
Rotational Cryptanalysis From a
Differential-linear Perspective

Practical Distinguishers for Round-reduced FRIET, Xoodoo, and Alzette

Yunwen Liu1,2,3, Siwei Sun2,3?, Chao Li1

1 College of Liberal arts and Science, National University of Defense Technology,
China univerlyw@hotmail.com

2 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, China

3 University of Chinese Academy of Sciences, China
siweisun.isaac@gmail.com

Abstract. The differential-linear attack, combining the power of the
two most effective techniques for symmetric-key cryptanalysis, was pro-
posed by Langford and Hellman at CRYPTO 1994. From the exact for-
mula for evaluating the bias of a differential-linear distinguisher (JoC
2017), to the differential-linear connectivity table (DLCT) technique for
dealing with the dependencies in the switch between the differential and
linear parts (EUROCRYPT 2019), and to the improvements in the con-
text of cryptanalysis of ARX primitives (CRYPTO 2020), we have seen
significant development of the differential-linear attack during the last
four years. In this work, we further extend this framework by replacing
the differential part of the attack by rotational-xor differentials. Along
the way, we establish the theoretical link between the rotational-xor dif-
ferential and linear approximations, revealing that it is nontrivial to
directly apply the closed formula for the bias of ordinary differential-
linear attack to rotational differential-linear cryptanalysis. We then re-
visit the rotational cryptanalysis from the perspective of differential-
linear cryptanalysis and generalize Morawiecki et al.’s technique for an-
alyzing Keccak, which leads to a practical method for estimating the
bias of a (rotational) differential-linear distinguisher in the special case
where the output linear mask is a unit vector. Finally, we apply the rota-
tional differential-linear technique to the permutations involved in FRIET,
Xoodoo, Alzette, and SipHash. This gives significant improvements over
existing cryptanalytic results, or offers explanations for previous exper-
imental distinguishers without a theoretical foundation. To confirm the
validity of our analysis, all distinguishers with practical complexities are
verified experimentally.

Keywords: Differential-linear Cryptanalysis · Rotational Cryptanalysis
· ARX · FRIET· Xoodoo· Alzette· SipHash

? Corresponding author



1 Introduction

The practical security of a symmetric-key primitive is determined by evaluating
its resistance against an almost exhaustive list of known cryptanalytic tech-
niques. Therefore, it is of essential importance to generalize existing cryptan-
alytic methods or develop new techniques. Sometimes the boundary between
the two can be quite blurred. For example, the development of the invariant
attacks [23,24,35], ploytopic cryptanalysis [33], division properties [34,36], rota-
tional cryptanalysis [17,1], etc. in recent years belongs to these two approaches.

Another approach is to employ known techniques in combination to enhance
the effectiveness of the individual attacks. The boomerang [37] and differential-
linear cryptanalysis are the best examples. In particular, during the past four
years, we have seen significant advancements in the development of the differential-
linear cryptanalysis introduced by Langford and Hellman at CRYPTO 1994 [22],
which combines the power of the two most important techniques (differential and
linear attacks) for symmetric-key cryptanalysis. Our work starts with an attempt
to further extend the differential-linear framework by replacing the differential
part of this cryptanalytic technique with rotational-xor differentials.

Rotational and Rotational-xor Cryptanalysis. Rotational cryptanalysis was first
formally introduced in [17] by Khovratovich and Nikolic, where the evolution of
the so-called rotational pair (x, x≪ t) through a target cipher was analyzed.
The rotational properties of the building blocks of ARX primitives were then
applied to the rotational rebound attack on the hash function Skein [19], and
later were refined to consider a chain of modular additions [18]. Recently, crypt-
analytic results of ARX-based permutations Chaskey and Chacha with respect
to rotational cryptanalysis were reported [21,5]. Apart from the ARX construc-
tions, permutations built with logical operations without modular additions, also
known as AND-RX or LRX [3] primitives, are particularly interesting with re-
spect to rotational attacks. In 2010, Morawiecki et al. applied this technique to
distinguish the round-reduced Keccak-f [1600] permutation by feeding in rota-
tional pairs and observing the bias of the XOR of the (i + t)-th and i-th bits
of the corresponding outputs, where t is the rotation offset and the addition
should be taken modulo the size of the rotated word [31]. We will come back to
Morawiecki et al.’s technique and show that it has an intimate relationship with
the so-called rotational differential-linear cryptanalysis we proposed in Section 3.
To thwart rotational attacks, constants which are not rotation-invariant can be
injected into the data path. Still, in certain cases, it is possible to overcome this
countermeasure with some ad-hoc techniques.

Later, Ashur and Liu [1] generalized the concept of rotational pair by con-
sidering the propagation of a data pair (x, x′) that is related by the so-called
rotational-xor (RX) difference (x≪ t) ⊕ x′ = δ. The cryptanalytic technique
based on RX-difference was named as rotational-xor cryptanalysis. Note that
when the RX-difference of the pair (x, x′) is zero, it degenerates to a rotational
pair. RX cryptanalysis integrates the effect of constants into the analysis and it
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has been successfully applied to many ARX or AND-RX designs [26,28]. Here-
after, we refer both rotational and rotational-xor cryptanalysis as rotational
cryptanalysis, or in a general sense, rotational cryptanalysis contains all the sta-
tistical attacks requiring chosen data (e.g., plaintexts) with certain rotational
relationships.

Differential-linear Cryptanalysis. Given an encryption function E, we divide
it into two consecutive subparts E0 and E1. Let δ → ∆ be a differential for
E0 with probability p, and Γ → γ be a linear approximation for E1 with bias
εΓ,γ = Pr[Γ ·y⊕γ ·E1(y) = 0]− 1

2 . Then, the overall bias Eδ,γ of the differential-
linear distinguisher can be estimated with the piling-up lemma [30] as

Eδ,γ = Pr[γ · (E(x)⊕ E(x⊕ δ)) = 0]− 1

2
= (−1)Γ ·∆ · 2pε2Γ,γ , (1)

since γ ·(E(x)⊕E(x⊕δ)) can be decomposed into the XOR sum of the following
three terms 

Γ · (E0(x)⊕ E0(x⊕ δ)),
Γ · E0(x⊕ δ)⊕ γ · E(x⊕ δ),
Γ · E0(x)⊕ γ · E(x).

The derivation of Equation (1) not only relies on the independence of E0 and
E1, but also the assumption

Pr[Γ · (E0(x)⊕ E0(x⊕ δ)) = 0 | E0(x)⊕ E0(x⊕ δ) 6= ∆] =
1

2
, (2)

under which we have Pr[Γ · (E0(x)⊕ E0(x⊕ δ)) = 0] = 1
2 + (−1)Γ ·∆

2 p.
However, it has long been observed that Equation (2) may fail in many

cases and multiple linear approximations have to be taken into account to make
the estimates more accurate [22,27,29]. In [9], Blondeau, Leander, and Nyberg
presented a closed formula for the overall bias Eδ,γ based on the link between
differential and linear attacks [12] under the sole assumption that E0 and E1 are
independent. However, this closed formula is generally not applicable in practice
even if E0 and E1 are independent, since it requires the computation of the
exact bias εδ,v = Pr[v · (E0(x) ⊕ E0(x ⊕ δ)) = 0] − 1

2 for all v. 1 Moreover, in
some cases the dependency between E0 and E1 can be significant. Inspired by
the boomerang-connectivity table (BCT) and its successful applications in the
context of boomerang attacks [13], Bar-On, Dunkelman, Keller, and Weizman
introduced the differential-linear connectivity table (DLCT) [4], where the target
cipher is decomposed as E = E1 ◦ Em ◦ E0 and the actual differential-linear
probability of the middle part Em is determined by experiments, fully addressing
the issue of dependency in the switch between E0 and E1 (The effect of multiple

1 Unlike the estimation of the probability of a differential with a large number of
characteristics, a partial evaluation of the differential-linear distinguisher without
the full enumeration of intermediate masks can be inaccurate, since both positive
and negative biases occur.
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characteristics and approximations still has to be handled by the framework of
Blondeau et al. [9]). Most recently, Beierle, Leander, and Todo presented several
improvements to the framework of differential-linear attacks with a special focus
on ARX ciphers at CRYPTO 2020 [7].

Our Contribution. We start from the natural idea to extend the framework
of differential-linear attacks by replacing the differential part with rotational-xor
differentials. Specifically, given a pair of data with RX-difference δ = (x≪ t)⊕x′
and a linear mask γ, a rotational differential-linear distinguisher of a cipher E
exploits the bias of γ ·(rot(E(x))⊕E(rot(x)⊕δ)), where rot(·) is some rotation-
like operation.

We then present an informal formula similar to Equation (1) to estimate
the bias of a rotational differential-linear distinguisher by the probability of the
rotational-xor differential covering E0 and the biases of the linear approximation
and its rotated version covering E1, where E = E1 ◦E0. This formula, as in the
case of ordinary differential-linear cryptanalysis, requires certain assumptions
that may not hold in practice.

Consequently, we try to derive a closed formula for computing the bias of a
rotational differential-linear distinguisher, which we expect to be analogous to
Blondeau et al.’s result [9]. Although we failed to achieve this goal, we manage
to establish a general link between the rotational-xor cryptanalysis and linear
cryptanalysis as a by-product of this failed endeavour. From a practical point of
view, we do not lose much due to the absence of a closed formula, since this kind
of formula will inevitably involve the correlations of exponentially many trails
which are hard to evaluate in most situations.

Then, we focus our attention on the special case of rotational differential-
linear cryptanalysis where the output linear mask γ is a unit vector. In this
case, the bias Pr[ei · (rot(f(x))⊕ f(rot(x)⊕ δ)) = 0]− 1

2 is

Pr[(E(x))j ⊕ (E(x′))i = 0]− 1

2
=

1

2
− Pr[(E(x))j 6= (E(x′))i], (3)

for some i and j, where x′ = rot(x)⊕ δ. With this formulation, we immediately
realize that Morawiecki et al.’s approach [31] gives rise to an efficient method
for evaluating the biases of rotational differential-linear distinguishers, as well
as ordinary differential-linear distinguishers whose output linear masks are unit
vectors. We generalize some results from Morawiecki et al.’s work and arrive at
formulas which are able to predict Pr[(f(x))j 6= f(x′)i] based on the informa-
tion Pr[xj 6= xi] for many common operations f appearing in ARX designs. In
particular, we give the explicit formula for computing the differential-linear and
rotational differential-linear probability for an n-bit modular addition with O(n)
operations, while a direct application of Bar-On et al.’s approach [4] based on
the Fast Fourier Transformation (FFT) by treating the modular addition as an
2n× n S-box would require a complexity of O(22n). The probability evaluation
can be iteratively applied for an ARX or AND-RX construction. Nevertheless,
we note that the accuracy of the probability evaluation is affected by the depen-
dency among the neighbour bits.
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Finally, we apply the technique of rotational differential-linear cryptanaly-
sis to the cryptographic permutations involved in FRIET, Xoodoo and Alzette.
For FRIET, we find a 6-round rotational differential-linear distinguisher with
a correlation 2−5.81, and it can be extended to a practical 8-round rotational
differential-linear distinguisher with a correlation of 2−17.81. As a comparison,
the correlation of the best known 8-round linear trail of FRIET is 2−40. Moreover,
our 6-round distinguisher for FRIET can be further extended to a 13-round one.
For Xoodoo, we identify a 4-round rotational differential-linear distinguisher with
a correlation 1, while previous best result for Xoodoo is a 3-round differential
with a probability 2−36. For Alzette, the 64-bit ARX-box, we find a 4-round
differential-linear distinguisher with a correlation 2−0.27 and a 4-round rotational
differential-linear distinguisher with a correlation 2−11.37. A summary of the re-
sults is shown in Table 1, where all distinguishers with practical complexities are
experimentally verified.

Table 1: A summary of the results. R-DL = rotational differential-linear, DL =
differential-linear, LC = linear characteristic, DC = differential characteristic.
We show differentials with probabilities and LC/DL/R-DL with correlations.

Permutation Type # Round
Probability/Correlation

Ref.
Theoretical Experimental

FRIET

R-DL 6 2−5.81 2−5.12 Sect. 5
R-DL 7 2−9.81 2−9.12 Sect. 5
LC 7 2−29 – [32]

R-DL 8 2−17.81 2−17.2 Sect. 5
LC 8 2−40 – [32]

R-DL 13 2−117.81 – Sect. 5

Xoodoo
DC 3 2−36 – [14]

R-DL 4 1 1 Sect. 5

Alzette

DC 4 2−6 – [6]
R-DL 4 2−11.37 2−7.35 Sect. 6
DL 4 2−0.27 2−0.1 Sect. 6

Outline. Section 2 introduces the notations and preliminaries for rotational-xor
and linear cryptanalysis. We propose the rotational differential-linear cryptanal-
ysis and establish the theoretical link between the rotational-xor cryptanalysis
and linear cryptanalysis in Section 3. This is followed by Section 4 where we
explore the methods for evaluating the biases of rotational differential-linear
distinguishers. In Section 5 and Section 6, we apply the techniques developed
in previous sections to AND-RX and ARX primitives. Section 7 concludes the
paper with some open problems.
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2 Notations and Preliminaries

Let F2 = {0, 1} be the field with two elements. We denote by xi the i-th bit
of a bit string x ∈ Fn2 . For a vectorial Boolean function F : Fn2 → Fm2 with
y = F (x) ∈ Fm2 , its i-th output bit yi is denoted by (F (x))i. For an n-bit string
x, we use the indexing scheme x = (xn−1, · · · , x1, x0). In addition, concrete
values in Fn2 are specified in hexadecimal notations. For example, we use 1111

to denote the binary string (0001 0001 0001 0001)2.
The XOR-difference and rotational-xor difference with offset t of two bit

strings x and x′ in Fn2 are defined as x⊕ x′ and (x≪ t)⊕ x′, respectively. For
the rotational-xor difference δ = (x≪ t)⊕ x′, we may omit the rotation offset
and write δ = ←−x ⊕ x′ or δ = rot(x) ⊕ x′ to make the notation more compact
when it is clear from the context. Moreover, by abusing the notation, ←−x and
rot(x) may rotate the entire string x or rotate the substrings of x to the left
separately with a common offset, depending on the context. For instance, in the
analysis of Keccak-f , we rotate each lane of the state by certain amount [31].
Correspondingly, −→x and rot−1(x) rotate x or its substrings to the right. Similar
to differential cryptanalysis with XOR-difference, we can define the probability
of an RX-differential as follows.

Definition 1 (RX-differential probability). Let f : Fn2 → Fn2 be a vectorial
boolean function. Let α and β be n-bit words. Then, the RX-differential proba-
bility of the RX-differential α→ β for f is defined as

Pr[α→ β] = 2−n#{x ∈ Fn2 : rot(f(x))⊕ f(rot(x)⊕ α) = β}

Finally, the definitions of correlation, bias, and some lemmas concerning
Boolean functions together with the piling-up lemma are needed.

Definition 2 ([11,10]). The correlation of a Boolean function f : Fn2 → F2 is
defined as cor(f) = 2−n(#{x ∈ Fn2 : f(x) = 0} −#{x ∈ Fn2 : f(x) = 1}).

Definition 3 ([11,10]). The bias ε(f) of a Boolean function f : Fn2 → F2 is
defined as 2−n#{x ∈ Fn2 : f(x) = 0} − 1

2 .

From Definition 2 and Definition 3 we can see that cor(f) = 2ε(f).

Definition 4. Let f : Fn2 → F2 be a Boolean function. The Walsh-Hadamard

transformation takes in f and produces a real-valued function f̂ : Fn2 → R such
that

∀w ∈ Fn2 , f̂(w) =
∑
x∈Fn2

f(x)(−1)x·w.

Definition 5. Let f : Fn2 → F2 and g : Fn2 → F2 be two Boolean functions. The
convolutional product of f and g is a Boolean function defined as

∀y ∈ Fn2 , (f ? g)(y) =
∑
x∈Fn2

g(x)f(x⊕ y).
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Lemma 1 ([11], Corollary 2). Let f̂ be the Walsh-Hadamard transformation

of f . Then the Walsh-Hadamard transformation of f̂ is 2nf .

Lemma 2 ([11], Proposition 6). (̂f ? g)(z) = f̂(z)ĝ(z) and thus (̂f ? f) =

(f̂)2.

Lemma 3 (Piling-up Lemma [30]). Let Z0, · · · , Zm−1 be m independent
binary random variables with Pr[Zi = 0] = pi. Then we have that

Pr[Z0 ⊕ · · · ⊕ Zm−1 = 0] =
1

2
+ 2m−1

m−1∏
i=0

(pi −
1

2
),

or alternatively, 2 Pr[Z0 ⊕ · · · ⊕ Zm−1 = 0]− 1 =
∏m−1
i=0 (2pi − 1).

3 Rotational Differential-linear cryptanalysis

A natural extension of the differential-linear cryptanalysis is to replace the differ-
ential part of the attack by rotational-xor (RX) differentials. Let E = E1 ◦E0 be
an encryption function. Assume that we have an RX-differential δ → ∆ covering
E0 with Pr[rot(E0(x)) ⊕ E0(rot(x) ⊕ δ) = ∆] = p and a linear approximation
Γ → γ of E1 such that{

εΓ,γ = Pr[Γ · y ⊕ γ · E1(y) = 0]− 1
2 ,

εrot−1(Γ ),rot−1(γ) = Pr[rot−1(Γ ) · y ⊕ rot−1(γ) · E1(y) = 0]− 1
2 .

Let x′ = rot(x)⊕ δ. If the assumption

Pr[Γ · (rot(E0(x))⊕ E0(x′)) = 0 | rot(E0(x))⊕ E0(x′) 6= ∆] =
1

2
(4)

holds. We have

Pr[Γ · (rot(E0(x))⊕ E0(x′)) = 0] =
1

2
+

(−1)Γ ·∆

2
p.

Since

γ · (rot(E(x))⊕ E(x′)) = γ · rot(E(x))⊕ Γ · rot(E0(x))

⊕ Γ · (rot(E0(x))⊕ E0(x′))

⊕ Γ · E0(x′)⊕ γ · E(x′)

= rot(rot−1(γ) · E(x)⊕ rot−1(Γ ) · E0(x))

⊕ Γ · (rot(E0(x))⊕ E0(x′))

⊕ Γ · E0(x′)⊕ γ · E(x′),

the bias of the rotational differential-linear distinguisher can be estimated by
piling-up lemma as

ER-DL
δ,γ = Pr[γ · (←−E (x)⊕E(x′)) = 0]− 1

2
= (−1)Γ ·∆ ·2pεΓ,γεrot−1(Γ ),rot−1(γ), (5)
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and the corresponding correlation of the distinguisher is

CR-DL
δ,γ = 2ER-DL

δ,γ = (−1)Γ ·∆ · 4pεΓ,γεrot−1(Γ ),rot−1(γ). (6)

We can distinguish E from random permutations if the absolute value of ER−DL
δ,γ

or CR-DL
δ,γ is sufficiently high. Note that if we set the rotation offset to zero,

the rotational differential-linear attack is exactly the ordinary differential-linear
cryptanalysis. Therefore, the rotational differential-linear attack is a strict gen-
eralization of the ordinary differential-linear cryptanalysis.

A rotational differential-linear distinguisher can be extended by appending
linear approximations at the end. Given a rotational differential-linear distin-
guisher of a function f with a bias

εδ,γ = Pr[γ · (rot(f(x))⊕ f(rot(x)⊕ δ)) = 0]− 1

2
,

and a linear approximation (γ, µ) over a function g with{
εγ,µ = Pr[γ · x⊕ µ · g(x) = 0]− 1

2 ,

εrot−1(γ),rot−1(µ) = Pr[rot−1(γ) · x⊕ rot−1(µ) · g(x) = 0]− 1
2 ,

we can compute the bias of the rotational differential-linear distinguisher of
h = g ◦ f with input RX-difference δ and output linear mask µ by the piling-up
lemma. Since

µ · (rot(h(x))⊕ h(rot(x)⊕ δ)) = γ · (rot(f(x))⊕ f(rot(x)⊕ δ))
⊕ γ · rot(f(x))⊕ µ · rot(h(x))

⊕ γ · f(rot(x)⊕ δ)⊕ µ · h(rot(x)⊕ δ)
,

the bias of the rotational differential-linear distinguisher can be estimated as

Pr[µ · (rot(h(x))⊕ h(rot(x)⊕ δ)) = 0]− 1

2
= 4εδ,γεγ,µεrot−1(γ),rot−1(µ). (7)

However, as in ordinary differential-linear attacks, the assumption described
by Equation (4) may not hold in practice, and we prefer a closed formula for
the bias ER-DL

δ,γ without this assumption for much the same reasons leading to
Blondeau et al.’s work [9]. Also, we would like to emphasize that if Equation (5)
and (7) are used to estimate the bias, we should verify the results experimentally
whenever possible.

3.1 Towards a Closed Formula for The Bias of the Rotational
Differential-linear Distinguisher

In [9], Blondeau et al. proved the following theorem based on the general link
between differential and linear cryptanalysis [12].
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Theorem 1 ([9]). If E0 and E1 are independent, the bias of a differential-linear
distinguisher with input difference δ and output linear mask γ can be computed
as

Eδ,γ =
∑
v∈Fn2

εδ,vc
2
v,γ , (8)

for all δ 6= 0 and γ 6= 0, where{
εδ,v = Pr[v · (E0(x)⊕ E0(x⊕ δ)) = 0]− 1

2

cv,γ = cor(v · y ⊕ γ · E1(y))
.

To replay Blondeau et al.’s technique in an attempt to derive the rotational
differential-linear counterpart of Equation (8), we have to first establish the re-
lationship between rotational differential-linear cryptanalysis and linear crypt-
analysis.

Link between RX-cryptanalysis and linear cryptanalysis. Let F : Fn2 →
Fn2 be a vectorial Boolean function. The cardinality of the set

{x ∈ Fn2 :
←−
F (x)⊕ F (←−x ⊕ a) = b}

is denoted by ξF (a, b), and the correlation of u ·x⊕v ·F (x) is cor(u ·x⊕v ·F (x)).

Let
←−
F−→ : Fn2 → Fn2 be the vectorial Boolean function mapping x to

←−
F (−→x ). It is

easy to show that

cor(u · x⊕ v · ←−F−→(x)) = cor(−→u · x⊕−→v · F (x)).

In what follows, we are going to establish the relationship between

ξF (a, b), cor(u · x⊕ v · F (x)), and cor(−→u · x⊕−→v · F (x)).

Definition 6. Given a vectorial Boolean function F : Fn2 → Fn2 , the Boolean
function θF : F2n

2 → F2 is defined as

θF (x, y) =

{
1 if y = F (x),

0 otherwise.
(9)

Lemma 4. Let F : Fn2 → Fn2 be a vectorial Boolean function. Then for any
(a, b) ∈ F2n

2 , we have ξF (a, b) = (θ←−
F−→
? θF )(a, b).
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Proof. According to Definition 5, we have

(θ←−
F−→
? θF )(a, b) =

∑
x||y∈F2n

2

θ←−
F−→

(x, y)θF (a⊕ x, b⊕ y)

=
∑
x∈Fn2

∑
y∈Fn2

θ←−
F−→

(x, y)θF (a⊕ x, b⊕ y)

=
∑
x∈Fn2

θ←−
F−→

(x,
←−
F−→(x))θF (a⊕ x, b⊕←−F−→(x))

=
∑
x∈Fn2

θF (a⊕ x, b⊕←−F−→(x))

= #{x ∈ Fn2 : b⊕←−F−→(x) = F (a⊕ x)}
= ξF (a, b).

ut

Lemma 5. Let F : Fn2 → Fn2 be a vectorial Boolean function. Then for any

(a, b) ∈ F2n
2 , we have cor(a · x⊕ b · F (x)) = 2−nθ̂F (a, b).

Proof. According to Definition 4, we have

θ̂F (a, b) =
∑

x||y∈F2n
2

θF (x, y)(−1)(x||y)·(a||b)

=
∑
x∈Fn2

∑
y∈Fn2

θF (x, y)(−1)a·x⊕b·y

=
∑
x∈Fn2

(−1)a·x⊕b·F (x)

= 2ncor(a · x⊕ b · F (x)).

ut

In addition, applying Lemma 5 to
←−
F−→ gives cor(a · x⊕ b · ←−F−→(x)) = 1

2n θ̂←−F−→
(a, b).

Theorem 2. The link between RX-differentials and linear approximations can
be summarized as

ξF (a, b) =
∑
u∈Fn2

∑
v∈Fn2

(−1)u·a⊕v·bcor(−→u · x⊕−→v · F (x))cor(u · x⊕ v · F (x)). (10)

Proof. According to Lemma 4 and Lemma 2, we have

22nξF (a, b) =
̂̂

(θ←−
F−→
? θF )(a, b) = ̂̂θ←−

F−→
θ̂F (a, b).
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Since θ̂←−
F−→
θ̂F = 22ncor(u · x⊕ v · ←−F−→(x))cor(u · x⊕ v · F (x)) due to Lemma 5,

̂̂θ←−
F−→
θ̂F (a, b) = 22n

∑
u||v∈F2n2

(−1)(u||v)·(a||b)cor(u · x⊕ v ·
←−
F−→(x))cor(u · x⊕ v · F (x))

= 22n
∑

u,v∈Fn2

(−1)u·a⊕v·bcor(u · x⊕ v ·
←−
F−→(x))cor(u · x⊕ v · F (x))

= 22n
∑

u,v∈Fn2

(−1)u·a⊕v·bcor(−→u · x⊕−→v · F (x))cor(u · x⊕ v · F (x))

ut

If the function F is rotation invariant, i.e.,
←−−−
F (x) = F (←−x ), then we have

cor(−→u · x ⊕ −→v · F (x)) = cor(u · x ⊕ v · F (x)). As a result, the theoretical link
between rotational-xor and linear cryptanalysis degenerates to the link between
ordinary differential cryptanalysis and linear cryptanalysis. Moreover, based on
the link between differential and linear cryptanalysis, Blondeau et al. derive
a closed formula for the bias of an ordinary differential-linear distinguisher as
shown in Equation (8). We try to mimic Blondeau et al.’s approach to obtain
a closed formula for the biases of rotational differential-linear distinguishers.
However, we failed in this attempt due to a fundamental difference between
rotational-xor differentials and ordinary differentials: the output RX-difference
is not necessarily zero when the input RX-difference rot(x) ⊕ x′ is zero. We
leave it as an open problem to derive a closed formula for the bias of a rotational
differential-linear distinguisher. From a practical point of view, we do not lose
much due to the absence of a closed formula since this kind of formula will
inevitably involve the correlations of exponentially many trails which are hard
to evaluate in most situations.

3.2 Morawiecki et al.’s Technique Revisited

In [31], Morawiecki et al. performed a rotational cryptanalysis on the Keccak-f
permutation E. In this attack, the probability of

Pr[(E(x))i−t 6= (E(x≪ t))i]

was exploited to distinguish the target. In what follows, we show that Morawiecki
et al.’s technique can be regarded as a special case of the rotational differential-
linear framework.

Eventually, what we exploit in a rotational differential-linear attack associ-
ated with an input RX-difference δ ∈ Fn2 and an output linear mask γ ∈ Fn2 is
the abnormally high absolute bias or correlation of the Boolean function

γ · (rot(E(x))⊕ E(rot(x)⊕ δ)).

Following the notation of [9], let sp(γ) ⊆ Fn2 be the linear space spanned by γ,
and sp(γ)⊥ = {u ∈ Fn2 : ∀v ∈ sp(γ), u · v = 0} be the orthogonal space of sp(γ).

11



We then define two sets D0 and D1 which form a partition of Fn2 :{
D0 = {x ∈ Fn2 : rot(E(x))⊕ E(rot(x)⊕ δ) ∈ sp(γ)⊥}
D1 = {x ∈ Fn2 : rot(E(x))⊕ E(rot(x)⊕ δ) ∈ Fn2 − sp(γ)⊥} .

Under the above notations, for any x ∈ D0, γ · (rot(E(x))⊕E(rot(x)⊕ δ)) = 0
and for any x ∈ D1, γ · (rot(E(x))⊕ E(rot(x)⊕ δ)) = 1.

Thus, the higher the absolute value of

#D0 −#D1 = 2ncor(γ · (rot(E(x))⊕ E(rot(x)⊕ δ))),

the more effective the attack is.
If γ = ei is the i-th unit vector, we have sp(γ) = {0, ei} and sp(γ)⊥ contains

all vectors whose i-th bit is 0. In this case,

#D0 −#D1 = 2n − 2#D1

= 2n − 2n+1 (Pr[ei · (rot(E(x))⊕ E(rot(x)⊕ δ)) = 1])

= 2n − 2n+1 (Pr[(E(x))j 6= (E(rot(x)⊕ δ))i])
= 2n − 2n+1 (Pr[(E(x))j 6= (E(x′)i]) .

Therefore, the effectiveness of the rotational differential-linear attack can be
completely characterized by Pr[(E(x))i−t 6= (E(x′))i]. In the next section, we
show how to compute this type of probabilities for the target cipher.

4 Evaluate the Bias of Rotational Differential-linear
Distinguishers

According to the previous section, for a rotational differential-linear distinguisher
with an input RX-difference δ and output linear mask ei, the bias of the distin-
guisher can be completely determined by

Pr[(E(x))i−t 6= (E(x′))i], where x′ = x≪ t⊕ δ,

and we call it the rotational differential-linear probability or R-DL probability.
Note that for a random pair (x, x′ = x≪ t ⊕ δ) with rotational-xor difference
δ ∈ Fn2 , we have

Pr[xi−t 6= x′i] =
1 + (−1)1−δi

2
,

for 0 ≤ i < n. Therefore, what we need is a method to evaluate the probability

Pr[(F (x))i−t 6= (F (x′))i]

for 0 ≤ i < m − 1, where F : Fn2 → Fm2 is a vectorial Boolean function that
represents a component of E. Then, with certain independence assumptions, we
can iteratively determine the probability Pr[(E(x))i−t 6= (E(x′))i].

12



Observation 1 Let F : Fn
2 → Fm

2 be a vectorial Boolean function. Assume that the
input pair (x, x′) satisfies Pr[xi−t 6= x′i] = pi for 0 ≤ i < n, where x, x′ ∈ Fn

2 . For
u ∈ Fn

2 , we define the set Su = {(x, x′) ∈ Fn
2 × Fn

2 : (x≪ t)⊕ x′ = u} with #Su = 2n.
Let yi and y′i be the i-th bit of F (x) and F (x′) respectively for 0 ≤ i < m. Then we
have

Pr[yi−t 6= yi] =
∑
u∈Fn2

Pr[yi−t 6= yi|(x, x′) ∈ Su] Pr[(x, x′) ∈ Su]

=
∑
u∈Fn2

Pr[yi−t 6= yi|(x, x′) ∈ Su]

n−1∏
i=0

((1− ui)− (−1)uipi)

=
1

2n

∑
u∈Fn2

#{(x, x′) ∈ Su : yi−t 6= yi}
n−1∏
i=0

((1− ui)− (−1)uipi).

The observation is inspired by Morawiecki et al.’s work on rotational crypt-
analysis [31] where, given a rotational pair, the bias of the output pair being
unequal at certain bit is calculated for one-bit AND, NOT and XOR. In the
following, we reformulate and generalize their propagation rules in terms of ro-
tational differential-linear probability. Note that all these rules can be derived
from Observation 1.

Proposition 1 (AND-rule). Let a, b, a′, and b′ be n-bit strings with Pr[ai−t 6=
a′i] = pi and Pr[bi−t 6= b′i] = qi. Then

Pr[(a ∧ b)i−t 6= (a′ ∧ b′)i] =
1

2
(pi + qi − piqi).

Proposition 2 (XOR-rule). Let a, b, a′, and b′ be n-bit strings with Pr[ai−t 6=
a′i] = pi and Pr[bi−t 6= b′i] = qi. Then

Pr[(a⊕ b)i−t 6= (a′ ⊕ b′)i] = pi + qi − 2piqi.

Proposition 3 (NOT-rule). Let a and b be n-bit strings with Pr[ai−t 6= bi] =
pi. Then Pr[āi−t 6= b̄i] = pi.

Next, we consider constant additions. Let (x, x′) ∈ F2n
2 be a data pair with

Pr[xi−t 6= x′i] = pi for some integer t and c ∈ Fn2 be a constant. Then Pr[(x ⊕
c)i−t 6= (x′ ⊕ c)i] = Pr[xi−t ⊕ x′i 6= ci−t ⊕ ci]. In [31], only the cases where
ci−t⊕ ci = 1 or ci−t = ci = 0 are considered. We generalize the rule for constant
addition from [31] to the following proposition with all possibilities taken into
account.

Proposition 4 (Adjusted C-rule). Let a and a′ be n-bit strings with Pr[ai−t 6=
a′i] = pi and c ∈ Fn2 be a constant. Then we have

Pr[(a⊕ c)i−t 6= (a′ ⊕ c)i] =

{
1− pi, ci−t ⊕ ci = 1

pi, ci−t ⊕ ci = 0

13



4.1 Propagation of R-DL Probabilities in Arithmetic Operations

For functions with AND-RX or LRX construction, such as the permutation
Keccak-f , the propagation of the R-DL probability can be evaluated by the
propositions previously shown, under the independency assumptions on the
neighbouring bits. However, when dependency takes over, even if a function
can be expressed as a boolean circuit, a direct applications of the AND, XOR,
NOT and adjusted C-rule may lead to errors that accumulated during the iter-
ated evaluation. One such example is the modular addition. In the following, we
will derive the propagation rules of the differential-linear (DL) probability and
R-DL probability for an n-bit modular addition.

Lemma 6 (carry-rule). Let ς : F3
2 → F2 be the carry function

ς(x0, x1, x2) = x0x1 ⊕ x1x2 ⊕ x0x2.

Let a, b, c, a′, b′, and c′ be binary random variables with

p0 = Pr[a 6= a′], p1 = Pr[b 6= b′], p2 = Pr[c 6= c′].

Then, we have that

Pr[ς(a, b, c) 6= ς(a′, b′, c′)] = p0p1p2 −
p0p1 + p0p2 + p1p2

2
+
p0 + p1 + p2

2
.

Proof. We prove the carry-rule with Observation 1 by enumerating u ∈ F3
2. For

u = (0, 0, 0), Pr[ς(a, b, c) 6= ς(a′, b′, c′)|a = a′, b = b′, c = c′] = 0. For u = (0, 0, 1),
Pr[ς(a, b, c) 6= ς(a′, b′, c′)|a = a′, b = b′, c 6= c′] = Pr[a ⊕ b = 1] = 1/2 and∏2
i=0((1− ui) + (−1)1−uipi) = (1− pa)(1− pb)pc.

Similarly, one can derive the expression for all u ∈ F23 , and we omit the
details.The overall probability of the event ab ⊕ ac ⊕ bc 6= a′b′ ⊕ a′c′ ⊕ b′c′ is
papbpc − (papb + papc + pbpc)/2 + (pa + pb + pc)/2. ut

Based on the carry-rule, we can immediately prove the following two theorems
on the DL and R-DL probabilities for n-bit modulo additions.

Theorem 3 (�-rule for DL). Let x, y and x′, y′ be n-bit string, such that
Pr[xi 6= x′i] = pi and Pr[yi 6= y′i] = qi. Then, the differential-linear probability
for modular addition can be computed as

Pr[(x� y)i 6= (x′ � y′)i] = pi + qi − 2piqi − 2pisi − 2qisi + 4piqisi

where s0 = 0 and

si+1 = piqisi −
piqi + pisi + qisi

2
+
pi + qi + si

2
, i ≤ n− 1

Proof. For inputs x and y, denote the carry by

c = (x� y)⊕ x⊕ y = (cn−1, · · · , c1, c0),
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where c0 = 0, ci+1 = xiyi ⊕ xici ⊕ yici. Similarly, for x′ and y′, denote the carry
by c′ = (c′n−1, · · · , c′1, c′0). Let si denote the probability Pr[ci 6= c′i]. Then, s0 = 0
and for i ≥ 1, the event ci 6= c′i is equivalent to

xi−1yi−1 ⊕ xi−1ci−1 ⊕ yi−1ci−1 6= x′i−1y
′
i−1 ⊕ x′i−1c′i−1 ⊕ y′i−1c′i−1.

Therefore, si can be computed as

pi−1qi−1si−1 − (pi−1qi−1 + pi−1qi−1 + qi−1si−1)/2 + (pi−1 + qi−1 + si−1)/2

according to Lemma 6. Since x� y = x⊕ y ⊕ c, and x′ � y′ = x′ ⊕ y′ ⊕ c′, with
the XOR-rule, we have

Pr[(x� y)i 6= (x′ � y′)i] = pi + qi − 2piqi − 2pisi − 2qisi + 4piqisi.

ut

Example 1. Consider an 8-bit modular addition with input difference being a =
7 and b = 7. Then, we have for 0 ≤ i ≤ 7,

pi =
1 + (−1)1−ai

2
, qi =

1 + (−1)1−bi

2
,

so

p0 = p1 = p2 = 1, p3 = p4 = p5 = p6 = p7 = 0,

q0 = q1 = q2 = 1, q3 = q4 = q5 = q6 = q7 = 0.

The �-rule gives the output DL-probabilities in Table 2. The probabilities pre-
dicted in the table are verified by running through the 16-bit input space. In
addition, we verified the �-rule in DL with all input differences on an 8-bit
modular addition. Under the precision level given in Table 2, the experiments
match the theoretical prediction perfectly.

Table 2: The DL-probabilities of an 8-bit modular addition with input differences
a = b = 7 by theoretical evaluation, which are confirmed by experiments.

i 0 1 2 3 4 5 6 7

pi 0 2−1 2−0.415037 2−0.192645 2−1.19265 2−2.19265 2−3.19265 2−4.19265

As for the rotational differential-linear cryptanalysis of an n-bit modular
addition, a left rotation by t bits is applied to the operands. Firstly, we present
the �-rule for RX-difference with a rotation offset t = 1.
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Theorem 4 (�-rule for RL, t = 1). Given random n-bit strings x, y and
x′, y′ such that x′ = (x ≪ 1) ⊕ a, y′ = (y ≪ 1) ⊕ b, where Pr[xi−1 6= x′i] =
pi,Pr[yi−1 6= y′i] = qi. Then, the rotational differential-linear probability of the
modular addition can be computed as

Pr[(x� y)i−1 6= (x′ � y′)i] = pi + qi − 2piqi − 2pisi − 2qisi + 4piqisi,

where s0 ≈ 1/2, s1 = 1/4,

si+1 = piqisi −
piqi + pisi + qisi

2
+
pi + qi + si

2
, 2 ≤ i ≤ n− 1.

Proof. Denote x = (xn−1, · · · , x1, x0), y = (yn−1, · · · , y1, y0). Then

x′ = ((x′n−1, · · · , x′1, x′0) = (xn−2 ⊕ an−1, · · · , x0 ⊕ a1, xn−1 ⊕ a0)

y′ = ((y′n−1, · · · , y′1, y′0) = (yn−2 ⊕ bn−1, · · · , y0 ⊕ b1, yn−1 ⊕ b0)

Let c = (cn−1, · · · , c0) = (x�y)⊕x⊕y and c′ = (c′n−1, · · · , c′0) = (x′�y′)⊕x′⊕y′
be the two carries.

Let si denote the probability Pr[ci−1 6= c′i]. When i = 0, s0 = Pr[cn−1 6=
c′0] = Pr[xn−2yn−2 ⊕ xn−2cn−2 ⊕ yn−2cn−2 = 0] ≈ 1/2, because the LHS term
is balanced for independent random variables x and y. For i = 1, s1 = Pr[c0 6=
c′1] = Pr[x′0y

′
0 6= 0] = 1/4. For i > 1, si is equal to

Pr[ci−1 6= c′i] = Pr[xi−2yi−2 ⊕ xi−2ci−2 ⊕ yi−2ci−2 6= x′i−1y
′
i−1 ⊕ x′i−1c

′
i−1 ⊕ y′i−1c

′
i−1]

= pi−1qi−1si−1 −
pi−1qi−1 + pi−1si−1 + qi−1si−1

2
+
pi−1 + qi−1 + si−1

2

For x � y and x′ � y′, applying the XOR-rule on the inputs and the carry
vector gives

Pr[(x� y)i−1 6= (x′ � y′)i] = pi + qi − 2piqi − 2pisi − 2qisi + 4piqisi

ut
Example 2. Consider an 8-bit modular addition with input RX-difference (left
rotate by 1-bit) being a = 7 and b = 7, which implies that

p0 = p1 = p2 = 1, p3 = p4 = p5 = p6 = p7 = 0,

q0 = q1 = q2 = 1, q3 = q4 = q5 = q6 = q7 = 0.

The R-DL probability of the i-th output bit, 0 ≤ i < 8 is given in Table 3. The
probabilities predicted for i ≥ 2 are verified by running through the 16-bit input
space, and the probability for i = 0 is 2−1.01132 by experiment.

The experiments on an 8-bit modular addition show that the theoretical
estimation of the DL and R-DL probabilities match the experiments well, except
that the approximation in R-DL probability for the least significant bit has a
marginal error in precision.

With a similar deduction, we give the following theorem for computing the
R-DL probability through a modular addition under the condition that rot(x) =
x≪ t, for an integer 2 ≤ t ≤ n− 1.
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Table 3: The RL-probabilities of an 8-bit modular addition with input differences
a, b = 7. rot(x) = x≪ 1. The index i represents the position of the output bit.

i 0 1 2 3 4 5 6 7

p 2−1 2−2 2−0.678072 2−0.29956 2−1.29956 2−2.29956 2−3.29956 2−4.29956

Theorem 5 (�-rule for RL for arbitrary t > 1). Given random n-bit strings
x, y and x′, y′ such that x′ = x≪ t⊕ a, y′ = y≪ t⊕ b, where Pr[xi−1 6= x′i] =
pi,Pr[yi−1 6= y′i] = qi. Then, the rotational differential-linear probability of the
modular addition for i ≥ 0 can be computed as

Pr[(x� y)i−1 6= (x′ � y′)i] = pi + qi − 2piqi − 2pisi − 2qisi + 4piqisi,

where s0 ≈ 1/2, st = 1/2,

si+1 = piqisi −
piqi + pisi + qisi

2
+
pi + qi + si

2
, 1 ≤ i ≤ n− 1, i 6= t

Proof. Denote x = (xn−1, · · · , x1, x0), y = (yn−1, · · · , y1, y0), then

x′ = ((x′n−1, · · · , x′1, x′0) = (xn−1−t ⊕ an−1, · · · , xn−t+1 ⊕ a1, xn−t ⊕ a0)

y′ = ((y′n−1, · · · , y′1, y′0) = (yn−1−t ⊕ bn−1, · · · , y0 ⊕ b1, yn−1 ⊕ b0).

Let c = (cn−1, · · · , c1, c0) and c′ = (c′n−1, · · · , c′1, c′0) be the carries. Let si denote
the probability Pr[ci−t 6= c′i]. When i = 0,

s0 = Pr[cn−t 6= c′0] = Pr[xn−t−1yn−t−1⊕xn−t−1cn−t−1⊕yn−t−1cn−t−1 6= 0] ≈ 1/2

When i = t, st = Pr[c0 6= c′t] = Pr[x′t−1y
′
t−1 ⊕ x′t−1c′t−1 ⊕ y′t−1c′t−1 6= 0] ≈ 1/2

For all i, i 6= 0, t,

si = Pr[ci−t 6= c′i]

= Pr[x′i−1y
′
i−1 ⊕ x′i−1c′i−1 ⊕ y′i−1c′i−1
6= xn−t+i−1yn−t+i−1 ⊕ xn−t+i−1cn−t+i−1 ⊕ cn−t+i−1yn−t+i−1]

= pi−1qi−1si−1 −
pi−1qi−1 + pi−1si−1 + qi−1si−1

2
+
pi−1 + qi−1 + si−1

2
.

Then, we have

Pr[(x� y)i−t 6= (x′ � y′)i] = pi + qi − 2piqi − 2pisi − 2qisi + 4piqisi.

ut

The �-rules for DL and R-DL allows us to compute the partial DLCT of an
n-bit modular addition accurately and efficiently. A naive application of Bar-
On et al.’s approach [4] based on the Fast Fourier Transformation (FFT) by
treating the modular addition as an 2n×n S-box would require a complexity of
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O(22n), where it requires a complexity of O(n22n) to obtain the n rows of the
DLCT whose output masks are the unit vectors. In contrast, with the �-rule for
DL, given the input difference, the DL-probability for all output masks that are
unit vectors can be evaluated in O(n) operations, which achieves an exponential
speed-up.

4.2 Finding Input Differences for Local Optimization

According to Proposition 1 and Proposition 2, for x and y in F2, if Pr[x 6= x′] =
p1,Pr[y 6= y′] = p2, we have

Pr[xy 6= x′y′] =
1

2
(p1 + p2 − p1p2), Pr[x⊕ y 6= x′ ⊕ y′] = p1 + p2 − 2p1p2.

Obviously, Pr[xy 6= x′y′] is in the interval [0, 0.5] and Pr[x⊕y 6= x′⊕y′] is in the
interval [0, 1]. Moreover, a behaviour of Pr[x ⊕ y 6= x′ ⊕ y′] is that it collapses
to 1

2 (e.g., correlation zero) whenever one of p1 and p2 is 1
2 . This observation

suggests that the input probabilities should be biased from 1
2 as much as possible.

Otherwise, the probabilities will rapidly collapse to 1
2 for all one-bit output masks

after a few iterative evaluations of the round function.
In order to find distinguishers that cover as many rounds of a function F as

possible, our strategy is to look for an input RX-difference δ, such that the DL
or R-DL probability after one or a few propagations still has a relatively large
imbalance for all the output masks whose Hamming weights are one. Therefore,
we can define the objective function to maximize the summation of the absolute
biases: ∑

i

(|Pr[ei · (rot(f(x))⊕ f(rot(x)⊕ δ)) = 0]− 1/2|). (11)

For 8-bit modular additions, we observed that the absolute DL and R-DL
bias are relatively large when the input RX-differences are either with a large
Hamming weight or a small weight. For instance, with RX-difference (x ≪
1)⊕x′, when the input differences are a = 0 and b = 1, the RL-probabilities are
given as follows for ei, i = 0, 1, . . . , 7.

2−1, 2−2, 2−3, 2−4, 2−5, 2−6, 2−7, 2−8.

Whereas for a = ff and b = ff, the RL-probabilities are given as follows for
ei, i = 0, 1, . . . , 7.

2−1, 2−2, 2−0.678072, 2−0.29956, 2−0.142019, 2−0.0692627, 2−0.0342157, 2−0.0170064.

When the size of the operands are large (e.g., n = 32), it is difficult to find
the optimal input difference manually. Next, we show the optimal input RX-
difference with respect to the objective function given by Equation (11) in a
32-bit modular addition. See the full version of this paper [25] for the search of
such differences.
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Example 3. Consider the R-DL probability for a 32-bit modular addition with
rot(x) = x≪ 1. With input RX-differences

a = 7ffffffc, b = 7ffffffe,

the objective function in Equation 11 is maximized, and the R-DL probabilities
Pr[ei · (rot(x� y)⊕ ((rot(x)⊕ a)� (rot(y)⊕ b))) = 1] for 0 ≤ i ≤ 31 are shown
as follows.

i 0 1 2 3 4 5 6 7
pi 0.5 0.75 0.5 0.75 0.875 0.9375 0.96875 0.984375

i 8 9 10 11 12 13 14 15
pi 0.992188 0.996094 0.998047 0.999023 0.999512 0.999756 0.999878 0.999939

i 16 17 18 19 20 – 31
pi 0.999969 0.999985 0.999992 0.999996 1

5 Applications to AND-RX Primitives

In this section, we apply the rotational differential-linear technique to the AND-
RX permutations involved in FRIET and Xoodoo, and significant improvements
are obtained. To confirm the validity of the results, all distinguishers with prac-
tical complexities are experimentally verified, and the source code is available2.

5.1 Distinguishers for Round-reduced FRIET

FRIET is an authenticated encryption scheme with built-in fault detection mech-
anisms proposed by Simon et al. at EUROCRYPT 2020 [32]. Its fault detection
ability comes from its underlying permutation, which is designed based on the
so-called code embedding approach.

The core permutation FRIET-P employed in FRIET operates on a 4 × 128 =
512-bit state arranged into a rectangular with 4 rows (called limbs) and 128
columns (called slices) as shown in Figure 1. The permutation FRIET-P is an
iterative design with its round function grci visualized in Figure 2, where a, b,
and c ∈ F128

2 are the four limbs (see Figure 1) of the input state and rci is the
round constant for the i-th round.

By design, the round function grci is slice-wise code-abiding for the parity
code [4, 3, 2]F2

, meaning that every slice of the output state is a code word if
every slice of the input state is a code word. Mathematically, it means that
a + b + c = d implies a′ + b′ + c′ = d′. This slice-wise code-abiding property is
inherited by the permutation FRIET-P = grct−1 ◦ · · · ◦ grc1 ◦ grc0 . Consequently,

2
https://github.com/YunwenL/Rotational-cryptanalysis-from-a-differential-linear-perspective
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Fig. 2: The round functions of Friet-PC and Friet-P

faults will be detected if some output slice is not a code word when all of the slices
of the input state are code words. Note that the behavior of the permutation
FRIET-PC is identical to FRIET-P by design if we ignore the limb d.

Practical Distinguishers for FRIET-PC. Since a distinguisher for the per-
mutation FRIET-PC directly translates to a distinguisher for FRIET-P, we focus
on the permutation FRIET-PC. Let (a, b, c) and (a′, b′, c′) in F128×3

2 be the input
pair of the permutation with RX-differences

∆a = (a≪ t)⊕ a′, ∆b = (b≪ t)⊕ b′, ∆c = (c≪ t)⊕ c′.
In our analysis, we only consider input RX-differences such that wt(∆a) +
wt(∆b) + wt(∆c) ≤ 1.

According to the adjusted C-rule (see Proposition 4), the constant addi-
tion injects an RX-difference c ⊕ (c ≪ t) to the state, and alters the R-DL-
probabilities when the corresponding bits in c ⊕ (c ≪ t) is nonzero. A rule-
of-thumb for choosing the rotational amount is to minimize the weight of the
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RX-difference introduced by the round constants, so that the effect of the con-
stants on destroying the rotational propagation is presumably decreased. The
first 6 round constants of FRIET-PC are (in Hexadecimal)

1111, 11100000, 1101, 10100000, 101, 10110000.

To minimize the Hamming weight of the RX-differences from the round con-
stants, one of the best rotational operations is to left rotate by 4 bits, such that
the consecutive nonzero nibbles cancel themselves as many as possible. Then,
the injected RX-differences due to the round constants are

10001, 100100000, 10111, 111100000, 1111, 111010000.

With the AND-rule, XOR-rule and adjusted C-rule, the R-DL probability can
be evaluated given the input RX-differences with wh(∆a)+wh(∆b)+wh(∆c) ≤ 1
and the output linear mask ei. Table 4 shows the rotational differential-linear
distinguishers with the largest absolute correlation we found in reduced-round
FRIET-PC, where ∆a, ∆b, ∆c are the input RX-differences, and γa, γb, γc are the
output masks for the limbs a, b, c, respectively.

Table 4: Distinguishers for reduced-round FRIET-PC with rotation offset t = 4.

Round ∆a ∆b ∆c γa γb γc
Correlation

Theoretical Experimental

1 0 0 0 1 0 0 1 1
2 0 0 0 1 0 0 1 1
3 0 0 0 1 0 0 1 1
4 0 0 0 0 1 0 1 1
5 0 0 1 0 0 400000000000000000000 2−0.96 2−0.83

6 0 0 10000 0 0 40000 2−5.81 2−5.12

For FRIET-PC reduced to 4-round, an R-DL distinguisher with correlation 1
is detected, with input RX-differences (0, 0, 0) and output masks (0, 1, 0). For 5,
6-round FRIET-PC, we found practical rotational differential-linear distinguishers
with correlation 2−0.96 and 2−5.81, respectively. All the distinguishers shown in
Table 4 are verified experimentally with 224 random plaintexts.

Extending the Practical Distinguishers. According to the discussion of Sec-
tion 3, we can extend a rotational differential-linear distinguisher by appending
a linear approximation γ → µ, and the bias of the extended distinguisher can be
computed with Equation (7). Consequently, this extension is optimal when εγ,µ
and εrot−1(γ),rot−1(µ) reach their largest possible absolute values simultaneously.
For FRIET-PC, we always have εγ,µ = εrot−1(γ),rot−1(µ), and thus we can focus
on finding an optimal linear approximation γ → µ.
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Here we take the 6-round R-DL distinguisher presented in Table 4 and append
optimal linear approximations to extend it. The output linear mask of the 6-
round distinguisher is (0, 0, 40000). In Table 5, we list the correlations of the
optimal linear approximations for round-reduced FRIET-PC whose input masks
are (0, 0, 40000), which are found with the SMT-based approach [20].

Table 5: The correlation of optimal linear trails found in round-reduced FRIET-
PC with the input masks (0, 0, 40000)

# Round 1 2 3 4 5 6 7
Correlation 2−2 2−6 2−12 2−20 2−30 2−42 2−56

The optimal 1-round linear trail we found has output masks

µa = 00000000000000020000000000040000

µb = 00004000000000020000000000040000

µc = 00000000000080020000000000060000.

Thus a 7-round distinguisher can be built by concatenating the 6-round dis-
tinguisher with a 1-round linear approximation, and the estimated correlation
is 2−5.81 × 2−2×2 = 2−9.81. With 224 pairs of inputs satisfying the input RX-
difference, the output difference under the specified mask are biased with a
correlation approximately 2−9.12. Similarly, by appending a 2-round linear trail
with output masks

µa = 00000000000000030000000000060000

µb = 00006000000000010000000030020000

µc = 600000000000c0010000000000030000.

at the end of the 6-round rotational differential-linear distinguisher, we get a
8-round RL-distinguisher with a correlation 2−17.81. And with 240 pairs of in-
puts satisfying the input RX-difference, we find the experimental correlation of
the 8-round distinguisher is 2−17.2. As a comparison, the 7-,8-round linear trails
presented in the specification of FRIET-PC have correlation 2−29 and 2−40, re-
spectively. With the linear trails shown in Table 5, the concatenated distinguisher
can reach up to 13 rounds, with an estimated correlation 2−117.81.

5.2 Distinguishers for Round-reduced Xoodoo

Xoodoo [14] is a 384-bit lightweight cryptographic permutation whose primary
target application is in the Farfalle construction [8]. The state of Xoodoo is
arranged into a 4 × 3 × 32 cuboid and the bit at a specific position is accessed
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as a[x][y][z]. One round of Xoodoo consists of the following operations.

a[x][y][z] = a[x][y][z]⊕
∑
y

a[x− 1][y][z − 5]⊕
∑
y

a[x− 1][y][z − 14]

a[x][1][z] = a[x− 1][1][z], a[x][2][z] = a[x][2][z − 11]

a[0][0] = a[0][0]⊕RCi
a[x][y][z] = a[x][y][z]⊕ ((a[x][y + 1][z] + 1) ∗ (a[x][y + 2][z]))

a[x][1][z] = a[x][1][z − 1], a[x][2][z] = a[x− 1][2][z − 8]

The total number of rounds in Xoodoo is 12, and in some modes (Farfalle [8]
for instance), the core permutation calls a 6-round Xoodoo permutation. The
round constants of Xoodoo are shown in the following, and for Xoodoo reduced
to r rounds, the round constants are c−(r−1), · · · , c0.

c−11 = 00000058, c−8 = 000000D0, c−5 = 00000060, c−2 = 000000F0

c−10 = 00000038, c−7 = 00000120, c−4 = 0000002C, c−1 = 000001A0

c−9 = 000003C0, c−6 = 00000014, c−3 = 00000380, c0 = 00000012

Given input difference being all-zero, i.e., the input pair is exactly a rotational
pair, let the rotation amount be left-rotate by 1-bit. We find that after 3 rounds
of Xoodoo, there are still many output bits that are highly biased, with the largest
correlation being 1 and the one-bit mask at position (1, 0, 16). This suggests a
nonzero mask 10000 at the lane (1, 0). However, extending one extra round, we
no longer see any significant correlation.

Noticing that the round constant is XORed into the state right after the first
two linear operations, one can control the input RX-difference such that the
difference is cancelled by the injection of the first-round constant. As a result, it
gains one round free at the beginning, and we are able to construct a 4-round
distinguishers for Xoodoo. When the left-rotational amount is set to 1-bit, the
RX-difference of the first constant c−3 is 00000480. This suggests that if we take
input RX-differences

a[0][0] = 484ccc80; a[0][1] = 484cc800; a[0][2] = 484cc800;

a[1][0] = 3ab9821a; a[1][1] = 3ab9821a; a[1][2] = 3ab9821a;

a[2][0] = 37b6cde9; a[2][1] = 37b6cde9; a[2][2] = 37b6cde9;

a[3][0] = 45a3f0cb; a[3][1] = 45a3f0cb; a[3][2] = 45a3f0cb.

The RX-difference after the first round of Xoodoo will be all zero. Hence, we
are able to find a 4-round distinguishers with significant correlations. We find
a rotational differential-linear distinguishers with correlation 1 with the output
mask being 10000 at lane (1, 0) and zero for the rest lanes. Another two distin-
guishers with the same correlation are found with output mask 20000 at lane
(1, 1) and 1000000 at lane (3, 2).
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≫ 31

≫ 24

c

≫ 17

≫ 17

c

≫ 0

≫ 31

c

≫ 24

≫ 16

c

x← x� (y≫ 31), y ← y � (x≫ 24), x← x⊕ c

x← x� (y≫ 17), y ← y � (x≫ 17), x← x⊕ c

x← x� (y≫ 0), y ← y � (x≫ 31), x← x⊕ c

x← x� (y≫ 24), y ← y � (x≫ 16), x← x⊕ c

Fig. 3: The Alzette instance.

6 Applications to ARX Primitives

In this section, we apply the rotational differential-linear technique to the ARX
permutations involved in Alzette and SipHash, and the source code for exper-
imental verifications is available3.

6.1 Application in the 64-bit ARX-box Alzette

At CRYPTO 2020, Beierle et al. presented a 64-bit ARX-box Alzette [6] that
is efficient for software implementation. The design is along the same research
line with a previous design called SPARX [15] with a 32-bit ARX-box where a
long trail argument was proposed for deriving a security bound in ARX ciphers.
Figure 3 shows an instance of Alzette with an input (x, y) ∈ F32

2 × F32
2 . The

differential and linear properties of Alzette is comparable to the 8-bit S-box of
AES. The optimal differential characteristic in Alzette has a probability of 2−6.
In addition, because of the modular additions in Alzette and the diffusion, the
designers showed by division property that the Alzette may have full degree in
all its coordinates.

In the following, we present the rotational differential-linear and differential-
linear distinguishers of Alzette found with the techniques in Section 4. The
constant c = B7E15162 (the first constant in SPARX-based design Sparkle-128)
is considered for illustration.

Rotational differential-linear distinguisher. In Section 4.2, (7ffffffc, 7fffffffe)
is found to be optimal in 32-bit modular addition under the objective function
considered in Example 3. Here, the difference can be used as the input differ-
ence of the first modular addition in Alzette. Because of the right rotation

3
https://github.com/YunwenL/Rotational-cryptanalysis-from-a-differential-linear-perspective.
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Fig. 4: A comparison between the differential-linear probability in Alzette by
theoretical computation and by experiment. The index shows the index of the
nonzero bit in the unit-vector output mask. For instance, when the index is 0,
the output mask is (0,1), and when the index is 63, it is (80000000,0).

by 31 bits before the modular addition, the input RX-difference to Alzette is
(7ffffffc, 3ffffffff). With an iterative evaluation on the steps in Alzette,
we found that the second least significant bit is biased. Specifically, with an
output mask (2, 0), the RL-probability is 0.500189, that is a correlation 2−11.37.
By taking 228 pairs of random plaintexts, the experimental correlation of the
distinguisher is 2−7.35. In addition, we checked all input RX-differences (a, b)
with Hamming weight wt(a) + wt(b) = 1, but no rotational differential-linear
distinguisher is found.

Differential-linear distinguisher. For all input differences with Hamming weight
1, we compute the differential-linear probability of Alzette with the technique
in Section 4. The best found distinguisher has an input difference (80000000, 0)
and output mask (80000000, 0), with a probability of 0.086, equivalently, a corre-
lation of 2−0.27. By experiment verification with 228 pairs of random plaintexts,
the correlation is 2−0.1.

The following Figure 4 shows a comparison of the probability for an input dif-
ference (80000000, 0) and output masks (1≪ t, 0) (for all integer t ∈ [0, 31]), by
our evaluation technique and the experiment with 224 pairs of random plaintexts.
The theoretical evaluation matches the experiment within a tolerable fluctua-
tion.

Comparing with RL-distinguishers and DL-distinguisher found in Alzette,
the latter is significantly stronger. Also, it is interesting to notice that input
differences with low Hamming weight often lead to good differential-linear dis-
tinguishers in Alzette, whereas we didn’t find any rotational differential-linear
distinguisher with low-weight RX-differences when the rotational offset is greater
than zero. The influence of the constants in RL-distinguishers may be the main
cause.
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6.2 Experimental Distinguishers for SipHash Explained

SipHash [2], designed by Aumasson and Bernstein, is a family of ARX-based
pseudorandom functions optimized for short inputs. Instances of SipHash are
widely deployed in practice. For example, SipHash-2-4 is used in the dnscache
instances of all OpenDNS resolvers and employed as hash() in Python for all
major platforms (https://131002.net/siphash/#us).

In [16], from a perspective of differential cryptanalysis, a bias of the differ-
ence distribution of one particular output bit for 3-round SipHash is observed
when the Hamming weight of the input difference is one. For instance, with in-
put difference a = 1, He and Yu showed that the output difference is biased
at the 27-th bit with a correlation 2−6 by experiments. This observation was
obtained through extensive experiments and the theoretical reason behind these
distinguishers is unclear as stated by He and Yu:

“... we are not concerned about why it shows a rotation property or why
it reaches such a bias level. However, a great number of experiments can
support those observations. (see [16, Section 4.2, Page 11])”

According to the discussion of Section 3.2, the bias of E(x)⊕E(x⊕δ) observed
in [16] is equivalent to the bias of

ei · (E(x)⊕ E(x⊕ δ)).
It can be interpreted in the differential-linear framework and analyzed with

the theoretical approach presented in Section 4. Here, we apply the rules for
modular addition and XOR, and compute the DL-probability of the 3-round
distinguisher found in SipHash. With our technique, we confirm that the 3-round
differential-linear distinguisher with the aforementioned difference and mask, the
predicted correlation is 2−6.6 which is close to He and Yu’s experiments.

In addition, we can explain the observation on the rotation property with
the �-rule in differential-linear. We will adopt the notations that are used in
Theorem 3.

Because the input difference in their experiment has only one nonzero bit,
we consider the DL-probability of an n-bit modular addition where the input
difference is (ek, 0), for an integer k.

Then, for a pair of inputs (x, y) and (x′, y′), the probability pk = Pr[xk 6=
x′k] = 1. And for the remaining bits, pi = Pr[xi 6= x′i], i 6= k and qi = Pr[yi, y

′
i]

are equal to zero.
Let si = Pr[ς(x, y)i 6= ς(x′, y′)]. We have s0, · · · , sk = 0, sk+t = 2−t, 1 ≤ t ≤

n− 1− k. As a result, the DL-probabilities through the modular addition at the
i-th bit is given by Pi = Pr[(x� y)i 6= (x′ � y′)i], 0 ≤ i ≤ n− 1, where

Pr[(x� y)i 6= (x′ � y′)i] =

{
0, i ≤ k
2−i+k, otherwise

(12)

By rotating the input difference (1 ≪ k, 0) to the left by one bit, the

differential-linear probability for the i-th bit of the output
←−
Pi is equal to 2−i+k+1

for k + 1 < i ≤ n− 1, and to zero for i ≤ k + 1.
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It is obvious that the by rotating the differential-linear probability in Equa-

tion (12), we obtain the probabilities
←−
Pi for all but the least significant bit,

where
←−
P0 = 0 and Pn−1 = 2−n−1+k. Nevertheless, the error is negligible if n− k

is large, and it holds for large modular additions such as the 64-bit one adopted
in SipHash.

For input differences with Hamming weight more than 1, a similar rotational
property can be observed for the �-rule in differential-linear. And it gives a
straightforward intuition on the rotational property observed in the differential-
linear distinguishers of SipHash.

7 Conclusion and Open Problems

We extend the differential-linear framework by using rotational-xor differentials
in the differential part of the framework and we name the resulting cryptana-
lytic technique as rotational differential-linear cryptanalysis. We give an informal
formula to estimate the bias of rotational differential-linear distinguisher under
certain assumptions. In particular, we show Morawiecki et al.’s technique can be
generalized to estimate the bias of a rotational differential-linear distinguisher
whose output linear mask is a unit vector. We apply our method to the per-
mutations involved in FRIET, Xoodoo, Alzette, and SipHash, which leads to
significant improvements over existing cryptanalytic results or explanations for
previous experimental distinguishers without a theoretical foundation. Finally,
we would like to mention that we failed to derive a closed formula for the bias
of a rotational differential-linear distinguisher under the sole assumption of the
independence between the rotational-xor differential part and linear part. This
is left open and the link between rotational-xor differential and linear cryptanal-
ysis we presented in this work can be seen as a first step towards solving this
problem.

A natural extension of rotational differential-linear cryptanalysis is to the
SPN-type primitives, where one aims at finding a rotational relation that is pre-
served with a significant probability through the nonlinear Sbox layer. Especially,
it is feasible to check all the rotational differences for their transition probabili-
ties in a small-scale Sbox. Comparing to binary and arithmetic operations, our
observation is that rotational relations are less likely to preserve in Sboxes, so it
is challenging to find good distinguishers in Sbox-based designs. We leave it as
an interesting future work.
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