
Sieving for twin smooth integers with
solutions to the Prouhet-Tarry-Escott problem

Craig Costello1, Michael Meyer2,3, and Michael Naehrig1

1 Microsoft Research, Redmond, WA, USA
{craigco,mnaehrig}@microsoft.com

2 University of Applied Sciences Wiesbaden, Germany
3 University of Würzburg, Germany

michael@random-oracles.org

Abstract. We give a sieving algorithm for finding pairs of consecu-
tive smooth numbers that utilizes solutions to the Prouhet-Tarry-Escott
(PTE) problem. Any such solution induces two degree-n polynomials,
a(x) and b(x), that differ by a constant integer C and completely split
into linear factors in Z[x]. It follows that for any ` ∈ Z such that
a(`) ≡ b(`) ≡ 0 mod C, the two integers a(`)/C and b(`)/C differ by
1 and necessarily contain n factors of roughly the same size. For a fixed
smoothness bound B, restricting the search to pairs of integers that are
parameterized in this way increases the probability that they are B-
smooth. Our algorithm combines a simple sieve with parametrizations
given by a collection of solutions to the PTE problem.
The motivation for finding large twin smooth integers lies in their ap-
plication to compact isogeny-based post-quantum protocols. The recent
key exchange scheme B-SIDH and the recent digital signature scheme
SQISign both require large primes that lie between two smooth integers;
finding such a prime can be seen as a special case of finding twin smooth
integers under the additional stipulation that their sum is a prime p.
When searching for cryptographic parameters with 2240 ≤ p < 2256, an
implementation of our sieve found primes p where p + 1 and p − 1 are
215-smooth; the smoothest prior parameters had a similar sized prime for
which p−1 and p+1 were 219-smooth. In targeting higher security levels,
our sieve found a 376-bit prime lying between two 221-smooth integers,
a 384-bit prime lying between two 222-smooth integers, and a 512-bit
prime lying between two 229-smooth integers. Our analysis shows that
using previously known methods to find high-security instances subject
to these smoothness bounds is computationally infeasible.

Keywords: Post-quantum cryptography, isogeny-based cryptography,
Prouhet-Tarry-Escott problem, twin smooth integers, B-SIDH, SQISign.

1 Introduction

We study the problem of finding twin smooth integers, i.e. finding two consecu-
tive large integers, m and m+1, whose product is as smooth as possible. Though

the literature on the role of smooth numbers in computational number theory
and cryptography is vast (see for example the surveys by Pomerance [20] and
Granville [12]), the problem of finding consecutive smooth integers of crypto-
graphic size has only been motivated very recently: optimal instantiations of the
key exchange scheme B-SIDH [8] and the digital signature scheme SQISign [10]
require a large prime that lies between two smooth integers, and this is a special
case of the twin smooth problem in which 2m+ 1 is prime.

This paper presents a sieving algorithm for finding twin smooth integers that
improves on the methods used in [8] and [10]. The high-level idea is to use two
monic polynomials of degree n that split in Z[x] and that differ by a constant,
i.e.

a(x) =

n∏
i=1

(x− ai) and b(x) =

n∏
i=1

(x− bi), where a(x)− b(x) = C (1)

for C ∈ Z. Whenever ` ∈ Z such that a(`) ≡ b(`) ≡ 0 mod C, it follows that the
integers a(`)/C and b(`)/C differ by 1.

Assume that |`| � |ai| and |`| � |bi| for 1 ≤ i ≤ n, and fix a smoothness
bound B. Rather than directly searching for two consecutive B-smooth integers
m and m + 1, roughly of size N , the search instead becomes one of finding a
value of ` such that the 2n (not necessarily distinct) integers

`− a1, . . . , `− an, `− b1, . . . , `− bn, (2)

each of size roughly N1/n, are B-smooth. For n > 1, and under rather mild
heuristics, the probability of finding twin smooth integers in this fashion is sig-
nificantly greater than the searches used in [8] and [10]. Put another way, the
same computational resources are likely to succeed in finding twin smooth inte-
gers subject to an appreciably smaller smoothness bound.

To search for ` ≈ N1/n such that the 2n integers in (2) are B-smooth, we
adopt the simple sieve of Eratosthenes as described by Crandall and Pomer-
ance [9, §3.2.5]; this identifies all of the B-smooth numbers in an arbitrary in-
terval. If w is the largest difference among the 2n integers in {ai} ∪ {bi}, then a
sliding window of size |w| can be used to scan the given interval for simultaneous
smoothness among the integers in (2). This approach has a number of benefits.
Firstly, smooth numbers in a given interval can be recognized once-and-for-all,
meaning we can combine arbitrarily many solutions to (1) into one scan of the
interval. Secondly, different processors can scan disjoint intervals in parallel, and
each of the interval sizes can be tailored to the available memory of the pro-
cessor. Finally, the simple sieve we use to identify the smooth numbers in an
interval (which is the bottleneck of the overall procedure) is open to a range of
modifications and improvements – see Section 7.

The approach in this paper hinges on being able to find solutions to (1). Such
solutions are related to a classic problem in Diophantine Analysis.

2

1.1 The Prouhet-Tarry-Escott problem

The Prouhet-Tarry-Escott (PTE) problem of size n and degree k asks to find
two distinct multisets of integers {a1, . . . , an} and {b1, . . . , bn} for which

a1 + · · ·+ an = b1 + · · ·+ bn,

a21 + · · ·+ a2n = b21 + · · ·+ b2n,

...
...

...

ak1 + · · ·+ akn = bk1 + · · ·+ bkn.

The most interesting case is k = n − 1, which is maximal (see Section 3), and
such ideal solutions immediately satisfy (1). For example, when n = 4, the sets
{0, 4, 7, 11} and {1, 2, 9, 10} are such that

0 + 4 + 7 + 11 = 1 + 2 + 9 + 10 = 22,

02 + 42 + 72 + 112 = 12 + 22 + 92 + 102 = 186,

03 + 43 + 73 + 113 = 13 + 23 + 93 + 103 = 1738,

from which it follows (see Proposition 1) that

a(x) = x(x− 4)(x− 7)(x− 11) and b(x) = (x− 1)(x− 2)(x− 9)(x− 10)

differ by a constant C ∈ Z. Indeed, a(x)− b(x) = −180.
Origins of the PTE problem are found in the 18th century works of Euler

and Goldbach, and it remains an active area of investigation [6,5,7]. In 1935,
Wright [28] conjectured that ideal solutions to the PTE problem should exist
for all n, but at present this conjecture is open: for n = 11 and for n ≥ 13,
no ideal solutions to the PTE problem have been found, see [5, p. 94] and [7,
p. 73]. However, Borwein states that “heuristic arguments suggest that Wright’s
conjecture should be false. [...] It is intriguing, however, that ideal solutions exist
for as many n as they do” [5, p. 87].

The PTE solutions that are known for n ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 12} are a
nice fit for our purposes. If we were to fix a smoothness bound, B, and then search
for the largest pair of consecutive B-smooth integers we could find, having PTE
solutions for n as large as possible would be helpful. But for our cryptographic
applications (see §1.3), we will instead fix a target range for our twin smooth
integers to match a given security level, and then aim to find the smoothest
twins within that range. In this case, the degree n of a(x) and b(x) cannot be
too large, since a larger n means fewer ` ∈ Z to search over. Ideally, n needs
to be large enough such that the splitting of a(x) and b(x) into n linear factors
helps with the smoothness probability, but small enough so that we still have
ample ` ∈ Z to find a(`) and b(`) such that

(i) a(`) ≡ b(`) ≡ 0 mod C,
(ii) (m,m+ 1) = (b(`)/C, a(`)/C) are B-smooth, and (if desired)

(iii) 2m+ 1 is prime.

It turns out that those n ≤ 12 for which PTE solutions are known are the sweet
spot for our target applications, where 2240 ≤ m ≤ 2512.

3

1.2 Prior methods of finding twin smooth integers

After defining twin smooth integers for concreteness, we recall previous methods
used to find large twin smooth integers.

Definition 1 (Twin smooth integers). For a given B > 1, we call (m,m+1)
with m ∈ Z a pair of twin B-smooth integers or B-smooth twins if m · (m+ 1)
contains no prime factor larger than B.

As Lehmer notes in [18], consecutive pairs of smooth integers have occurred
in 18th century works and have been mentioned by Gauss in the context of
computing logarithms of integers.

Hildebrand [13, Corollary 2] has shown that there are infinitely many pairs of
consecutive smooth integers (m,m+ 1), however this result notably holds for a
smoothness bound that depends on m. More precisely, there are infinitely many
such pairs of mε-smooth integers for any fixed ε > 0. An analogous result holds
for tuples of k consecutive smooth integers (for any k), as shown by Balog and
Wooley [1].

For a fixed, constant smoothness bound B, the picture is different. A theorem
by Størmer [25] states that there are only a finite number of such pairs. We begin
with some historical results which show that deterministically computing the
largest pair of consecutive B-smooth integers requires a number of operations
that is exponential in the number of primes up to B.

Solving Pell equations. Fix B, let {2, 3, . . . q} be the set of primes up to B
with cardinality π(B), and suppose that m and m + 1 are both B-smooth. Let
x = 2m+1, so that x−1 and x+1 are also B-smooth, and let D be the squarefree
part of the product (x− 1)(x+ 1), so that x2 − 1 = Dy2 for some y ∈ Z. Since
the product (x− 1)(x+ 1) is B-smooth, it follows that Dy2 is B-smooth, which
(since D is squarefree) means that

D = 2α2 · 3α3 · · · · · qαq

with αi ∈ {0, 1} for i = 2, 3, . . . , q. For each of the 2π(B) squarefree possibilities
for D, an effective theorem of Størmer [25] (and further work by Lehmer [18])
reverses the above argument and proposes to solve the 2π(B) Pell equations

x2 −Dy2 = 1,

finding all of the solutions for which y is B-smooth, and in doing so finding the
complete set of B-smooth consecutive integers m and m+ 1.

Ideally, this process could be used to deterministically find optimally smooth
consecutive integers at any size, by increasing B until the largest pair of twin
smooths is large enough. For example, the largest pair of twin smooth in-
tegers with B = 3 is (8, 9), the largest pair of twin smooth integers with
B = 5 is (80, 81), and the largest pair of twin smooth integers with B = 7
is (4374, 4375). Unfortunately, solving 2π(B) Pell equations becomes infeasi-
ble before the size of m grows large enough to meet our requirements. For

4

B = 113, [8] reports that the largest twins (m,m + 1) found upon solving all
230 Pell equations have m = 19316158377073923834000 ≈ 274, and the largest
twins found among the set when adding the requirement that 2m + 1 is prime
have m = 75954150056060186624 ≈ 266.

The extended Euclidean algorithm. One näıve way of searching for twin
smooth integers is to compute B-smooth numbers m until either m− 1 or m+ 1
also turns out to beB-smooth. A much better method, which was used in [8,4,10],
is to instead choose two coprime B-smooth numbers α and β that are both of
size roughly the square root of the targets m and m + 1. Since α and β are
coprime, Euclid’s extended GCD algorithm outputs two integers (s, t) such that
αs + βt = 1 with |s| < |β/2| and |t| < |α/2|. We can then take {m,m + 1} =
{|αs|, |βt|}, and the probability of m and m + 1 being B-smooth is now the
probability that s · t is B-smooth. The key observation here is that the product
s · t with s ≈ t is much more likely to be B-smooth than a random integer of
similar size. In Section 2 we will develop methods and heuristics that allow us
to closely approximate these probabilities.

Searching with m = xn−1. The method from [8] that proved most effective
in finding twin smooth integers with 2240 ≤ m ≤ 2256 is by searching with
(m,m + 1) = (xn − 1, xn) for various n, where the best instances were found
with n = 4 and n = 6. Our approach can be seen as an extension of this method,
where the crucial difference is that for n > 2 the polynomial xn − 1 does not
split in Z[x], and the presence of higher degree terms significantly hampers the
probability that values of `n − 1 ∈ Z are smooth. For example, with n = 6
we have m = (x2 − x + 1)(x2 + x + 1)(x − 1)(x + 1) and, assuming B � `,
the probability that integer values of this product are B-smooth is far less than
if it was instead a product of six monic, linear terms. On the other hand, the
probability that m+ 1 is B-smooth for a given ` is the probability that ` itself is
B-smooth, which works in favor of the non-split method. However, as we shall
see in the sections that follow, this is not enough to counteract the presence of
the higher degree terms. Furthermore, several of the PTE solutions we will be
using also benefit from repeated factors.

1.3 Cryptographic applications of twin smooth integers

The field of supersingular isogeny-based cryptography continues to gain in-
creased popularity in large part due to the conjectured quantum-hardness of
variants of the supersingular isogeny problem. In its most general form, this
problem asks to find a secret isogeny φ : E → E′ between two given supersingu-
lar elliptic curves E/Fp2 and E′/Fp2 .

The most famous isogeny-based cryptosystems are Jao and De Feo’s SIDH
key exchange protocol [15] and its actively secure incarnation SIKE [14], which
recently advanced to the third round of the NIST post-quantum standardization
effort [26]. On the one hand, SIKE offers the advantage of having the smallest

5

public key and ciphertext sizes of all of the key encapsulation schemes under
consideration, but on the other, its performance is currently around an order of
magnitude slower than its code- and lattice-based counterparts.

Two supersingular isogeny-based schemes have recently emerged that require
a new type of instantiation. Rather than defining primes p for which either p−1
or p + 1 is smooth (as in SIDH/SIKE), the key exchange scheme B-SIDH [8]
and the digital signature scheme SQISign [10] instead require primes for which
(large factors of) both p − 1 and p + 1 are smooth. As both of those papers
discuss, finding primes that lie between two smooth integers is not an easy task,
but the practical incentive to do this is again related to the compactness of these
schemes: B-SIDH’s public keys are even smaller than the analogous SIDH/SIKE
compressed public keys, and the sum of the SQISign public key and signature
sizes is significantly smaller than those of all of the remaining NIST signature
candidates.

In both B-SIDH and SQISign, the overall efficiency of the protocol is closely
tied to the smoothness of p−1 and p+1. Roughly speaking, any prime ` appearing
in the factorizations of these two integers implies that an `-isogeny needs to be
computed somewhere in the protocol. Such `-isogenies have traditionally been
computed in O(`) field operations using Vélu’s formulas [27], but recent work by
Bernstein, De Feo, Leroux, and Smith [4] improved the asymptotic complexity

to Õ(
√
`) by clever use of a baby-step giant-step algorithm. Nevertheless, the

large `-isogenies that are required in these protocols dominate the runtime, and
the best instantiations of both schemes will use large primes p lying between two
integers that are as smooth as possible.

In this paper we will view the search for such primes as one that imposes
an additional stipulation on the more general problem of finding twin smooth
integers: cryptographically useful instances of the twin smooth integers (m,m+1)
are those where the sum 2m+ 1 is a prime, p.

Security analyses of B-SIDH and SQISign suggest that it is possible to relax
the requirements and to tolerate cofactors that divide either or both of p−1 and
p+1 and have prime factors somewhat larger than the target smoothness bound,
such that (the size of) any primes dividing these cofactors have no impact on
the efficiency. For simplicity and concreteness, we will focus our analysis on the
pure problem of finding twin smooth integers that disallows any primes larger
than our smoothness bound, but we will oftentimes point out the modifications
and relaxations that account for cofactors; this is discussed in Section 7.

The heuristic analysis summarized in Table 3 predicts that sieving with PTE
solutions finds twin smooth integers (m,m + 1) that are smoother than one
expects to find using the same computational resources and the prior methods
described in §1.2. Indeed, in Section 6 we present a number of examples we
found with our sieve whose largest prime divisors are several bits smaller than
the largest prime divisors in instantiations found in the literature. In reference
to Table 3, we briefly sketch some intuition on how these smoother examples
translate into practical speedups. For example, the best prior instantiation of a
prime p with 2240 ≤ p < 2256 found that (p− 1) and (p+ 1) are simultaneously

6

219-smooth, whereas our sieve found a similarly sized p subject to a smoothness
bound of 215. Given the current (square root) complexity of state-of-the-art `-
isogeny computations, this suggests that the most expensive isogeny computed
in our example will be roughly 4 times faster than that of the prior example.

The source code for our sieving algorithm is publicly available at

https://github.com/microsoft/twin-smooth-integers.

This code can be used by implementers to find their own instantiations; in
particular, the code is intended to be general and users should be able to tailor
it to their own requirements, e.g., to allow for different requirements, cofactors,
or to target other security levels.

Roadmap. First time readers may benefit from jumping straight to Section 5,
where all the theory developed in Sections 2–4 is put into action by way of a full
worked example. Section 2 gathers some results that allow us to approximate
the smoothness probabilities of both integers and integer-valued polynomials.
Section 3 starts by making the connection between our method of finding twin
smooth integers and the PTE problem, before going into the theory of the PTE
problem and showing how to generate infinitely many solutions for certain de-
grees. Section 4 describes our sieving algorithm. Section 6 presents some of the
best examples found with our sieve and compares them with the previous ex-
amples in the literature. Section 7 discusses a number of possible modifications
and improvements to the sieve.

2 Smoothness probabilities

In this section we recall some well-known results concerning smoothness proba-
bilities that will be used to analyse various approaches throughout the paper: §2.1
shows how to approximate the probability that m � B is B-smooth using the
Dickman–de Bruijn function; §2.2 shows how to approximate the probability
that integer values of a polynomial f(x) ∈ Z[x] are B-smooth.

2.1 Smoothness probabilities for large N

Recall that an integer is said to be B-smooth if it does not have any prime factor
exceeding B. Let

Ψ(N,B) = #{1 ≤ m ≤ N : m is B-smooth}

be the number of positive B-smooth integers. For each real number u > 0,
Dickman’s theorem [9, Theorem 1.4.9] states that there is a real number ρ(u) > 0
such that

Ψ(N,N1/u)

N
∼ ρ(u) as N →∞. (3)

7

https://github.com/microsoft/twin-smooth-integers

Dickman described ρ(u) as the unique continuous function on [0,∞) that satisfies

ρ(u) = 1 for 0 ≤ u ≤ 1, and ρ′(u) = −ρ(u−1)u for u > 1. For 1 ≤ u ≤ 2, ρ(u) =
1− ln(u), but for u > 2 there is no known closed form for ρ(u). Nevertheless, it
is easy to evaluate ρ(u) (up to any specified precision) for a given value of u, and
popular computer algebra packages (like Magma and Sage) have this function
built in.

In this paper we will be using (3) to approximate the probability that certain
large numbers are smooth. For example, with N = 2128 and u = 8, the value
ρ(8) ≈ 2−25 approximates the probability that a 128-bit number is 216-smooth.
With u fixed, this approximation becomes better as N tends towards infinity.
Using ρ(u) as the smoothness probability assumes the heuristic that N1/u-smooth
numbers are uniformly distributed in [1, N].

While there are methods to more precisely estimate Ψ(N,B), see e.g. [24]
and [2], we are content with the simple approximation given by ρ. Using a basic
sieve to identify smooth integers, we have counted all B-smooth integers up to
N = 243 for B up to 216 and compared their numbers with those predicted by
the Dickman–de Bruijn function. Except for the lower end of the studied interval
and for very small smoothness bounds, we have found the approximation by ρ
to be sufficiently close to the actual values.

2.2 Smoothness heuristics for polynomials

For a polynomial f(x) ∈ Z[x], define

Ψf (N,B) = #{1 ≤ m ≤ N : f(m) is B-smooth}.

Throughout the paper we will use the following conjecture (see [19, Eq. 1.4]
and [12, Eq. 1.20]) as a heuristic to estimate the probability that f(N) is N1/u-
smooth.

Heuristic 1 Suppose that the polynomial f(x) ∈ Z[x] has distinct irreducible
factors over Z[x] of degrees d1, d2, . . . dk ≥ 1, respectively, and fix u > 0. Then

Ψf (N,N1/u)

N
∼ ρ(d1u) . . . ρ(dku) (4)

as N →∞.

With B = N1/u, Heuristic 1 says that for m ≤ N , the probability of f(m)
being B-smooth is the product of the probabilities of each of its factors being
B-smooth (these are computed via (3)). Martin proved this conjecture for a
certain range of u [19, Theorem 1.1] that does not apply in our case. Heuristic 1
inherently assumes that the smoothness probabilities of each of the factors are
independent of one another; here, the roots of our split polynomials all lie in
relatively short intervals, and thus are not uniformly distributed in, say, [1, N].
For example, with f(m) =

∏
1≤i≤d(m−fi) ∈ Z, any prime q that divides m−f1

only divides m− fi for some 1 < i ≤ d if q | fi − f1, which in particular means

8

that any prime which is larger than the interval size can divide at most one of
the (unique) m − fi. Nevertheless, our experiments have shown Heuristic 1 to
be a very accurate approximation for our purposes; we simply use it as a means
to approximate how many values of m ∈ Z need to be searched before we can
expect to start finding twin smooth integers, and to draw comparisons between
approaches for various target sizes.

3 Split polynomials that differ by a constant

Henceforth we will use a(x) and b(x) to denote two polynomials of degree n > 1
in Z[x] that differ by an integer constant C ∈ Z, i.e. a(x)− b(x) = C. Moreover,
unless otherwise stated, both a and b are assumed to split into linear factors
over Z, i.e.

a(x) =
∏

1≤i≤n

(x− ai) and b(x) =
∏

1≤i≤n

(x− bi),

where the ai and bi (which are not necessarily distinct) are all in Z.

The core idea of this paper is to search for twin smooth integers by searching
over ` ∈ Z such that

a(`) ≡ b(`) ≡ 0 mod C.

Then, the two polynomials aC(x) := a(x)/C and bC(x) := b(x)/C ∈ Q[x] evalu-
ate to integer values aC(`) and bC(`) at `, and moreover

aC(`) = bC(`) + 1.

Since a and b split into n linear factors over Z, aC(`) and bC(`) necessarily contain
n integer factors of approximately the same size. In §4.4 we approximate the
probability that aC(`) and bC(`) are B-smooth, and show that these probabilities
are favorable (in the ranges of practical interest) compared to the previously
known methods of searching for large twin smooths.

3.1 The Prouhet-Tarry-Escott problem

For degrees n ≤ 3, infinite families of split polynomials a(x) and b(x) with
a(x)− b(x) = C ∈ Z can be constructed by solving the system that arises from
equating all but the constant coefficients. Although there are n equations in 2n
unknowns, for n > 3 this process becomes unwieldy; the equations are nonlinear
and we are seeking solutions that assume values in Z. Moreover, relaxing the
monic requirement (which permits 4n unknowns) and allowing for solutions in
Q does not seem to help beyond n > 3. Fortunately, finding these pairs of
polynomials is closely connected to the computational hardness of solving the
PTE problem of size n.

9

Definition 2 (The Prouhet-Tarry-Escott problem). The Prouhet-Tarry-
Escott (PTE) problem of size n and degree k asks to find distinct multisets of
integers A = {a1, . . . , an} and B = {b1, . . . , bn}, such that

n∑
i=1

aji =

n∑
i=1

bji

for j = 1 . . . k. We abbreviate solutions to this problem by writing [a1, . . . , an] =k

[b1, . . . , bn] or A =k B.

A classic result that links PTE solutions to polynomials is the following [6,
Proposition 1].

Proposition 1. The following are equivalent:

n∑
i=1

aji =

n∑
i=1

bji for j = 1, . . . , k. (5)

deg

(
n∏
i=1

(x− ai)−
n∏
i=1

(x− bi)

)
≤ n− (k + 1). (6)

Proposition 1 implies that for any PTE solution of size n and degree k = n−1,
the polynomials a(x) =

∏n
i=1(x−ai) and b(x) =

∏n
i=1(x−bi) differ by a constant.

For a given n, this choice for k is the maximal possible choice [6, Proposition
2], hence the respective solutions are called ideal solutions. Ideal solutions are
known for n ≤ 10 and n = 12, but it remains unclear if there are ideal solutions
for other sizes [7]. Unless stated otherwise, henceforth we will only speak of PTE
solutions that are ideal solutions.

As we will see later, the most useful PTE solutions for our purposes are
those for which the constant C is as small as possible. We now recall some useful
results from the literature concerning the constants that can arise from PTE
solutions.

Definition 3 (Fundamental constant Cn). Let n be a positive integer, and
write Cn,A,B for the associated constant of an ideal PTE solution A =n−1 B of
size n. Then we define

Cn = gcd{Cn,A,B | A =n−1 B}

as the fundamental constant associated to ideal PTE solutions of size n.

A result by Kleiman [17] gives a lower bound on the fundamental constant.

Proposition 2. Let n be a positive integer. Then (n− 1)! | Cn.

For concrete choices of n, more divisibility results are presented by Rees and
Smyth [21], and Caley [7]. These results form sharper bounds for Cn, and thus
for constants arising from any given PTE solution. Upper bounds for Cn can be

10

Table 1: Divisibility results for the PTE problem

n Lower bound for Cn Upper bound for Cn

2 1 1

3 22 22

4 22 · 32 22 · 32

5 24 · 32 · 5 · 7 24 · 32 · 5 · 7
6 25 · 32 · 52 25 · 32 · 52

7 26 · 33 · 52 · 7 · 11 26 · 33 · 52 · 7 · 11

8 24 · 33 · 52 · 72 · 11 · 13 28 · 33 · 52 · 72 · 11 · 13

9 27 · 33 · 52 · 72 · 11 · 13 29 · 34 · 52 · 72 · 11 · 13 · 17 · 23 · 29

10 27 · 34 · 52 · 72 · 13 · 17 211 · 36 · 52 · 72 · 11 · 13 · 17 · 23 · 37

11 28 · 34 · 53 · 72 · 11 · 13 · 17 · 19 none known

12 28 · 34 · 53 · 72 · 112 · 17 · 19 212 · 38 · 53 · 72 · 112 · 132 · 17 · 19 · 23 · 29 · 31

directly computed by taking the GCD of all known solutions of size n. This is
detailed in [7], where for example it is known that for n = 9 we have

27 · 33 · 52 · 72 · 11 · 13 | C9 and C9 | 29 · 34 · 52 · 72 · 11 · 13 · 17 · 23 · 29.

Table 1 is an updated version of [7, Table 3.2], and gives an overview of the
bounds for the fundamental constants Cn. These results give estimates for the
optimal choices of solutions for our searches. In particular, choosing solutions
with associated constants close to the upper bound for Cn yields the best pre-
conditions for finding twin smooth integers.

For our application of finding twin smooth integers, it may seem unnecessarily
restrictive to only make use of PTE solutions, yielding monic polynomials a and
b with integer roots. However, it can be proven that all polynomials that are
split over Q and that differ by a constant arise from PTE solutions. In order to
prove this, we make use of the following result ([6, Lemma 1], [7, Proposition
2.1.2]).

Proposition 3. Let [a1, . . . , an] =k [b1, . . . , bn] with associated constant C and
M,K arbitrary integers with M 6= 0. Define a linear transform h(x) = Mx +
K and let a′i = h(ai) and b′i = h(bi) for i = 1, . . . , n. Then [a′1, . . . , a

′
n] =k

[b′1, . . . , b
′
n], and the associated constant is C ′ = C ·Mn.

Two such solutions that are connected through a linear transform are called
equivalent. Note that Proposition 3 also holds for the PTE problem over rational
numbers instead of integers, i.e. for ai, bi ∈ Q for 1 ≤ i ≤ n.

Corollary 1. Let a(x) and b(x) be polynomials of degree n with rational roots
A = {a1, . . . , an} and B = {b1, . . . , bn}, such that a(x) − b(x) = C ∈ Q. Then
A =n−1 B for the PTE problem over Q, and there is an equivalent solution
A′ =n−1 B′ to the PTE problem over Z.

11

Proof. Since deg(a(x) − b(x)) = 0, Proposition 1 implies that A =n−1 B. Let
M ∈ Z be a common denominator of a1, . . . , an, b1, . . . , bn and define the linear
transform h(x) = Mx. Let a′i = h(ai) and b′i = h(bi) for i = 1, . . . , n. Then
A′ = {a′1, . . . , a′n} and B′ = {b′1, . . . , b′n} consist of integers, and by Proposition 3,
A′ =n−1 B′ is a solution for the PTE problem over Z. ut

Corollary 1 allows us to focus entirely on integer PTE solutions without
imposing any further restrictions. For our search for smooth values of the poly-
nomials, Proposition 3 further implies that we only have to search with one
polynomial per equivalence class.

Corollary 2. Let A = {a1, . . . , an}, B = {b1, . . . , bn}, and A′ = {a′1, . . . , a′n},
B′ = {b′1, . . . , b′n} be equivalent ideal PTE solutions. Let a(x), b(x), and a′(x),
b′(x) be the respective polynomials such that a(x) − b(x) = C ∈ Z resp. a′(x) −
b′(x) = C ′ ∈ Z, and h(x) be the associated linear transform. Then for given
xmin and xmax, aC(x) and bC(x) take on the same integer values for x ∈ I =
[xmin, xmax] as a′C′(x) and b′C′(x) for x ∈ h(I).

In order to efficiently identify equivalent solutions, we make use of Proposi-
tion 3 to define a representation of equivalence classes, which we call the nor-
malized form of a class of solutions.

Definition 4 (Normalized form of PTE solutions). A normalized form of
a given PTE solution is a solution such that a1 ≤ a2 ≤ · · · ≤ an, b1 ≤ b2 ≤
· · · ≤ bn, 0 = a1 < b1, and gcd(a1, . . . , an, b1, . . . , bn) = 1.

Another classification of solutions, which is of importance for our searches,
is the distinction between symmetric and non-symmetric solutions [5].

Definition 5 (Symmetric PTE solutions). For n even, an even ideal sym-
metric solution to the PTE problem is of the form

[±a1,±a2, . . . ,±an/2] =n−1 [±b1,±b2, . . . ,±bn/2].

For n odd, an odd ideal symmetric solution to the PTE problem is of the form

[a1, a2, . . . , an] =n−1 [−a1,−a2, . . . ,−an].

It can immediately be seen that the normalized form of a symmetric solu-
tion is unique, but no longer has the form satisfying Definition 5. However, we
will still be calling these solutions symmetric, since they are symmetric with
respect to the integer K (instead of symmetric with respect to 0, as in the clas-
sic formulation of Definition 5), where h(x) = Mx + K is the linear transform
connecting these solutions. Thus, we define solutions as non-symmetric if and
only if their equivalence class does not contain a symmetric solution according
to Definition 5.

Note that in the special case of non-symmetric solutions, the normalized form
is not unique. In particular, if [a1, . . . , an] =n−1 [b1, . . . , bn] is a non-symmetric

12

normalized solution, then so is the solution arising from the linear transform
h(x) = Mx + K, where M = −1 and K = max{an, bn}. In this case, we take
the solution with minimal b1 to represent the normalized solution, and refer to
the second normalized solution as the flipped solution.

Finally, in §4.4 we will see that PTE solutions with repeated factors have
higher probabilities (than those without repeated factors) of finding twin smooth
integers. The following result [7, Theorem 2.1.3] shows that repeated factors can
only occur with multiplicity at most 2.

Proposition 4 (Interlacing). Let A = {a1, . . . , an} and B = {b1, . . . , bn} be
an ideal PTE solution, where a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn, and
w.l.o.g., we assume that a1 < b1. Then, a1 6= bj for all j. If n is odd, we have

a1 < b1 ≤ b2 < a2 ≤ a3 < · · · < an−1 ≤ an < bn,

and if n is even, then

a1 < b1 ≤ b2 < a2 ≤ a3 < · · · < an−2 ≤ an−1 < bn−1 ≤ bn < an.

3.2 PTE solutions

An important prerequisite for searching for twin smooth integers is a large num-
ber of normalized ideal PTE solutions with relatively small associated constants.
To this end, we briefly review solutions from the literature as well as methods
to construct ideal solutions. Henceforth, we will refer to normalized ideal PTE
solutions only as PTE solutions.

A database of Shuwen collects several PTE solutions, both symmetric and
non-symmetric [22]. In particular, special solutions, such as the smallest solutions
with respect to the associated constants, and the first solutions found for each
size, are presented there.

Apart from this, several methods for generating PTE solutions have been
found. Parametric solutions are known for n ∈ {2, 3, 4, 5, 6, 7, 8, 10, 12}, and these
can be used to generate infinitely many symmetric solutions [7]. However, the
number of solutions with small associated constants is limited. For n = 9, only
two non-equivalent solutions are known.

For n ∈ {5, 6, 7, 8}, we implemented the methods from [5] to generate as many
symmetric solutions with small associated constants as possible. For n = 10
and n = 12, there are parametric symmetric solutions due to Smyth [23] and
Choudhry and Wróblewski [29], resp., both following an earlier method from
Letac [11]. In both methods, the two parameters that form solutions come from
a quadratic equation in two variables. This equation can be transformed into
an elliptic curve equation, and thus finding suitable parameters is equivalent to
finding rational points on this elliptic curve. In [7, Section 6], Caley implements
these methods by adding multiples of a non-torsion point, P , to the eight known
torsion points.4 However, it is evident from the underlying transforms that PTE

4 The elliptic curves that arise for n = 10 and n = 12 have Mordell-Weil-groups
Z/4Z × Z/2Z × Z resp. Z/4Z × Z/2Z × Z × Z. Thus there are eight torsion points

13

Table 2: Number of PTE solutions up to an upper bound for the constants.
Cmin,n denotes the smallest constant known for each degree.

n dlog2(Cmin,n)e Bitlength of upper bound # of solutions

5 13 50 49

6 14 50 2438

7 33 60 8

8 31 60 51

9 52 60 2

10 73 100 1

12 76 100 1

solutions with small constants can only arise from rational elliptic curve points
with small denominators in their coordinates. Caley’s approach thus proves to be
non-optimal for our aims, as the denominators in the coordinates of [i]P become
too large already for very small i, resulting in PTE solutions with huge constants.
We implemented these methods with the curves and transforms from [7], but
deviated from Caley’s approach by first searching for non-torsion points with
integer coordinates, resp. coordinates with very small denominators. We then
followed Caley’s algorithm and computed small multiples of these points and
their sums with torsion points. Despite finding many PTE solutions, none of
them proved to have an associated constant close to the upper bound for C10

resp. C12. Further, taking the GCD of all found solutions, we did not succeed in
reducing the known upper bounds for C10 resp. C12.

For each size n, we identified an upper bound for constants that permit
acceptable success probabilities for our searches, and collected as many solutions
as possible up to this value. Table 2 reports on the numbers of solutions we found,
including solutions from [22].

4 Sieving with PTE solutions

Our sieving algorithm consists of two phases. The first phase identifies the B-
smooth numbers in a given interval (§4.1). The second phase then scans the
interval using either a single PTE solution (§4.2) or the combination of many
PTE solutions (§4.3).

4.1 Identifying smooth numbers in an interval

We follow the exposition of Crandall and Pomerance [9, §3.2.5] and adopt the
simple sieve of Eratosthenes to identify the B-smooth integers in an interval

in each case, and the non-torsion groups are generated by one resp. two non-torsion
points.

14

[L,R). We set up an array of R − L integers corresponding to the integers
L,L+ 1, . . . , R− 1, and initialize each entry with 1. For all primes with p < B,
we identify the smallest non-negative i ∈ Z, for which L + i ≡ 0 mod p, and
multiply the array elements at positions i + jp by p for all j ∈ Z such that
L ≤ i + jp < R. Additionally, for all primes with p <

√
R, we have to identify

the maximal exponent e such that pe < R, and analogously perform sieving steps
with the relevant prime powers, where further multiplications by p take place.
After this process is finished, the B-smooth integers in the interval are precisely
those for which the number at position i is L + i. Subsequently, we transform
this array of integers into a bitstring, where a ‘1’ indicates a B-smooth number,
while a ‘0’ represents a non-smooth number.

This simple approach allows for several optimizations and modifications,
some of which are discussed further in Section 7.

4.2 Searching with a single PTE solution

Assume that we are searching with a normalized ideal PTE solution of size n,
writing a(x) =

∏n
i=1(x − ai) and b(x) =

∏n
i=1(x − bi), together with C ∈ Z

such that a(x) − b(x) = C. We will assume C > 0, since a(x) and b(x) can
otherwise swap roles accordingly, and as usual we write aC(x) = a(x)/C and
bC(x) = b(x)/C as the two polynomials in Q[x].

We are searching for ` such that m + 1 = aC(`) and m = bC(`) are both
B-smooth and of a given size, and thus the size of the constant C affects the size
of the ` we should search over. Moreover, we only wish to search over the values
of ` for which aC(`) and bC(`) are integers, and we determine this set of residues
(modulo C) as follows. If C =

∏
peii is the prime factorization of the constant,

then for each prime-power factor we determine all residues ri mod peii for which
a(ri) ≡ b(ri) ≡ 0 mod peii (note that it is sufficient to check that one of a(ri) or
b(ri) is a multiple of peii). We then use the Chinese Remainder Theorem (CRT) to
reconstruct the full set of residues {r mod C} for which a(r) ≡ b(r) ≡ 0 mod C.
Depending on the size of the constant, the full list of suitable residues may be
rather large; if not, they can be stored in a lookup table, but if so, only the
smaller sets (i.e. the {ri} corresponding to peii) need to be stored. We can then
either loop over the suitable residues by constructing them on the fly using the
CRT, or we can check whether a candidate ` is a suitable residue by reducing it
modulo each of the peii .

It is worth pointing out that when searching for cryptographic parameters
with a single PTE solution, the condition that 2m + 1 is prime can be used
to discard the residues {r̃ mod C} for which 2bC(r) + 1 can never be prime if
r ≡ r̃ mod C. In a very rare number of cases, the polynomial 2bC(x) + 1 =
2/C · (b(x) +C/2) in Q[x] is such that (b(x) +C/2) is reducible in Z[x], in which
case the PTE solution can be completely discarded. For example, this happens
for both of the PTE solutions with n = 9.

Recall from Section 3 that the constants of the PTE solutions are (for our
purposes) always B-smooth. When processing an interval [L,R), the problem
therefore reduces to finding ` ∈ [L,R) such that all of the factors of a(`) and

15

b(`) are marked as B-smooth. For the PTE solution in use, these factors are
given by `i = ` − i, where i ∈ {a1, . . . , an, b1, . . . , bn}. Note that since a1 = 0
for our normalized representation, we have ` = `0. Starting with ` at the left
end of the interval requires some care since for a given `, we need to be able
to check for the smoothness of all `i. Hence, to be able to cover the full space
when processing consecutive intervals, we have to run the first phase of the sieve
for a slightly larger interval, namely [L−w,R) (overlapping to the left with the
previous interval), where w = max{an, bn}. This allows us to process ` ∈ [L,R)
such that `w will cover [L− w,R− w).

In the second phase of the sieve we advance ` through all of the elements
in the bitstring marked ‘1’, each time checking the bits corresponding to the
remaining `i, i.e. i ∈ {a2, . . . , an, b1, . . . , bn}. If, at any time, we see that any of
the `i corresponds to a ‘0’, we advance ` such that it is aligned with the next
‘1’ and repeat the process until all of the `i correspond to a ‘1’. At this point,
we can then check whether ` is a suitable residue modulo C as above; if not,
` is again advanced to the next set bit, but if so, we have found twin smooth
integers, and it is here that we can optionally check whether their sum is prime.

We note that when using a single PTE solution, the algorithm could be
modified to sieve in arithmetic progressions given by the suitable residues modulo
C. We leave the exploration of whether this can be more efficient than the above
approach for future work.

In the case of a large interval [L,R), the memory requirements can be sig-
nificantly reduced by dividing [L,R) into several subintervals, which can be
processed separately. The only downside is that a näıve implementation of the
first phase processes certain intervals twice due to the overlap of length w. This
can be easily mitigated by copying the last w entries of the previous interval at
each step. However, due to both the large (sub)intervals used in our implemen-
tation and the relatively small w’s that arise in PTE solutions, the impact of
this overlap is negligible in practice, so the näıve approach can be taken without
a noticeable performance penalty.

Parallelization. Our implementation parallelizes the sieve in a straightforward
way by assigning processors distinct subintervals of [L,R), e.g. according to their
own memory/performance capabilities. However, if many processors have rapid
access to the same memory, then it may be faster for some resources being
devoted to identifing smooth numbers in the next interval while the remaining
resources sieve the current interval.

Negative input values. Until now we have only considered positive input
values ` ∈ [L,R), but our approach also permits negative inputs to the poly-
nomials a(x) and b(x). For example, for even n, this gives another pair of in-
tegers that could potentially be smooth. At first glance, this seems to imply
that each time ` is advanced, we must also check the values `′i = ` + i with
i ∈ {a1, . . . , an, b1, . . . , bn} for smoothness. Moreover, it seems that the overlap
of size w for each search interval must also be added to both sides. We note,

16

however, that if the PTE solution in use is symmetric (see Definition 5), then
the values `′i are the same as the values (`+w)i, and thus are naturally checked
by our previous algorithm at position `+w. This is not the case for general non-
symmetric solutions, but for those non-symmetric solutions that are normalized
(see Definition 4), we can instead search with positive inputs to the flipped so-
lution arising from the linear transform h(x) = −x + w, which is especially
beneficial when searching with many solutions simultaneously.

4.3 Searching with many PTE solutions

One of the main benefits of our sieve is that it can combine many PTE solutions
into the same search and rapidly process them together. Many PTE solutions
tend to share at least one non-zero element in common, and if checking this
element returns a ‘0’, all such solutions can be discarded at once. In what follows
we describe a method to arrange the set of PTE solutions in a tree, such that (on
average) a minimal number of checks is used to check the full set of solutions.
Note that computing this tree is a one-time precomputation that is performed
at initialization.

Suppose we have t solutions, written as [ai,1, . . . , ai,n] =n−1 [bi,1, . . . , bi,n] for
1 ≤ i ≤ t. Noting that ai,1 = 0 for all i, write Si = {ai,2, . . . , ai,n, bi,1, . . . , bi,n},
i.e. Si is the set of distinct non-zero integers in the i-th PTE solution. Now, as in
the single solution sieve above, suppose we have advanced ` to a set bit at some
stage of our sieving algorithm. Rather than checking each of the PTE solutions
individually, we would like to share any checks that are common to multiple
PTE solutions. The key observation is that we are highly unlikely5 to have a
PTE solution whose elements all correspond to ‘1’, so in combining many PTE
solutions we would ultimately like to minimize the number of checks required
before we can rule all of them out and move ` to the next set bit.

In looking for the minimum number of checks whose failures rule out all
PTE solutions, we are looking for a set H of minimal cardinality such that
H ∩ Si 6= {∅} for 1 ≤ i ≤ t, i.e. the smallest-sized set that shares at least
one element with each of the PTE solutions. Finding this set is an instance
of the hitting set problem; this problem is NP-complete in general, but for the
sizes of the problem in this paper, a good approximation is given by the greedy
algorithm [16]. We start by looking for the element that occurs most among all
of the Si, call this g1; we then look for the element that occurs most among the
Si that do not contain g1, call this g2; we then look for the element that occurs
most among those Si that do not contain g1 or g2, and continue in this way until
we have H = {g1, g2, . . . , gh} such that every Si contains at least one of the gj ,
for 1 ≤ i ≤ t and 1 ≤ j ≤ h. This process naturally partitions the PTE solutions
to fall under h different branches. For each PTE solution in a given branch, the
corresponding element of the hitting set is removed and the process is repeated
recursively until there is no common element between the remaining solutions,

5 We assume that the smoothness bound is aggressive enough to make the smooth
integers sparse.

17

at which point they become leaves. In §5.2 we give a toy example with 20 PTE
solutions that produces the tree in Figure 2. In this example the first hitting set
is {1, 2}; if a search was to use these 20 solutions, then most of the time only
two checks will be required before ` can be advanced to the next set bit.

At a high level, our multi-solution sieve then runs the same way as the single
solution sieve in §4.2, except that we must traverse our tree each time ` is
advanced. We do this by checking all of the elements of a the hitting set, and
we only enter the branch corresponding to a given element if the associated
check finds a ‘1’ (an example sequence of checks is included in §5.2). This is
repeated recursively until we either encounter a leaf, where we simply check the
remaining elements sequentially, or until all of the elements in the hitting set at
the current level of the tree return a ‘0’, at which point we can move up to the
branch above and continue. As mentioned above, in practice the most common
scenario is that all of the elements in the highest hitting set correspond to a ‘0’,
and the number of checks performed in order to rule out the full set of PTE
solutions is minimal. Note that checking the divisibility of a(`) and b(`) by the
constant C is, in practice, best left until the point where a match is found. Since
solutions have different constants and different sets of suitable relations, it is not
useful to incorporate modular relations into the sieving step of the multi-solution
algorithm.

The efficiency of checking all PTE solutions simultaneously is therefore heav-
ily dependent on the size of the first hitting set. In cases where we have many
PTE solutions (see §3.2), the first hitting set can be used to decide which PTE
solutions to search with. If a pre-existing set of PTE solutions has a hitting set
H, then including any additional solutions that share at least one element with
H incurs nearly no performance cost.

4.4 Success probabilities

In Table 3 we use Heuristic 1 to draw comparisons between our method of finding
twin smooth integers and the prior methods discussed in §1.2. The entries in the
table are the approximate smoothness bounds that should be used to give success
probabilities of 2−20, 2−30, 2−40 and 2−50. The term success probability is used
to estimate how large a search space needs to be covered before we can expect
to find twin smooth integers; these probabilities are computed directly via (1.2).
For example (refer to the bold element in the last row of the table), using one
PTE solution with n = 8 and a smoothness bound of B ≈ 226.9, we can expect to
find a pair of twin smooth numbers in [1, N] = [1, 2384] after searching roughly
220 inputs ` ∈ [1, N1/n] = [1, 248], for which aC(`) and bC(`) are integers.6 To
find similarly sized twin smooth integers using the XGCD approach, we would
have to search roughly 220 elements with a smoothness bound of B ≈ 241.5, or
230 elements with a smoothness bound of B ≈ 232.8; on the other hand, if we

6 The total number of inputs required for this (including the ones which lead to non-
integer polynomial values) depends on the PTE solution and associated constant in
use, and can easily be computed via the CRT approach described before.

18

Table 3: Table of smoothness bounds and success probabilities for known meth-
ods and our method. All numbers are given as base-2 logarithms. Further expla-
nation in text.

N

256 384 512

method
n

probability
n

probability
n

probability

−50 −40 −30 −20 −50 −40 −30 −20 −50 −40 −30 −20

näıve – 20.2 23.4 28.4 36.7 – 30.2 35.2 42.6 55.1 – 40.3 46.9 56.7 73.4

XGCD – 15.9 18.4 21.9 27.7 – 23.9 27.5 32.8 41.5 – 31.9 36.7 43.7 55.3

2xn − 1

4 15.6 17.8 20.8 25.8 6 19.9 22.6 26.4 32.3 6 26.6 30.1 35.2 43.1

6 13.3 15.1 17.6 21.6 8 20.4 23.2 27.2 33.8 12 22.0 24.9 28.9 35.2

8 13.6 15.5 18.2 22.5 10 20.3 23.1 27.2 33.8 16 25.8 29.3 34.6 43.5

9 15.4 17.7 21.0 26.4 12 16.5 18.7 21.7 26.4 18 23.3 26.3 30.9 38.4

10 13.5 15.4 18.2 22.5 16 19.3 22.0 25.9 32.7 20 23.2 26.3 31.0 38.5

12 11.0 12.4 14.5 17.6 18 17.4 19.8 23.1 28.8 24 20.2 22.9 26.7 32.8

PTE

3 20.4 23.0 26.6 32.2 3 30.6 34.5 39.9 48.4 4* 30.6 34.5 39.9 48.4

3* 16.2 18.4 21.6 26.6 3* 24.3 27.7 32.4 39.9 5 31.9 25.6 40.6 48.2

4 17.8 20.0 22.9 27.5 4 26.7 29.9 34.4 41.2 6 29.1 32.2 36.6 43.0

4* 15.3 17.2 20.0 24.2 4* 22.9 25.8 29.9 36.3 6* 25.2 28.2 32.2 38.5

5 16.0 17.8 20.3 24.1 5 24.0 26.7 30.4 36.1 7 26.8 29.6 33.5 39.0

6 14.5 16.1 18.3 21.5 6 21.8 24.2 27.5 32.3 8 24.9 27.5 30.9 35.8

6* 12.6 14.1 16.1 19.3 6* 18.9 21.1 24.2 28.9 9 23.3 25.7 28.7 33.2

7 13.4 14.8 16.7 19.5 7 20.1 22.2 25.1 29.3 10 22.0 24.1 26.8 31.1

8 12.5 13.7 15.4 17.9 8 18.7 20.6 23.2 26.9 12 19.8 21.5 23.9 27.5

were using XGCD with the same B ≈ 226.9 as the PTE solution, we should
expect to have to search a space larger han 240 before finding twin smooths.

We stress that Table 3 is merely intended as a rough guide to the size of the
smoothness bounds we should use in a given search, and similarly to provide
an approximate comparison between the methods. As mentioned in Section 2,
Heuristic 1 makes the rather strong assumption that the elements in our PTE
solutions are uniform in [1, N1/n], and using the Dickman–de Bruijn function is
a rather crude blanket treatment of the concrete combinations of B, N and n
of interest to us. Moreover, the best version of our sieve (like the one used in
Section 6) combines hundreds of PTE solutions into one search, and extending
a theoretical analysis to cover such a collection of solutions is unnecessary. We
point out that the application of Heuristic 1 to our scenario further assumes that
the denominator C gets absorbed by the different factors uniformly. In other
words, we assume that after canceling the denominator, all factors of aC(`)
and bC(`) roughly have the same size. Although this is not true in general,
our experiments and the smoothness of C (see §3.1) suggest this to be a good
approximation for the average case.

19

The elements of the table that are faded out correspond to instances where
the size of the possible search space is not large enough to expect to find so-
lutions with the given probability. Moreover, Table 3 does not incoporate the
additional probabilities associated with the twin smooth integers having a prime
sum. Searches for cryptographic parameters typically need to find several twin
smooth integers before finding a pair with a prime sum, so our search spaces
tend to be a little larger than Table 3 suggests.7 We chose 2−20 as the largest
success probability in the table under the assumption that any search for twin
smooth integers will cover a space of size at least 220.

A number of rows in the lower section of the table are marked (*) to indicate
that these are PTE solutions with repeated factors. Viewing Heuristic 1, we see
that these solutions find twin smooth integers with a higher probability than
those PTE solutions without repeated factors, which is why they show a lower
smoothness bound (for a fixed probability). PTE solutions with repeated factors
are only known for n ∈ {3, 4, 6}.

5 A worked example

We now give concrete examples found with the sieve described in Section 4,
referring back to the theory developed in Section 3 where applicable. We first
illustrate a simple search that uses a single PTE solution, and then move to
combining many PTE solutions into the same sieve.

5.1 Searching with a single PTE solution

Suppose we are searching for twin smooth integers (m,m+ 1) with 2240 ≤ m <
2256. Table 3 suggests that the best chances of success are with n ∈ {6, 7, 8},
and in particular with the n = 6 solutions that have repeated factors. Since the
search spaces using polynomials of degree n = 7 and n = 8 are rather confined
when targeting m < 2256 (see Table 3), for this example we use a PTE solution
of size n = 6 containing repeated factors, namely

[1, 1, 8, 8, 15, 15] =5 [0, 3, 5, 11, 13, 16], (7)

which corresponds to the polynomials

a(x) = (x−1)2(x−8)2(x−15)2, b(x) = x(x−3)(x−5)(x−11)(x−13)(x−16).

Proposition 1 induces that a(x) and b(x) differ by an integer constant, which in
this case is

C = a(x)− b(x) = 14400 = 263252.

Observe that Proposition 2 guaranteed that C was a multiple of (n− 1)! = 5!.

7 It is beyond the scope of this work to make any statements about the probability of
a prime sum, except to say that in practice we observe that twin smooth sums have
a much higher probability of being prime than a random number of the same size.

20

Given that 213 < C < 214, searching for m with 2240 ≤ m < 2256 means
searching for values ` such that a(`) and b(`) lie between 2254 and 2269, so that
aC(`) and bC(`) are then of the right size. Since a(x) and b(x) have degree 6,
this means searching with 242 ≤ ` < 245.

Recall from Section 4 that our sieving algorithm alternates between two main
phases. The first is independent of the PTE solution(s) we are searching with,
and simply involves identifying all smooth numbers in a given interval (see §4.1).
In this example, we chose interval sizes of 220 = 1048576, so at the conclusion
of this first phase, we have a bitstring of length 1048576 to search over: a ‘1’ in
this string means the number associated with its index is B-smooth, while a ‘0’
indicates that it is not.

With B ≈ 216.1, Table 3 suggests that searching with the PTE solution in (7)
will find twin smooth integers for roughly 1 in every 230 values of ` that are tried.
Thus, we set B = 216 and started the search at ` = 242. With this ` and B,
the Dickman–de Bruijn function tells us that we can expect the proportion of
B-smooth numbers to be close to ρ(42/16) ≈ 0.103.

At the top of Figure 1, we give 30 bits of an interval (found after sieving for
some time) that correspond to ` = 5170314186700 + t, for t ∈ {30, 31, . . . 59}.
Here 11 of the 30 bits are 1, so the proportion of B-smooth numbers in this small
interval is exceptionally high; indeed, these are the kinds of substrings we are
sieving for, in hope that our PTE solution aligns favorably to find 1’s in all of the
required places. Viewing (7), we write `i = `−i for i ∈ {0, 1, 3, 5, 8, 11, 13, 15, 16}.
As depicted in Figure 1, each step in the second phase starts by finding the next
smooth number (i.e. the next ‘1’ in the string), advancing ` = `0 to align there
before sequentially checking from `1 through to `16. If, at any stage, one of the
`i is aligned with a ‘0’, we advance ` to the next ‘1’ in the string and repeat
the procedure. Once we have finished processing a full interval (of size 220 in
this case), we advance to the next interval by first computing the string that
identifies all B-smooth numbers, then processing the interval by aligning `0 with
the next set bit, and checking the remaining `i.

In Figure 1 we see that when `0 = 5170314186747, the next bit checked
reveals that `1 corresponds to a ‘0’, so this position is immediately discarded and
we advance to the next set bit taking `0 = 5170314186750. Again, `1 discovers a
‘0’, so `0 advances to 5170314186752, and then to 5170314186754 (both of these
also have `1 aligned with ‘0’). Advancing to `0 = 5170314186755, we see that
the remaining `i correspond to set bits and are thus all smooth, namely

`0 = 5 · 29 · 31 · 211 · 557 · 9787, `1 = 2 · 71 · 919 · 1237 · 32029,

`3 = 212 · 112 · 13 · 277 · 2897, `5 = 2 · 3 · 53 · 181 · 4783 · 7963,

`8 = 32 · 23 · 41 · 83 · 1117 · 6571, `11 = 23 · 3 · 72 · 17 · 43 · 191 · 31489,

`13 = 2 · 103 · 1093 · 2663 · 8623, `15 = 22 · 5 · 1163 · 11927 · 18637,

`16 = 13 · 53 · 113 · 3347 · 19841.

21

Fig. 1: Sieving with the PTE solution [1, 1, 8, 8, 15, 15] =5 [0, 3, 5, 11, 13, 16] across
the subinterval ` = 5170314186700+t for t ∈ {30, 31, . . . 59}. Further explanation
in text.

t 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
smooth? 1 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0

...

7 `16 `15 `13 `11 `8 `5 `3 `1 `0

7 `16 `15 `13 `11 `8 `5 `3 `1 `0

7 `16 `15 `13 `11 `8 `5 `3 `1 `0

7 `16 `15 `13 `11 `8 `5 `3 `1 `0

3 `16 `15 `13 `11 `8 `5 `3 `1 `0

The PTE solution (7) translates into the twin-smooth numbers

(m,m+ 1) =

(
`0`3`5`11`13`16

C
,

(`1`8`15)2

C

)
.

In this case their sum is a prime p, which lies between the B-smooth numbers
2m and 2(m+ 1), namely

p = 2m+ 1 = 2653194648913198538763028808847267222102564753030025033104122760223436801.

Remark 1. When searching with a single solution, in practice we only want to
search over the ` ∈ Z for which a(`) ≡ b(`) = 0 mod C. As described in Section 3,
we use the CRT to find these ` by first working modulo each of the prime power
factors of C. In this case we find

– 40 residues r1 ∈ [0, 26) such that a(`) ≡ b(`) ≡ 0 mod 26 iff ` ≡ r1 mod 26;
– 9 residues r2 ∈ [0, 32) such that a(`) ≡ b(`) ≡ 0 mod 32 iff ` ≡ r2 mod 32;
– 15 residues r3 ∈ [0, 52) such that a(`) ≡ b(`) ≡ 0 mod 52 iff ` ≡ r3 mod 52.

Here we see that a(`) ≡ b(`) ≡ 0 mod 32 for all ` ∈ Z (this can be seen immedi-
ately by looking at the expression for a(x) above), so we can ignore the factor
of 32 and work with the effective denominator C ′ = 2652 = 1600. Of the 1600
possible residues in [0, 2635), we only search over the 40 · 15 = 600 values of
` that will produce a(`) ≡ b(`) ≡ 0 mod C ′. In this case the list of residues is
small enough that we can simply store them once and for all and avoid recom-
puting them on the fly with the CRT at runtime. However, many of the PTE
solutions we use have much larger denominators and a much smaller proportion
of residues to be searched over, and in these cases storing residues modulo each
prime power and then using the CRT on the fly is much faster than looking up
the full set of residues (modulo C) in one huge table.

22

For ease of exposition, we ignored this in the above example. Returning to
Figure 1, we point out that none of the four values that were checked prior
to finding the solution (i.e. ` = 5170314186700 + t with t ∈ {47, 50, 52, 54})
are such that a(`) ≡ b(`) ≡ 0 mod C. In fact, none of the other smooth `’s
depicted in Figure 1 have this property; the previous smooth ` that does is
` = 5170314186728, so in practice we would have advanced straight from this `
to the successful one.

Remark 2. Since the degree of a and b is even, negative values for ` will lead
to valid positive twin smooth integers and possibly a corresponding prime sum.
Negative values can be taken into account by considering the flipped solution (as
defined at the end of §3.1). Because the solution considered here is symmetric,
any pattern corresponding to a negative value also occurs for a positive value.

5.2 Sieving with many PTE solutions

We now turn to illustrating the full sieving algorithm that combines many PTE
solutions into one search. The degree 6 sieves we used in practice combined hun-
dreds of PTE solutions into one search (see Table 2), but for ease of exposition
we will illustrate using the first 20 solutions (ordered by the size of the constant).
These range from the solution S1, which has C = 14400 = 26 · 32 · 52, to S20,
which has C = 13305600 = 28 · 33 · 52 · 7 · 11. These solutions are listed below.

S1 : [0, 3, 5, 11, 13, 16] =5 [1, 1, 8, 8, 15, 15]; S2 : [0, 5, 6, 16, 17, 22] =5 [1, 2, 10, 12, 20, 21],

S3 : [0, 4, 9, 17, 22, 26] =5 [1, 2, 12, 14, 24, 25], S4 : [0, 7, 7, 21, 21, 28] =5 [1, 3, 12, 16, 25, 27],

S5 : [0, 7, 8, 22, 23, 30] =5 [2, 2, 15, 15, 28, 28], S6 : [0, 5, 13, 23, 31, 36] =5 [1, 3, 16, 20, 33, 35],

S7 : [0, 8, 9, 25, 26, 34] =5 [1, 4, 14, 20, 30, 33], S8 : [0, 7, 11, 25, 29, 36] =5 [1, 4, 15, 21, 32, 35],

S9 : [0, 9, 11, 29, 31, 40] =5 [1, 5, 16, 24, 35, 39], S10 : [0, 8, 11, 27, 30, 38] =5 [2, 3, 18, 20, 35, 36],

S11 : [0, 5, 16, 26, 37, 42] =5 [2, 2, 21, 21, 40, 40], S12 : [0, 6, 17, 29, 40, 46] =5 [1, 4, 20, 26, 42, 45],

S13 : [0, 7, 14, 28, 35, 42] =5 [2, 3, 20, 22, 39, 40], S14 : [0, 10, 13, 33, 36, 46] =5 [1, 6, 18, 28, 40, 45],

S15 : [0, 9, 17, 34, 36, 46] =5 [1, 6, 24, 25, 42, 44], S16 : [0, 9, 14, 32, 37, 46] =5 [2, 4, 21, 25, 42, 44],

S17 : [0, 9, 16, 34, 41, 50] =5 [1, 6, 20, 30, 44, 49], S18 : [0, 11, 15, 37, 41, 52] =5 [1, 7, 20, 32, 45, 51],

S19 : [0, 7, 21, 35, 49, 56] =5 [1, 5, 24, 32, 51, 55], S20 : [0, 12, 13, 37, 38, 50] =5 [2, 5, 22, 28, 45, 48].

In regards to Remark 1, recall from Section 4 that each PTE solution has a
different constant C and thus a different set of residues. In general these residues
are incompatible with one another, so we choose to ignore them until the sieve
identifies candidate pairs (`, Si), at which point we only mark the pair as a
solution if the corresponding polynomials have a(`) ≡ b(`) ≡ 0 mod C.

Now, recall from Section 4 that our sieving tree is built by recursively identify-
ing hitting sets among the set of solutions, and then removing the corresponding
element in the hitting set from each solution. The first hitting set is (always)
{0}, which is the root of our tree. After removing 0 from all of the solutions, we
see that the next hitting set is {1, 2}; some PTE solutions contain both 1 and 2,
but 1 appears in more solutions than 2 does, so the solutions S2 and S3 occur in
the branches that fall beneath 1 in the tree. Repeating this process produces the

23

tree in Figure 2. Note that this is a precomputation that is done once-and-for-all
before the sieve begins.

0

2

3

S10

21

37

42

S16S11

22

28

5

S20

7

S13S5

1

7

32

51

S19S18

6

36

46

S15S14

4

6

S12

25

7

S8

9

14

26

S7S3

16

6

S17

3

S4

5

9

S9

2

S2

3

13

S6S1

Fig. 2: A sieving tree for 20 example PTE solutions. Further explanation in text.

Again we target 2240 ≤ m < 2256 by searching with 242 ≤ ` < 245, set our
smoothness bound as B = 216, and alternate between identifying the B-smooth
numbers in intervals of size 220 = 1048576, processing each interval by advancing
through all of the set bits (smooth numbers) within it. Write `i = `− i as before.
Here the hitting set has only two elements, so given that the probability of
smoothness is roughly ρ(42/16) ≈ 0.103, most of the time we will only need to
check two neighboring bits (`1 and `2) before discarding each candidate `.

Viewing Figure 2, we traverse the tree by moving down the levels and pro-
cessing each subsequent hitting set from left to right. If, at any stage, we find
a smooth number, we immediately move down a level and process the numbers
branching beneath it. We are only permitted to move up a level and continue to
the right once the entire hitting set at a given level has been checked. Finally,
if at any stage we arrive at a leaf and find that all of the remaining numbers
are smooth, we then identify this solution as a candidate. At this stage we check
whether a(`) ≡ b(`) ≡ 0 mod C, in which case we have found twin smooth inte-
gers, and then optionally check whether their sum is a prime, in which case we
have found cryptographically suitable parameters.

After some time, our sieve advances to the B-smooth number

`0 = 5435932476400 = 24 · 52 · 199 · 4817 · 14177.

In this case the subsequent set of ordered checks made in traversing the
tree in Figure 2 are given below (we use 3 to indicate that `i is B-smooth, 7

24

otherwise). Checking the entire leaf marked S17 is combined into Check 5 for
brevity; the remaining values here are `i with i ∈ {9, 20, 30, 34, 41, 44, 49, 50}.

Check 1. `1 3 Check 2. `16 3 Check 3. `5 7 Check 4. `3 7

Check 5. S17 3 Check 6. `4 7 Check 7. `6 3 Check 8. `36 7

Check 9. `7 7 Check 10. `2 7

At the conclusion of Check 5, we now know that all of the elements in
S17 : [0, 9, 16, 34, 41, 50] =5 [1, 6, 20, 30, 44, 49] are smooth, and thus we have
found a candidate solution. Checks 6–10 are included to show how the sieve
continues. It remains to check whether ` = 5435932476400 gives a(`) ≡ b(`) ≡
0 mod C, when

a(x) = x(x− 9)(x− 16)(x− 34)(x− 41)(x− 50)

and
b(x) = (x− 1)(x− 6)(x− 20)(x− 30)(x− 44)(x− 49).

are such that C = 7761600. In this case we do find that a(`) ≡ 0 mod C (which
is sufficient), so we know that

m = `0`9`16`34`41`50/C and m+ 1 = `1`6`20`30`44`49/C

are both B-smooth integers. Indeed, factoring reveals that

m = 25 · 34 · 52 · 109 · 173 · 199 · 233 · 571 · 677 · 743 · 1303 · 2351 · 2729

· 3191 · 4817 · 12071 · 12119 · 14177 · 16979 · 30389 · 37159 · 39979, and

m+ 1 = 13 · 17 · 23 · 31 · 61 · 103 · 263 · 643 · 1153 · 1429 · 1889 · 2213 · 3359

· 5869 · 7951 · 9281 · 18307 · 28163 · 34807 · 41077 · 41851 · 64231.

In this case 2m+1 is the product of two large primes, so a sieve for cryptographic
parameters would continue by advancing to the next smooth `0 in the interval.

6 Cryptographic examples of twin smooth integers

We implemented the sieve including the tree structure for searching with multiple
PTE solutions in Python 3 and used it to run our experiments. The first phase
of the algorithm, i.e. the sieve that identifies smooth numbers was written in
C and called from the python code, which resulted in a significant speedup.
The code takes as input the left and right bounds of a desired interval to be
searched, a size for the sub-intervals that are processed by the sieve at a time,
as well as a smoothness bound and a list of PTE solutions. It then computes
the PTE solution search tree and starts the sieve as described in Sections 4 and
5. Another input is a desired number of threads, between which the interval is
divided and then run on the available processors in a multi-processing fashion.

25

After examining the PTE solution counts in Table 2 and the smoothness
probabilities in Table 3, we chose to launch a sieve with 520 PTE solutions of
size n = 6 that searched ` ∈ [240, 245] with a smoothness bound of B = 216 and
intervals of size 220. The 520 solutions are all the ones we found that have a
constant of at most 38 bits. The first hitting set of the PTE solutions had car-
dinality 13, and the Dickman–de Bruijn function estimates that the proportion
of B-smooth numbers in our interval is ρ(45/16) ≈ 0.0715. The search ran on
128 logical processors (Intel Xeon CPU E5-2450L @1.8GHz) for just over a week
before the entire interval was scanned.

Table 4 reports one of the cryptographic primes that was found with our
sieve for each bitlength between 240 and 257 (excluding 253, 254 and 256, for
which no primes were found), and compares it to the primes found with prior
methods in the literature. For the primes found using PTE solutions, we give
the search parameter ` together with the corresponding PTE solution, which is
one of

S6
1 : [0, 3, 5, 11, 13, 16] =5 [1, 1, 8, 8, 15, 15],

S6
2 : [0, 7, 8, 22, 23, 30] =5 [2, 2, 15, 15, 28, 28],

S6
3 : [0, 7, 33, 47, 73, 80] =5 [3, 3, 40, 40, 77, 77],

S6
4 : [0, 5, 16, 26, 37, 42] =5 [2, 2, 21, 21, 40, 40].

For each prime we report the smoothness bound B, which is the largest prime
divisor of (p− 1)(p+ 1), together with its bitlength. In the case of the 241- and
250-bit primes, we see that B < 215. The smallest prior B corresponding to
primes of around this size was the 19-bit B = 486839 from [8]. Referring back
to Table 3, we see that a search through an interval of this size should find a
few twin smooth integers with B < 215, but finding enough twin smooths with
B < 214 to hope for a prime sum among them may have been out of the question.

To check whether n = 6 produces the smoothest twins of this size (as Table 3
predicts), we ran similar sieves using the 8 PTE solutions with n = 7 and the
51 PTE solutions with n = 8 with B = 218, and in both cases we covered the
full range of possible inputs that would produce a p < 2256. Despite finding a
handful of twin smooth integers with B < 217, the search spaces were not large
enough to find any primes among them.

Table 4 also reports three cryptographic primes that target higher security
levels. When searching for p ≈ 2384, the PTE solutions with n = 6 again proved
to produce the smoothest twins; the 376- and 384-bit primes reported correspond
to twin smooths with B = 221 and B = 222, respectively. When searching for
p ≈ 2512, the PTE solution

S12
1 : [0, 11, 24, 65, 90, 129, 173, 212, 237, 278, 291, 302]

=11 [3, 5, 30, 57, 104, 116, 186, 198, 245, 272, 297, 299]

with n = 12 found the reported 512-bit prime, which lies between two integers
that are both 229-smooth.

26

Table 4: A comparison between some of the best instances found with our sieve
and the best instances from the literature. Further explanation in text.

method where p (bits) B dlog2 Be

XGCD [4, App. A] 256 6548911 23

p = 2xn − 1

[8, Ex. 5] 247 652357 20

[8, Ex. 6] 237 709153 20

[8, Ex. 7] 247 745309897 30

[8, Ex. 8] 250 486839 19

PTE sieve

19798693013832 S6
3 240 54503 16

5170314186755 S6
1 241 32039 15

11434786499430 S6
2 242 62653 16

6387061913711 S6
1 243 56711 16

32519458118257 S6
3 244 64591 16

16232865719280 ‘ S6
2 245 49711 16

8812545447095 S6
1 246 40151 16

20173246926702 S6
2 247 40289 16

22687888853658 S6
2 248 59497 16

13061439823095 S6
2 249 38119 16

36144284257450 S6
4 250 32191 15

16189037375263 S6
2 251 65029 16

17545941442175 S6
1 252 35291 16

27071078665441 S6
1 255 52069 16

32554839816383 S6
1 257 42979 16

74939989736653381520 S6
4 376 1604719 21

74939982689644756283 S6
1 384 3726773 22

518374043384222 S12
1 512 375349133 29

7 Relaxations and modifications

There are numerous ways to modify our sieving approach for performance rea-
sons, or to relax the search conditions in order to precisely match the security
requirements imposed by B-SIDH or SQISign.

Approximate sieves. There are several sieving optimizations discussed in [9,
§3.2.5–3.3] that can be applied to the sieving phase of our algorithm. For large
scale searches, it could be preferred to sacrifice the exactness of the sieve we im-
plemented for more performant approximate sieves. For example, the smallest
primes are the most expensive to sieve with due to the large number of mul-

27

tiplications. Thus, an approximate sieve can choose to skip these small primes
(but still include the larger prime powers) and choose to tag numbers as being
B-smooth as soon as the result is close enough to the expected number. This
requires to choose an error bound, which also determines if and how many false
positive and false negative results are going to occur.

A standard approach for sieving algorithms is discussed by Crandall and
Pomerance [9, §3.2.5]. This approach replaces multiplications by additions in
Eratosthenes-like sieves, by choosing to represent numbers as their (base-2) log-
arithms. Moreover, sieves can use approximate logarithms, i.e. round these log-
arithms to nearby integers and tolerate errors in the logarithms; for example,
if we choose to tolerate errors up to logB, then we are guaranteed that factors
that are unaccounted for in the approximation are also less than the smoothness
bound [9, p. 124]. Rather than accumulating products, we are then accumulating
sums of relatively small integers. This approach is used in our C implementation
and for the ranges targeted here, allows the accumulated approximate logarithms
to be stored in a single byte.

Recall from §4.2 that when a single PTE solution is used we are only inter-
ested to sieve the subset of integers for which a(`) ≡ b(`) ≡ 0 mod C. In this
case it may be preferable to employ Bernstein’s batch smoothness algorithm [3];
this can be used to gain a better overall complexity (per element) when sieving
through an arbitrary set.

Lastly, we point out that the set of primes used in the factor base can be
tailored to our needs. For example, if future research reveals that certain types
of prime isogeny degrees are favored over others (i.e. when invoking the Õ(

√
`)

algorithm from [4]), then it may be preferable to increase the bound B and only
include those primes in our sieve.

Non-smooth cofactors vs. fully smooth numbers. The security analyses
of B-SIDH or SQISign suggest that both systems can tolerate a non-smooth
cofactor in either or both of p− 1 and p+ 1. In these cases, relaxing conditions
in the second part of our sieve to allow non-smooth cofactors is straightforward.
When searching with PTE solutions of size n, we could e.g. only require n − 1
of the factors on each side to be B-smooth. The näıve way to do this when
traversing the tree would be to incorporate a counter that only allows branches
to be discarded when two non-smooth numbers have been discovered, but this
approach makes things unnecessarily complicated and significantly slower, e.g. it
no longer suffices to start the sieving procedure at each ‘1’ in the interval, since
`0 is now allowed to be non-smooth.

A much better approach can be taken by simply creating many relaxed PTE
solutions from the original solutionA =n−1 B, and including them in the solution
tree. For example, if the security analysis corresponding to a search with n = 6
suggests we only need 5 smooth factors from each side of the PTE solution, then
the solution [0, 7, 11, 25, 29, 36] =5 [1, 4, 15, 21, 32, 35] can be modified into 36
relaxed solutions, each of which corresponds from wiping out one number from
A and one number from B; these new solutions only include 10 distinct elements.

28

By building a tree from these solutions and running the same algorithm as in
Section 4, we are effectively allowing for one of the factors of the original solution
to be non-smooth. The only minor modification required appears when 0 is wiped
out from a solution, in which case we have to shift all elements such that the
new solution contains 0, by the means of Proposition 3. We reiterate that all of
these modifications are a one-time precomputation before the sieve begins. In
the case of the PTE solutions with repeated factors, e.g. [0, 3, 5, 11, 13, 16] =5

[1, 1, 8, 8, 15, 15], we may not be able to tolerate a non-smooth cofactor that would
arise from removing any of 1, 8 or 15 from the PTE solution. On the other hand,
if the security analysis does permit such a cofactor (which appears to be the
case for SQISign), then our relaxed solutions would either remove one of the
repeated numbers from B, or two of the numbers from A; the latter would have
a better success probability, but (assuming the hitting set remains unchanged)
our tree approach would not pay any noticeable overhead by including all such
relaxations.

Acknowledgments. We thank Patrick Longa for his help with implementing
the smoothness sieve in C, and Fabio Campos for running and overseeing some
of our experiments.

References

1. A. Balog and T. Wooley. On strings of consecutive integers with no large prime
factors. J. Austral. Math. Soc. (Series A), 64:266–276, 1998.

2. D. J. Bernstein. Arbitrarily tight bounds on the distribution of smooth integers.
In Proceedings of the Millennial Conference on Number Theory, pages 49–66, 2002.

3. D. J. Bernstein. How to find smooth parts of integers. URL: http: // cr. yp. to/
papers. html# smoothparts , 2004.

4. D. J. Bernstein, L. De Feo, A. Leroux, and B. Smith. Faster computation of
isogenies of large prime degree. In ANTS-XIV: Fourteenth Algorithmic Number
Theory Symposium. https://eprint.iacr.org/2020/341, 2020.

5. P. Borwein. The Prouhet-Tarry-Escott problem. In Computational Excursions in
Analysis and Number Theory, pages 85–95. Springer, 2002.

6. P. Borwein and C. Ingalls. The Prouhet-Tarry-Escott problem revisited. http:

//www.cecm.sfu.ca/personal/pborwein/PAPERS/P98.pdf.
7. T. Caley. The Prouhet-Tarry-Escott problem. PhD thesis, University of Waterloo,

2012.
8. C. Costello. B-SIDH: supersingular isogeny diffie-hellman using twisted torsion.

In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, volume 12492
of Lecture Notes in Computer Science, pages 440–463. Springer, 2020.

9. R. Crandall and C. B. Pomerance. Prime numbers: a computational perspective,
volume 182. Springer Science & Business Media, 2006.

10. L. De Feo, D. Kohel, A. Leroux, C. Petit, and B. Wesolowski. Sqisign: Compact
post-quantum signatures from quaternions and isogenies. In Shiho Moriai and
Huaxiong Wang, editors, ASIACRYPT 2020, volume 12491 of Lecture Notes in
Computer Science, pages 64–93. Springer, 2020.

11. A. Gloden. Mehrgradige Gleichungen. Noordhoff, 1944.

29

http://cr.yp.to/papers.html#smoothparts
http://cr.yp.to/papers.html#smoothparts
https://eprint.iacr.org/2020/341
http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P98.pdf
http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P98.pdf

12. A. Granville. Smooth numbers: computational number theory and beyond. Al-
gorithmic number theory: lattices, number fields, curves and cryptography, 44:267–
323, 2008.

13. A. Hildebrand. On a conjecture of Balog. Proceedings of the American Mathemat-
ical Society, 95(4):517–523, 1985.

14. D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess, A. Jalali,
B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, J. Renes, V. Soukharev, and
D. Urbanik. SIKE: Supersingular Isogeny Key Encapsulation. Manuscript available
at sike.org/, 2017.

15. D. Jao and L. De Feo. Towards quantum-resistant cryptosystems from supersin-
gular elliptic curve isogenies. In PQCrypto, pages 19–34, 2011.

16. R. M. Karp. Reducibility among combinatorial problems. In Complexity of com-
puter computations, pages 85–103. Springer, 1972.

17. H. Kleiman. A note on the Tarry-Escott problem. J. Reine Angew. Math.,
278/279:48–51, 1975.

18. D. H. Lehmer. On a problem of Störmer. Illinois Journal of Mathematics, 8(1):57–
79, 1964.

19. G. Martin. An asymptotic formula for the number of smooth values of a polyno-
mial. Journal of Number Theory, 93:108–182, 2002.

20. C. Pomerance. The role of smooth numbers in number theoretic algorithms. In Pro-
ceedings of the International Congress of Mathematicians, pages 411–422. Springer,
1995.

21. E. Rees and C. Smyth. On the constant in the Tarry-Escott problem. In Cinquante
Ans de Polynômes, pages 196–208. Springer, 1990.

22. C. Shuwen. The Prouhet-Tarry-Escott Problem. http://eslpower.org/

TarryPrb.htm.
23. C.J. Smyth. Ideal 9th-order multigrades and Letac’s elliptic curve. mathematics

of computation, 57(196):817–823, 1991.
24. J. Sorenson. A fast algorithm for appoximately counting smooth numbers. In

W. Bosma, editor, Algorithmic Number Theory, 4th International Symposium,
ANTS-IV, Leiden, The Netherlands, July 2-7, 2000, Proceedings, volume 1838 of
Lecture Notes in Computer Science, pages 539–550. Springer, 2000.

25. C. Størmer. Quelques théorèmes sur l’équation de Pell x2 − dy2 = ±1 et leurs
applications. Christiania Videnskabens Selskabs Skrifter, Math. Nat. Kl, (2):48,
1897.

26. The National Institute of Standards and Technology (NIST). Submis-
sion requirements and evaluation criteria for the post-quantum cryptog-
raphy standardization process, December, 2016. URL: https://csrc.

nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/

call-for-proposals-final-dec-2016.pdf.
27. J. Vélu. Isogénies entre courbes elliptiques. C.R. Acad. Sc. Paris, Série A.,

271:238–241, 1971.
28. E. Wright. On Tarry’s problem (I). The Quarterly Journal of Mathematics,

(1):261–267, 1935.
29. J. Wróblewski and A. Choudhry. Ideal solutions of the Tarry-Escott problem of

degree eleven with applications to sums of thirteenth powers. Hardy-Ramanujan
Journal, 31, 2008.

30

sike.org/
http://eslpower.org/TarryPrb.htm
http://eslpower.org/TarryPrb.htm
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

	Sieving for twin smooth integers with solutions to the Prouhet-Tarry-Escott problem

