respectively. Their framework is UC-secure against semi-honest adversaries
based on a masking structure hard homogeneous space or on Fp2 supersingular
isogenies.

The third protocol was proposed by Vitse [38]. It is derived from Wu, Zhang,
and Wang’s OT [39], based on a Diffie-Hellman-related problem. Their proposal
naturally fits well in the general setting (including DH, SIDH, and CSIDH).
They claimed UC-security in a semi-honest model and gave another game-based
security definition (semantic security) for their OT protocol. They also proved
the hardness of their special assumption in generic groups.

An independent and concurrent work of Alamati et al. [1] is concerned with
giving a general framework for developing cryptographic primitives based on
group actions such as CSIDH. As an application, they briefly present some OT
schemes. Their paper is concerned with theoretical aspects, not practical ones.
Hence, the efficiency is worse than using the GMW compiler [22] or using the
transformation of [18].
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2 Preliminaries

Notation

Let {X(a, n)} =c {Y (a, n)} denote computationally indistinguishable probabilis-
tic ensembles X,Y , which means for any PPT non-uniform algorithm D there
exists a negligible function f such that for all a, n ∈ N we have |Pr[D(X(a, n))]−
Pr[D(Y (a, n))]| ≤ f(n). Let {X(a, n)} =s {Y (a, n)} denote statistically indis-
tinguishable probabilistic ensembles X,Y on the same set, which means the
statistical distance between X and Y is negligible. The notation a←$S means a
is uniformly generated from the set S. For simplicity, we often omit the security
level parameter n but it is implicit in the indistinguishabiliy and the negligible
function.

2.1 CSIDH

For a given prime p and an elliptic curve E defined over Fp, Endp(E) is the
subring of the endomorphism ring End(E) consisting the endomorphisms defined
over Fp.

Let O be an order in an imaginary quadratic field and π ∈ O an element of
norm p. Define the set of isomorphism classes of elliptic curves E``p(O, π) where
E defined over Fp, Endp(E) = O, and π is the Fp-Frobenius map of E. For any
ideal a ∈ O and E ∈ E``p(O, π), an action can be defined by a∗E = E′ such that
there exists an isogeny φ : E → E′ with ker(φ) = ∩α∈a{P ∈ E(F̄p) | α(P ) = 0}.
The image curve of a ∗ E is well-defined up to Fp-isomorphism. Moreover, the
ideal class group Cl(O) acts freely and transitively on E``p(O, π).

Castryck et al specified the prime to be p = 4 × `1 × ... × `n − 1 where `i
are small odd primes. In the case of p = 3 mod 8, for any supersingular elliptic
curve E defined over Fp, the restricted endomorphism ring Endp(E) = Z{π} ∼=
Z{
√
−p} if and only if E is Fp-isomorphic to EA : y2 = x3 + Ax2 + x for some

unique A ∈ Fp. The quadratic twist of a given elliptic curve E : y2 = f(x) is
Et : dy2 = f(x) where d ∈ Fp has Legendre symbol −1. When p = 3 mod 4
let E0 be such that j(E0) = 1728, then E0 and Et0 are Fp-isomorphic. The
quadratic twist can be efficiently computed in the CSIDH setting [12]. Since
the prime p = 3 mod 4, E′ : −y2 = x3 + Ax2 + x is the quadratic twist of
EA : y2 = x3 + Ax2 + x and E′ is Fp-isomorphic to E−A by (x, y) 7→ (−x, y).
Further, (a ∗ E0)t=a−1 ∗ E0. Therefore, for any curve E ∈ E``p(O, π), we have,
by the transitivity of the action,

(a ∗ E)t = a−1 ∗ Et.

Throughout this paper, we concentrate on supersingular curves defined over
Fp. Denote the ideal class group Cl(Endp(E)) by Cl and the set of elliptic curves
E``p(O, π) by E .
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Uniform sampling of curves In CSIDH, the method provided to sample
elements of the class group Cl is heuristically assumed to be statistically close
to uniform [12]. Here we make the same assumption and derive the following
lemma when p = 3 mod 4.

Lemma 1. Given a curve E ∈ E and a distribution D on Cl, let D ∗ E be the
distribution on E of a ∗ E for a← D, and let (D ∗ E)t be the distribution on E
of (a ∗ E)t for a ← D. If D is statistically indistinguishable from the uniform
distribution on Cl, then D ∗ E and (D ∗ E)t are statistically indistinguishable
from the uniform distribution on E.

Proof. Let U be the uniform distribution on E . Since Cl acts freely and transi-
tively on E , D∗E is statistically indistinguishable from U . Since taking quadratic
twists is a transposition on E , by taking a twist on both distributions, we have
D ∗ E =s U = U t =s (D ∗ E)t.

CSIDH works by sampling ideal classes as
∏n
i=1(`i, π − 1)ei where ei are

sampled from [−B,B ] ∩ Z for a suitably chosen value B. Heuristically, increas-
ing B means that sampling becomes closer to the uniform distribution on Cl.
Beullens et al. [6] proposed an efficient instantiation of these sampling methods
in CSI-FiSh which requires pre-processing to compute a lattice of relations in
the class group. Implementations of the CSIDH scheme can be found in [12,5].
We refer to [29,33] for constant-time variants.

Computational assumptions The computational assumptions relevant to
this work are defined as follows.

Problem 1. (Computational CSIDH Problem) Given curves E, r ∗ E and
s ∗ E in E where r, s ∈ Cl, find E′ ∈ E such that E′ = rs ∗ E.

Problem 2. Given curves (E, s ∗E,r ∗E) in E where r, s ∈ Cl, find E′ ∈ E such
that E′ = s−1r ∗ E.

The computational CSIDH problem is the main hardness assumption for
[12]. Problem 2 is an equivalent problem. To see this, given an oracle O for
Problem 1, one can obtain E′ by taking E′ ← O(s ∗ E,E, r ∗ E) such that
E′ = rs−1 ∗ E. Conversely, given an oracle O for Problem 2, one can obtain E′

by taking E′ ← O(s ∗ E,E, r ∗ E) such that E′ = rs ∗ E.
The following two problems are the main underlying problems against semi-

honest adversaries.

Problem 3. (Computational Square CSIDH Problem) Given curves E and
s ∗ E in E where s ∈ Cl, find E′ ∈ E such that E′ = s2 ∗ E.

Problem 4. (Computational Inverse CSIDH Problem) Given curves E and
s ∗ E in E where s ∈ Cl, find E′ ∈ E such that E′ = s−1 ∗ E.
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The equivalence between these two assumptions and a conditional reduction
to the computational CSIDH problem were given in [20]. The condition for the
second reduction is that the group order is given and odd. Therefore, we can say
that there is quantum reduction [37,23] to the computational CSIDH problem
when p = 3 mod 4. In fact, there is also an efficient quantum reduction for the
case of p = 1 mod 4, see Appendix 1 of [27]. Note that the quantum computation
is only to compute the group structure of Cl, and so can be considered as a
precomputation; the remainder of the reduction is classical.

As Castryck et al. pointed out [12] both problems contain exceptional cases
when E0 takes part in the problems due to the symmetric structure. That is,
(a ∗ E0)t = a−1 ∗ E0, and so Problem 4 is easy in the special case E = E0. The
issue can be circumvented if the public curve is generated by a trusted third
party.

Next, we will introduce the main underlying assumption for our UC-secure
construction.

Problem 5. (Reciprocal CSIDH Problem) Given E in E . Firstly, the adver-
sary chooses and commits to X ∈ E , then receives the challenge s ∗ E where
s ∈ Cl. Then the adversary must compute a pair (s ∗X, s−1 ∗X) with respect
to the committed X.

Intuitively, the computational reciprocal CSIDH problem is a relaxed version
of the square CSIDH problem or the inverse CSIDH problem. In particular, if one
can solve the inverse CSIDH problem, then one can solve the reciprocal CSIDH
problem by taking X = E with (s ∗X, s−1 ∗X) = (s ∗E, s−1 ∗E). Conversely, if
an attacker knows the isogeny between X and E, or Et, then this can be used to
solve the inverse CSIDH problem. That is, if X = r ∗E, one can obtain s−1 ∗E
by computing r−1 ∗ (s−1 ∗X) with the given r. On the other hand, if X = r ∗Et,
one can obtain s−1 ∗ E by computing r ∗ (s ∗ X)t with the given r. However,
note that the attacker is not required to know the isogeny between X and E or
Et in the problem.

The reciprocal CSIDH problem appears to be non-standard at first sight but,
in fact, it is equivalent to the inverse CSIDH problem. Even though the problem
provides additional freedom X for the attacker, yet notice that X is chosen prior
to the challenge s ∗ E. We show in the following reduction that the freedom to
choose X can be handled. We call the reduction strategy self-reconciling.

Proposition 1. The computational reciprocal CSIDH problem is equivalent to
the computational inverse CSIDH problem.

Proof. Given a challenge (E, s ∗ E) for the inverse CSIDH problem. Invoke the
adversary for the reciprocal CSIDH with E. After receiving X from the ad-
versary, send the challenge t1s ∗ E to the adversary where t1←$Cl. Receive
(t1s ∗X, (t1s)−1 ∗X) from the adversary, then rewind the adversary to the time
when it output X, and then send t2s ∗X as the challenge with respect to com-
mitted X where t2←$Cl. Receive (X0, X1) from the adversary. Output X1.
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Claim (t2) ∗X1 = s−1 ∗E. Write X = b ∗E by the transitivity of the action,
so t2s ∗X = (t2sb) ∗E. Then, since the second challenge is t2s ∗X = (t2sb) ∗E,
we have t2 ∗X1 = (sb)−1 ∗X = s−1 ∗E. Precisely, if the adversary can solve the
problem based on E with committed X with probability ε, then the adversary
can be used to solve the inverse CSIDH problem based on E with probability ε2.

In the proof Proposition 1, the reduction extracts the first entry of the first
solution and the second entry of the second solution to obtain the solution for
the inverse CSIDH problem. We can, therefore, conclude the following corollary.

Corollary 1. In the experiment of Problem 5, after committing to the curve X,
if the adversary can solve (s∗X, s′−1∗X) with respect to different given challenges
s ∗E and s′ ∗E then the adversary can be used to solve the computation inverse
CSIDH problem.

We end the subsection with the following relation.

Computational CSIDH =quantum Computational Inverse CSIDH

=classical Computational Square CSIDH

=classical Computational Reciprocal CSIDH

Remark. The above results can all be extended to general (free and transitive)
group actions and hard homogeneous spaces [14]. We leave the details to the
reader.

2.2 Functionalities

In this subsection, we define the functionalities we need as well as the related
security definitions.

A symmetric encryption scheme is a pair of algorithms (E,D) defined over
message space M and ciphertext space C with key space K.

Definition 1. (non-committing encryption (NCE)) A symmetric encryption scheme
(E,D) is said to be non-committing if there exists PPT algorithm B1, B2 such
that for any PPT distinguisher D, message m ∈M.

|Pr[D(c, k) = 1]− Pr[D(c′, k′) = 1]| = negl(n),

where k←$K, c = Ek(m) and c′←$B1(1n), k′←$B2(c′,m)

Informally speaking, non-committing encryption allows a user to generate a
dummy ciphertext indistinguishable from the real one by B1 and later explain
it with the assistance of B2. The idea was introduced by Canetti et al. [10] with
the one-time pad (OTP) as an instantiation. It was also used in some oblivious
transfer constructions [13,3]. The non-committing proposition here is used to
extract the input without rewinding in the simulation process.
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FTSC-Functionality of a trusted setup curve

The functionality is to output an element of E . It generates an
ideal class t←$Cl and outputs the curve t ∗ E0.

The functionality of trusted setup curves FTSC serves as a setup for gener-
ating a curve for the protocol. This setup hides the relation t between the public
curve and the curve E0. In practice, this can be replaced with a key exchange
protocol [7]. That is, two parties do a key exchange first and obtain a curve such
that the isogeny relation to E0 remains unknown if the two parties do not share
their ideal classes or collude.

FRO-Functionality of Random Oracle

The functionality is a function with the domain E and the
codomain K. It keeps a list L of pairs in E ×K where the initial
state is empty. It works as follows:

1. Upon receiving a query C ∈ E , check whether (C, k′) for
some k′ ∈ K. If so, set k = k′; if not, generate k←$K and
store the pair (C, k) in the list L.

2. Output k.

The functionality of a random oracle FRO internally contains an initially
empty list. Upon receiving the query from the domain, it will check whether it is a
repetition. If so, return the value assigned before; otherwise, it randomly assigns
a value from the codomain, stores the pair, and returns the value. Formally
speaking, an input of a random oracle can be any binary string. For simplicity,
we restrict the domain to E . This can be easily and compatibly extend to {0, 1}∗,
since supersingularity can be efficiently verified [12].

We briefly define the security terms. Let outputπ(x, y) denote the outputs of
two parties with the inputs x, y respectively after the execution of π, and viewπi
consist of the input, the internal random tape and all received messages of the
ith participant after the execution of π. Let IDEALF,S,Z and HY BRIDGπ,A,Z
denote the the ideal execution ensemble and the hybrid ensemble, respectively.
A detailed explanation can be found in [27]. We refer [24], [9] for more thorough
descriptions for the security notions against semi-honest adversaries and the
malicious adversaries, respectively.

Definition 2. (security OT against semi-honest adversary) We say a protocol
π securely (privately) computes FOT in the presence of static semi-honest ad-
versaries if there exists probabilistic polynomial-time algorithms S1, S2 such that

outputπ(x, y) = FOT (x, y)

{S1(x, (FOT (x, y))1)}x,y=c{viewπ1 (x, y)}x,y
and

{S2(y, (FOT (x, y))2)}x,y=c{viewπ2 (x, y)}x,y.
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Definition 3. (UC-realize) A protocol π is said to UC-realize an ideal func-
tionality F in the presence of malicious adversaries and static corruption in the
hybrid model with functionality G if for any adversary A there exists a simulator
S such that for every interactive distinguisher environment Z we have

IDEALF,S,Z=cHY BRID
G
π,A,Z .

3 Our Proposal

This section first presents the idea behind our tweaked key exchange by intro-
ducing the core of Chou and Orlandi’s OT scheme [13]; we then derive a novel
compact protocol as a prototype. Following this, we compress the three-round
scheme to an optimal two rounds by using the quadratic twist technique. Fi-
nally, building on the round-optimal structure, we add a “proof of decryption”
mechanism, which requires an extra round, in order to achieve security against
malicious adversaries.

3.1 Passively Secure Schemes

Tweaked Key Exchange Figure 1 presents the Chou–Orlandi OT scheme [13]
which is based on Diffie–Hellman key exchange. In Diffie–Hellman, the sender
and the receiver first share their public “keys”, gs and gr, with each other, after
which both of them can secretly obtain a shared secret grs. To adapt this for
the purpose of OT, the receiver can use the second round to obfuscate his secret
bit i. In the third round, the sender can communicate an encryption of the two
OT messages by deriving two keys, one which cancels out the obfuscation, and
one which does not. Because of this key derivation, the receiver can then only
decrypt the message corresponding to his input bit.

We can view the isogeny-based oblivious transfer constructions of previous
works in the same way. In Barreto et al.’s work [2], the shared secret between
the sender and the receiver is the j-invariant of the isomorphic elliptic curves
φB′φA(E) and φA′φB(E) [2]. Here, the receiver hides his input bit by masking his
pe33 -torsion subgroup public basis by a pair of special pe33 -torsion points U, V ∈
φB(E); the sender then requires the same pair of points U , V to remove the
noise. A coin-flipping mechanism is then used to guarantee that both parties
obtain the same points U, V .

Proposals by de Saint Guilhem et al. and Vitse rely on a similar idea to use
a fixed key from the key exchange to decrypt the chosen ciphertext [17,38]. In
the first OT construction of [17], two public curves are required as a trusted
setup, which serve the same role as two fixed keys from the perspective of key
exchange. In [38], one more pe22 -torsion subgroup generated by the sender is
required to obtain two fixed keys.

Our three-round Protocol We present our three-round protocol in Figure 2
using the notation of the CSIDH setting. In this work we approach the change
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Sender Receiver

Input: (M0,M1) Input: i ∈ {0, 1}
Output: N/A Output: Mi

s←$Z r←$Z∗
p

A = gs

if i = 0 :B = gr

if i = 1 :B = Agr

B

k0 = H(Bs) ki = H(Ar)

k1 = H((B/A)s)

c0 ← Ek0(M0)

c1 ← Ek1(M1)

Mi = Dki(ci)

Fig. 1: Chou and Orlandi’s OT scheme in a nutshell [13]

from key exchange to OT with a different strategy. The essence is that the sender
and the receiver can exponentiate by both s and by s−1, and by both r and r−1

respectively.
Upon receiving gs from the sender, the receiver computes both gr and gsr,

and sends one of them to the sender depending on its choice bit. The sender then
exponentiates it by both s and by s−1 as the encryption keys, which is like doing
the key exchange as Problem 1 and 2. One can verify that the shared secret in
each case is grs and gr, resp.

The other encryption keys are grs
−1

and grs
2

, resp. They are intractable to
the honest-but-curious receiver due to the hardness of the inverse and square
CSIDH problems, respectively. Furthermore, the receiver’s input bit remains
unknown since the sender only knows either gr or gsr.

Note that in this isogeny-based setting, it is necessary that the relation be-
tween the shared public curve E ∈ E and a fixed base curve E0 remains unknown.
Should the receiver know that E = t ∗ E0, then he can always input i = 0 and
compute the other key as t2r2∗(rs∗E)t = t2r2∗(trs∗E0)t = trs−1∗E0 = rs−1∗E.

Our two-Round Protocol To address the drawbacks of our three-round pro-
tocol, we observe that the quadratic twist provides additional flexibility for the
curve computations.
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Trusted Setup: random E ∈ E

Sender Receiver

Input: (M0,M1) Input: i ∈ {0, 1}
Output: N/A Output: Mi

s←$Cl r←$Cl

A = s ∗ E

if i = 0 : C = r ∗ E
if i = 1 : C = r ∗A

C

k0 = H(s ∗ C) ki = H(r ∗ (s1−i ∗ E))

k1 = H(s−1 ∗ C)

c0 ← Ek0(M0)

c1 ← Ek1(M1)

Mi = Dki(ci)

Fig. 2: Our three-round OT protocol.

To first break the dependency of C on A, we let the receiver compute C =
(r ∗ E)t in the case i = 1, instead of r ∗ A. Lemma 1 guarantees that this still
statistically hides i. Now that C is independent of A, the receiver can send
his message first, reducing the protocol to only two rounds. Furthermore, this
removes the hypothetical attack of a malicious receiver choosing C in response
to A and enables a direct reduction to the computational CSIDH problem.

We then note that the sender’s second encryption curve can be computed as
(s∗Ct)t, instead of s−1∗C, in the three-round version. Here again we can simplify
by letting the sender compute the second curve as s∗Ct, without the additional
twisting operation. This then results in a simplification for key computation
too: for i = 0, the encryption curve is s ∗ (r ∗ E) = r ∗ A, and for i = 1 it is
s∗ ((r ∗E)t)t = r ∗A; thus we return to the idea of using a single Diffie–Hellman
key by way of using the twist operation. The modified two-round protocol is
described in Figure 3. We give a formal security proof in Section 4.1.

In this simplified variant the number of isogeny computations remains the
same as in the three-round variant. We note that taking quadratic twists is an
efficient operation via field negation.
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Trusted Setup: E ∈ E

Sender Receiver

Input: (M0,M1) Input: i ∈ {0, 1}
Output: ⊥ Output: Mi

s←$Cl r←$Cl

A = s ∗ E if i = 0: C = r ∗ E
if i = 1: C = (r ∗ E)t

C

k0 = H(s ∗ C)

k1 = H(s ∗ Ct)

A, c0 ← Ek0(M0)

c1 ← Ek1(M1)

ki = H(r ∗A)

Mi = Dki(ci)

Fig. 3: The core of our two-round OT scheme. No analogue exists in the Diffie–
Hellman setting due to the use of the quadratic twist.

3.2 The Full Construction Against Malicious Adversaries

The full protocol is shown in Figure 4 below. To be secure against malicious
adversaries who may deviate from the specification, both parties will do a simple
verification of the received elements. In the CSIDH setting, both parties will
check whether the curve is supersingular, which can be done efficiently, as shown
in [12].

Protocol. (CSIDH-based OT) Let (E,D) be a symmetric encryption scheme
with message space M and ciphertext space C. Let H : E → K be modeled as a
random oracle FRO that serves as the key derivation function from the group E
to the key space K for the symmetric encryption scheme.

– Trusted Setup: Let E = t ∗ E0 where t←$Cl is unknown.
– Input: As input, the sender S takes two messages M0,M1 of the same

length; the receiver R takes a bit i ∈ {0, 1}.
– Procedure:

1. S samples independent ideals s0, s1←$Cl, a random string str←$ {0, 1}n
and computes A0 = s0 ∗ E, A1 = s1 ∗ E.

2. R generates an ideal r←$Cl and computes C = r∗E; if i = 1, overwrites
C = Ct; and sends C to S.
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3. S checks whether C ∈ E. If not, S aborts and outputs abort2. Otherwise,
S computes four keys kj,0 = H(sj ∗ C) and kj,1 = H(sj ∗ Ct) for j ∈
{0, 1}. Then, S computes four ciphertexts c0,j ← Ek0,j (Mj) and c1,j ←
Ek1,j (s1 ‖ str) for j ∈ {0, 1}. S sends (A0, A1, c0,0, c0,1, c1,0, c1,1) to R.

4. R runs the proof of ability to decrypt first. R checks whether A1 ∈ E. If
not, R aborts and outputs abort1. Otherwise, R computes k′1,i = H(r ∗
A1) and (s′1 ‖ str′)← Dk′1,i(c1,i). Verify whether s′1 ∗ (r ∗E) = r ∗A1. If
not, output abort1. Otherwise, continue.

5. R computes k′1,1−i = H(s′1 ∗ (r ∗ E)t). Verify whether Dk′1,1−i
(c1,i−i) =

(s′1 ‖ str′). If not, output abort1. Otherwise, continue.

6. R verifies A0 ∈ E. If not, R aborts and outputs abort1. Otherwise,
compute the decryption key k′0,1 = H(r∗A0) and output Mi ← Dk′0,i(c0,i).

And send str′ to S.

7. S checks whether str = str′. If not, S aborts and outputs abort2. Oth-
erwise, S accepts and outputs ⊥.

Intuitively, to simulate a sender controlled by an adversary, we have to show
that the receiver’s message’s distribution with input i = 0 and that with input
i = 1 are indistinguishable. Asides from that, the simulator needs to extract
the real input of the message pair since the adversary can replace the original
input. Lemma 1 assures the first requirement. The second condition is attained
by controlling the functionality FTSC . As a result, the simulator can decrypt
two ciphertexts by using the trapdoor of FTSC and extract the real input of the
sender.

To simulate a receiver corrupted by an adversary, the simulator should ex-
tract the adversary’s input by observing the hash queries. In order to extract
the input, the receiver should demonstrate the ability to decrypt. The reason
to do this is that the corrupted receiver who skips all hash queries makes the
input intractable to the simulator. The additional proof of ability to decrypt
mechanism forces the adversary either to abort or to prove its ability to decrypt
by querying the hash function. Here the sender will send another curve s′ ∗ E
distinct from s∗E for transferring messages. The sender encrypts the ideal s′ and
a concatenated random string with key pair derived from s′ ∗E. The receiver de-
crypts one ciphertext with X, and the other ciphertext serves as a verification of
the equality of encrypted messages. By requiring this together with Corollary 1,
the mechanism enables the simulator to extract the input by observing the ran-
dom oracle queries. Furthermore, since the simulator can only obtain one real
message from the trusted third party (corresponding to the extracted input i),
the simulator must forge the other ciphertext via the non-committing encryption
scheme. The difference between the unchosen ciphertexts is not noticeable unless
the environment machine knows the corresponding decryption key. In this case,
the environment machine contains a pair of curves which is exactly the solution
for the reciprocal CSIDH problem. See Section 4 for more details.
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Fig. 4: Our CSIDH-based oblivious transfer protocol. For the sake of readability,
we label the steps related to the process of “proof of ability to decrypt” with ?.

4 Security Analysis

In this section, we prove the security of our two schemes from Sections 3.1 and
3.2 against semi-honest and malicious adversaries respectively.

4.1 Semi-honest security

Eavesdropper. An eavesdropper receives all the communications of parties and
does not intervene in the execution. We assume that such an adversary knows the
parties’ inputs while the simulator tasked with simulating an indistinguishable
transcript is given nothing. The reason for this assumption is to match the
definition of UC-security [9] where the environment machine decides the inputs.
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In fact, security against such eavesdroppers corresponds exactly to the honest-
honest case discussed in the proof below.

Semi-Honest Adversary. A static semi-honest adversary can choose to corrupt
either, both or neither of the parties and will follow the protocol specification. We
will prove that such adversary cannot obtain any information from the transcript
of our two-round protocol (Figure 3) assuming that the computational inverse
CSIDH problem is hard.

We remark that it is not meaningless to design two different protocols for
different security levels. As security against semi-honest adversaries is easier to
achieve, it is better to use a simpler and more efficient protocol when only such
guarantees are required. This then implies that it is not necessary to prove the
semi-honest security of our second protocol since the first provides a simpler
secure variant. We highlight the fact that some maliciously secure protocols fail
to also be semi-honest secure [24] and stress that we do not claim the semi-honest
security of our second protocol of Section 3.2.

Theorem 1. The protocol π of Figure 3 securely computes FOT in the presence
of static semi-honest adversaries if the computational inverse CSIDH problem
(Problem 4) is infeasible, assuming that H(·) is a random oracle and the encryp-
tion scheme (E,D) is IND-CPA.

Proof. (Correctness) Let i ∈ {0, 1} be the input of the receiver R. Say the
sender S generates ideal s ∈ Cl and R generates r ∈ Cl. If i = 0, then C =
r ∗ E. S computes the encryption key k0 as H(s ∗ C), and sends A = s ∗ E. R
computes k′0 = H(r ∗A) as the decryption key; as we have r ∗A = r ∗ (s ∗E) =
s ∗ (r ∗ E) = s ∗ C, we indeed have k′0 = k0. On the other hand, if i = 1, then
C = (r ∗E)t. S computes k1 = H(s ∗Ct) while R computes k′1 = H(r ∗A). We
have s ∗Ct = s ∗ ((r ∗E)t)t = s · r ∗E = r ∗A which implies k′1 = k1 and shows
the correctness of the protocol.

(Corrupt sender S∗) The simulator S1 takes as input (M0,M1,⊥) and is
required to simulate the view viewπ1 (M0,M1, i) = (M0,M1, rp, C) where rp is a
random tape. To generate this, S1 performs these steps:

1. Uniformly generate a random tape rp for S∗.
2. Generate r′←$Cl acting as an honest R and using a private random tape.
3. Output (M0,M1, rp, C

′ = r′ ∗ E).

In a real execution, the curve C sent by the honest receiver is either r∗E if i = 0,
or (r ∗ E)t if i = 1. In the first case, the transcript output by S1 is identically
distributed to that produced by a real execution. In the second case, Lemma 1
gives us that the distribution of C ′ produced by S1 is statistically close to that
of C produced by the real receiver. Thus, any polynomial-time distinguisher that
is given a tuple (M0,M1, i) is not able to distinguish {S1((M0,M1),⊥)}(M0,M1),i

from {viewπ1 (M0,M1, i)}M0,M1,i.

(Corrupt receiver R∗) The simulator S2 takes as input (i,Mi) and is
required to simulate the view viewπ2 (M0,M1, i) = (i, rp, A, c0, c1) where rp is a
random tape. To generate this, S2 performs these steps:
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1. Choose a uniform generated random tape rp for R∗.
2. Generate s′←$Cl acting as an honest S and using a private random tape,

and generate r′←$Cl using rp. Compute the curve C as r′ ∗ E or (r′ ∗ E)t

depending on i.
3. Compute the decryption keys k′i, k

′
1−i honestly using s′ and C. Replace k′1−i

with k̃′←$K
4. Compute ciphertexts ci = Ek′i(Mi) and c1−i = Ek̃′(M̃) where M̃ is a string

of the same length as Mi sampled at random from the message space M.
5. Output (i, rp, s′ ∗ E, c0, c1).

We claim that if there exists a successful PPT distinguisher between the sim-
ulated view and the real view, then reductions can be made to solve the com-
putational problems (Problem 3 or the equivalent Problem 4) or to break the
IND-CPA security of the encryption scheme.

To show this, we build a series of hybrid views. Let H0 be the view of the real
adversary, andH2 be the view generated by S2 (i.e., {viewπ2 (M0,M1, i)}(M0,M1),i

and {S2((M0,M1),⊥)}(M0,M1),i, resp). Let the intermediate H1 be the view pro-
duced by running a real execution and replacing the encryption key k1−i with a

random k̃←$K. The difference between H1 and H2 is then that the real message
M1−i is replaced with a random one M̃ ←$M.

Hybrid 1. We first claim H0 =c H1 if the computational inverse CSIDH
problem (Problem 4) is hard. To offer an intuition: let E1−i denote the curve
from which the replaced key k1−i is derived. When i = 0, we have E1−i =
s ∗Ct = s ∗ (r ∗E)t = r−1 ∗ (s−1 ∗E)t; and when i = 1, we have E1−i = s ∗C =
s ∗ (r ∗ E)t = r−1 ∗ (s−1 ∗ E)t as well. In both cases we see that the hard-to-
compute curve contains s−1∗E which we use to reduce a successful distinguisher
to the computational inverse CSIDH problem (Problem 4).

Let Z be an environment that can successfully distinguish between H0 and
H1, then a solver B for Problem 4 with the assistance of Z runs as follows:

1. Receive challenge (E′, s′ ∗ E′) from Problem 4, where s′ ∈ Cl is unknown.
2. Set E′ to be the public curve used by the protocol π and set s′ ∗ E′ as the

curve A sent to the receiver.
3. Randomly generate random tape rp for the receiver, use it to sample r, and

compute C according to i.
4. While running, simulate the random oracle by assigning a random value from
K whenever a new query is made and recording a list of past queries during
the execution.

5. When deriving the real encryption key ki, compute it as r ∗ (s′ ∗ E′) (since
s′ from the challenge is unknown).

6. Replace the other encryption key k1−i with k̃←$K to simulate the output

of H1; abort if k̃ already appears on the list of answers to random oracle
queries.

7. Invoke the distinguisher Z with the produced output of H1.
8. When Z terminates, randomly select a curve Ẽ in the list of past queries

of the simulated random oracle and return (r ∗ Ẽ)t as the computational
inverse CSIDH solution.
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Note that, if B does not abort, the only difference between H0 and H1 is the
key for Mi−1, thus a distinguisher Z which does not query this key must have a
zero advantage.

Let A denote the event that B aborts when sampling the replacement key.
Denoting by qH the maximum number of queries made to H during the reduc-
tion, we have that Pr[A] ≤ qH

|K| . Also let E denote the event that the targeted

curve E′1−i = r−1 ∗ (s−1 ∗ E′)t is present on the query list. We see that the re-
duction B wins with probability 1/qH when E happens, and we can then write:

AdvProblem 4
B = Pr[B wins] = Pr[B wins | ¬A] · Pr[¬A] + Pr[B wins | A] · Pr[A]

≥ Pr[B wins | ¬A] · (1− Pr[A])

≥ Pr[B wins | ¬A] ·
(

1− qH
|K|

)
⇔ 1

1− qH
|K|
· Pr[B wins] ≥ Pr[B wins | ¬A] =

1

qH
· Pr[E] (1)

Looking an arbitrary distinguisher Z, we then have

|Pr[Z(H0) = 1]− Pr[Z(H1) = 1]| = |Pr[Z(H0) = 1|E] · Pr[E]

− Pr[Z(H1) = 1|E] · Pr[E]

+ Pr[Z(H0) = 1|¬E] · Pr[¬E]

− Pr[Z(H1) = 1|¬E] · Pr[¬E]|
≤ Pr[E] (2)

since |Pr[Z(H0) = 1|¬E] − Pr[Z(H1) = 1|¬E]| = 0 and |Pr[Z(H0) = 1|E] −
Pr[Z(H1) = 1|E]| ≤ 1 by definition. By combining (1) and (2) we see that if Z
distinguishes the two views with non-negligible advantage ε, then B successfully
solves Problem 4 with probability at least ε·(1− qH

|K| )/qH which is non-negligible if

qH = poly(n) and 1/|K| = negl(n). This contradicts the assumption that Prob-
lem 4 is intractable and therefore implies that H0 and H1 are computationally
indistinguishable to any PPT environment Z.

Hybrid 2. We now claim H1 =c H2 for any PPT distinguisher if the encryp-
tion scheme (E,D) is IND-CPA secure. The only difference is the encryption

Ek̃(M1−i) in H1 and the encryption Ek̃(M̃) in H2, where k̃ is uniformly sam-
pled from K. A successful distinguisher Z between the two distributions can be
reduced to an adversary against the IND-CPA security of (E,D) in a straight-
forward manner. As this reduction is common in the literature, we only include
a sketch here.

The IND-CPA adversary B has access to a left-right encryption oracle which
uses a secret key randomly sampled from K to encrypt either the left or the right
input; this hidden key plays the role of k̃ in the generation of the view given to Z.
After setting up and executing the protocol honestly, B uses the left-right oracle
to encrypt either M1−i or a random M̃ as the ciphertext c1−i; depending on the
hidden bit (left or right) of the oracle, the view viewB generated by B for Z is
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distributed identically to either H1 or H2. After the distinguisher terminates,
the reduction returns its output as the guess of the oracle’s hidden bit. Labelling
the oracle’s hidden bit as b, we then have

AdvIND-CPA
B,(E,D) = |Pr[B = 1 | b = 0]− Pr[B = 1 | b = 1]|

= |Pr[Z(viewB) = 1 | b = 0]− Pr[Z(viewB) = 1 | b = 1]|
= |Pr[Z(H1) = 1]− Pr[Z(H2) = 1]|

which immediately shows that if Z is successful with non-negligible advantage,
then so is B which contradicts the assumption that (E,D) is IND-CPA secure.

(Honest sender and honest receiver) We now claim that there exists a
PPT simulator that can generate a transcript tuple, without knowledge of the
parties’ inputs, which is indistinguishable from the view of an eavesdropper Z
that knows the parties’ inputs (but not their random tapes). This simulator is
constructed from the following sequence:

1. S0 knows the real inputs (M0,M1) and i of the parties; by sampling random
tapes and acting honestly, it produces a perfect simulation.

2. S1 always uses i = 0; by Lemma 1 and the argument made in the case
of a corrupt sender, the output of S1 is either identically distributed or
statistically indistinguishable from the output of S0.

3. S2 replaces k1 with a randomly sampled key; as above, this is computa-
tionally indistinguishable from the output of S1 assuming that Problem 4 is
intractable.

4. S3 replaces M1 with a randomly sampled message; as above, this is computa-
tionally indistinguishable from the output of S2 assuming that the encryption
scheme is IND-CPA secure.

5. S4 always uses i = 1; as above, the output of S4 is statistically indistinguish-
able from the output of S3.

6. S5 and S6 respectively first replace k0 and then M0 with random values;
as above, these changes are computationally indistinguishable assuming the
hardness of Problem 4 and the IND-CPA security of the encryption scheme.

Finally, we observe that the last simulator S6 does not use any of the real in-
puts to produce a random transcript. By the sequence above, this simulation is
indistinguishable from the transcript of a real execution.

(Corrupt sender and corrupt receiver) In this case, the simulator knows
the inputs of both corrupt parties; as for S0 in the previous case, it can generate
a perfect simulation of the views of the parties.

The four cases considered above cover all possible corruption strategies; this
thus completes the proof that the protocol π securely computes FOT .

4.2 Malicious Adversary

Malicious Adversary. A malicious adversary with static corruptions can cor-
rupt either, both or neither of the parties prior to the execution. The environ-
ment machine decides the initial inputs of all parties. The adversary will be in
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charge of the corrupted party or parties, and decide all messages to be sent. In
particular, the adversary can replace the inputs of the participants from the envi-
ronment machine and deviate from the protocol specification. We will prove that
the construction in Figure 4 UC-realizes the functionality FOT in the presence
of malicious adversaries with static corruptions.

Theorem 2. The protocol π of Figure 4, where the encryption scheme (E,D) is
non-committing, securely UC-realizes the functionality FOT in the hybrid model
with the functionality FRO and a trusted setup FTSC in the presence of malicious
adversaries and static corruption if the computational reciprocal CSIDH problem
is infeasible.

Proof. (Honest Sender and Honest Receiver) We start with the honest
sender and the honest receiver. The goal is to show that the execution of π is
indistinguishable from the ideal functionality when the parties follow the speci-
fication.

By following the same process as the honest-sender-and-honest-receiver case
in Theorem 1, we can construct the simulator that simulates the first-half mes-
sages. By continuing the process of S1 or S4, the simulator can simulate the
second-half messages A1, c1,0 and c1,1 by generating s1 and str. Since the second-
half part requires no inputs from either the sender or the receiver, it produces a
perfect simulation. Therefore, the simulator outputs a transcript indistinguish-
able from the one of a real execution.

(Corrupted Sender and Corrupted Receiver) When two parties are cor-
rupted, the simulator can invoke the adversary with the input (x = (M0,M1), y =
i, z) given by the environment Z to run the whole execution. The simulator
outputs whatever the adversary outputs for both parties to produce a perfect
simulation.

(Honest Sender and Corrupted Receiver) LetA be the malicious adversary
controlling the receiver. In order to emulate the adversary, the simulator needs
to extract the input of the adversary, and send it to the trusted party in the
ideal execution. Say the environment Z generates input (x = (M0,M1), y = i, z)
and gives (y, z) to the simulator. The simulator S2 passes any query from Z
to A and returns the output of A. The simulator S2 with auxiliary input (y, z)
proceeds the protocol execution with the adversary as follows:

1. The simulator S2 emulates a random oracle FRO by keeping a list L in E ×K
that records each past query. It initializes the random oracle with an empty
list L. If the simulator receives a query on E′ ∈ E , the simulator checks
whether (E′, k′) ∈ L for some k′ ∈ K. If not, generate k′←$K and add the
entry (E′, k′) to the list L. Finally, S2 returns k′ to emulate the random
oracle.

2. Generate the public curve E = t∗E0 by sampling t←$Cl to simulate FTSC .
Invoke the adversary A with the input (y, z) and E.
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3. Receive a curve X, the first message, from the adversary. Check whether
X ∈ E , if not, end the session by outputting abort2 to the trusted party in
the ideal execution. Otherwise, continue.

4. Activate the algorithm B1 of the non-committing encryption scheme. Gen-
erate c0,0, c0,1 with B1, s0, s1←$Cl and str←$ {0, 1}n. Compute A0, A1 and
c1,0, c1,1 as the honest sender. Send (A0, A1, c0,0, c0,1, c1,0, c1,1) to the re-
ceiver.

5. After Step 4, the simulator starts to do an additional process for any hash
query of a curve E′ ∈ E . Firstly, check whether E′ = sj ∗X or sj ∗Xt for
any j ∈ {0, 1} (any one out of four). If not, then skip this step and process
the query in a standard way as Step 1. Else, check whether both s0 ∗ X
and s0 ∗ Xt (i.e., the other decryption key) have been queried. If so, then
abort the session by outputting abort2. Else, check whether E′ is listed
in the past queries (E′, k′) ∈ L. If so, then skip this step and return k′.
Else, send the ideal message i to FOT in the ideal execution where i = 0
for the case E′ = sj ∗ X or i = 1 for the case E′ = sj ∗ Xt, which is the
extraction procedure. After obtaining Mi from FOT , generate the decryption
key k′ ← B2(c0,i,Mi) and store (s0 ∗X, k′) for the case i = 0 or (s0 ∗Xt, k′)
for the case i = 1 in the list, which is the response for the case j = 0. For
the case j = 1, process the hash query in a standard way as Step 1.

6. After receiving str′, the third message, from the adversary, verify str = str′.
If not, end the session by outputting abort2. Otherwise, continue.

7. After the outputs of the adversary, if none of s0∗X, s0∗Xt, s1∗X, and s1∗Xt

are in the list L, then end the session by outputting abort2. Otherwise, the
simulator outputs whatever the adversary outputs.

We claim {HY BRIDFRO,FTSC

π,A(z),2 (x, y)}x,y,z =c {IDEALFOT ,S2(z),2(x, y)}x,y,z.
In comparison with the real execution, the abort in Step 5 implies the solution
to the reciprocal CSIDH problem (E, s ∗E) lies in the list L, which contradicts
the assumption. The other abort in Step 7, together with the result of Step 6,
implies the adversary decrypts the ciphertext c1,j without the knowledge of the
key. If this occurs with non-negligible probability, then it contradicts the non-
committing assumption since the real ciphertext can be decrypted without the
key, while the dummy ciphertext cannot be (because it can be generated before
the plaintext by B1).

Other differences caused by the simulator are the ciphertexts for the receiver.
The ciphertext c0,i in the pair (c0,0, c0,1) is indistinguishable from the one in the
real execution due to the non-committing encryption scheme. The only suspicious
part is c0,i−1, which is a dummy ciphertext generated by the algorithm B1 of
the encryption scheme. The counterpart in the real execution is the encrypted
message Ek1−i

(M1−i) where k1−i is either H(s ∗X) or H(s−1 ∗X).
Similar to the previous proof, the distinguisher (the environment machine)

can only succeed with negligible advantage only without the knowledge of k1−i.
Precisely, let E denote the event that the targeted curves s ∗X, s ∗Xt are both
queried where (s∗Xt)t = s−1∗X. We have that |Pr[Z(H0) = 1]− Pr[Z(H1) = 1]|
is not greater than Pr[E] + |Pr[Z(H0) = 1 | ¬E]− Pr[Z(H1) = 1 | ¬E]| .

21



Claim that |Pr[Z(H0) = 1 | ¬E]− Pr[Z(H1) = 1 | ¬E]| is negligible if the en-
cryption scheme is non-committing. Given the non-committing challenge (c, k),
a solver runs as follows:

1. Randomly generate j ∈ {0, 1}.
2. Run as the simulator S2 with the environment machine except in Step 4 that

assign value c to the variable c0,j
3. Say the simulation in Step 2 extracts i from the input of the receiver. If
i 6= j, then abort and restart the session.

4. If the environment machine judges the machine as the ideal machine, then
output 1. Otherwise, output 0.

If Z succeeds with non-negligible advantage p(n) without the knowledge of
the key, then the reduction can win the non-committing challenge with non-
negligible advantage p(n)/2 where the loss is caused by the guess in Step 2.

Since |Pr[Z(H0) = 1 | ¬E]− Pr[Z(H1) = 1 | ¬E]| is negligible, we have

|Pr[Z(H0) = 1]− Pr[Z(H1) = 1]| ≤ Pr[E] + negl(n).

Therefore, if the distinguisher can succeed with non-negligible advantage,
then the solution for the reciprocal CSIDH problem (Problem 5) is in the list
of the hash queries with non-negligible probability. Let the challenge of the
reciprocal CSIDH problem start with E. A solver B for the problem runs as
follows:

1. Run as the simulator S2 with the environment machine except for the changes
in Step 4 and 5, and an extraction in Step 3. The solver B commits to the
curve X obtained in Step 3 in the reciprocal CSIDH experiment.

2. Say B receives s ∗E from the challenge. Then, in Step 4, assign s ∗E to the
variable A0.

3. In Step 5, guess i ∈ {0, 1} and obtain the decryption key ki via B2(c0,i,Mi).
Randomly pick a curve X1 of FRO queries, and assign ki to it. (Due to the
unknown element s, the solver needs to guess here.)

4. After the simulation, if the environment machine judges the machine as the
ideal machine, then randomly pick a curve X2 in the hash query list, and
output (X1, X2). Otherwise, restart the challenge.

If the environment machine can win with non-negligible advantage p(n) with
q hash queries, then the solver B can win the reciprocal CSIDH challenge with
non-negligible advantage p(n)/(2q2) where the loss is caused by the guesses in
Step 3 and 4. To sum up, if the encryption scheme is non-committing, and
the reciprocal CSIDH problem is hard, then the simulator S2 indistinguishably
simulates the adversary.

We remark that the simulator S2 correctly extracts the input of the adversary
in Step 5. According to Corollary 1, if the simulator extracts the wrong input,
then the adversary can also be used to solve the inverse CSIDH problem.

(Corrupted Sender and Honest Receiver) Let A be a malicious adversary
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controlling the sender. In order to emulate the adversary, the simulator needs
to extract the input of the adversary, and send it to the trusted party in the
ideal execution. The input here is the message pair which the honest receiver will
read. Say the environment machine Z generates input (x = (M0,M1), y = i, z)
and gives (x, z) to the simulator. The simulator S1 with input (x, z) proceeds as
follows:

1. Firstly, the simulator S1 emulates a random oracle FRO by keeping a list
L in E × K that records every past query. It initializes the random oracle
with an empty list L. Whenever it receives a query on E′ ∈ E , the simulator
checks whether (E′, k′) ∈ L for some k′ ∈ K. If not, it generates k′←$K and
adds the entry (E′, k′) to the list L. Finally, S1 returns k′ to emulate the
random oracle.

2. Generate the public curve E = t∗E0 by sampling t←$Cl to simulate FTSC .
Invoke the adversary A with the input (x, z) and E. Keep t as the trapdoor
secret.

3. Generate r←$Cl,, and compute C = r ∗ E. Send C to the adversary, and
act as the procedure of an honest receiver with the input i = 0 throughout
the remaining execution. (Note that the simulator does not know the input
of the receiver here.)

4. If the adversary aborts, then send abort1 to FOT and finish the session. Oth-
erwise, assume the execution is not aborted. Say it receives (A0, A1, c0,0, c0,1,
c1,0, c1,1) from the adversary. Compute k0 = H(r ∗ A0), k1 = H((tr ∗ (t−1 ∗
A0)t)t), and mj = Dkj (c0,j) for j ∈ {0, 1}.

5. Send (m0,m1) to the trusted third party in the ideal execution, output what-
ever the adversary outputs to complete the simulation. (Note that (M0,M1)
and (m0,m1) are not necessary the same since the adversary can change the
original input.)

Claim {HY BRIDFRO,FTSC

π,A(z),1 (x, y)}x,y,z =c {IDEALFOT ,S(z),1(x, y)}x,y,z. In

contrast to the real execution, there are two differences here. Firstly, the simula-
tor possesses the trapdoor t of the public curve. The process is identical to FTSC ,
and the simulator acts as an honest receiver throughout the process. Hence, this
difference is unnoticeable to the adversary.

The other difference is the receiver the simulator plays always uses input
i = 0. By Lemma 1, the distribution of the first message (C) in the protocol as
i = 0 is indistinguishable to that generated as i = 1. Hence, it suffices to show
the correctness of the extraction in Step 4.

If an honest receiver sends C to the sender with the input i = 0, then
the decryption key is k0 = H(r ∗ A0). The message the receiver will obtain is
Dk0(c0,0) = m0. Besides, if an honest receiver sends C to the sender with the
input i = 1, then the private ideal is equivalent to r−1t−2 since (r−1t−2 ∗E)t =
(r−1t−1 ∗E0)t = (r−1 ∗Et)t = (r ∗E) = C. Hence, the receiver will decrypt c0,1
with H(r−1t−2 ∗A0). Due to k1 = H((tr ∗ (t−1 ∗A0)t)t) = H((tr)−1t−1 ∗A0) =
H(r−1t−2 ∗A0), the receiver will therefore get the message m1 = Dk1(c0,1). That
is, the simulator correctly extracts the input of the adversary. Hence, the real
execution is indistinguishable from the ideal execution.
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Remark. In the formal description of [9], the environment machine and the
adversary (simulator) starts with z, and the inputs of the parties are given
through further instruction messages. Regarding readability and simplicity, we
combine them into a single statement here without undermining the effectiveness
of the proof.

5 Comparison

5.1 Efficiency

Table 1 illustrates a comparison between our oblivious transfer protocols with
[2,17,38,1] in terms of efficiency, including the number of curves in the domain
parameters or generated by a trusted party, the number of curves in the public
keys for the sender and the receiver, the total number of isogeny computations for
the sender and the receiver, and the number of rounds, respectively. Among the
isogeny-based OTs, our 2-round OT proposal is the most efficient with respect to
every criteria against semi-honest adversaries. It only takes an additional round
and two isogeny computations for each participant to achieve UC-secure against
static malicious adversaries.

Proposal DP PKS PKR # IsoS # IsoR # rounds Others

[2] 1 1 1 3 2 3 SIDH-based

[17] I 2 1 1 3 2 2

[17] II 1 3 1 5 2 3

[38] 1 2 1 4 2 3 Insecure in CSIDH

[1] I 4 2n 2 4n n + 2 2 Group-action-based
[1] II 1 2n 5 4n n + 5 2 Single Bit Transfer

This paper (Figure 3) 1 1 1 3 2 2 CSIDH-based

This paper (Figure 4) 1 1 1 5 4 3 CSIDH-based

Table 1: Comparison between isogeny-based OTs on efficiency where n is the
security parameter. We give the costs for both our 2-round protocol from Figure
3 and the full construction from Figure 4.

In [2], they used some properties of SIDH. The receiver randomly subtracts
two selected points U, V ∈ EB to the points (φB(PA), φB(QA)) to produce public
points (ĜA, ĤA) with respect to the secret bit i. The sender adds the same points
jU, jV to the received points for j ∈ {0, 1} to produce two decryption keys. The
additional mechanism allows the receiver and the sender to generate the same
points U, V . As stated in their work, randomly generated U, V ∈ EB may reveal
the secret bit to an honest-but-curious sender by checking the equality of Weil
pairings e(PA, QA)l

eA
A , e(ĜA, ĤA), and (ĜA + λU, ĤA + λV ) for λ ∈ Z. On

the other hand, it is also possible that the honest-but-curious receiver gets the
isomorphic curves. In order to prevent these, the U, V are generated through a
delicate process.
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The two frameworks of [17] includes DH, SIDH, and CSIDH settings. The
first construction is a two-message oblivious transfer and requires one more curve
in the trusted setup phase.

The paper [38] showed a construction based on exponentiation-only Diffie-
Hellman. The construction can fit in the DH, SIDH, and CISDH settings. But,
as stated in their work, it will be totally insecure in the CSIDH setting against a
malicious receiver. Specifically, their two-inverse problem is given curves (E, a ∗
E, b ∗ E) to find some curve tuple (X, a−1 ∗ X, b−1 ∗ X) where X is isogenous
to E. This can be done in the CSIDH setting by taking quadratic twists of
(E, a ∗ E, b ∗ E).

In [1], both constructions are based on the decisional group action problem
(the decisional CSIDH problem for instance). If the number of isogeny compu-
tations in the encryption (and decryption) algorithm is ` = ω(log(n)), then the
statistical distance between a pair of ciphertexts is ∆ = n−ω(1). In particular,
the parameter ` here is taken to be n so that the distance is less than 2−n.

5.2 Security

Adversary Model Security Definition Model

[2] ≤Semi-honest* Simulatable* ROM+CRS

[17] I Semi-honest UC-realize ROM+TSC

[17] II Semi-honest UC-realize ROM+TSC

[38] Malicious Semantic Plain

[1] I Malicious UC-realize CRS

[1] II Malicious SSP Plain

This paper (Figure 3) Semi-honest UC-realize ROM+TSC

This paper (Figure 4) Malicious UC-realize ROM+TSC

Table 2: Comparison between previous isogeny OTs and our constructions. The
models include the random oracle model (ROM), the common reference string
model (CRS) and trusted setup curves (TSC).

On the issue of security, a comparison is shown in Table 2. In [2], the claim is
incorrect. Firstly, the adapted definition is Definition 2.6.1 of [24] that guarantees
the privacy in the presence of malicious adversaries for a two-round oblivious
transfer protocol while the scheme in [2] is three-round. Except for the misuse of
the definition, the view-based simulation proof is incomplete even against semi-
honest adversaries. The evidence is the further algebraic analysis appended after
the proof. The context manifests that the protocol might still leak information
even both the sender and the receiver follow the protocol specification. In other
words, the proof is incomplete even against semi-honest adversaries.

In [17], the schemes are universally composable secure in the semi-honest
model. In [38], they proposed a security definition called the semantic security
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of oblivious transfer, which guarantees indistinguishability for the sender within
the distinct executions. The scheme is under a weak decisional problem which,
in the SIDH setting, is easier than the decisional SIDH problem.

Section 4.2 and 4.3 of [1] present two OT constructions. Through using group
actions and developing new tools, the first one is derived from a dual-mode public
key encryption based on the Diffie-Hellman setting of [34]. The second construc-
tion is a plain model OT, which is statistically sender-private. The notion ensures
computational indistinguishability privacy for the receiver and statistical indis-
tinguishability privacy for the sender. The schemes’ main drawback is efficiency
since both of them are bit-transferring and require a poly(n) number of isogeny
computations.

Remark. One can also show that the construction of Figure 3 is a private
oblivious transfer (Definition 2.6.1 in [24]) ensuring privacy for both parties in
the malicious model. Since the proof would sidetrack the goal of this work, we
leave this to the reader.

6 Conclusion

In this paper, we present the first practical UC-secure isogeny-based oblivious
transfer protocol in the presence of static corruptions and malicious adversaries.
The construction is simple and compact, and the number of isogeny computa-
tions is constant. Moreover, the scheme shares the same hardness as the CSIDH
key agreement scheme.

To achieve this outcome, we developed six techniques in this work. In the
beginning, the communication bandwidth is reduced through mixing the key-
exchange-type problem and an equivalent variant. Next, by utilizing a new use
of quadratic twists, we not only compress the number of rounds of the protocol
but also fortify the hardness of the underlying assumption (achieving the self-
reconciling property). By combining the self-reconciling proposition and proof
of ability to decrypt at the cost of one extra round, the simulator is able to
extract the input of the receiver to achieve one-sided simulation. Furthermore,
for the purpose of extracting the input of the sender, we set up trapdoors for the
protocol via a new use of quadratic twists to get a fully-simulatable construction.
Finally, we develop a new computational assumption as well as the inverse and
square variants and prove equivalence to the standard CSIDH assumption with
quantum reductions.

We remark that these techniques are not exclusive to isogeny-based cryptog-
raphy except for the use of quadratic twists. We envisage that these techniques
can serve as potential cryptographic tools in future work.
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