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Abstract. Supersingular isogeny Diffie-Hellman key exchange (SIDH)
is a post-quantum protocol based on the presumed hardness of com-
puting an isogeny between two supersingular elliptic curves given some
additional torsion point information. Unlike other isogeny-based proto-
cols, SIDH has been widely believed to be immune to subexponential
quantum attacks because of the non-commutative structure of the endo-
morphism rings of supersingular curves.
We contradict this commonly believed misconception in this paper. More
precisely, we highlight the existence of an abelian group action on the
SIDH key space, and we show that for sufficiently unbalanced and over-
stretched SIDH parameters, this action can be efficiently computed (heuris-
tically) using the torsion point information revealed in the protocol. This
reduces the underlying hardness assumption to a hidden shift problem
instance which can be solved in quantum subexponential time.
We formulate our attack in a new framework allowing the inversion of
one-way functions in quantum subexponential time provided a malleabil-
ity oracle with respect to some commutative group action. This frame-
work unifies our new attack with earlier subexponential quantum attacks
on isogeny-based protocols, and it may be of further interest for crypt-
analysis.

1 Introduction

The hardness of solving mathematical problems such as integer factorization or
the computation of discrete logarithms in finite fields and elliptic curve groups
guarantees the security of most currently deployed cryptographic protocols. How-
ever, these classical problems can be solved efficiently using quantum algorithms.
Quantum computers with sufficient processing power to threaten cryptographic
primitives currently in use do presumably not yet exist, but progress towards
their realization is being made. The possibility of large scale quantum computers
and the need for long-term security in some applications necessitate the devel-
opment of quantum-secure cryptographic algorithms.

Different approaches to attain quantum resistance are based on problems
in lattices, codes, multivariate polynomials over finite fields, and elliptic curve
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isogenies. Within the field of post-quantum cryptography, isogeny-based cryp-
tography is a relatively new area which is particularly interesting due to the small
key sizes required. The main problem underlying this branch of post-quantum
cryptography is to find an isogeny ϕ : E1 → E2 between two given isogenous
elliptic curves E1 and E2 over some finite field Fq.

An early isogeny-based cryptographic system utilizing ordinary elliptic curves
was proposed by Couveignes but at first only circulated privately [7]. Mean-
while, the first construction using supersingular curves was a hash function de-
veloped by Charles, Lauter and Goren [4]. Later, Rostovtsev and Stolbunov inde-
pendently rediscovered and further developed Couveignes’ construction [27]. In
2010, Childs, Jao and Soukharev [5] showed how to break this scheme in quan-
tum subexponential time using a reduction to an instance of abelian hidden
shift problem. While this attack is tolerable for sufficiently large parameters, the
main drawback of the Couveignes-Rostovtsev-Stolbunov (CRS) construction is
its unacceptable lack of speed. Adapting the CRS scheme to supersingular ellip-
tic curves, Castryck et al. managed to eliminate most of the performance issues
allowing for larger practical parameters when introducing CSIDH [3]. While it
is known that CSIDH can be attacked in quantum subexponential time, there
have been several works on establishing its concrete security levels [2, 22].

The attack due to Childs, Jao and Soukharev crucially relies on the commu-
tativity of the ideal class groups acting on the endomorphism rings of the rele-
vant elliptic curves over Fq. This motivated Jao and De Feo [14] to consider the
full isogeny graph of supersingular elliptic curves, whose endomorphism rings
are maximal orders in a quaternion algebra (in particular, the endomorphism
rings are non-commutative). The result of their work, the Supersingular Isogeny
Diffie-Hellman (SIDH) key agreement scheme, underlies the SIKE submission
to NIST’s post-quantum standardization process [1, 13].

The hard problem SIDH is based on is to find an isogeny between two isoge-
nous curves, further given the images of certain torsion points under this isogeny.
The best known way to break SIDH with balanced parameters on both classical
and a quantum computers is a claw-finding approach on the isogeny graph [15]
which does not use any torsion point information. Yet, the supply of this addi-
tional public information has fueled cryptanalytic research. It has been shown
that the torsion point information can be used in active attacks [10] or when
parameters are sufficiently overstretched [19, 23]. However, a widespread miscon-
ception amongst cryptographers assumes that due to SIDH’s non-commutative
nature there is no quantum attack reducing the SIDH problem to an abelian
hidden shift problem. In particular, many believe that no reasonable variant
of Childs-Jao-Soukharev’s attack applies in the supersingular case [14, p. 18,
Section 5].

Our contributions. We provide a new quantum attack on overstretched
SIDH which uses a reduction of the underlying computational problem to an
injective abelian hidden shift problem. This can be solved in quantum subexpo-
nential time and thus disproves the common misbelief mentioned above.
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Let ϕ : E0 → E0/K be a secret isogeny that an attacker wishes to recover. As
in SIDH, let E0, E0/K, deg(ϕ), and some torsion point images under the secret
isogeny be known publicly. The idea underlying our cryptanalysis is to construct
an abelian groupG of E0-endomorphisms acting freely and transitively on certain
cyclic subgroups of E0. These subgroups are kernels of deg(ϕ)-isogenies, and
therefore they can be mapped to supersingular elliptic curves deg(ϕ)-isogenous
to E0. The group action of G can then be understood as an action on the curves.
Forcing the endomorphisms in G to be of a certain degree, the public torsion
point information allows an adversary to compute the action on E0/K efficiently
under some heuristics. Finally, solving an abelian hidden shift problem of two
functions mapping G to a set of curves deg(ϕ)-isogenous to E0 containing E0/K
enables an attacker to recover K and therefore ϕ. We stress that this is a novel
way of exploiting torsion point information.

While this attack does not threaten SIDH with balanced parameter sets as
originally proposed by Jao and De Feo [14] and used in SIKE [13], it shows
that an attack using a hidden shift algorithm is possible despite SIDH’s non-
commutative nature.

We describe our new attack as a special instance in a more general setting.
This allows us to unify our new cryptanalysis with other quantum attacks on
isogeny-based schemes such as the one due to Childs, Jao and Soukharev [5] con-
structing isogenies between ordinary curves, or a similar application of quantum
hidden shift algorithms to CSIDH [2, 3, 22].

This framework might be of interest beyond isogeny-based cryptography. To
define one of the key properties required, we introduce the notion of a mal-
leability oracle for a function with respect to some group action. Under some
additional assumptions, access to this oracle is sufficient to compute preimages
of the function via solving a hidden shift problem.

Outline. In Section 2, we provide an overview of the notations we use, we
recall mathematical background for isogeny-based cryptography, and we review
quantum algorithms used in our attack. In Section 3, we present our general
framework, namely sufficient conditions for computing preimages of one-way
functions via reduction to a hidden shift problem, and then present our new
attack on overstretched SIDH in Section 4. In Section 5, we additionally instan-
tiate our general framework with the attack of Childs, Jao and Soukharev and its
generalization to CSIDH. We conclude the paper in Section 6 with a discussion
of potential improvements and future work.

2 Preliminaries

In this section, we introduce terminology and notation, and we recall relevant
background on isogeny-based protocols and quantum algorithms.

2.1 Terminology

We call a function µ : N→ R negligible if for every positive integer c there exists
an integer Nc such that |µ(x)| < 1

xc for every x > Nc. We call an algorithm effi-
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cient if the execution time is bounded by a polynomial in the security parameter
of the underlying cryptographic scheme. Given any function, by having oracle
access to this function we mean that it is feasible to evaluate the function at any
possible element in an efficient way. In particular, we assume that the oracle acts
like a black box such that one query with an element from the domain outputs
the corresponding value of the function.

Further, we call a function f : {0, 1}∗ → {0, 1}∗ one-way, if f can be com-
puted by a polynomial-time algorithm, but for all polynomial-time randomized
algorithms F , all positive integers c and all sufficiently large n = length(x),
Pr[f(F (f(x))) = f(x)] < n−c, where the probability is taken over the choice of
x from the discrete uniform distribution on {0, 1}n, and the randomness of F .

2.2 Mathematical background on isogenies

For more complete introductions to elliptic curves and to isogeny-based cryp-
tography we refer to Silverman [29] and De Feo [8], respectively.

Let Fq be a finite field of characteristic p. In the following we assume p ≥ 3
and therefore an elliptic curve E over Fq can be defined by its short Weierstrass
form

E(Fq) = {(x, y) ∈ F2
q | y2 = x3 +Ax+B} ∪ {OE}

where A,B ∈ Fq and OE is the point (X : Y : Z) = (0 : 1 : 0) on the associated
projective curve Y 2Z = X3 + AXZ2 + BZ3. The set of points on an elliptic
curve is an abelian group under the “chord and tangent rule” with OE being the

identity element. The j-invariant of an elliptic curve is j(E) = 1728 4A3

4A3+27B2

and there is an isomorphism of curves f : E0 → E1 if and only if j(E0) = j(E1).
Given two elliptic curves E0 and E1 over a finite field Fq, an isogeny is a

non-constant rational map φ : E0 → E1 defined over Fq which is also a group
homomorphism from E0(Fq) to E1(Fq). Two curves are called isogenous if there
exists an isogeny between them. The degree of an isogeny φ is its degree as a
rational map. For separable isogenies, the degree is also equal to the number of
elements in the kernel of φ. Note that we will always consider the separable case
in the following.

Since an isogeny defines a group homomorphism E0 → E1, its kernel is a
subgroup of E0. Conversely, any subgroup S ⊂ E0 determines a (separable)
isogeny φ : E0 → E1 with kerφ = S and E1 = E0/S.

An endomorphism of an elliptic curve E defined over Fq is an isogeny defined
over an extension of Fq mapping E onto itself. The set of endomorphisms of E
together with the zero map forms a ring under pointwise addition and function
composition. This ring is the endomorphism ring of E, denoted End(E), and it
is isomorphic either to an order in a quaternion algebra and E is called super-
singular, or to an order in an imaginary quadratic field and E is referred to as
an ordinary curve [29].

Let d be a positive integer. Throughout the paper, we say a supersingular
elliptic curve E is at distance d from E0 if there exists a separable isogeny φ
with cyclic kernel of degree d from E0 to E.



Hidden shift attacks on isogeny-based protocols 5

For any isogeny φ : E0 → E1, there exists another isogeny φ̂, called the dual
isogeny, satisfying φ◦φ̂ = φ̂◦φ = [deg(φ)], where [·] denotes scalar multiplication.
Therefore, the property of being isogenous is an equivalence relation on the set
of isomorphism classes of elliptic curves defined over Fq.

2.3 Hard homogeneous spaces and CSIDH

Recall the notion of Couveignes’ hard homogeneous spaces (HHS) [7], a finite
commutative group action for which some operations are easy to compute and
others are hard.

Instances of Couveignes’ hard homogeneous spaces can be constructed using
elliptic curve isogenies and have been the basis of one branch of isogeny-based
cryptography which uses the group action we will describe in the following.

Denote the set of all isomorphism classes over Fq of isogenous curves with n
points and endomorphism ring O by Ellq,n(O), and represent the isomorphism
class of a curve E in Ellq,n(O) by the j-invariant j(E). Any isogeny ϕ : E → Eb

between curves having the same endomorphism ring in Ellq,n(O) is determined
by E and kerϕ up to isomorphism. This kernel corresponds to an ideal [b] in O.
Recall that the ideal class group of O, Cl(O), is the quotient group of the abelian
group of fractionalO-ideals under ideal multiplication and all principal fractional
O-ideals. Since principal ideals in O correspond to isomorphisms, ideals that are
equivalent in Cl(O) induce the same isogeny up to isomorphism. Hence, we have
a well-defined group action

· : Cl(O)× Ellq,n(O)→ Ellq,n(O),

([b], j(E)) 7→ j(Eb),

which is free and transitive ([32], Thm. 4.5, and erratum Thm. 4.5 of [28]).
Given two elliptic curves E0, E1 in Ellq,n(O) up to isomorphism, it is in

general assumed to be hard to find an isogeny ϕ : E0 → E1.
A similar construction can be performed with endomorphism rings of super-

singular curves. This occurrence of hard homogenous spaces is used for the Com-
mutative SIDH (CSIDH) protocol [3] proposed for post-quantum non-interactive
key exchange. Since the endomorphism rings of such curves are orders in a
quaternion algebra, they are non-commutative and hence yield a group action
with less desirable properties than in the construction for ordinary curves. There-
fore, Castryck et al. suggest restricting the endomorphism ring to the subring
of Fp-rational endomorphisms which is an order in an imaginary quadratic field,
and as such commutative. Again, the ideal class group of this order O acts on
Ellp(O), the set of all isomorphism classes of supersingular isogenous curves over
Fp with Fp-rational endomorphism ring (isomorphic to) O.

Given that the set Ellp(O) is non-empty, the group action is free and tran-
sitive (see [3], Thm. 7, summarizing results from [32], [28]), and can be used to
perform a Diffie-Hellman-type key exchange. Note that CSIDH is strictly speak-
ing not an instance of a HHS as it is not possible to compute the group action
efficiently for all group elements.
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There have been multiple proposals to attack concrete parameter suggestions
for CSIDH with quantum algorithms. Peikert [22] uses Kuperberg’s collimation
sieve algorithm to solve the hidden shift instance with quantum accessible clas-
sical memory and subexponential quantum time, a strategy independently also
explored by Bonnetain-Schrottenloher [2].

2.4 SIDH

We recall the Supersingular Isogeny Diffie-Hellman (SIDH) protocol which was
introduced by Jao and De Feo in [14] and forms the basis of Supersingular
Isogeny Key Encapsulation (SIKE) [13] which has been submitted to NIST’s
post-quantum competition.

Fix some supersingular elliptic curve E0 over a field Fp2 , where p is a prime,
and let N1 and N2 be two smooth integers coprime to p with (N1, N2) = 1.
Further choose some points PA, QA, PB , QB ∈ E0 such that PA and QA gener-
ate the N1-torsion of E0, E0[N1], and similarly, 〈PB , QB〉 = E0[N2]. Then the
protocol is as follows:

1. Alice chooses a random cyclic subgroup of E0[N1] generated by a point of
the form A = PA + [xA]QA and Bob chooses some random cyclic subgroup
of E0[N2] generated by B = PB + [xB ]QB .

2. Alice then computes her secret isogeny ϕA : E0 → E0/〈A〉 and Bob computes
his secret isogeny ϕB : E0 → E0/〈B〉.

3. Alice sends the curve EA := E0/〈A〉 and the two points ϕA(PB), ϕA(QB) to
Bob while Bob sends

(
EB := E0/〈B〉, ϕB(PA), ϕB(QA)

)
to Alice.

4. Alice and Bob both compute the shared secret curve EAB := E0/〈A,B〉
using the given torsion information, EAB = EB/〈ϕB(A)〉 = EA/〈ϕA(B)〉.

For SIDH, one chooses the prime p of the form p = N1N2f − 1 with N1 and
N2 being powers of 2 and 3, respectively. As the above protocol is vulnerable to
adaptive attacks (see e.g., [10]), SIKE applies a variant of the Fujisaki-Okamoto
transformation due to Hofheinz, Hövelmanns and Kiltz [12] to standard SIDH. To
ensure that both Alice and Bob enjoy the same level of security, the recommended
parameter sets for SIDH and SIKE suggest balanced parameters, i.e., N1 ≈ N2.

The active attack on standard SIDH presented by Galbraith et al. [10] uti-
lizes the additional information on torsion points to recover a secret key through
multiple executions of the protocol with malformed messages. Further, the given
torsion point information is exploited in Petit’s passive attack [23] on a non-
standard variant of SIDH with unbalanced and comparatively large torsion pa-
rameters. The requirements on unbalancedness and size of parameters have re-
cently been improved upon by Kutas et al. [19] who additionally show that,
even with balanced parameters, there exist certain primes which facilitate an
effective-torsion point attack on SIDH.

For our quantum attack to work, we will need to relax the balancedness con-
dition of standard SIDH and require one of N1 and N2 to be larger than the other
by a certain factor. In particular, we need N1N2 � p which prohibits choosing p
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as suggested by Jao-De Feo. We call this variant of SIDH overstretched. Note that
this variant of SIDH is still polynomial time as long as N1 and N2 are smooth
numbers, albeit much slower in practice than with the suggested parameters.

SIDH is believed to be immune to subexponential quantum attacks [1, 13, 14].
In particular, it has been claimed and widely accepted that no reasonable variant
of Childs et al.’s attack [5] exists for SIDH [14, p.18, Section 5]. Yet, we will show
in this paper how to reduce SIDH with overstretched parameters to an abelian
hidden shift problem.

2.5 Quantum algorithms to solve hidden shift problems

First, we recall what is meant when two functions are said to be shifts of each
other, or equivalently that these two functions hide a shift.

Definition 2.1. Let F0, F1 : G→ X be two functions defined on some group G,
such that there exists some s ∈ G satisfying F0(g) = F1(g · s) for all g ∈ G. The
hidden shift problem is to find s given oracle access to the functions F0 and F1.

Multiple approaches utilizing quantum computation have been proposed to
solve the hidden shift problem. Some of these works have considered different
group structures as well as variations on the promise. We summarize some quan-
tum algorithms solving the injective abelian hidden shift problem, i.e., where the
functions Fi are injective functions and G is abelian.

The first quantum subexponential algorithm is due to Kuperberg [17] and
reduces the hidden shift problem to the hidden subgroup problem in the di-
hedral group DG ' C2 n G, i.e., to finding a subgroup of DG such that a
function obtained from combining the input functions of the hidden shift prob-
lem is constant exactly on its cosets. It requires quantum subexponential time,

namely 2O(
√

log |G|) quantum queries, for a finite abelian group G. A modifica-
tion of this method proposed by Regev [26] reduces the memory required by
Kuperberg’s approach (from super-polynomial to polynomial) while keeping the
running time quantum subexponential. Another, slightly faster algorithm, the
collimation sieve, using polynomial quantum space was proposed later by Ku-
perberg [18]. In this variant, parameter trade-offs between classical and quantum
running time and quantumly accessible memory are possible.

These algorithms to solve the hidden shift problem when G is abelian gener-
ally begin by producing some random quantum states, each with an associated
classical “label”, by evaluating the group action on a uniform superposition over
the group G. For this generation of states, oracle access to the two functions F0

and F1 is needed. Then, the hidden shift s is extracted bitwise through perform-
ing measurements on specific quantum states (i.e., ones with desirable labels)
which are generated from the random states via some sieve algorithm.

3 Malleability oracles and hidden shift attacks

In this section, we introduce the notion of a malleability oracle for a one-way func-
tion. Under some conditions, such an oracle allows the computation of preimages
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of given elements in quantum subexponential time by reduction to the hidden
shift problem.

3.1 Malleability oracles

Recall the definition of a free and transitive group action.

Definition 3.1. Let G be a group with neutral element e, and let I be a set. A
(left) group action ? of G on I is a function

? : G× I → I, (g, x) 7→ g ? x,

that satisfies e ? x = x, and gh ? x = g ? (h ? x) for all x ∈ I and g, h ∈ G.
The group action is called transitive if and only if I is non-empty and for

every pair of elements x, y ∈ I there exists g ∈ G such that g ? x = y. The group
action is called free if and only if g ? x = x implies g = e.

Next, we define an oracle capturing the main premise required for our strategy
to compute preimages of one-way functions.

Definition 3.2. Let f : I → O be an injective (one-way) function and let ? be
the action of a group G on I. A malleability oracle for G at o := f(i) provides
the value of f(g ? i) for any input g ∈ G, i.e., the malleability oracle evaluates
the map

g 7→ f(g ? i).

We call the function f malleable, if a malleability oracle is available at every
o ∈ f(I).

In Section 4 we show how a polynomial-time malleability oracle can be con-
structed in the context of SIDH with overstretched parameters, and in Section 5
we describe other contexts where such an oracle arises naturally.

For the remainder of the paper, we will denote the action of a group element
g ∈ G on a set element i ∈ I by g · i.

3.2 Reduction to hidden shift problem

Given a malleability oracle at o = f(i), computing a preimage of o reduces to a
hidden shift problem in the following case.

Theorem 3.3. Let f : I → O be an injective (one-way) function and let G be
a group acting transitively on I. Given a malleability oracle for G at o := f(i),
the preimage of o can be computed by solving a hidden shift problem.

Proof. Let k be an arbitrary but fixed element in I and define

Fk : G→ O , θ 7→ f(θ · k).
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Since f is an injective function, i = f−1(o) is unique and thus Fi is well-defined.
Moreover, the malleability oracle allows us to evaluate the function Fi on any
θ ∈ G, as Fi(θ) = f(θ · i).

Fix some arbitrary j ∈ I. Since we know j, we can evaluate Fj on any group
element θ by evaluating f(θ · j) via simply computing the group action. Due to
the transitivity of the group action of G, there exists σ ∈ G such that i = σ · j.
Since for all θ ∈ G

Fi(θ) = f(θ · i) = f(θσ · j) = Fj(θσ),

the functions Fj and Fi are shifts of each other. Hence, solving the hidden shift
problem for Fi and Fj allows us to recover σ, and thus to compute i = σ · j.

The following corollary will be used in our attack on overstretched SIDH.

Corollary 3.4. Let f : I → O be an injective (one-way) function and let G
be a finitely generated abelian group acting freely and transitively on I. Given
a malleability oracle for G at o := f(i), the preimage of o can be computed in
quantum subexponential time.

Proof. To obtain a hidden shift instance solvable by subexponential quantum
algorithm such as Kuperberg’s, we only have to show that for every k ∈ I the
function Fk(θ) = f(θ · k) is injective. Then the claim follows from Theorem 3.3
and the discussion in Section 2.5.

Suppose that Fk(g) = f(g · k) = f(h · k) = Fk(h) for some g, h ∈ G. Since f
is injective and the group action is free, this implies g = h.

4 Attack on overstretched SIDH instances in quantum
subexponential time

Despite the non-commutative nature of SIDH, we show in this section that one
can find an abelian group action on its private key space. Moreover for suffi-
ciently overstretched SIDH parameters, the torsion point information revealed
in the protocol allows us to build a malleability oracle for this group action. This
gives rise to an attack using quantum subexponential hidden shift algorithms as
outlined in Section 3.2.

This section is organized as follows: We first sketch our approach to exploit
the torsion point information in Section 4.1. We then solve some technical issues
in Sections 4.2 through 4.4. These issues require small tweaks to our general
approach, and we summarize the resulting algorithm in Section 4.5. Finally in
Section 4.6, we present a hybrid approach to combine guessing part of the secret
and computing the remaining part using our new attack; this allows us to slightly
extend the attack to further parameter sets.

Throughout this section, we use the following notation. Let p ≡ 3 (mod 4)
be prime, let E0 be the supersingular elliptic curve with j-invariant 1728 defined
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over Fp, given by the equation y2 = x3 + x, and let O0 = End(E0) be its endo-
morphism ring. Note that O0 is well-known. More precisely, it is the Z-module
generated by 1, ι, 1+π2 and ι+ιπ

2 , where ι denotes the non-trivial automorphism of
E0, (x, y) 7→ (−x, iy), and π is the Frobenius endomorphism, (x, y) 7→ (xp, yp).

Remark 4.1. The attack we describe can be expanded to other curves that are
close to E0, such as the curve used in the updated parameters of SIKE for the
second round of NIST’s post-quantum standardization effort [1], by computing
the isogeny to E0 and translating the problem to there.

4.1 Overview of the attack

Let I be the set of cyclic N1-order subgroups of E0, and let O be the set of
j-invariants of all supersingular curves that are N1-isogenous to E0. Let f be
the function sending any element of I to the j-invariant of the codomain of its
corresponding isogeny, i.e.,

f : I → O, K 7→ j(E0/K). (1)

The function f can be efficiently computed on any input using Vélu’s formu-
lae [30], provided N1 is sufficiently smooth and that the N1-torsion is defined
over a sufficiently small extension field of Fp. In SIDH, the latter is achieved by
choosing N1|p − 1, but this is true more generally for sufficiently powersmooth
N1.

On the other hand, inverting f amounts to finding an isogeny of degree N1

from E0 to a curve in a given isomorphism class, or equivalently to finding the
subgroup of E0 defining this isogeny. The conjectured hardness of this problem
is at the heart of isogeny-based cryptography.

In the SIDH protocol, additional torsion point information is transmitted
publicly as part of the exchange, and thus also given to adversaries. For the
security proof it is assumed that a variant of the following problem with N1 ≈ N2

is hard [14].

Problem 4.2. Let p be a large prime, let N1 and N2 be two smooth coprime
integers such that E0[N1] and E0[N2] can be represented efficiently, let K ∈ I
be a cyclic subgroup of order N1 of E0 chosen uniformly at random, and let
ϕ : E0 → E0/K. Given the supersingular elliptic curves E0 and E0/K together
with the restriction of ϕ to E0[N2], compute K.

Our attack exploits the information provided by the restriction of the secret
isogeny to E0[N2] to construct a malleability oracle for f at the (unknown) secret.
Following the framework outlined in Section 3, this gives rise to an attack on
overstretched SIDH.

Let G be a subgroup of (O0/N1O0)∗. Then G induces a group action on I
given by

G× I → I , (θ,K) 7→ θ(K).
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Indeed, the degree of any non-trivial representative θ is coprime to N1 and thus
preserves the order of any generator of K.

Note that the full group (O0/N1O0)∗ is not abelian. Our attack will require
an abelian subgroup G acting on I such that G acts freely and transitively on
the orbit of an isogeny kernel of an isogeny E0 → E0/K under this group action,
as well as one element in this orbit. This leads to the following task.

Task 4.3. Let K ∈ I be any cyclic subgroup of E0 of order N1 chosen uniformly
at random and let ϕ : E0 → EA := E0/K. Compute an element L ∈ I and an
abelian subgroup G of (O0/N1O0)∗ such that G acts freely and transitively on
the orbit G · L, f is injective on G · L and j(EA) is contained in f(G · L) ⊂ O.

We solve this task in Section 4.2. More precisely, we find three subsets of I
restricted to which f is injective, and we give abelian groups that induce the
required action on these subsets. Furthermore, the image of f restricted to one
of these three subsets of I will always contain j(E0/K).

In order to apply our general framework from Section 3, it remains to con-
struct a malleability oracle for f at j(E0/K) for any secret K ∈ I. To construct
this oracle, we use both the torsion point information provided in the SIDH
protocol and a solution to the following task.

Task 4.4. Given an endomorphism θ ∈ G of degree coprime to N1 and an
integer N2 coprime to N1, compute an endomorphism θ′ of degree N2 such that
θ and θ′ induce the same action on the set I of cyclic subgroups of E0[N1] of
order N1.

In Appendix C of the full version of this paper [20], we give a direct solution
to a variation of this task when using sufficiently overstretched and unbalanced
parameters, i.e. N2 > p2N4

1 . However, in Section 4.3 we show that it suffices to
lift elements of πG, where π is the Frobenius map. A solution to Task 4.4 for
these elements requiring only N2 > pN4

1 is described in Section 4.4.

The following lemma results from the coprimality of deg(θ) and N1 and is
depicted in Figure 1.

E0 EA

E0 E0/θ(kerϕ) ∼= EA/ϕ(ker θ)

ϕ

θ

Fig. 1. The isogenies ϕ and the endomorphism θ are of coprime degrees.

Lemma 4.5. Let ϕ : E0 → EA be an isogeny of degree N1 and let θ ∈ End(E0)
be of degree coprime to N1. Then EA/ϕ(ker θ) is isomorphic to E0/θ(kerϕ).
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Let N3 be the degree of θ. We cannot compute the curve E0/θ(kerϕ) in
general without the knowledge of the isogeny ϕ or its action on the N3-torsion.
However, we can compute the curve if we find an endomorphism θ′ of degree
N ′3 such that θ and θ′ have the same action on the N1-torsion and ϕ|E0[N ′

3]
is

known. This is the motivation behind Task 4.4, as we know the action of ϕ on the
N2-torsion in Problem 4.2. A solution to this task yields a malleability oracle for
f with respect to the previously described group action of G on I in the SIDH
setting.

We outline the construction of the malleability oracle in Algorithm 1. Cor-
rectness will follow from the proof of Proposition 4.26 given a suitable choice of
the acting group G which we will discuss in Subsection 4.2.

Algorithm 1: Computation of f(θ(K)), given f(K) and θ ∈ G
Let ϕ : E0 → EA := E0/K be an isogeny of degree N1, let N2 be coprime to
N1 and G ⊂ (O0/N1O0)∗ one of the abelian groups as in Task 4.3 that acts
freely and transitively on K.

Input: E0, f(K) = j(EA), ϕ|E0[N2] and θ ∈ G.
Output: f(θ(K)) = j(E0/θ(K)).

1 Compute endomorphism θ′ of degree N2 having the same action as θ on cyclic
N1-order subgroups of E0[N1] as provided by a solution to Task 4.4;

2 Determine ϕ(ker θ′), using the knowledge of ϕ on E0[N2];
3 Compute j(EA/ϕ(ker θ′)) = j(E0/θ(K));
4 return f(θ(K)) = j(E0/θ(K))

For parameters that allow us to construct a malleability oracle, we can then
solve Problem 4.2 underlying SIDH-like protocols via a reduction to an injective
abelian hidden shift problem using the framework introduced in Section 3.2.

Informal result 4.6. Suppose the parameters allow the efficient solution of
Task 4.4, then Problem 4.2 can be solved in quantum subexponential time.

We use the remainder of this section to prove this result formally under cer-
tain assumptions. To this end, we first give solutions to Task 4.3 and, for some
parameters, to a variant of Task 4.4. More precisely, we show in Section 4.3 that
it is sufficient to lift elements from πG instead of G. For this case, we then give
a more efficient lifting procedure requiring unbalanced and overstretched pa-
rameters. We construct a malleability oracle using the torsion point information
provided in SIDH and a subroutine solving our variant of Task 4.4. Apart from
some technical details that we will address in the following, the informal result
follows from Corollary 3.4. An overview of the attack is depicted in Algorithm 2.

4.2 A free and transitive group action

Recall that E0 is the supersingular curve with j-invariant 1728, given by the
equation y2 = x3 + x. In this section we provide a solution to Task 4.3. For
simplicity, we treat N1 as a power of 2, but the results generalize to any power
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Algorithm 2: Solving SIDH’s underlying hardness assumption via an
abelian hidden shift problem

Let ϕ : E0 → E0/K be an N1-isogeny and N2 ∈ Z such that gcd(N1, N2) = 1.
Input: E0, E0/K, ϕ(E0[N2]).
Output: Isogeny E0 → E, where j(E) = j(E0/K).

1 Compute an abelian group G ⊂ (O0/N1O0)∗ acting freely and transitively on
the orbit G(K) and some J ∈ G(K) ⊂ I;

2 Define FK : G→ O, g 7→ f(g(K)) and FJ : G→ O, g 7→ f(g(J));
3 Compute injective abelian hidden shift θ ∈ G of FK and FJ , i.e., θ ∈ G such

that FK(g) = FJ(θg) for all g ∈ G, using a quantum algorithm such as
Kuperberg’s. To this end, one evaluates FK using Algorithm 1 and FJ using
the knowledge of J ;

4 return Isogeny E0 → E0/θ(J)

of a small prime. A generalization to powers of 3 is sketched in Appendix B of
the full version of this paper [20].

We provide the solution by identifying three subsets of I that are orbits under
a free and transitive action of abelian subgroups of (O0/N1O0)∗. More precisely,
let P ∈ E0 such that 〈P, ι(P )〉 = E0[N1], where ι denotes the automorphism
(x, y) 7→ (−x, iy) of E0. Let Q := P + ι(P ) and define the following three
subsets of I.

I1 := {〈P + [α]ι(P )〉 | α even }

I2 :=

{
〈Q+ αι(Q)〉 | α even and α ∈

[
0,
N1

2
− 1

]}
I3 :=

{
〈Q+ αι(Q)〉 | α even and α ∈

[
N1

2
, N1 − 1

]}
Recall the function f defined in (1), mapping cyclic subgroups of E0[N1] of order
N1 to j-invariants of curves at distance N1 from E0,

f : I → O, K 7→ j(E0/K).

We will show that restricting the function f to any of the subsets I1, I2, or I3
yields an injective function and we will prove that f(∪iIi) = f(I). Furthermore,
we will see that

G0 := {a+ bι | a odd, b even } /N1O∗0
acts transitively on I1. In order to ensure that the action is free, we identify two
endomorphisms a+ bι and a′ + b′ι in G0 if there exists an odd λ ∈ Z/N1Z such
that a ≡ λa′ (mod N1) and b ≡ λb′ (mod N1). We denote the resulting group
by G.

In order to define free and transitive group actions on I2, and I3 we define
similarly to G0

H0 := {a+ bι | a odd, b even } /(N1/2)O∗0 .
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Again, we identify two endomorphisms a+ bι and a′+ b′ι in H0 if there exists an
odd λ ∈ Z/(N1/2)Z such that a ≡ λa′ (mod N1/2) and b ≡ λb′ (mod N1/2),
we obtain a group H. The group H will act freely and transitively on I2 and I3.

Hence, one of these three options will always be a solution to Task 4.3.

The map f is based on the well-known correspondence between I and curves
at distance N1 from E0. However, this correspondence is not necessarily one-to-
one. In particular, if E0 has a non-scalar endomorphism of degree N2

1 , then that
endomorphism can be decomposed as τ̂1◦τ2, where τ1 and τ2 are non-isomorphic
isogenies of degree N1 from E0 to the same curve E. For small enough N1, the
following lemma shows that two kernels correspond to the same curve if and
only if they are linked by the automorphism ι.

Lemma 4.7. Suppose that N2
1 <

p+1
4 . Then the only endomorphisms of degree

N2
1 of E0 are [N1] and [N1] · ι, where ι : E0 → E0, (x, y) 7→ (−x, iy) is the

non-trivial automorphism.

Proof. Due to the condition N2
1 <

p+1
4 , an endomorphism θ of degree N2

1 lies in
Z[ι]. Let θ = a + bι for some a, b ∈ Z. Then the degree of θ is a2 + b2. Now we
have to prove that the only ways to decompose N2

1 as a sum of two squares are
trivial, i.e., N2

1 = N2
1 + 02 = 02 +N2

1 .
Let N1 = 2k, and we prove the statement by induction on k. For k = 1 the

statement is trivial. Suppose that k > 1 and that N2
1 = a2 + b2. Then a and

b cannot both be odd as N2
1 is divisible by four. If they were both even, then

dividing by four yields a decomposition of (N1/2)2 = (a/2)2 + (b/2)2. By the
induction hypothesis, this decomposition is trivial implying that N2

1 can also
only be decomposed in a trivial way.

Corollary 4.8. Suppose that N2
1 <

p+1
4 . Let φ and φ′ be two isogenies of degree

N1 from E0 to a curve E. Then either kerφ = kerφ′ or kerφ = ι(kerφ′).

Proof. Consider the endomorphism τ = φ̂′ ◦ φ of E0. The degree of τ is N2
1 ,

so τ = [N1] or τ = [N1] · ι by Lemma 4.7. In the former case, the isogenies φ
and φ′ are identical by the uniqueness of the dual. In the latter case, we have
kerφ = ι(kerφ′).

Thus, an element in the image of f has precisely one preimage if the kernel
of the corresponding isogeny is fixed by the automorphism ι.

Identifying an abelian group with I1: Now, we will give the free and tran-
sitive group action on I1 and show that f restricted to I1 is injective.

Let P be a point such that {P, ι(P )} is a basis of E0[N1] and recall

I1 := {〈P + [α]ι(P )〉 | α even } .

We show that the restriction of f to I1 is injective.

Proposition 4.9. Let j(E0) = 1728 and suppose that N2
1 < p+1

4 . The restric-
tion of f to I1 is injective.
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Proof. We apply Corollary 4.8 to show that the codomains of isogenies with
kernel in I1 are pairwise non-isomorphic curves. It is clear that P + αι(P ) and
P + α′ι(P ) are not scalar multiples of each other if α 6= α′ as P, ι(P ) generate
E0[N1]. It remains to show that for any even α, α′, the points P + αι(P ) and
−α′P + ι(P ) are not scalar multiples of each other. Suppose there exists an odd
λ such that

P + αι(P ) = λ(−α′P + ι(P )).

Note that we can restrict to odd λs as the order of both points is N1. Since
{P, ι(P )} is a basis of the N1-torsion, this implies that 1 ≡ −λα′ (mod N1).
Since α′ is even this is a contradiction concluding the proof.

Clearly, f(I1) does not include all elliptic curves at distance N1 from E0, i.e.,
all curves in f(I). Every curve at distance N1 from E0 is of the form E0/〈P +
αι(P )〉 for some α ∈ Z/N1Z, which follows from the observation that the curves
E0/〈β1P+β2ι(P )〉 and E0/〈−β2P+β1ι(P )〉 are isomorphic since their kernels are
linked by ι. We first restrict ourselves to define a free and transitive group action
on I1 and define the free and transitive group action on the kernels corresponding
to the remaining curves later.

Recall that E0 is a curve with well-known endomorphism ring, and we are
interested in the endomorphisms that are of degree coprime to N1. While there
are infinitely many such endomorphisms, we are only concerned with their action
on E0[N1], i.e., we are looking at the group (O0/N1O0)∗ which is isomorphic to
GL2(Z/N1Z) [31, p. 676]. Furthermore, we are only concerned with the action
of the endomorphisms on I, i.e., on cyclic subgroups of E0[N1] of order N1,
and we can therefore identify even more endomorphisms with each other by the
following lemma.

Lemma 4.10. Let (a, b, c, d) and (a′, b′, c′, d′) be the coefficients of θ and θ′ with
respect to some Z-basis of the endomorphism ring O0 of E0, and let I be the set
of cyclic N1-order subgroups of E0[N1]. Then θ(K) = θ′(K) for every K ∈ I if
and only if there exists some λ ∈ (Z/N1Z)∗ such that

(a, b, c, d) ≡ λ(a′, b′, c′, d′) (mod N1).

Proof. Considering the respective restrictions to E0[N1], two endomorphisms are
equal if they lie in the same class in (O0/N1O0)∗. Moreover, let θ1, θ2 be two
endomorphisms such that θ1 = [λ]θ2 for some integer λ, and let P be an element
of order N1. Since scalar multiplication commutes with any endomorphism, it is
easy to see that θ1(P ) and θ2(P ) generate the same subgroup in E0[N1] if and
only if λ is coprime to N1.

Now, we are ready to give a solution to Task 4.3 if K ∈ I1.

Proposition 4.11. Let G be the group of equivalence classes of elements

{a+ bι | a odd, b even } ⊂ Z[ι]/N1O∗0 ⊂ (O0/N1O0)∗,
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where we identify two elements if and only if they differ by multiplication by
an odd scalar modulo N1. Then G is an abelian group, and it acts freely and
transitively on I1.

Proof. It is easy to see that the endomorphisms in Z[ι] of degree coprime to
N1 form an abelian subgroup of O0. Using any basis for E0[N1] of the form
{P, ι(P )}, we can write the elements of this subgroup as matrices of the form(
a b
−b a

)
, where a is odd and b is even. By identifying two endomorphisms a1+b1ι

and a2 + b2ι if there exists an integer λ coprime to N1 and an endomorphism
δ such that a1 − λa2 + (b1 − λb2) = N1δ, which is possible by Lemma 4.10, we
obtain G. As G is closed under multiplication and reduction modulo N1, it is a
subgroup of an abelian group and therefore abelian itself. Note that G contains
all equivalence classes under Lemma 4.10 of endomorphisms of the form a + bι
for even b, independently of the chosen basis.

To examine the orbit of an element in I, which is a cyclic N1-order subgroup
of E0[N1], under the action of G, it is sufficient to look at the orbit of a generator
of this cyclic group in I. We consider the orbit of P which has coordinates (1, 0)
with respect to our basis under the group action of G. The image of (1, 0) under

an element

(
1 b
−b 1

)
is (1, b). Inspecting the cyclic subgroups of E0 these points

generate, we get G · 〈P 〉 = I1.

Free and transitive group action on I2 and I3: So far we have defined a free
and transitive group action on I1 and thus for the curves in f(I1). However, when
the secret kernel is generated by P+αι(P ) with α odd, the curve E0/〈P+αι(P )〉
is not contained in f(I1). This is the case we handle next.

One can show that the action of the previously defined group G acting on
curves at distance N1 from E0 considered via f has three orbits (see Appendix A
of the full version [20] for details). We have already seen that f(I1) is one orbit,
but the odd-α cases will split into two orbits. Clearly, G cannot be free and tran-
sitive on both orbits, since the size of the orbits is smaller than the cardinality
of the group. We avoid this issue by choosing a different (but related) group of
cardinality N1/4 acting on the curves corresponding to an odd α.

Lemma 4.12. Let Q := P + ι(P ) and define

I2 :=

{
〈Q+ αι(Q)〉 | α even and α ∈

[
0,
N1

2
− 1

]}
I3 :=

{
〈Q+ αι(Q)〉 | α even and α ∈

[
N1

2
, N1 − 1

]}
.

The restrictions f|I2 and f|I3 of f to I2 and I3 are injective.

Proof. We show that two distinct isogenies with kernel both in I2 (or both in
I3) map to two non-isomorphic curves. Let α, α′ be such that 〈Q+ αι(Q)〉 and
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〈Q + α′ι(Q)〉 are both in I2, or I3, respectively. Suppose there exists an odd λ
such that

Q+ αι(Q) = λ(Q+ α′ι(Q)).

This means 1− λ ≡ 0 (mod N1/2) and α− λα′ ≡ 0 (mod N1/2) which implies
α ≡ α′ (mod N1/2). We are left to show that Q+αι(Q) is never an odd multiple
of −αQ+ ι(Q). Suppose there exists an odd λ such that

Q+ αι(Q) = λ(−α′Q+ ι(Q)).

This implies 1 + α′λ ≡ α − λ ≡ 0 (mod N1/2), which is a contradiction, since
α − λ ≡ 0 (mod N1/2) implies that λ is even while 1 + α′λ ≡ 0 (mod N1/2)
implies that λ is odd. Therefore, the curves E0/〈Q+αι(Q)〉 and E0/〈Q+α′ι(Q)〉
are pairwise non-isomorphic.

Finally, we give a free and transitive group action on I2 and I3. We start by
defining the acting group.

We identify two endomorphisms a + bι and a′ + b′ι if there exists an odd
λ ∈ Z/(N1/2)Z such that a ≡ λa′ (mod N1/2) and b ≡ λb′ (mod N1/2) and we
call the resulting group H0. Let H be the subgroup of H0 containing elements
with even b.

Proposition 4.13. H acts freely and transitively on I2 and I3.

Proof. It is enough to show that H acts transitively on I2 and I3 because H, I2
and I3 have the same cardinality. We show that the orbit H · 〈Q〉 contains every
element in I2. This follows immediately from (1 +αι)Q = Q+αι(Q). Similarly,
H acts transitively on I3 as

(1+αι)(Q+N1ι(Q)/2) = (1−αN1/2)Q+(α+N1/2)ι(Q) = Q+(α+N1/2)ι(Q),

where (αN1/2)Q = 0 as α is even.

What remains to be shown is that every curve E0/〈P + αι(P )〉 with odd α
has a j-invariant contained in f(I2) or f(I3).

Proposition 4.14. Let α be an odd integer. Then f(〈P + αι(P )〉) is contained
in f(I2) or f(I3).

Proof. Observe that

P + αι(P ) =
1 + α

2
(P + ι(P )) +

α− 1

2
(−P + ι(P )) =

1 + α

2
Q+

α− 1

2
ι(Q).

The sum of 1+α
2 and α−1

2 is odd and therefore one of the fractions is even while
the other one is odd. If α−1

2 is even, then it is clear that the curve is contained
in f(I2) or f(I3). In the case where 1+α

2 is even, E0/〈 1+α2 Q + α−1
2 ι(Q)〉 is

isomorphic to E0/〈 1−α2 Q+ α+1
2 ι(Q)〉 (because their kernels are related by ι) and

thus the curve is contained in f(I2) or f(I3).
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In this subsection, we have identified three subsets of I, restricted to which
f is injective. Moreover, we have seen that the union ∪3i=1f(Ii) contains the
j-invariants of all curves at distance N1 from E0. Finally, we gave an abelian
subgroup of (O0/N1O0)∗ for each of these subsets of I that acts freely and
transitively on it. Thus, we solve Task 4.3 as long as one determines or guesses
which of the three f(Ii) contains j(E0/K).

4.3 Using the Frobenius map

In the previous subsection, we described how to choose suitable abelian sub-
groups of (O0/N1O0)∗ in order to solve Task 4.3 after guessing whether j(E0/K)
is a j-invariant in f(I1), f(I2), or f(I3).

The elements of the acting groups chosen as described in the previous section
can be trivially lifted to Z[ι] := Q[ι]∩O0. In Appendix C of the full version [20]
we show how these representatives can be lifted directly to elements of norm N2

or eN2, where e is a small positive integer, whenever the SIDH parameters N1

and N2 are sufficiently overstretched and unbalanced with N2 > p2N4
1 . For these

parameters, this solves a variation of Task 4.4.

In this section we reduce the required unbalancedness partially by proving
that we can lift elements from πZ[ι] instead. Assuming that N2 > pN4

1 , we will
show in Subsection 4.4 how an endomorphisms from πZ[ι] can be lifted efficiently
to another endomorphism of norm N2 or eN2, for some small integer e, inducing
the same action on I. Note that it is not possible to choose a group generated
by an element in πZ[ι] to solve Task 4.3 directly, acting freely and transitively
on a large number of N1-isogeny kernels, as such an element has multiplicative
order at most 4.

As before, let ϕ : E0 → E0/K denote the secret N1-isogeny we want to
compute. Recall that to run our attack we need to be able to compute E0/θ(K)
for every θ in the groups G acting on I1, and H acting on I2 and I2. We have
seen that we can represent θ as an element in Z[ι].

Let π denote the Frobenius map. Assuming that we can lift πθ to an endomor-
phism of degree N2 inducing the same action on I, we can compute E0/πθ(K)
using knowledge of ϕ(E0[N2]) as described in Section 4.1. Now let B := θ(K).
Given E0/π(B), we can compute E0/B using the Frobenius map as follows.

Lemma 4.15. Let E be an elliptic curve defined over Fp, π the Frobenius map
and let B ⊂ E be a cyclic subgroup. E/π(B) is isomorphic to the image of the
Frobenius map of E/B.

Proof. Let φ1 be the isogeny with kernel B and φ2 the isogeny with kernel π(B).
The isogeny φ1 is separable and its kernel is contained in the kernel of φ2 ◦ π.
Then, there exists a unique isogeny ψ : E/B → E/π(B) satisfying φ2◦π = ψ◦φ1
(see [29, Corollary III. 4.11.]), i.e., the following diagram commutes.
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E E/B

E E/π(B)

φ1

π

φ2

ψ

The degree of a composition of isogenies is the product of its factors which
implies deg(ψ) = p. Furthermore, ψ is not separable as the Frobenius map is
not. As ψ can be decomposed as a composition of the Frobenius map and a
separable isogeny (see [29, Corollary II.2.12.]), deg(ψ) = p implies that ψ must
be a composition of Frobenius and an automorphism. Hence, E0/B and E0/π(B)
are linked by the Frobenius map.

By Lemma 4.15 we can compute E0/θ(K) by first computing E0/πθ(K) and
then applying the Frobenius map. This gives rise to the following strategy when
constructing the malleability oracle.

Assume we want to compute E0/θ(K) for some θ ∈ Z[ι] and unknown K,
given the image of theN2-torsion of the isogeny ϕ : E0 → E0/K. Using the lifting
algorithm of Subsection 4.4, we compute an endomorphism θ′ of degreeN2 or eN2

for a small e that induces the same action on I as πθ. As described previously,
the torsion point information allows us to compute E0/θ

′(K) = E0/πθ(K). By
Lemma 4.15, applying the Frobenius map yields E0/πθ

′(K) = E0/θ(K).

4.4 Lifting θ ∈ πZ[ι] to an element of norm eN2

In this subsection we give an efficient algorithm to lift endomorphisms from
πZ[ι] = π(Q[ι] ∩ End(E0)) to another endomorphism of E0/Fp of degree N2 or
eN2 that induces the same action on I, whenever N2 > pN4

1 . Here, e is the
smallest positive integer such that eN2/p(c

2
0 + d20) is a quadratic residue modulo

2N1, where π(c0 + d0ι) ∈ πZ[ι] is the endomorphism we want to lift.
This will solve the following task, which is a variant of Task 4.4, efficiently.

Task 4.16. Let N1, N2 be coprime integers such that N2 > pN4
1 , let θ :=

π(c0 + d0ι) ∈ πZ[ι] be an E0-endomorphism of degree coprime to N1 and let
e denote the smallest positive integer such that eN2/p(c

2
0 + d20) (mod 2N1) is a

quadratic residue. Compute an endomorphism θ′ of degree N2 or eN2 such that
θ(K) = θ′(K) for all K ∈ I.

We have discussed in Section 4.3 that we can lift π(c0+d0ι) instead of c0+d0ι.
Therefore, this task solves Task 4.4 up to the following two relaxations. First,
we require N2 to be sufficiently large and unbalanced compared to N1. Second,
we allow θ′ to be either of degree N2 or eN2 for some small positive integer e.

We have implemented the lifting algorithm of this section in magma and
made it publicly available4.

4 https://github.com/SimonMerz/lifting-for-malleability-oracles.

https://github.com/SimonMerz/lifting-for-malleability-oracles
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Remark 4.17. If N1 were a prime, e could be chosen as the smallest quadratic
non-residue modulo N1. However, in our case N1 is a composite number. Thus,
the product of two quadratic non-residues might not be a quadratic residue if
there are multiple cosets of the subgroup of quadratic residues in the group of
units modulo 2N1.

We are primarily interested in the case where N1 is a prime power `n. By
Hensel’s lemma, being a quadratic residue modulo `n is equivalent to being a
quadratic residue modulo `, if ` is odd, and equivalent to being a quadratic
residue modulo 8, if ` = 2.

Consequently, there is one coset of the quadratic residues in the group of
units of 2N1 if ` is an odd prime. Therefore, e can be chosen to be the smallest
quadratic non-residue modulo `. For example, if N1 is a power of 3 one can
choose e = 2.

If ` = 2, then there are three cosets of the quadratic residues in the group
of units, i.e., the ones that contain 3, 5, and 7 respectively. Consequently, e can
always be chosen to be one of 3, 5, or 7 in this case.

In case N1 has distinct prime factors, for eN2/p(c
2
0 + d20) to be a quadratic

residue it has to be a quadratic residue modulo the largest prime power dividing
2N1 for each distinct prime factor. If the number of cosets grows, so do the
possibilities for e und thus the size of the smallest e that is guaranteed to work.

We now describe an algorithm to solve Task 4.16. By Lemma 4.10, it suffices
to solve the following task, which is similar to the problem solved at the core of
the KLPT algorithm [16].

Task 4.18. Given θ = a0 + b0ι + (c0 + d0ι)π, find θ′ = a1 + b1ι + (c1 + d1ι)π
of degree N2 or eN2 with coefficients (a1, b1, c1, d1) ≡ λ(a0, b0, c0, d0) (mod N1)
for some scalar λ ∈ (Z/N1Z)∗.

In the following, we provide a solution to this task. Let

θ′ = λa0 +N1a1 + ι(λb0 +N1b1) + (λc0 +N1c1 + ι(λd0 +N1d1))π.

As Norm(x+ yι) = x2 + y2, its norm equals

Norm(θ′) = (λa0+N1a1)2+(λb0+N1b1)2+p
(
(λc0+N1c1)2+(λd0+N1d1)2

)
. (2)

Since θ ∈ πZ[ι] implies a0 = b0 = 0, Equation (2) simplifies to

Norm(θ′) = N2
1 (a21 + b21) + p

(
(λc0 +N1c1)2 + (λd0 +N1d1)2

)
. (3)

Set e to be the smallest positive integer such that eN2/(p(c
2
0+d20)) is a quadratic

residue modulo 2N1.
The goal is to compute θ′ such that Norm(θ′) = eN2. Considering Equa-

tion (3) modulo N1, we obtain

eN2 ≡ λ2p(c20 + d20) (mod N1). (4)

Since eN2/p(c
2
0 +d20) is a quadratic residue modulo 2N1 by the choice of e, there

exists a solution for λ in Equation (4) modulo 2N1. Compute any such solution,
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and lift it to the integers in [1, 2N1 − 1]. Note that we do not lose generality by
the lift as any other lift of λ corresponds to a change in c1, d1 instead.

For fixed c0, d0 and λ, this gives an affine relation between c1 and d1 modulo
N1, i.e.,

c0c1 + d0d1 ≡
Norm(θ′)− λ2p(c20 + d20)

2λpN1
(mod N1). (5)

Finally, one is left with the problem of representing an integer r as the sum of
two squares, namely to find a solution (a1, b1) for

a21 + b21 = r :=
Norm(θ′)− p

(
(λc0 +N1c1)2 + (λd0 +N1d1)2

)
N2

1

(6)

where λ, c0 and d0 are fixed, and c1, d1 satisfy an affine equation modulo N1.

As Petit and Smith pointed out at Mathcrypt 2018, the solution space to
Equation (5) is a translated lattice modulo N1 [24]. More precisely, we know
that c0 or d0 is coprime to N1. Without loss of generality, let d0 be coprime to
N1. Furthermore, let C denote the right hand side of Equation (5). Then, (c1, d1)
lies in the lattice

〈(c0/d0,−1), (N1, 0)〉+ (C/d0, 0). (7)

Clearly, r from Equation (6) can only be represented as a sum of two squares,
if it is positive. This happens when the parameters N1 and N2 are sufficiently
overstretched and unbalanced. To find a solution, one computes close vectors
(c1, d1) to the target vector (−λc0/N1,−λd0/N1) in the translated lattice.

Given the factorisation of r as defined in Equation (6), Cornacchia’s algo-
rithm [6] can then efficiently solve for a1, b1 or determine that no such solution
exists. If no solution exists, a different vector (c1, d1) is chosen.

Remark 4.19. Cornacchia’s algorithm requires the factorization of r. This can
be done in classical subexponential time or in quantum polynomial time. To
avoid such computations, we apply Cornacchia’s algorithm only when r is a
prime and otherwise sample another close vector from the lattice.

Assuming the values of r behave like random values around pN3
1 for the close

vectors, one expects to choose log(pN3
1 ) different vectors (c1, d1) before finding a

solution for a1, b1 with Cornacchia’s algorithm. If we do not apply Cornacchia’s
algorithm unless r is prime, we expect furthermore to sample roughly log(pN3

1 )
values for (c1, d1) until r is prime.

The volume of the translated lattice is N1. Thus, for a generic lattice for
which the Gaussian heuristic holds we expect to find a lattice point at distance
N1 from (λc0/N1, λd0/N1). Furthermore, we can use the Hermite constant for 2-
dimensional lattices to trivially bound the distance between this lattice point and
the next 2 log(pN3

1 ) closest lattice points by 8
3 log(pN3

1 )
√
N1. Thus, heuristically

r is positive for the expected number of vectors (c1, d1) that we need to sample,
whenever eN2 > pN3

1 + 8/3 log(pN3
1 )
√
N3

1 .
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Remark 4.20. Note that for specific lattices, the Gaussian heuristic might be
violated. In the worst case, we can only expect to find a lattice point at distance
N2

1 from (λc0/N1, λd0/N1) and overall solutions require roughly eN2 > pN4
1 .

It is easy to see that a solution for (a1, b1, c1, d1) as computed with the
routine described above satisfies Equation (3). The full algorithm is summarized
in Algorithm 3 and an implementation in magma is available4.

Algorithm 3: Lift element from πZ[ι] to quaternion of norm N2 or eN2

Input: θ = π(c0 + d0ι) ∈ End(E0), and parameters p, ε, N1, N2

Output: θ′ = N1a1 +N1b1ι+ (λc0 +N1c1)π + (λd0 +N1d1)ιπ satisfying
Norm(θ′) = N2 or eN2 with probability 1− ε and ⊥ otherwise

1 e← least positive integer s.t. eN2/p(c
2
0 + d20) (mod 2N1) is a quadratic

residue;
2 Compute λ in eN2 ≡ λ2p(c20 + d20) (mod 2N1);
3 Compute affine relation c0c1 + d0d1 ≡ C (mod N1);
4 Define translated lattice L containing all (c1, d1) satisfying the affine relation;
5 B ← log(ε) log(pN3

1 )/ log(1− log−1(pN3
1 ));

6 for m = 1, . . . , B do
7 Compute next closest vector (c1, d1) to (−λc0/N1,−λd0/N1) in L;

8 r ← Norm(θ′)−p((λc0+N1c1)
2+(λd0+N1d1)

2)

N2
1

;

9 if r prime then
10 Use Cornacchia’s algorithm to find a1, b1 such that a21 + b21 = r or

determine that no solution exists;

11 if solution found then
12 return θ′ = N1a1 +N1b1ι+ (λc0 +N1c1)π + (λd0 +N1d1)ιπ;

13 return ⊥

An examination of Algorithm 3 shows that it aborts after a fixed number of
trials for pairs (c1, d1), which leads to the following result.

Lemma 4.21. Algorithm 3 always terminates and is correct if it returns a so-
lution.

We conclude this section by investigating the heuristic probability of the
lifting algorithm returning a solution or aborting unsuccessfully, as well as its
complexity.

Lemma 4.22. Let 0 < ε < 1. Assume r in Line 8 of Algorithm 3 behaves like
a random value around pN3

1 . Then we expect Algorithm 3 heuristically to return
a correct lift with probability 1− ε and an error ⊥ otherwise.

Proof. If r in Line 8 of Algorithm 3 behaves like a random value around pN3
1 ,

we expect it to be prime with probability roughly 1/ log(pN3
1 ) and Cornacchia’s

algorithm to provide a solution with probability approximately 1/(log(pN3
1 )) due

to Landau [21] and Ramanujan [25]. Iterating over B short vectors (c1, d1) of the
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lattice as defined in Step 6 of Algorithm 3, we therefore expect our algorithm to
return ⊥ with probability

(
1− 1

log(pN3
1 )

)B/ log(pN3
1 )

.

Hence, iterating over B ≥ log(ε) log(pN3
1 )/ log(1 − log−1(pN3

1 )) as in Algo-
rithm 3, we fail to find a solution with probability less than ε heuristically.

Remark 4.23. In Algorithm 2 the lifting of endomorphisms is used for every
element of the acting group G or H with cardinality N1/2 and N1/4, respectively.
Since we expect the lifting algorithm to fail heuristically with probability ε for
every single group element and the functions in Algorithm 2 are only exact shifts
of each other when it does not fail a single time, we need to choose ε sufficiently
small. Assuming independence between the different executions of the lifting
algorithm, we expect to find two functions satisfying the promise of a hidden
shift with probability (1−ε)N1/2 ≈ 1−εN1/2 by first order Taylor approximation.
Thus, choosing ε < 1

N1
we expect our lifting to work with probability roughly

1
2 on all endomorphisms of G and similarly ε < 2

N1
for the elements in H. By

the previous lemma, the lifting remains polynomial in log(N1) and log(p) for
any such ε. Choosing ε smaller allows us to heuristically achieve a larger success
probability of the algorithm. The worst-case complexity of the lifting increases
linearly in | log(ε)|.

Lemma 4.24. Let 0 < ε < 1. Algorithm 3 runs in time polynomial in log p,
logN1, and | log(ε)|.

Proof. The worst-case runtime of the algorithm stems from sampling B (as de-
fined in Algorithm 3, Line 5) potential values of (c1, d1) from a lattice of dimen-
sion 2. In each iteration one needs to run a primality test, and apply Cornacchia’s
algorithm to a prime of size polynomial in p and N1.

The main drawback of our lifting algorithm is the requirement of approx-
imately N2 > pN3

1 in case the Gaussian heuristic is satisfied for the lattice
defined in Equation (7), and roughly N2 > pN4

1 otherwise (see Remark 4.20).
This bound might be partially caused by inefficiencies in the lifting algorithm.
However, the following remark discusses why we can a priori not expect to find
a lifting algorithm for balanced parameters.

Remark 4.25. A randomly chosen non-homogeneous quadratic equation in two
variables has in general no solution. Similarly, for arbitrary endomorphisms and
any N1, N2, we would not expect to find an endomorphism a1 + b1ι ∈ Z[ι] (in
the variables a1, b1) inducing the same action on I of degree N2. Yet, as soon as
we lift an endomorphism θ to an endomorphism θ′ = N1(a1 + b1ι + c1π) + λθ,
the degree of the lift will be of degree larger than pN2

1 .
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4.5 Algorithm summary

We begin the summary of our attack by proving that a solution to Task 4.4
allows us to construct a malleability oracle for f .

Proposition 4.26. Let f|I′ : I ′ → O be the function defined in (1) restricted
to a domain I ′ so it is injective, let G be an abelian subgroup of (O0/N1O0)∗

acting freely and transitively on I ′ and let ϕ : E0 → E0/K, where K ∈ I ′ is
chosen uniformly at random and unknown. Suppose the public parameters allow
us to solve Task 4.4 for endomorphisms in G efficiently. Given ϕ|E0[N2], we then
have a polynomial-time malleability oracle for G at f|I′(K).

Proof. We need to show that there exists an efficient algorithm that, on input
f(K) = f|I′(K) = j(E0/K) and θ ∈ G, computes f(θ(K)). Let ϕ be the isogeny
corresponding to the cyclic subgroup K ⊂ E0 of order N1.

The endomorphism θ has degree N2 coprime to N1 and using the efficient
solution to Task 4.4, we can compute some θ′ of degree N2 such that it has the
same action on the N1-torsion as θ. Therefore, f(θ(K)) = E0/θ(K) = E0/θ

′(K)
up to isomorphism. By Lemma 4.5, this equals (E0/K)/ϕ(ker θ′). Since ker θ′

lies in E0[N2], we can compute its image under ϕ and therefore we can calculate
f(θ(K)) = (E0/K)/ϕ(ker θ′) efficiently.

Proposition 4.26 calls for solutions to the Tasks 4.3 and 4.4. In Sections 4.2
and 4.4 we presented solutions to variants of these tasks. We use the remainder
of this section to summarize the impact of these variations on the success of our
approach.

Restricting the function f : I → O to a subset I ′ such that f|I′ is injective
and its image contains j(E0/K) for the K one aspires to recover requires infor-
mation on the secret we do not posses. However, we gave three subsets I1, I2,
I3 of I in Section 4.2 such that f restricted to any of these subsets is injective.
The images of these sets under f partition all curves at distance N1 from E0

up to isomorphism, i.e., one of the three subsets will yield the desired result.
Moreover, we provided abelian subgroups of Q[ι] ∩ (O0/N1O0)∗ acting freely
and transitively on I1, I2, and I3.

We then supply an algorithm to solve Task 4.16, a variant of Task 4.4 when
N1 and N2 are sufficiently unbalanced, lifting endomorphisms from πZ[ι] to ones
with the same action on I of degree N2 or eN2. Here, e is a small integer de-
pending on the parameters p,N1, N2 and the endomorphism. As a consequence,
to use the torsion point information of E0[eN2] under the secret isogeny given
the image of E0[N2], we need to guess the action on E0[e]. Furthermore, we lift
all endomorphisms in the acting group and thus we need to guess the action on
E0[E], where E is the least common multiple of all e appearing for the different
lifts. In Remark 4.17 we discuss which e might appear depending on the factori-
sation of N1. For example, E is 2 if N1 is a power of 3, or lcm(3, 5, 7) if N1 is
a power of 2. Guessing the action of the secret isogeny on E0[E] takes O(E3)
trials. Finally, for efficiency reasons we lift endomorphisms from πZ[ι], whereas
the elements in the abelian groups acting on I1, I2, and I3 have representatives
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in Z[ι]. In Section 4.3 we showed that this is no restriction via the computation
of an action of the Frobenius map.

For each combination of guesses of E0[E] under the secret isogeny and whether
f maps the secret K into f(I1), f(I2) or f(I3), we can use a subexponential
quantum algorithm such as Kuperberg’s [18] to compute the hidden shift for the
functions FK and FJ as defined in Algorithm 2 and verify the output of the algo-
rithm. Both functions are injective and therefore the verification can be achieved
by computing both functions on a single element and its shift respectively. Once
the premise of a hidden shift is satisfied, Kuperberg’s algorithm [18] recovers
the (correct) solution to the injective abelian hidden shift problem. Thus, we re-
cover the secret isogeny as described in Section 4. We can summarize our result
as follows.

Theorem 4.27. Let N2 > pN4
1 . Under the heuristics used for the lifting of en-

domorphisms in Section 4.4, the SIDH problem can be solved in quantum subex-
ponential time via a reduction to the injective abelian hidden shift problem.

During this section, we have made some restrictions to simplify the presenta-
tion of our cryptanalysis. We assumed the starting curve E0 to be a supersingular
curve with j-invariant 1728. However, the attack also applies to other curves with
known endomorphism rings that are close to E0. In Section 4.2, we described
the required group action on I under the further assumption that N1 is a power
of 2, which can be generalized to powers of small primes. A sketch for powers
of 3 can be found in [20, Appendix B]. Finally, we assumed that N2

1 < p+1
4

in Lemma 4.7. However, to run our attack we can slightly ease this restriction.
Namely, if N2

1 >
p+1
4 , then we choose a divisor N ′1 of N1 such that N ′21 < p+1

4
and run the attack with N ′1 instead. This will reveal the N ′1-part of the isogeny
and then we can guess the remaining part. For sufficiently small N1

N ′
1
, this is only

a minor inefficiency.

4.6 Hybrid attacks on overstretched SIDH

In this section, we examine to what extent partial knowledge of the secret, i.e.,
knowledge of the most or least significant bits, renders the attack more efficient.
Moreover, we describe how the attack can be adapted to some further parameters
that are not quite sufficiently unbalanced. The idea is to apply exhaustive search
to recover parts of the secret isogeny until the remaining part of the isogeny is of
such small degree that the attack outlined in this paper can be used to recover
the remaining part.

We start with the case where the most significant bits of the secret are leaked
or correctly guessed. These bits correspond to the last steps of the secret isogeny
in the isogeny graph. Assume N1 is a power of a prime `. If the most significant
k digits of the secret with respect to their representation in base ` are leaked or
guessed correctly, the partial isogeny which remains to be recovered is of degree
N1/`

k and we can run our attack as soon as N1/`
k fulfills the unbalancedness

criterion N2 > p(N1/`
k)4.
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The case where the least significant digits are known or guessed requires a
little more work. For simplicity of our exposition we assume again that N1 is a
power of 2 as in Section 4.2, but the results generalize to powers of small primes.

Lemma 4.28. Let G be the group of Proposition 4.11, and let G′ ⊂ G be the
subset of the form {a + bι | a odd, b divisible by 2k} where we identify two en-
domorphisms with each other if they differ by multiplication by an odd scalar
modulo N1. Then G′ is an abelian subgroup of G.

Proof. Since G is abelian, it suffices to show that G′ is a subgroup. Consider
(a+ bι)(a′+ b′ι) = (aa′− bb′) + (ab′+ a′b)ι. It is easy to see that aa′− bb′ is odd
and ab′ + a′b is divisible by 2k if a+ bι and a′ + b′ι are in G′.

Assume the least significant k bits of the secret, or equivalently the first k
steps of the secret isogeny, are known. Kernels of isogenies of degree N1 > 2k

that share the same first k steps lie in the same 2k-torsion subgroup and are
therefore congruent modulo 2k.

Recall the subsets of I introduced in Section 4.2.

Proposition 4.29. Let I ′ be any subsets of I1 := {〈P + [α]Q〉 with 2|α} con-
taining all those cyclic subgroups where the αs are congruent modulo 2k. The
group G′ of Lemma 4.28 acts freely and transitively on any I ′.
Proof. First, we need to show that G′ × I ′ → I ′ is well-defined. Let (1 + bι) be
a representative of some element in G′ and let P + kι(P ), for some k ∈ Z, be
the kernel of an isogeny leading to a curve in I ′. We have

(1 + bι)(P + kι(P )) = P + kι(P ) + b(ι(P )− kP ) ≡ P + kι(P ) (mod b)

and as b is divisible by 2k, P +kι(P ) ∈ I ′ implies (1 + bι)(P +kι(P )) ∈ I ′. That
the action is free and transitive follows from Proposition 4.11 and a counting
argument as |G|/|G′| = 2k−1 = |I1|/|I ′|.

Similarly, we can take subsets of I2 and I3 and restrict the acting group.

This gives rise to an attack strategy when N2 is not large enough. Guessing
k bits of the secret before applying the attack on the remaining part allows an
attacker to reduce the requirements on the parameters to N2 > p(N1/2

k)4. This
is the same as when guessing the last bits of the secret.

Given such a partial isogeny, one computes the correct equivalence class I ′
from the kernel of the known part of the isogeny. Moreover, one needs to compute
the lifts of elements of G′ to endomorphisms of norm N2 or eN2. Computing the
action of G′ on the set I ′ allows one to test for the hidden shift property. Once
it is satisfied, the secret can be recovered by solving an injective abelian hidden
shift problem. Otherwise, one can make another guess on the k bits of the secret.

Apart from reducing the requirements on the unbalancedness, guessing part
of the isogeny reduces the number of elements one needs to lift and the size of
the hidden shift instance. Depending on the concrete parameter sets provided,
one may combine exhaustive search and the attack presented in this paper to
recover secrets more efficiently.
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5 Childs-Jao-Soukharev’s attack on HHS

We begin by providing more detail on how the algorithm proposed by Childs,
Jao and Soukharev [5] succeeds to construct an isogeny between two given ordi-
nary elliptic curves in quantum subexponential time. The provided strategy can
further be applied to CSIDH [3].

Recall the free and transitive group action from Section 2.3 of the class group
on the set of isogenous ordinary curves with the same endomorphism ring. The
hard problem is to find an isogeny between two isogenous ordinary elliptic curves
with the same endomorphism ring, i.e., reversing this group action. Childs-Jao-
Soukharev provide an algorithm that constructs such an isogeny in quantum
subexponential time [5] using a reduction to the hidden shift problem.

We summarize the core idea as another instance of our framework using
malleability oracles. Let I := Cl(O) and O := Ellq,n(O). We can look at the
group action defined in Section 2.3 as a one-way function

f : I → O , [x] 7→ [x] · j(E0).

Note that the class group Cl(O) acts on itself and therefore f has a malleability
oracle with respect to the class group readily available everywhere on the image,
i.e., f is malleable with respect to this group action.

Finding an isogeny ϕ is now equivalent to finding the ideal class [b] in Cl(O)
containing the ideal corresponding to the kernel of ϕ, i.e., we would like to
compute the preimage of f at j(E1) = [b] · j(E0).

Childs-Jao-Soukharev observed that the functions Fi : Cl(O) → Ellq,n(O),
[x] 7→ [x] · j(Ei) for i = 0, 1 are shifts of each other. Moreover, they are in-
jective functions since the action of the class group on Ellq,n(O) is free and
transitive. The injective abelian hidden shift problem can be solved in quantum
subexponential time, which allows one to recover [b] and therefore an isogeny
ϕ : E0 → E1.

Analogously to the case for ordinary curves, the group action in CSIDH
utilizing supersingular curves can be attacked this way. Recall that CSIDH uses
the Fp-rational endomorphism ring of the fixed starting curve E0, O. In the
Diffie-Hellman-type key exchange, recovering a party’s secret key constitutes of
computing their secret ideal class [b] ∈ Cl(O) which satisfies [b] ·E0 = EB for the
party’s public curve EB . Through defining functions F0, F1 : Cl(O) → Ellp(O)
by F0([x]) = [x] · E0 and F1([x]) = [x] · EB , it is possible to reduce finding
Bob’s secret key [b] to an instance of the injective hidden shift problem: We
have F1([x]) = F0([x] · [b]) for any ideal class [x] ∈ Cl(O), where the functions
are both injective due to the group action being free and transitive.

6 Conclusion and further work

In this paper, we constructed an abelian group action on the key space of the
inherently non-commutative SIDH. Having this group action in place allows us
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to construct a heuristic malleability oracle using the torsion point information
provided in SIDH when overstretched and sufficiently unbalanced parameters
are being used. This contradicts the commonly believed misconception that no
such group action exists in the branch of isogeny-based cryptography where one
considers the full isogeny graph of supersingular elliptic curves. We embedded
our attack in a more general framework that also captures other quantum attacks
on schemes in isogeny-based cryptography.

The attack does not apply to balanced parameters as specified in the orig-
inal SIDH proposal [14] or the NIST post-quantum candidate SIKE [13]. Fur-
thermore, the unbalancedness condition between N1 and N2 is stronger than
required by the attack from [19]. Interestingly, the obstruction to attack SIDH
with balanced parameters in our case does not seem to be directly related to the
hindrances in other attacks on unbalanced SIDH exploiting torsion point infor-
mation [19, 23] but to limitations of the KLPT algorithm [16] and the ones de-
scribed in Remark 4.25 instead. Improvements to the lifting subroutine included
in the KLPT algorithm would not only partially decrease the required unbal-
ancedness of SIDH parameters in this work, but also improve various isogeny-
based schemes such as Galbraith-Petit-Silva’s signatures [11] and SQISign [9].

Future work will extend the given quantum algorithm to more general group
actions of quadratic orders that embed optimally into the (known) endomor-
phism ring of the starting curve. Hereby, the starting curve does not necessarily
need to be of j-invariant 1728. Furthermore, we will generalize the approach
to higher genus generalizations of SIDH. Finally, providing applications of this
work to areas beyond isogeny-based cryptography is left for future investigation.

It remains an open problem to improve the framework further and to give
conditions on the malleability oracle that are sufficient to invert one-way func-
tions in quantum polynomial time.
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Petit was supported by EPSRC grant EP/S01361X/1. Simon-Philipp Merz was
supported by EPSRC grant EP/P009301/1.

Bibliography

[1] Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo,
Basil Hess, Amir Jalali, David Jao, Brian Koziel, Brian LaMacchia, Patrick
Longa, et al. Supersingular isogeny key encapsulation. Updated parameters
for round 2 of NIST Post-Quantum Standardization project, 2019.
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scientifiques de l’École Normale Supérieure, volume 2, pages 521–560, 1969.


	One-way functions and malleability oracles:Hidden shift attacks on isogeny-based protocols

