
Black-Box Non-Interactive
Non-Malleable Commitments

Rachit Garg?, Dakshita Khurana??, George Lu?, and Brent Waters? ? ?

Abstract. There has been recent exciting progress on building non-
interactive non-malleable commitments from judicious assumptions. All
proposed approaches proceed in two steps. First, obtain simple “base”
commitment schemes for very small tag/identity spaces based on a vari-
ous sub-exponential hardness assumptions. Next, assuming sub-exponential
non-interactive witness indistinguishable proofs (NIWIs), and variants of
keyless collision resistant hash functions, construct non-interactive com-
pilers that convert tag-based non-malleable commitments for a small tag
space into tag-based non-malleable commitments for a larger tag space.
We propose the first black-box construction of non-interactive non-malleable
commitments. Our key technical contribution is a novel implementation
of the non-interactive proof of consistency required for tag amplification.
Prior to our work, the only known approach to tag amplification without
setup and with black-box use of the base scheme (Goyal, Lee, Ostrovsky
and Visconti, FOCS 2012) added multiple rounds of interaction.
Our construction satisfies the strongest known definition of non-malleability,
i.e., CCA (chosen commitment attack) security. In addition to being
black-box, our approach dispenses with the need for sub-exponential NI-
WIs, that was common to all prior work. Instead of NIWIs, we rely on
sub-exponential hinting PRGs which can be obtained based on a broad
set of assumptions such as sub-exponential CDH or LWE.

1 Introduction

Non-malleable commitments have been a well studied primitive in cryp-
tography since their introduction by Dolev, Dwork and Naor [11]. They
are an important component of nearly all multi-party protocols including
multiparty computation, coin flipping and secure auctions. These commit-
ments ensure security in the presence of “man in the middle” attacks. A
man-in-the-middle adversary participates in two or more instantiations of
? University of Texas at Austin. Email: {rachg96, gclu}@cs.utexas.edu.
?? University of Illinois Urbana-Champaign. Email: dakshita@illinois.edu. This

material is based on work supported in part by DARPA under Contract No.
HR001120C0024. Any opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not necessarily reflect the
views of the United States Government or DARPA.

? ? ? University of Texas at Austin and NTT Research. Email: bwaters@cs.utexas.edu.

a protocol, trying to use information obtained in one execution to breach
security in the other protocol execution. A non-malleable protocol should
ensure that an adversary gains no advantage from such behavior.

Non-Interactive Non-Malleable Commitments. For several years, prov-
ably secure constructions of non-malleable commitments required several
rounds of interaction. On the other hand, practical constructions need to
be highly efficient and often non-interactive. For these reasons, in prac-
tice, we often heuristically assume that a family of (keyless) SHA-like
hash functions is non-malleable. Our technique gives the first provably
secure black-box construction of non-interactive non-malleable commit-
ments, taking us a step closer to efficient realizations.

We will focus on perfectly binding and computationally hiding non-
interactive commitments. For these commitments, the perfect binding re-
quirement asserts that a commitment cannot be opened to two different
messages m 6= m′. Specifically, even for a maliciously generated commit-
ment string c, there do not exist two openings to messages m and m′ such
that m 6= m′. The (computational) hiding property asserts that for any
two messages, m and m′ (of the same length), the distributions of com-
mitments com(m) and com(m′) are computationally indistinguishable.

Loosely speaking, a commitment scheme is said to be non-malleable
if no adversary, given a commitment com(m), can efficiently generate a
commitment com(m′), such that the message m′ is related to the orig-
inal message m. This is equivalent (assuming the existence of one-way
functions) to a tag-based notion where the commit algorithm obtains an
additional input, a tag ∈ {0, 1}κ, and where the adversary is restricted to
using a tag, or identity, that is different from the tag used to generate its
input commitment. We will rely on tag-based definitions throughout this
paper. We will also model man-in-the-middle security as a CCA (chosen
commitment attack) game between the adversary and a challenger.

Specifically, the hiding game is modified to give the adversary oracle
access to an inefficient value function CCA.Val where on input a string c,
CCA.Val(tag, c) returns m if CCA.Com(tag,m; r)→ c for some r. The ad-
versary must first specify a challenge tag∗ along with messagesm∗0,m∗1. He
is then allowed oracle access to CCA.Val(tag, ·) for every tag 6= tag∗, and
can make an arbitrary (polynomial) number of queries before and after ob-
taining the challenge commitment. 1 This CCA definition is the strongest
1 The assumption that the commitment takes input a tag is w.l.o.g when the tag
space is exponential. As is standard with non-malleable commitments, tags can be
generically removed from this construction by setting the tag as the verification key
of a signature scheme, and signing the commitment string using the signining key.

2

known definition of non-malleability. In the non-interactive setting, the
often-used definition of (concurrent) non-malleability w.r.t. commitment
is implied by this definition where the adversay is only allowed to make
parallel oracle queries once it obtains the challenge commitment.

Our Results, in a Nutshell. In this work, we give the first black-box con-
struction of CCA secure commitments, under weaker assumptions than
prior work. In terms of assumptions, we substitute NIWIs with hinting
PRGs [25] which can be instantiated under several standard assumptions
like CDH and LWE. Additionally, while all prior work recursively ap-
plied NIWIs to prove cryptographic statements, making heavy non-black-
box use of cryptography, our constructions are black-box. Combining this
with base schemes due to [21], we obtain CCA secure commitments from
black box use of the following assumptions: subexponential hinting PRGs,
subexponential keyless collision-resistant hash functions, subexponential
one-way functions against quantum adversaries, and subexponential one-
way functions in BQP with hardness against classical adversaries. We note
that subexponential hinting PRGs can be obtained based on black-box use
of any group where CDH is subexponentially hard.

We believe this takes us one step closer to the goal of building provably
secure and efficient non-interactive non-malleable commitments.

Prior Work on Non-Malleable Commitments. There has been a long line of
work constructing non-malleable commitments in the plain model, with-
out trusted setup. This research has been driven by two often competing
goals: the first is to reduce the round complexity of commitment, which
is important because it directly impacts the round complexity of applica-
tions like MPC. The second goal is to achieve non-malleable commitments
under the weakest possible assumptions.

This research [11, 1, 31, 32, 29, 30, 26, 35, 34, 27, 14, 15, 18, 16, 9]
culminated in three round stand-alone secure non-malleable commitments
based on injective one-way functions [17] and concurrenct secure non-
malleable commitments based on DDH/LWE [22], or subexponential in-
jective one-way functions [8]. In the two round setting, we now have
constructions based on sub-exponential time-lock puzzles [28] and sub-
exponential DDH/LWE/QR/NR [23].

Very recently, research in non-malleable commitments moved to a fi-
nal frontier of achieving non-interactive non-malleable commitments from
well-studied assumptions without leveraging setup. In this non-interactive
setting, Pandey, Pass and Vaikuntanathan [30] first gave constructions of
non-malleable commitments based on a strong non-falsifiable assumption.

3

The primary research challenge has been to improve assumptions while
realizing non-malleability without interaction and setup, which does not
allow the use of tools like zero knowledge proof systems.

Nevertheless, the recent works of Bitansky and Lin [4] and Kalai and
Khurana [21] made progress on improving these assumptions. All of these
works [23, 28, 4, 21] proceed in two steps. First, they construct “base” com-
mitment schemes that only support a constant-sized space of tags. Second,
they give amplification techniques to convert commitments supporting a
small space of tags into commitments that support a much larger tag
space. Applying these amplification techniques to the base scheme helps
generically increase the space of tags to {0, 1}κ. We summarize known re-
sults in the non-interactive setting by splitting up contributions into base
constructions and tag amplification results.

Base Constructions. Three recent works [28, 4, 21] build non-interactive
base schemes: non-malleable commitments for a tag space of size c log log κ
for a specific constant c > 0, based on various hardness assumptions.
These are typically only secure in a setting where the adversary is re-
stricted to using the same tag in all its queries to the CCA.Val oracle.
This is primarily achieved by using families of assumptions, each of which
is harder than the other along some axis of hardness. We list these as-
sumptions below.

1. Lin, Pass and Soni [28] assume a sub-exponential variant of the hard-
ness of time-lock puzzles. Specifically, they define a two-dimensional
variant of the Rivest, Shamir and Wagner (RSW) repeated squaring
assumption there is a security parameter n and another parameter t,
and it is required that computing h = g2

2t cannot be done by circuits
of overall size 2n

ε and depth 2t
δ , for constants ε and δ.

2. Bitansky and Lin [4] rely on sub-exponentially hard one-way functions
that admit a strong form of hardness amplification. Roughly speaking,
they say that a one-way function f is amplifiable, if there is a way to
combine (XOR), say ` hardcore bits corresponding to ` independent
images f(x1), . . . , f(x`) that are each hard against T -time adversaries,
so that the combined bit is 2`ε-unpredicatable against T ′-time adver-
saries; that is, the level of unpredictability increases at least subex-
ponentially as more hardcore bits are combined (their assumption on
unpredictability goes beyond the limit poly(TT ′) that is commonly im-
posed by known provable results on hardness amplification).

3. Kalai and Khurana [21] assume classically sub-exponentially hard but
quantum easy one-way functions (which can be based, e.g., on sub-

4

exponential hardness of DDH), and sub-exponentially quantum hard
one-way functions (which can be based, e.g., on sub-exponential hard-
ness of LWE).

Tag Amplification. Starting with non-malleable commitments for a tag
space of size c log log κ for a specific constant c > 0 (or sometimes even
smaller), several works develop techniques to achieve non-malleable com-
mitments for a tag space of {0, 1}κ. This is achieved by several applications
of a tag-amplification compiler, that increases the tag space exponentially
in each application. We also point out that these compilers often obtain
as input base schemes that are secure against a restricted adversary; one
that uses the same tag in all its queries to the CCA.Val oracle. The end
goal, however, is to obtain security against a general adversary, that uses
arbitrary tags in its oracle queries – as long as all tags in oracle queries
are different from the challenge tag.

Such compilers were developed in [28, 4, 21] based various assumptions,
and we summarize these results below.

– Lin, Pass and Soni [28] assume sub-exponential non-interactive witness
indistinguishable (NIWI) proofs and keyless collision resistant hash
functions against uniform adversaries. The resulting commitments for
larger tags are secure only against uniform adversaries.

– Bitansky and Lin [4] assume sub-exponential non-interactive witness
indistinguishable (NIWI) proofs and keyless collision resistant hash
functions with limited security against non-uniform adversaries. Such
a hash function H : {0, 1}3κ → {0, 1}κ guarantees that no superpoly-
nomial adversary with non-uniform description of polynomial size S
can find more than K(S) collisions in the underlying function. Here,
K is a fixed polynomial (e.g., quadratic). The resulting commitments
for larger tags are secure against non-uniform adversaries.

– Kalai and Khurana [21] assume sub-exponential non-interactive wit-
ness indistinguishable (NIWI) proofs and obtain security against non-
uniform adversaries. But their compiler, on input commitments that
satisfy a weaker notion of non-malleability w.r.t. replacement gener-
ates commitments that are non-malleable w.r.t replacement for a larger
tag space.

In [28, 4], NIWIs are combined with a hard-to-invert trapdoor statement
to enable weak forms of NIZKs without setup. In contrast, [21] use NIWIs
without associated trapdoors, but then only achieve weaker forms of non-
malleability (that is, w.r.t. replacement).

5

But a common thread among the amplification techniques is that they
all require the use of sub-exponential NIWI proofs. We remind that reader
that NIWIs are one round proof systems with statistical soundness, for
which no computationally bounded verifier can distinguish which witness
in a relation was used to create the proof.

Reliance on NIWIs results in the following less than ideal consequences:

– Subexponential NIWIs are only known based on the hardness of the
decisional linear problem over bilinear maps [19], or derandomization
assumptions and subexponential trapdoor permutations [2].

– All these compilers use NIWIs to prove complex cryptographic state-
ments, and therefore make non-black box use of the underlying non-
malleable commitment for a smaller tag space. On the other hand,
from the point of view of efficiency, it is desirable to have construc-
tions that make black-box use of cryptography.

Our Results. In this work, we provide a new approach to non-interactive
tag amplification for non-malleable commitments. This approach only
makes black-box use of cryptography, and achieves provable security under
a more diverse set of assumptions. Specifically, this compiler replaces the
NIWI assumption with hinting PRGs, that were introduced by Koppula
and Waters [25], and can be obtained based on CDH, LWE [25] and also
φ-hiding and DBDHI assumptions [13]. (One can also alternatively exe-
cute the paradigm from any projective key-dependent secure symmetric
key encryption scheme [24] which is realizable from the LPN assumption).

We summarize (a simplification of) our results via the following in-
formal theorems. Recall that base schemes are typically only secure in
a setting where the adversary is restricted to using the same tag in all
its queries to the oracle. In what follows, we refer to such a commitment
scheme that is only secure against this limited class of adversaries as a
same-tag CCA secure commitment. We also refer to CCA commitments
where the adversary is only allowed to make parallel oracle queries after
obtaining the challenge commitment, as non-malleable commitments.

Theorem 1. (Informal) (Removing the Same-Tag Restriction) Assum-
ing the existence of sub-exponentially secure hinting PRGs and keyless
hash functions that are collision-resistant against sub-exponential uniform
adversaries, there exists a compiler that on input any same-tag CCA (re-
spectively, non-malleable) non-interactive commitment for N tags secure
against non-uniform adversaries where N ≤ poly(κ), outputs a CCA (re-
spectively, non-malleable) non-interactive commitment for N tags secure
against uniform adversaries.

6

Theorem 2. (Informal) (Tag-Amplification for CCA commitments) As-
suming the existence of sub-exponentially hinting PRGs and keyless hash
functions that are collision-resistant against sub-exponential uniform ad-
versaries, there exists a compiler that on input any CCA (respectively,
non-malleable) non-interactive commitment for N tags secure against non-
uniform adversaries where N ≤ poly(κ), outputs a CCA (respectively,
non-malleable) non-interactive commitment for 2N/2 tags secure against
uniform adversaries.

Unfortunately, using these informal theorems to ampify tag space from
c log log n for a small constant c > 0 immediately encounters the following
issue: the input scheme to the compiler is required to be non-uniform
secure, whereas the output scheme is only uniform secure.

To enable recursion, we strengthen our CCA abstraction. Specifically,
we modify the CCA security game to allow an adversary to submit a Tur-
ing Machine P to the challenger, and obtain the evaluation of P on an
input of the adversary’s choice. We say that a scheme is e-“computation
enabled” if it is secure against all adversaries that submit programs that
run in time polynomial in 2κ

e for constant e. As such, we will substitute
the non-uniform security requirement for the base CCA scheme and in-
stead require it to be e-“computation enabled” for an appropriate constant
e. The output of the compiler will be an e′-“computation enabled” com-
mitment for an appropriate constant e′. We describe this abstraction, and
our techniques, in additional detail in Section 1.1.

1.1 Our Techniques

We now provide our technical overview. Recall that the core technical goal
of our work is to provide a method for amplifying from a commitment
scheme for O(N) sized tag space to a 2N sized space. If the computa-
tional overhead associated with the amplification step is polynomial in N
and the security parameter κ, then the process can be applied iteratively
c + 1 times to a base NM commitment scheme that handles tags of size
lg lg · · · lg(κ) for a c-times iterated log, for arbitrary constant c and results
in a scheme that handles tags of size 2κ. Here, we note that subexponen-
tial quantum hardness of LWE and subexponential hardness of DDH [21],
or subexponential hardness amplifiable one-way functions [4], or subex-
ponential variants of time-lock puzzles [28] imply base schemes for tags in
(c lg lg κ) for a small constant c > 0, which means they imply schemes for
tags in (lg lg lg κ).

7

Now the traditional way to amplify such a tag space can be traced
back to [11]2 They suggested a method of breaking a large tag T j (say,
in [2N]) into N small tags tj1, t

j
2, . . . t

j
N , each in 2N , such that for two

different large tags T 1 6= T 2, there exists at least one index i such that
t2i 6∈ {t11, t12, . . . t1N}. This is achieved by setting tji = i||T j [i], where T j [i]
denotes the ith bit of T j .

A scheme for tags in 2N will have an algorithm CCA.Com that commits
to a message m as CCA.Com(1κ, tag,m; r)→ com. To commit to m under
tag one first creates N tags t1, . . . tN by applying the DDN encoding to
tag. Next, these (smaller) tags are used to generate commitments of m
in the smaller tag scheme as ci = Small.Com(1κ, (ti),msg = m; ri) for
i ∈ [N]. Next, the committer attaches a zero knowledge (ZK) proof that
all commitments are to the same message m using the random coins as a
witness. Since we are interested in non-interactive amplification, the ZK
proof will need to be non-interactive. Additionally, we will require it to be
ZK against adversaries running in time T , where T is the time required
to brute-force break the underlying CCA scheme for small tags.

CCA security of the scheme with larger tag space can be argued in
two basic steps. Suppose the challenger commits to either m∗0 or m∗1 under
tag T ∗ (we denote the DDN encoding of T ∗ by t∗1, . . . t∗N). The adversary
wins if it gets which out of m∗0 and m∗1 was committed. Recall that the
adversary can request the CCA oracle to provide openings of commitment
string with tags tag 6= tag∗ ∈ {0, 1}N . This oracle generates a response as
follows - (1) Verify the ZK proof in the commitment string. Return ⊥ if
verification does not accept. (2) Open the underlying commitment scheme
with small tags at position 1 with tag t1.

We will assume, for simplicity, that the adversary makes a single oracle
query in the CCA game, with tag T , whose DDN encoding is denoted by
t1, . . . tN . We will focus on the index i in the adversary’s oracle query,
such that the tag ti 6∈ {t∗1, . . . t∗N}.

As a first step towards proving CCA security, one can modify the oracle
to open the commitment string c with small tag ti, in Step 2. Because of
the soundness of the ZK proof system, this change cannot be detected by
the adversary, except with negligible probability.

At this point, the challenge commitment is modified so that the ZK
proof is simulated and does not need the random coins used in the small
tag commitments anymore. To argue indistinguishability, we will need to
answer the adversary’s oracle queries. This will be done by extracting,

2 This was recently further optimized by [23] but in this paper, we use the [11] tech-
nique for simplicity.

8

via brute-force, the value committed in the adversary’s oracle query. As
such, we will need to rely on ZK proofs where the ZK property holds even
against machines that can (brute-force) break the small tag commitnents.
Once this is done, we will change each of the small tag commitments in the
challenge commitment from committing to the message m∗b to committing
to the all 0’s string, one by one. At the same time, the oracle will continue
to open the commitment string c with small tag ti, in Step 2. Since ti 6∈
{t∗1, . . . t∗N}, we can rely on CCA security of the underlying small tag
scheme and argue that the adversary will not be able to detect these
changes. By the end, all information about the bit b will be erased.

Since non-interactive zero-knowledge proofs without setup are impos-
sible, existing non-interactive tag amplification techniques [28, 23, 4] rely
on weaker variants of zero-knowledge proofs, such as ZK with super-
polynomial simulation and weak soundness, to perform tag amplification
via the afore-mentioned outline. These required variants of non-interactive
ZK proofs are obtained by including a trapdoor statement td. To prove
that a statement x is in an NP language L, one typically provides a NIWI
to establish that (x ∈ L)∨ (td is true). The trapdoor statement helps per-
form simulation, whereas for soundness it is required that the adversary
cannot prove the trapdoor statement. One exception is [21], which only
relies on NIWIs and does not make use of on any trapdoor statements,
but is limited to the weaker notion of replacement security. However, in
addition to relying on NIWIs, the outline above makes non-black-box use
of the underlying base commitment scheme.

Eliminating NIWIs. Our primary goal in this paper is to perform tag
amplification without NIWIs, and while making black-box use of the un-
derlying base commitments. Taking a step back, the reason ZK is required
in the tag amplification argument discussed above, is that we can change
the oracle to one that opens different underlying tags, without the adver-
sary noticing. In other words, we would like to establish a system where
the adversary cannot submit a commitment such that its opening will be
different under the original and new oracle functions.

Here, inspired by recent work in chosen ciphertext secure public key
encryption [25], our construction will allow the oracle to recover a PRG
seed s that gives (a good part of) the randomness used to create the
underlying commitments. Specifically, the oracle will use the commitment
with a specific small tag to first recover a candidate PRG seed s′ and then
check for consistency by re-evaluating the underlying commitment pieces,
and checking them against the original.

9

These checks will intuitively serve as a substitution for ZK proofs. In-
terestingly, our checking algorithm will allow some partially malformed
commitments to go through – allowing this is essential to our security
argument. This is in contrast to a ZK proof which enforces that all must
be commitments to the same message. While creating such partially mal-
formed commitments is actually easy for the adversary, the adversary will
still not be able to differentiate between different forms of decryption.
(We note that in non-malleable encryption some systems [33, 7] allow
for somewhat malformed ciphertexts to be let through.) Importantly, un-
like [25] that looked at two possible decryption strategies, we will need
to ensure that up to polynomially many such strategies decrypt the same
way. Furthermore, we will not be able rely on trusted setup to generate
verification keys for a signature scheme. Instead, we will develop a new
technique leveraging hinting PRGs, which we outline below.

We now describe our new tag amplification technique that converts
CCA commitments with 4N tags to CCA commitments with 2N tags. We
point out that our technique also applies as is to converting parallel CCA
commitments with 4N tags to parallel CCA commitments with 2N tags.
First, we summarize some of the tools we will use.

– Hinting PRGs. A hinting PRG, introduced in [25], satisfies the fol-
lowing property: for a uniformly random short seed s, the matrix M
obtained by first expanding PRG(s) = z0z1z2 . . . zn, sampling uni-
formly random v1v2 . . . vn, and setting for all i ∈ [n], Msi,i = zi and
M1−si,i = vi, should be indistinguishable from a uniform matrix. Hint-
ing PRGs are known based on CDH, LWE [25] – more generally, any
circular secure symmetric key encryption scheme [24].

– Statistically Equivocal Commitments without Setup. We will
rely on statistically hiding bit commitments without setup, that satisfy
binding against uniform adversaries. Additionally, these commitments
will be statistically equivocal, that is, with overwhelming probability,
a randomly chosen commitment string can be opened to both a 0
and a 1. These can be obtained from keyless collision resistant hash
functions against uniform adversaries, based on the blueprint of [10]
and [20], and more recently [3], in the keyless hash setting.

Outline of Our Tag Amplification Technique. Let (Small.Com, Small.Val,
Small.Recover) be a non malleable commitment for 4N tags. We will as-
sume tags take identities of the form (i, β, γ) ∈ [N] × {0, 1} × {0, 1} and
that the Small.Com algorithm requires randomness of length `(κ).

10

Our transformation will produce three algorithms, (CCA.Com,CCA.Val,
CCA.Recover). The CCA.Com algorithm on input a tag tag from the large
tag space, an input message, and uniform randomness, first samples a seed
s of size n for a hinting PRG. It uses the first co-ordinate z0 of the output
of the hinting PRG on input s, as a one-time pad to mask the message m,
resulting in string c. Next, it generates n equivocal commitments {σi}i∈[n],
one to each bit of s. We will let yi denote the opening of the ith equivocal
commitment (this includes the ith bit si of s). Finally, it ‘signals’ each of
the bits of s by generating commitments {cx,i,b}x∈[N],i∈[n],b∈{0,1} using the
small tag scheme. For every i ∈ [n], the commitments {cx,i,0}x∈[N] and
{cx,i,1}x∈[N] are generated as follows:

1. If si = 0

(a) cx,i,0 = Small.Com(1κ, (x, tagx, 0),msg = yi; rx,i)

(b) cx,i,1 = Small.Com(1κ, (x, tagx, 1),msg = yi; r̃x,i)

2. If si = 1

(a) cx,i,0 = Small.Com(1κ, (x, tagx, 0),msg = yi; r̃x,i)

(b) cx,i,1 = Small.Com(1κ, (x, tagx, 1),msg = yi; rx,i)

where all the r̃x,i values are uniformly random, whereas rx,i values corre-
spond to the output of the hinting PRG on seed s. The output of CCA.Com
is tag, c, {σi}i∈[n], {cx,i,b}x∈[N],i∈[n],b∈{0,1}.

On an oracle query of the form CCA.Val(tag, com), we must return
the message committed in the string com, if one exists. To do this, we
parse com = tag, c, {σi}i∈[n], {cx,i,b}x∈[N],i∈[n],b∈{0,1}, and then recover the
values committed under small tags (1, tag1, 0) and (1, tag1, 1), which also
helps recover the seed s of the hinting PRG. Next, we check that for every
i ∈ [n], the recovered values correspond to openings of the respective σi.
We also compute hinting PRG(s), and use the resulting randomness to
check that for all x ∈ [N], the commitments that were supposed to use
the outcome of the PRG were correctly constructed. If any of these checks
fail, we know that the commitment string com cannot be a well-formed
commitment to any message. Therefore, if any of the checks fail, the oracle
outputs ⊥. These checks are inspired by [25], and intuitively, ensure that
it is computationally infeasible for an adversary to query the oracle on
commitment strings that lead to different outcomes differently depend-
ing on which small tag was used. If all these checks pass, the CCA.Val
algorithm uses c to recover and output m.

Proving Security. We will prove that the resulting scheme is CCA secure
against uniform adversaries. To begin, we note that the set {(x, tagx)}x∈[N]

11

is nothing but the DDN encoding of the tag tag. Recall that this encoding
has the property that for every tag, tag∗ ∈ 2N , there exists an index
x ∈ [N] such that (x, tagx) 6∈ {(x∗, tag∗x∗)}x∗∈[N]. In the scheme described
above, the tag used for each set {cx,i,b}i∈[n] is (x, tagx, b). This means that
for our particular method of generating the commitments cx,i,b described
above, for each of the adversary’s oracle queries, there will be an index
x′ ∈ [N] such that the tags (x′, tagx′ , 0) and (x′, tagx′ , 1) used to generate
{cx′,i,b}i∈[n],b∈{0,1} in that query will differ from all small tags used to
generate the challenge commitment.

Our first step towards proving security of the resulting commitment
with large tags, will be to define an alternative CCA.ValAlt algorithm,
that instead of recovering the values committed under tags (1, tag1, 0) and
(1, tag1, 1), recovers values committed under (x′, tagx′ , 0) and (x′, tagx′ , 1).
As already alluded to earlier, this scheme is designed so that it is compu-
tationally infeasible for a uniform adversary to query the oracle on com-
mitment strings for which CCA.Val and CCA.ValAlt lead to different out-
comes. Formally, we will first switch to a hybrid that uses the CCA.ValAlt
algorithm instead of CCA.Val to answer the adversary’s oracle queries.

When making this change, because of the checks performed by the
valuation algorithms, we can formally argue that any adversary that dis-
tinguishes these hybrids must query the oracle with a commitment string
that has following property: For some i ∈ [n], x ∈ [N], cx,i,0 and cx,i,1 are
small tag commitments to openings of the equivocal commitment to some
bit b and 1 − b respectively. Assuming that the equivocal commitment
satisfies binding against uniform adversaries that run in subexponential
time, one can brute-force extract these openings from cx,i,0 and cx,i,1 to
contradict the binding property.

The next hybrid is an exponential time hybrid that samples equivocal
commitments {σi}i∈[n], for the challenge commitment, together with ran-
domness {y0,i}i∈[n] and {y1,i}i∈[n] that can be used to equivocally open
these commitments to 0 and 1 respectively.

In the next hybrid, inspired by [25] we modify the components {c∗x,i,b}x∈[N],i∈[n],b∈{0,1}
in the challenge commitment to “drown” out information about s via noise.
In particular, while in the real game, the values c∗x,i,1 are always commit-
ments to ysi,i, in the challenge commitment these values are modified to
become commitments to y∗i,1, irrespective of what si is. In the next step,
the values c∗x,i,0 are modified to become commitments to y∗i,0, irrespective
of what si is. We rely on CCA security of the underlying small tag scheme
so that we can continue to run the CCA.ValAlt function to recover values
committed under (x′, tagx′ , 0) and (x′, tagx′ , 1) while changing all the com-

12

ponents {c∗x,i,b}x∈[N],i∈[n],b∈{0,1} in the challenge commitment. This step
crucially makes use of the fact that the tags (x′, tagx′ , 0) and (x′, tagx′ , 1)
differ from all small tags used to generate the challenge commitment. More-
over, in spite of the fact that generating equivocal openings of {σi}i∈[n]
takes exponential time, the proof of indistinguishability between this hy-
brid and the previous one does not need to rely on an exponential time
reduction. Instead, we observe that the equivocal commitment strings
{σi}i∈[n] together with their openings can be fixed non-uniformly and in-
dependently of the strings c∗x,i,b, and therefore these hybrids can be proven
indistinguishable based on non-malleability of the small tag commitment
against non-uniform adversaries. Since we must carefully manipulate the
randomness used for c∗x,i,b in both games, this hybrid requires a delicate
argument.

At this point, we have eliminated all information about the PRG seed
s, except from the randomness rx,i and r̃x,i. In the final hybrid, we rely
on the security of the hinting PRG to switch to using uniform random-
ness everywhere. Note that we still need to answer the adversary’s oracle
queries, but this can be done by ensuring that the time required to run the
CCA.ValAlt algorithm is much smaller than that needed to break hinting
PRG security. At this point, there is no information about s, and therefore
about the message being committed to in the challenge commitment.

Issues with Recursion. At this point, it may seem like we are done, but the
careful reader may have noticed a problem. To prove security, we assumed
an input scheme that was secure against non-uniform adversaries, but
due to the use of equivocal commitments against uniform adversaries,
the transformation yields a scheme that is only secure against uniform
adversaries. This would be no problem if we say were only amplifying once
from κ to 2κ tags. But unfortunately, the recursion will not work if our
base scheme starts with lg lg lg(κ) size tags (which is the number of tags
allowable by most existing base schemes), as we will need to recursively
amplify multiple times.

It might seem that we are fundamentally stuck. The first hybrid in our
argument requires the equivocal commitment scheme to be more secure
than the underlying small tag commitment. Later hybrids require that
the small tag commitment to satisfy CCA security even when equivocal
commitments with openings to both ones and zeros are generated. If the
small tag CCA scheme is only uniformly secure, it seems impossible to
satisfy this requirement without violating the previous one.

13

However, if we peel the recursion back further, there appears to be
a glimmer of hope. Suppose we are applying our transformation to an
underlying CCA commitment, which is itself the result of applying the
transformation one or more times. When our proof arrives at the security
of the underlying scheme, the underlying scheme’s security will rely both
on an equivocal commitment itself, and at the deepest level the non-
uniform security of the base scheme. If the equivocal commitments in the
underlying scheme use a larger security parameter than the current one,
then the lower level scheme may still be secure (and lower level equivocal
commitments may still be binding) even when equivocal openings are
found at the current level.

e-Computation Enabled Security. We capture this intuition by expanding
our abstraction to include what we call e-computation enabled CCA com-
mitments. Here, we modify the security game to allow an adversary to
submit a Turing Machine P to the challenger. The adversary will receive
the evaluation of P on an input of its choice. We say that a scheme is
e-computation enabled if it is secure against all adversaries that submit
programs that run in time polynomial in 2κ

e for constant e. (The program
output size itself is required to be polynomially bounded.)

With this abstraction in place, when proving security, our reduction
can pass the task of generating equivocal openings as an appropriate pro-
gram P to the enhanced CCA security game itself. Implicitly, this allows
the equivocal opening requests to be satisfied in different ways depending
on what stage the security proof of the lower scheme is at.

While this new property provides a useful tool for recursion, we also
need to work a bit harder to prove e-computation enabled CCA secu-
rity. Specifically, we prove in Section 3 that given a hinting PRG and an
equivocal commitment scheme that are uniformly secure against 2κδ time
adversaries for δ ∈ (0, 1), we can transform an e-computation enabled
CCA scheme for small tags into one that is e′-computation enabled CCA
secure for large tags, where e′ = e · δ.

In our proof, at the stages where we use a reduction to find equivo-
cal openings, the reduction will run in time 2κe

′
to satisfy the adversary’s

program request. When contradicting the hinting PRG, the reduction will
run in time 2κ

e to to find equivocal openings, and 2κ
e′ to satisfy the ad-

versary’s program request. To ensure that this gives us a contradiction,
we will set the security parameter of the hinting PRG to be large enough.
Finally, when the reduction is to the underlying small tag CCA commit-
ment, the program request of the large tag adversary will be passed by

14

the reduction to the interface of the underlying small tag scheme, which is
allowed since e′ < e. In the base case, we note that we start with schemes
secure against non-uniform adversaries (for lg lg lg κ tags). By definition,
any scheme that is secure against non-uniform adversaries is trivially e-
computation enabled secure for arbitrary e.

Issues due to Same-Tag Restrictions. The techniques described above cap-
ture our main ideas for tag amplification. Unfortunately, the base schemes
that we start with may only be same-tag secure. On the other hand, we
would like to end up with CCA schemes for 2κ tags that do not have this
restriction. This is because CCA commitments without such a restriction
can be generically transformed, assuming signatures into schemes that do
not use tags at all. We remedy the same-tag issue by applying a trans-
formation that takes a scheme supporting a tag space of N tags with
same-tag only queries to one that supports N tags without the same-tag
restriction, for any N ≤ poly(κ).

Removing the Same-Tag Requirement. We start with an underlying scheme
that has the same-tag requirement, and modify it to remove this require-
ment as follows. To commit to a message with tag tag in the new scheme,
commit to it with respect to all N − 1 tags except tag in the underly-
ing same-tag scheme. Similar to the previous construction, we use hinting
PRGs and attach a bunch of checks to ensure that recovering the com-
mitted value from the adversary’s queries using any one tag is computa-
tionally indistinguishable from recovering it using a different tag.

The overall mechanics and guarantees are similar to our prior trans-
formation. Suppose an adversary were given a challenge commitment tag∗

in the transformed scheme, and got to make queries to several different
tags tag 6= tag∗. By our construction, the adversary’s challenge does not
contain an underlying commitment with tag tag∗ whereas all of the ad-
versary’s oracle queries will contain an underlying commitment with tag
tag∗. We can therefore answer all of these queries by changing the oracle
valuation function to one that uses only tag tag∗ in underlying scheme.

We note that since the same-tag transformation incurs a blowup pro-
portional to N , it is imperative to apply it early on in the sequence of
transformations. If we first amplified the tag space to be of size 2κ and
then attempted to remove the same-tag restriction, the resulting scheme
would have exponential sized commitments. Therefore, we start with a
base scheme that is same-tag secure and supports tags of size iterated log,
c times, as lg lg · · · lg(κ) for some constant c, we will first apply the same-
tag to many-tag transformation. Next, we apply the tag amplification

15

transformation c+ 1 times. We end up with a scheme that is polynomial
sized and supports a tag space of size 2κ with no same-tag restrictions.

Non-uniform Security. Our techniques give a CCA commitment scheme
secure against uniform adversaries. One might ask whether we could use
similar techniques, perhaps combined with new assumptions such as non-
uniformly secure keyless hash functions [3, 4] to obtain security against
non-uniform adversaries. We address this in two parts.

First, taking a step back, a primary motivation for obtaining non-
uniform security is that it is useful for protocol composition. For example,
if we were using a cryptographic primitive like public key encryption as an
end application say for encrypting email, then obtaining uniform security
would arguably be just fine. As the uniform model captures attackers in
the real world. However, the extra power of non-uniform security might
be helpful if our commitment scheme were a component used in building
a larger cryptosystem. Here, we observe that our transformation actually
outputs a CCA scheme with properties that are stronger than (plain)
uniform security. Specifically, the output scheme satisfies e-computation
enabled CCA security.

While the initial motivation for this abstraction was that it helps with
recursion; we note that it can actually be a useful property for a CCA
scheme to have. In particular, it can actually be viewed as a more fine-
grained or nuanced view of non-uniform computation. This abstraction
gives any adversary non-uniform advice so long as it can be computed in
time 2κe . If e is set appropriately, then we expect this would suffice in many
circumstances, including for protocol composition. Indeed, this was true
for the type of protocol composition that we needed to recursively amplify
the tag space. Thus our amplification techniques and our abstraction can
arguably deliver something that is the “best of both worlds”: the outcome
is as good as non-uniform security for many applications, but does not
make any new non-uniform assumptions about the hash function.

Second, our techniques are also meaningful for constructing black-
box two-message non-malleable commitments with (regular) non-uniform
security. In our transformation, the primitive that requires uniform secu-
rity is the keyless hash-based equivocal commitment scheme. In the two-
message setting, it seems possible to slightly modify our scheme to have
the receiver generate the key for a keyed (non-uniform secure) collision-
resistant hash function. All of our other techniques appear to carry over to
this setting, and it appears that one would be able to prove that the result-
ing scheme is a (regular) non-uniform secure non-malleable commitment
that only makes black-box use of cryptography.

16

Organization We define “computation enabled" commitments in Section
2, present our tag amplification scheme in Section 3), and show how to
compile these elements in Section 4. Details on preliminaries and proof
analyses, as well as recovery-from-randomness and removing the same tag
restriction can be found in our full version [12].

2 Computation Enabled CCA Commitments

We now define what we describe as “computation enabled” CCA secure
commitments. Intuitively, these will be tagged commitments where a com-
mitment to message m under tag tag and randomness r is created as
CCA.Com(tag,m; r)→ com. The scheme will be statistically binding if for
all tag0, tag1, r0, r1 and m0 6= m1 we have that CCA.Com(tag0,m0; r0) 6=
CCA.Com(tag1,m1; r1).

Our hiding property follows along the lines of chosen commitment se-
curity definitions [6] where an attacker gives a challenge tag tag∗ along
with messages m0,m1 and receives a challenge commitment com∗ to ei-
ther m0 or m1 from the experiment. The attacker’s job is to guess the
message that was committed to with the aid of oracle access to an (in-
efficient) value function CCA.Val where CCA.Val(com) will return m if
CCA.Com(tag,m; r) → com for some r. The attacker is allowed oracle
access to CCA.Val(·) for any tag 6= tag∗. The traditional notion of non-
malleability (as seen in [21], etc.) is simply a restriction of the CCA game
where the adversary is only allowed to simultaneously submit a single set
of decommitment queries. The proof of this is immediate and can be found
in [5].

The primary difference in our definition is that we also allow the at-
tacker to submit a randomized turing machine P at the beginning of the
game. The challenger will run P and output its result to the attacker at the
beginning of the game. This added property will allow us to successfully
apply recursion for tag amplification later in our scheme. In addition, we
require a recover from randomness property, which allows one to open the
commitment given all the randomness used to generate said commitment.

2.1 Definition

A computation enabled CCA secure commitment is parameterized by a
tag space of size N = N(κ) where tags are in [1,N]. It consists of three
algorithms:

17

CCA.Com(1κ, tag,m; r) → com is a randomized PPT algorithm that
takes as input the security parameter κ, a tag tag ∈ [N], a mes-
sage m ∈ {0, 1}∗ and outputs a commitment com, including the tag
com.tag. We denote the random coins explicitly as r.

CCA.Val(com)→ m∪⊥ is a deterministic inefficient algorithm that takes
in a commitment com and outputs either a message m ∈ {0, 1}∗ or a
reject symbol ⊥.

CCA.Recover(com, r) → m is a deterministic algorithm which takes a
commitment com and the randomness r used to generate com and
outputs the underlying message m.

We now define the correctness, efficiency properties, as well as the
security properties of perfectly binding and message hiding.

Definition 1 (Correctness). We say that our computation enabled
CCA secure commitment scheme is perfectly correct if the following holds.
∀m ∈ {0, 1}∗, tag ∈ [N] and r we have that

CCA.Val(CCA.Com(1κ, tag,m; r)) = m.

Definition 2 (Efficiency). We say that our computation enabled CCA
secure commitment scheme is efficient if CCA.Com,CCA.Recover run in
time poly(|m|, κ), while CCA.Val runs in time poly(|m|, 2κ).

Definition 3 (Security). We say that our computation enabled CCA
secure commitment is perfectly binding if ∀m0,m1 ∈ {0, 1}∗ s.t. m0 6= m1

there does not exist tag0, tag1, r0, r1 such that

CCA.Com(1κ, tag0,m0; r0) = CCA.Com(1κ, tag1,m1; r1).

Remark 1. We remark that this is implied by Definition 1, as we know
that if CCA.Com(1κ, tag0,m0; r0) = CCA.Com(1κ, tag1,m1; r1), then

m0 = CCA.Val(CCA.Com(1κ, tag0,m0; r0)) = CCA.Val(CCA.Com(1κ, tag1,m1; r1)) = m1,

but m0 6= m1, a contradiction.

We define our message hiding game between a challenger and an at-
tacker. The game is parameterized by a security parameter κ.

1. The attacker sends a randomized and inputless Turing Machine algo-
rithm P . The challenger runs the program on random coins and sends
the output to the attacker. If the program takes more than 22

κ time to
halt, the outputs halts the evaluation and outputs the empty string.3

3 The choice of 22
κ

is somewhat arbitrary as the condition is in place so that the game
is well defined on all P .

18

2. The attacker sends a “challenge tag” tag∗ ∈ [N].
3. The attacker makes repeated commitment queries com. If com.tag =

tag∗ the challenger responds with ⊥. Otherwise it sends

CCA.Val(com).

4. For some w, the attacker sends two messages m0,m1 ∈ {0, 1}w.
5. The challenger flips a coin b ∈ {0, 1} and sends com∗ = CCA.Com(tag∗,mb; r)

for randomly chosen r.
6. The attacker again makes repeated queries of commitment com. If

com.tag = tag∗ the challenger sends ⊥. Otherwise it responds as

CCA.Val(com).

7. The attacker finally outputs a guess b′.

We define the attacker’s advantage in the game to be Pr[b′ = b]− 1
2 where

the probability is over all the attacker and challenger’s coins.

Definition 4. An attack algorithm A is said to be e-conforming for some
real value e > 0 if:

1. A is a (randomized) uniform algorithm.
2. A runs in polynomial time.
3. The program P output by A in Step 1 of the game will always terminate

in time p(2κe) time and output at most q(κ) bits for some polynomial
functions p, q (For all possible random tapes given to the program P).

Definition 5. A computation enabled CCA secure commitment scheme
scheme given by algorithms (CCA.Com,CCA.Val,CCA.Recover) is said to
be e-computation enabled CCA secure if for any e-conforming adversary A
there exists a negligible function negl(·) such that the attacker’s advantage
in the game is negl(κ).

We also define another notion of security which we call “same tag"
computation enabled secure for a weaker class of adversaries who only
submit challenge queries that all have the same tag.

Definition 6. A computation enabled CCA secure commitment scheme
scheme given by algorithms (CCA.Com,CCA.Val,CCA.Recover) is said to
be “same tag" e-computation enabled CCA secure if for any e-conforming
adversary A which generates queries such that all commitment queries
submitted by A are on the same tag, there exists a negligible function
negl(·) such that the attacker’s advantage in the game is negl(κ).

19

Recovery From Randomness

Definition 7. We say that our CCA secure commitment scheme can be
recovered from randomness if the following holds. For all m ∈ {0, 1}∗,
tag ∈ [N], and r we have that

CCA.Recover(CCA.Com(1κ, tag,m; r), r) = m.

Claim. Let (CCA.Com,CCA.Val) be a set of algorithms which satisfy any
of Definition 1, Definition 2, Definition 3, Definition 5. Then there exists
a set of algorithms (CCA′.Com,CCA′.Val, CCA′.Recover) which satisfy the
same properties as well as Definition 7. We defer the construction and
proof to our full version [12].

2.2 Connecting to Standard Security

We now connect our computation enabled definition to the standard no-
tion of chosen commitment security. In particular, the standard notion
of chosen commitment security is simply the computation enabled above,
but removing the first step of submitting a program P . We prove two
straightforward lemmas. The first shows that any computation enabled
CCA secure commitment scheme is a standard secure one against uni-
form attackers. The second is that any non-uniformly secure standard
scheme satisfies e-computation enabled security for any constant e ≥ 0.

Definition 8. A commitment scheme (CCA.Com,CCA.Val,CCA.Recover)
is said to be CCA secure against uniform/non-uniform attackers if for
any poly-time uniform/non-uniform adversary A there exists a negligible
function negl(·) such that A’s advantage in the above game with Step 1
removed is negl(κ).

Definition 9. A commitment scheme (CCA.Com,CCA.Val,CCA.Recover)
is said to be “same tag" CCA secure against uniform/non-uniform attack-
ers if for any poly-time uniform/non-uniform adversary A such that all
commitment queries submitted by A are on the same tag, there exists a
negligible function negl(·) such that A’s advantage in the above game with
Step 1 removed is negl(κ).

Claim. If (CCA.Com,CCA.Val,CCA.Recover) is an e-computation enabled
CCA secure commitment scheme for some e as per Definition 5, then it
is also a scheme that achieves standard CCA security against uniform
poly-time attackers as per Definition 8.

20

Proof. This follows from the fact that any uniform attacker A in the
standard security game with advantage ε(κ) = ε immediately implies an
e-conforming attacker A′ with the same advantage where A′ outputs a
program P that immediately halts and then runs A.

Claim. If (CCA.Com,CCA.Val,CCA.Recover) achieves standard CCA se-
curity against non-uniform poly-time attackers as per Definition 8, then
it is an e-computation enabled CCA secure commitment scheme for any
e as per Definition 5.

Proof. Suppose A is an e-conforming attacker for some e with some ad-
vantage ε = ε(κ). Then our non-uniform attacker A′ can fix the random
coins of A and to maximize its probability of success. Since now A is de-
terministic save for randomness produced by the challenger in step 5, this
deterministically fixes the P A sends, so A′ can fix the coins of P to max-
imize success. Thus, A′ can simulate A given the above aforementioned
random coins of A and the output of P , both of which are poly-bounded
by the fact that A is e-conforming. Since all non-challenger randomness
was non-uniformly fixed to maximize success, A′ has at least advantage
ε as well. By our definition of standard security hiding, the advantage of
A′ must be negligible, so A’s advantage must be as well.

We remark that the above statements are also true for “same tag"
conforming adversaries.

3 Tag Amplification

In this section we show a process from amplifying a computation enabled
CCA commitment scheme for N ′ = 4N tags to a scheme with 2N tags.
The amplification process imposes an overhead that is polynomial in N
and the size/time of the original commitment scheme. Thus it is important
that N be polynomially bounded in the security parameter.

Let (Small.Com,Small.Val,Small.Recover) be an e-computation enabled
CCA commitment scheme for N ′(κ) = N ′ = 4N tags. We will assume tags
take identities of the form (i, β, Γ) ∈ [N] × {0, 1} × {0, 1} and that the
Small.Com algorithm take in random coins of length `(κ). In addition, for
some constant δ ∈ (0, 1)4 we assume a equivocal commitment without
setup scheme (Equiv.Com,Equiv.Decom,Equiv.Equivocate) that is T = 2κ

δ

binding secure and statistically hiding.
4 The constant δ must be less than 1 in order to meet the requirement that the
Equiv.Equivocate algorithm runs in time polynomial in 2κ.

21

We assume a hinting PRG scheme (Setup,Eval) that is T = 2κ
γ secure

for some constant γ ∈ (0, 1) and has seed length n(κ, |m|) (represented
by n for ease) and block output length of max(|m|, ` × N). For ease of
notation we assume that HPRG.Eval(HPRG.pp, s, 0) ∈ {0, 1}|m| and ∀i ∈
[n], HPRG.Eval(HPRG.pp, s, i) ∈ {0, 1}`·N .

Our transformation will produce three algorithms, CCA.Com,CCA.Val,
and CCA.Recover which we prove e′-computation enabled where we require
e′ = e · δ ≥ 1. We will also present a fourth algorithm CCA.ValAlt, which
is only used in the proof. The algorithms will make use of the auxiliary sub-
routines CCA.Find and CCA.Check described below. CCA.ValAlt(tag∗, com)→
m∪⊥ is a deterministic inefficient algorithm that takes in a tag tag∗ and
a commitment com and outputs either a message m ∈ {0, 1}∗ or a reject
symbol ⊥. It will be used solely as an instrument in proving the scheme
secure and not exported as part of the interface. We describe the trans-
formation and due to space constraints analyze it’s properties formally in
[12] . We present the security games in the main body to give intuition
on how our proof proceeds.

CCA.Find(x′, com)

Inputs: Index x′ ∈ [N]

Commitment com =
(
tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N])i∈[n])

)
Output: s̃ ∈ {0, 1}n

– For each i ∈ [n]
1. Let ỹi = Small.Val(cx′,i,0)
2. Set z̃i = Equiv.Decom(σi, ỹi). If z̃i = ⊥, set s̃i = 1. Else, set

s̃i = z̃i.
– Output s̃ = s̃1, s̃2, . . . , s̃n.

Fig. 1. Routine CCA.Find

Transformation Amplify(Small = (Small.Com, Small.Val,Small.Recover),HPRG,Equiv, e′)→
NM = (CCA.Com,CCA.Val,CCA.Recover) :

CCA.Com(1κ, tag,m ∈ {0, 1}∗; r)→ com

1. Compute κ′ = κ
e′
δ = κe. Compute κ′′ = κ

′ 1
γ .5

2. Sample (HPRG.pp, 1n)← HPRG.Setup(κ′′, 1max(|m|,N ·`)).
3. Sample s = s1 . . . sn

R←− {0, 1}n as the seed of the hinting PRG.
5 δ and γ are known from the security guarantees of Equiv,HPRG respectively.

22

CCA.Check(s̃, com)

Inputs: Seed candidate s̃ = s̃1, s̃2, . . . , s̃n

Commitment com =
(
tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N])i∈[n])

)
Output: {0, 1}

– For i ∈ [n]
1. Compute (r1,i, r2,i, . . . , rN,i) = HPRG.Eval(HPRG.pp, s̃, i)
2. For x ∈ [N]

(a) Let ỹi = Small.Recover(cx,i,s̃i , rx,i). If ỹi = ⊥, output 0
(b) If cx,i,s̃i 6= Small.Com(1κ, (x, tagx, s̃i), ỹi; rx,i), output 0.
(c) If s̃i 6= Equiv.Decom(σi, ỹi), output 0.

– If all the above checks have passed, output 1.

Fig. 2. Routine CCA.Check

4. For all i ∈ [n] run Equiv.Com(1κ
′
, si)→ (σi, yi).

5. Let rx,i, r̃x,i ∈ {0, 1}` be defined as follows:
6. For i ∈ [n]

(a) Compute (r1,i, r2,i, . . . , rN,i) = HPRG.Eval(HPRG.pp, s, i)

(b) Sample (r̃1,i, r̃2,i, . . . , r̃N,i)
R←− {0, 1}N ·`

7. Compute c = m⊕ HPRG.Eval(HPRG.pp, s, 0)
8. For i ∈ [n], x ∈ [N]

(a) If si = 0
i. cx,i,0 = Small.Com(1κ, (x, tagx, 0),msg = yi; rx,i)
ii. cx,i,1 = Small.Com(1κ, (x, tagx, 1),msg = yi; r̃x,i)

(b) If si = 1
i. cx,i,0 = Small.Com(1κ, (x, tagx, 0),msg = yi; r̃x,i)
ii. cx,i,1 = Small.Com(1κ, (x, tagx, 1),msg = yi; rx,i)

9. Output com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N])i∈[n])
)

as
the commitment. All of the randomness is used as the decommit-
ment string.

CCA.Val(com)→ m ∪ ⊥
1. Set s̃ = CCA.Find(1, com).
2. If CCA.Check(s̃, com) = 0 output ⊥.
3. Output c⊕ HPRG.Eval(HPRG.pp, s̃, 0).

CCA.ValAlt(tag∗, com)→ m ∪ ⊥
1. If com.tag = tag∗, output ⊥.
2. Let x∗ be the smallest index where the bits of tag∗, tag differ.
3. Set s̃ = CCA.Find(x∗, com).
4. If CCA.Check(s̃, com) = 0 output ⊥.

23

5. Output c⊕ HPRG.Eval(HPRG.pp, s̃, 0).
CCA.Recover(com, r)→ m ∪ ⊥

1. From r, parse the seed s of the Hinting PRG.
2. From com, parse the commitment component c and the public

parameter HPRG.pp.
3. Output c⊕ HPRG.Eval(HPRG.pp, s, 0)

3.1 Proof of Security

We now prove security by showing that our transformation leads to an
e′ = e · δ-computation enabled CCA commitment scheme. We do so in a
sequence of security games.

In each proof step we will need to keep in mind that the attacker will be
allowed to ask for a program P that runs in time polynomial in 2κ

e′ where
e′ = e · δ. This will be satisfied in one of two ways. In the proof steps that
rely on the hinting PRG security or the equivocal commitment without
setup scheme we leverage the that that these are subexponentially secure
primitives. For relying on security of the equivocal commitment without
setup we use security parameter κ′ = κe, it is secure against attackers that
run in time polynomial in 2(κ

′)δ = 2κ
eδ

= 2κ
e′ time. Thus our reduction

algorithm in these steps can satisfy the requirement by running P itself
and still be a legitimate 2(κ

′)δ time attacker. For relying on security of
the hinting PRG scheme, we use security parameter κ′′ = κ

′ 1
γ , it is secure

against attackers that run in time polynomial in 2κ
′ . Thus our reduction

algorithm can run P and the equivocate algorithm.
The second situation is when we rely on the security of the smaller

tag space e-computation enabled scheme. In this case the reduction will
need to be polynomial time so there is no way for it to directly run a
program P that takes 2κ

e′ time. However, in this case it can satisfy the
requirement by creating a program P̃ and passing this onto the security
game of the e-computation enabled challenger. The program P̃ will run
P as well as n invocations of the Equiv.Equivocate algorithm. We present
our sequence of games below, and proofs of indistinguishability between
these games can be found in the Supplementary material.

Game 0. This is the original message hiding game between a challenger
and an attacker for e′ = e · δ conforming attackers. The game is parame-
terized by a security parameter κ.

1. The attacker sends a randomized and inputless Turing Machine algo-
rithm P . The challenger runs the program on random coins and sends

24

the output to the attacker. If the program takes more than 22
κ time to

halt, the outputs halts the evaluation and outputs the empty string.
2. The attacker sends a “challenge tag” tag∗ ∈ {0, 1}N .
3. Pre Challenge Phase: The attacker makes repeated queries com-

mitments

com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N])i∈[n]

)
.

If tag = tag∗ the challenger responds with ⊥. Otherwise responds as

CCA.Val(com).

4. Challenge Phase
(a) The attacker sends two messages m∗0,m∗1 ∈ {0, 1}w
(b) Part 1:

– Compute κ′ = κe.
– Compute κ′′ = κ

′ 1
γ .

– Sample (HPRG.pp∗, 1n)← HPRG.Setup(κ′′, 1max(w,N ·`)).
– Sample s∗ = s∗1 . . . s

∗
n

R←− {0, 1}n as the seed of the HPRG.
– Let r∗x,i, r̃

∗
x,i ∈ {0, 1}` be defined as follows:

– For i ∈ [n]
i. Compute (r∗1,i, r

∗
2,i, . . . , r

∗
N,i) = HPRG.Eval(HPRG.pp∗, s∗, i)

ii. Sample (r̃∗1,i, r̃
∗
2,i, . . . , r̃

∗
N,i)

R←− {0, 1}N ·`

– For all i ∈ [n] run Equiv.Com(1κ
′
, s∗i)→ (σ∗i , y

∗
i).

(c) Part 2:
– It chooses b ∈ {0, 1} and sets c∗ = HPRG.Eval(HPRG.pp∗, s∗, 0)⊕
m∗b .

– For i ∈ [n], x ∈ [N]
i. If s∗i = 0
A. c∗x,i,0 = Small.Com(1κ, (x, tag∗x, 0), y

∗
i ; r
∗
x,i)

B. c∗x,i,1 = Small.Com(1κ, (x, tag∗x, 1), y
∗
i ; r̃
∗
x,i)

ii. If s∗i = 1
A. c∗x,i,0 = Small.Com(1κ, (x, tag∗x, 0), y

∗
i ; r̃
∗
x,i)

B. c∗x,i,1 = Small.Com(1κ, (x, tag∗x, 1), y
∗
i ; r
∗
x,i)

– Finally, it sends com∗ =

(
tag∗,HPRG.pp∗, c∗, (σ∗i ,

(
c∗x,i,0, c

∗
x,i,1

)
x∈[N]

)i∈[n])

)
as the commitment. All of the randomness is used as the de-
commitment string.

5. Post Challenge Phase: The attacker again makes commitment queries
com. If tag = tag∗ the challenger responds with ⊥. Otherwise it re-
sponds as

CCA.Val(com).

6. The attacker finally outputs a guess b′.

25

Game 1. This is same as Game 0, except that during the Pre Challenge
Phase andPost Challenge Phase, challenger uses CCA.ValAlt(tag∗, com)
to answer queries.

Game 2. In this game in Part 1 the (σ∗i , y
∗
i) are now generated from the

Equiv.Equivocate algorithm instead of the Equiv.Com algorithm.

– Compute κ′ = κe, κ′′ = κ
′ 1
γ .

– Sample (HPRG.pp∗, 1n)← HPRG.Setup(κ′′, 1max(w,N ·`)).
– Sample s∗ = s∗1 . . . s

∗
n

R←− {0, 1}n as the seed of the hinting PRG.
– Let r∗x,i, r̃

∗
x,i ∈ {0, 1}` be defined as follows, for i ∈ [n]

1. Compute (r∗1,i, r
∗
2,i, . . . , r

∗
N,i) = HPRG.Eval(HPRG.pp∗, s∗, i)

2. Sample (r̃∗1,i, r̃
∗
2,i, . . . , r̃

∗
N,i)

R←− {0, 1}N ·`

– For all i ∈ [n] run Equiv.Equivocate(1κ
′
)→ (σ∗i , y

∗
i,0, y

∗
i,1).

– For all i ∈ [n], set y∗i = y∗i,s∗i
.

Game 3 In this game in Part 2 we move to c∗x,i,0 committing to y∗i,0 and
c∗x,i,1 committing to y∗i,1 for all x ∈ [N], i ∈ [n] independently of s∗i .

– For i ∈ [n], x ∈ [N]
1. If s∗i = 0

(a) c∗x,i,0 = Small.Com(1κ, (x, tag∗x, 0), y
∗
i,0; r

∗
x,i)

(b) c∗x,i,1 = Small.Com(1κ, (x, tag∗x, 1), y
∗
i,1; r̃

∗
x,i)

2. If s∗i = 1
(a) c∗x,i,0 = Small.Com(1κ, (x, tag∗x, 0), y

∗
i,0; r̃

∗
x,i)

(b) c∗x,i,1 = Small.Com(1κ, (x, tag∗x, 1), y
∗
i,1; r

∗
x,i)

Game 4. In all r∗x,i values are chosen uniformly at random (insted of choos-
ing from HPRG.Eval(HPRG.pp∗, s∗, i)) and c∗ is also chosen uniformly at
random (instead of choosing HPRG.Eval(HPRG.pp∗, s∗, 0)⊕m∗b).

4 Compiling our Transformations

We conclude by showing how to compile our transformations. Suppose
that we begin with a base scheme supporting 32 · ilog(c, κ)6 tags for some
constant c that is secure against non-uniform attackers that make same
tag queries. We will compile this into a scheme supporting 16 · 2κ space
against uniform attackers with no same tag restriction.
6 For brevity, ilog(c, κ) denotes lg lg · · · lg︸ ︷︷ ︸

c times

(κ).

26

We apply the transformation that removes the same tag restriction
[12] to the base scheme which divides the tag space supported by 2 to
get a scheme with 16 · ilog(c, κ) sized tag space, but removes the same-tag
restriction. The we apply the Section 3 tag amplification process c + 1
times. Recall the transformation takes a N ′ = 4N scheme to a scheme
supporting 2N tags. Since 16/4 = 4 and 24 = 16 the effect is of each
application is to remove one of the lg iterations and keep the factor of 16.
Since the transformation imposes a polynomial blowup on the underlying
scheme and since it is applied a constant number of times, the size of the
resulting scheme is also polynomial.

Below we give a formal construction utilizing the transformations
RecoverRandom(·) presented in [12] , OneToMany(·) presented in [12] ,
and Amplify(·) presented in Section 3. Since we are transforming a scheme
that takes 32·ilog(c, κ) tags to 16·2κ tags, we need to use the amplification
transformation c+1 times. OneToMany(·),Amplify(·) transformations take
in a e-computation enabled scheme and output a e′ = e·δ-computation en-
abled scheme where e′ ≥ 1 and δ ∈ (0, 1) and the equivocal commitment
scheme is 2κ

δ hiding secure. We set OneToMany(·) to take a e · δ−c−2-
computation enabled and output a e ·δ−c−1-computation enabled scheme.
Amplify(·) takes a e · δ−c−1-computation enabled scheme and outputs a
e-computation enabled scheme after c+ 1 tranformations.

CompiledAmplify(BaseCCA = (BaseCCA.Com,BaseCCA.Val),HPRG,Equiv, e)

1. RandomBaseCCA← RecoverRandom(BaseCCA)

2. Let δ be the constant so that Equiv is 2κδ binding secure and c be
the constant such that the base scheme takes 32 · ilog(c, κ).

3. AmplifiedCCA0 ← OneToMany(RandomBaseCCA,HPRG,Equiv, e ·
δ−c−1).

4. For i ∈ [c+ 1]

(a) AmplifiedCCAi ← Amplify(AmplifiedCCAi−1,HPRG,Equiv, e·δi−c−1)
5. Output (AmplifiedCCAc+1.Com,AmplifiedCCAc+1.Val)

Below we analyze CompiledAmplify by stating theorems on correctness,
efficiency and security. Due to space constraints, we defer the proofs of
these theorems to the supplementary section.

Theorem 3. For every κ ∈ N, let BaseCCA = (BaseCCA.Com,BaseCCA.Val)
be a perfectly correct CCA commitment scheme by Definition 1. Let Equiv =
(Equiv.Com,Equiv.Decom, Equiv.Equivocate) be a perfectly correct equivo-
cal commitment scheme. Then, we have that the scheme CompiledAmplify(BaseCCA,HPRG,Equiv, e)
is a perfectly correct CCA commitment scheme.

27

Theorem 4. For every κ ∈ N, let BaseCCA = (BaseCCA.Com,BaseCCA.Val)
be an efficient CCA commitment scheme by Definition 2 with tag space
32 · ilog(c, κ). Let Equiv = (Equiv.Com, Equiv.Decom,Equiv.Equivocate) be
an efficient equivocal commitment scheme. Then, CompiledAmplify
(BaseCCA,HPRG,Equiv, e) is an efficient CCA commitment scheme.

Theorem 5. For every κ ∈ N, let BaseCCA = (BaseCCA.Com,BaseCCA.Val)
be a CCA commitment scheme that is hiding against non-uniform “same
tag" adversaries according to Definition 9 for tag space 32 · ilog(c, κ).
HPRG = (HPRG.Setup,HPRG.Eval) be a hinting PRG scheme that is
T = 2κ

γ secure for γ ∈ (0, 1). Equiv be an equivocal commitment with-
out setup scheme that is T = 2κ

δ binding and statistically hiding for some
constant δ ∈ (0, 1). Then, CompiledAmplify(BaseCCA,HPRG,Equiv, e) is
a e-computation enabled CCA commitment scheme that is hiding against
uniform adversaries according to Definition 8 for tag space 16 · 2κ.

We import the following theorems about instantiating base schemes,
from prior work.

Theorem 6. [21] For every constant c > 0, there exist CCA secure com-
mitments satisfying Definition 9 against non-uniform adversaries, with tag
space (c lg lg lg κ), that make black-box use of subexponential quantum hard
one-way functions and subexponential classically hard one-way functions
in BQP.

We point out that while [21] prove that their construction satisfies
non-malleability with respect to commitment, their proof technique also
directly exhibits same-tag CCA security against non-uniform adversaries.

Combining this theorem with Theorem 5 yields the following corollary.

Corollary 1. There exists a constant e > 0 for which there exists a per-
fectly correct and polynomially efficient e-computation enabled CCA secure
commitment satisfying Definition 5 against uniform adversaries, with tag
space 2κ for security parameter κ, that makes black-box use of subexpo-
nential quantum hard one-way functions, subexponential classically hard
one-way functions in BQP, subexponential hinting PRGs and subexponen-
tial keyless collision-resistant hash functions.

Alternatively, [28] showed that for every constant c > 0, assuming a
family of (c lg lg lg κ) time-lock puzzles that are simultaneously increas-
ingly depth-robust and decreasingly time-robust, there exist CCA secure
commitments satisfying Definition 9 against non-uniform adversaries, with

28

tag space (c lg lg lg κ). Our compiler applies to their base scheme as well,
yielding e-computation enabled CCA secure commitment satisfying Defi-
nition 5 against uniform adversaries, with tag space 2κ, that make black-
box use of the LPS base scheme.

Finally, we point out that while all our formal theorems discuss CCA
security, our transformations also apply as is to the case of amplifying par-
allel CCA security (equivalently, concurrent non-malleability w.r.t. com-
mitment). That is, given a base scheme that is only same-tag parallel
CCA secure (or non-malleable w.r.t. commitment) for small tags, our
transformations yield a scheme for all tags that is parallel CCA secure
(or concurrent non-malleable w.r.t. commitment) for tags in 2κ, without
the same tag restriction.

References

1. Barak, B.: Constant-Round Coin-Tossing with a Man in the Middle or Realizing
the Shared Random String Model. In: FOCS (2002)

2. Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography. SIAM J.
Comput. (2007)

3. Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: a paradigm for
keyless hash functions. In: STOC (2018)

4. Bitansky, N., Lin, H.: One-message zero knowledge and non-malleable commit-
ments. In: Theory of Cryptography (2018)

5. Broadnax, B., Fetzer, V., Müller-Quade, J., Rupp, A.: Non-malleability vs. cca-
security: the case of commitments. In: IACR International Workshop on Public
Key Cryptography (2018)

6. Canetti, R., Lin, H., Pass, R.: Adaptive Hardness and Composable Security in the
Plain Model from Standard Assumptions. In: FOCS (2010)

7. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, Black-Box Construc-
tions of Adaptively Secure Protocols. In: TCC (2009)

8. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Concurrent non-malleable
commitments (and more) in 3 rounds. In: CRYPTO (2016)

9. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Four-round concurrent non-
malleable commitments from one-way functions. In: CRYPTO (2017)

10. Damgård, I.B., Pedersen, T.P., Pfitzmann, B.: On the existence of statistically
hiding bit commitment schemes and fail-stop signatures. In: CRYPTO (1993)

11. Dolev, D., Dwork, C., Naor, M.: Non-Malleable Cryptography (Extended Ab-
stract). In: STOC (1991)

12. Garg, R., Khurana, D., Lu, G., Waters, B.: Black-box non-interactive non-
malleable commitments (2020), https://eprint.iacr.org/2020/1197

13. Goyal, R., Vusirikala, S., Waters, B.: New constructions of hinting prgs, owfs with
encryption, and more. IACR Cryptology ePrint Archive (2019)

14. Goyal, V.: Constant Round Non-malleable Protocols Using One-way Functions.
In: STOC (2011)

15. Goyal, V., Lee, C.K., Ostrovsky, R., Visconti, I.: Constructing non-malleable com-
mitments: A black-box approach. In: FOCS (2012)

29

https://eprint.iacr.org/2020/1197

16. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
STOC (2016)

17. Goyal, V., Richelson, S.: Non-malleable commitments using goldreich-levin list
decoding. In: FOCS (2019)

18. Goyal, V., Richelson, S., Rosen, A., Vald, M.: An algebraic approach to non-
malleability. In: FOCS (2014)

19. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM (2012)

20. Halevi, S., Micali, S.: Practical and Provably-Secure Commitment Schemes from
Collision-Free Hashing. In: CRYPTO (1996)

21. Kalai, Y.T., Khurana, D.: Non-interactive non-malleability from quantum
supremacy. In: CRYPTO (2019)

22. Khurana, D.: Round optimal concurrent non-malleability from polynomial hard-
ness. In: TCC (2017)

23. Khurana, D., Sahai, A.: How to achieve non-malleability in one or two rounds. In:
FOCS (2017)

24. Kitagawa, F., Matsuda, T., Tanaka, K.: CCA security and trapdoor functions via
key-dependent-message security. In: CRYPTO (2019)

25. Koppula, V., Waters, B.: Realizing chosen ciphertext security generically in
attribute-based encryption and predicate encryption. In: CRYPTO (2019)

26. Lin, H., Pass, R.: Non-malleability Amplification. In: STOC (2009)
27. Lin, H., Pass, R.: Constant-round Non-malleable Commitments from Any One-way

Function. In: STOC (2011)
28. Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent non-malleable

commitments from time-lock puzzles. In: FOCS (2017)
29. Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent Non-malleable Commit-

ments from Any One-Way Function. In: TCC (2008)
30. Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive One-Way Functions and Ap-

plications. In: CRYPTO (2008)
31. Pass, R., Rosen, A.: Concurrent Non-Malleable Commitments. In: FOCS (2005)
32. Pass, R., Rosen, A.: New and Improved Constructions of Nonmalleable Crypto-

graphic Protocols. SIAM J. Comput. (2008)
33. Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a non-malleable encryp-

tion scheme from any semantically secure one. In: CRYPTO (2006)
34. Pass, R., Wee, H.: Constant-round non-malleable commitments from sub-

exponential one-way functions. In: EUROCRYPT (2010)
35. Wee, H.: Black-box, round-efficient secure computation via non-malleability am-

plification. In: FOCS (2010)

30

	Black-Box Non-Interactive Non-Malleable Commitments

