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Abstract. Running secure multiparty computation (MPC) protocols
with hundreds or thousands of players would allow leveraging large vol-
unteer networks (such as blockchains and Tor) and help justify honest
majority assumptions. However, most existing protocols have at least
a linear (multiplicative) dependence on the number of players, making
scaling difficult. Known protocols with asymptotic efficiency independent
of the number of parties (excluding additive factors) require expensive
circuit transformations that induce large overheads.

We observe that the circuits used in many important applications of
MPC such as training algorithms used to create machine learning mod-
els have a highly repetitive structure. We formalize this class of circuits
and propose an MPC protocol that achieves O(|C|) total complexity for
this class. We implement our protocol and show that it is practical and
outperforms O(n|C|) protocols for modest numbers of players.

1 Introduction

Secure Multiparty Computation (MPC) [39,23,6,4] is a technique that allows
mutually distrusting parties to compute an arbitrary function without revealing
anything about the parties’ private inputs, beyond what is revealed by the func-
tion output. In this work, we focus on honest-majority MPC, where a majority
of the participants are assumed to be honest.

As public concern over privacy and data sharing grows, MPC’s promise of pri-
vacy preserving collaboration becomes increasingly important. In recent years,
MPC techniques are being applied to an increasingly complex class of function-
alities such as distributed training of machine learning networks. Most current
applications of MPC, however, focus on using a small number of parties. This
is largely because most known (and all implemented) protocols incur a linear
multiplicative overhead in the number of players in the communication and com-
putation complexity, i.e. have complexity O(n|C|)3, where n is the number of
players and |C| is the size of the circuit [27,12,30,7,35,16].

The Need for Large-Scale MPC. Yet, the most exciting MPC applications
are at their best when a large number of players can participate in the protocol.

3 For sake of simplicity, throughout the introduction, we omit a linear multiplicative
factor of the security parameter in all asymptotic notations.



These include crowd-sourced machine learning and large scale data collection,
where widespread participation would result in richer data sets and more robust
conclusions. Moreover, when the number of participating players is large, the
honest majority assumption – which allows for the most efficient known protocols
till date – becomes significantly more believable. Indeed, the honest majority of
resources assumptions (a different but closely related set of assumptions) in
Bitcoin [34] and TOR [36,13] appear to hold up in practice when there are many
protocol participants.

Furthermore, large-scale volunteer networks have recently emerged, like Bit-
coin and TOR, that regularly perform incredibly large distributed computations.
In the case of cryptocurrencies, it would be beneficial to apply the computational
power to more interesting applications than mining, including executions of MPC
protocols. Replicating a fraction of the success of these networks could enable
massive, crowd-sourced applications that still respect privacy. In fact, attempts
to run MPC on such large networks have already started [38], enabling novel
measurements.

Our Goal: Order-C MPC. It would be highly advantageous to go beyond the
limitation of current protocols and have access to an MPC protocol with total
computational and communication complexity O(|C|).

Such a protocol can support division of the total computation among players
which means that using large numbers of players can significantly reduce the
burden on each individual participant. In particular, when considering complex
functions, with circuit representations containing tens or hundreds of millions
of gates, decreasing the workload of each individual party can have a significant
impact. Ideally, it would be possible for the data providers themselves, possibly
using low power or bandwidth devices, to participate in the computation.

An O(|C|) MPC protocol can also offer benefits in the design of other cryp-
tographic protocols. In [28], Ishai et al. showed that zero-knowledge (ZK) proofs
[24] can be constructed using an “MPC-in-the-head” approach, where the prover
simulates an MPC protocol in their mind and the verifier selects a subset of the
players views to check for correctness. The efficiency of these proofs is inherited
from the complexity of the underlying MPC protocols, and the soundness error
is a function of the number of views opened and the number of players for which
a malicious prover must have to “cheat” in order to control the protocol’s out-
put. This creates a tension: higher number of players can be used to increase
the soundness of the ZK proof, but simulating additional players increases the
complexity of the protocol. Access to an O(|C|) MPC protocol would ease this
tension, as a large numbers of players could be used to simulate the MPC without
incurring additional cost.

Despite numerous motivations and significant effort, there are no known
O(|C|) MPC protocols for “non-SIMD” functionalities.4 We therefore ask the
following:
4 SIMD circuits are arithmetic circuits that simultaneously evaluate ` copies of the

same arithmetic circuit on different inputs. Genkin et al. [20] showed that it is
possible to design an O(|C|) MPC protocol for SIMD circuits, where ` = Θ(n).
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Is it possible to design an MPC protocol with O(|C|) total computation
(supporting division of labor) and O(|C|) total communication?

Prior Work: Achieving Õ(|C|)-MPC. A significant amount of effort has been
devoted towards reducing the asymptotic complexity of (honest-majority) MPC
protocols, since the initial O(n2|C|) protocols [4,6].

Over the years, two primary techniques have been developed for reducing
protocol complexity. The first is an efficient multiplication protocol combined
with batched correlated randomness generation introduced in [12]. Using this
multiplication protocol reduces the (amortized) complexity of a multiplication
gate from O(n2) to O(n), effectively shaving a factor of n from the protocol com-
plexity. The second technique is packed secret sharing (PSS) [15], a vectorized,
single-instruction-multiple-data (SIMD) version of traditional threshold secret
sharing. By packing Θ(n) elements into a single vector, Θ(n) operations can be
performed at once, reducing the protocol complexity by a factor of n when the
circuit structure is accommodating to SIMD operations. Using these techniques
separately, O(n|C|) protocols were constructed in [9] and [12].

While it might seem as though combining these two techniques would result
in an O(|C|) protocol, the structural requirements of SIMD operations make it
unclear on how to do so. The works of [11] and [10] demonstrate two differ-
ent approaches to combine these techniques, either by relying on randomizing
polynomials or using circuit transformations that involve embedding routing
networks within the circuits. These approaches yield Õ(|C|) protocols with large
multiplicative constants and additive terms that depend on the circuit depth.
(The additive terms were further reduced in the recent work of [20].)

In summary, while both PSS and efficient multiplication techniques have been
known for over a decade, no O(|C|) MPC protocols are known. The best known

asymptotic efficiency is Õ(|C|) achieved by [11,10,20]; however, these protocols
have never been implemented for reasons discussed above. Instead, the state-of-
the-art implemented protocols achieve O(n|C|) computational and communica-
tion efficiency [7,35,16].

1.1 Our Contributions

In this work, we identify a meaningful class of circuits, called (A,B)-repetitive
circuits, parameterized by variables A and B. We show that for (Ω(n), Ω(n))-
repetitive circuits, efficient multiplication and PSS techniques can indeed be
combined, using new ideas, to achieve O(|C|) MPC for n parties. To the best
of our knowledge, this is the first such construction for a larger class of circuits
than SIMD circuits.

We test the practical efficiency of our protocol by means of a preliminary
implementation and show via experimental results that for computations in-
volving large number of parties, our protocol outperforms the state-of-the-art
implemented MPC protocols. We now discuss our contributions in more detail.

Highly Repetitive Circuits. The class of (A,B)-repetitive circuits are circuits
that are composed of an arbitrary number of blocks (sets of gates at the same
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depth) of width at least A, that recur at least B times throughout the circuit.
Loosely speaking, we say that an (A,B)-repetitive circuit is highly repetitive
w.r.t. n parties, if A ∈ Ω(n) and B ∈ Ω(n).

The most obvious example of this class includes the sequential composition of
some (possibly multi-layer) functionality, i.e. f(f(f(f(. . .)))) for some arbitrary
f with sufficient width. However, this class also includes many other types of
circuits and important functionalities. For example, as we discuss in Section
4.3, machine learning model training algorithms (many iterations of gradient
descent) are highly repetitive even for large numbers of parties. We also identify
block ciphers and collision resistant hash functions as having many iterated
rounds; as such functions are likely to be run many times in a large-scale, private
computation, they naturally result in highly repetitive circuits for larger numbers
of parties. We give formal definition of (A,B)-repetitive circuits in Section 4.

Semi-Honest Order-C MPC. Our primary contribution is a semi-honest,
honest-majority MPC protocol for highly repetitive circuits with total computa-
tion and communication complexity O(|C|). Our protocol only requires commu-
nication over point-to-point channels and works in the plain model (i.e., without
trusted setup). It achieves unconditional security against t < n

(
1
2 −

2
ε

)
corrup-

tions, where ε is a tunable parameter as in prior works based on PSS.

Our key insight is that the repetitive nature of the circuit can be leveraged
to efficiently generate correlated randomness in a way that helps overcome the
limitations of PSS. We elaborate on our techniques in Section 2.

Malicious Security Compiler. We next consider the case of malicious adver-
saries. In recent years, significant work [21,20,30,7,35,16,25] has been done on
designing efficient malicious security compilers for honest majority MPC. With
the exception of [20], all of these works design compilers for protocols based on
regular secret sharing (SS) as opposed to PSS. The most recent of these works
[7,35,16,25] achieve very small constant multiplicative overhead, and ideally one
would like to achieve similar efficiency in the case of PSS-based protocols.

Since our semi-honest protocol is based on PSS, the compilers of [7,35,16,25]
are not directly applicable to our protocols. Nevertheless, borrowing upon the
insights from [20], we demonstrate that the techniques developed in [7] can in fact
be used to design an efficient malicious security compiler for our PSS-based semi-
honest protocol. Specifically, our compiler incurs a multiplicative overhead of
approximately 1.7–3, depending on the choice of ε, over our semi-honest protocol
for circuits over large fields (where the field size is exponential in the security
parameter).5 For circuits over smaller fields, the multiplicative overhead incurred
is O(k/ log |F|), where k is the security parameter and |F| is the field size.

Efficiency. We demonstrate that our protocol is not merely of theoretical in-
terest but is also concretely efficient for various choices of parameters. We give
a detailed complexity calculation of our protocols in Sections 6.2 and 6.3.

5 We note that for more commonly used corruption thresholds n/2 > t > n/4, the
overhead incurred by our compiler is somewhere between 2.5–3.
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For n = 125 parties and t < n/3, our malicious secure protocol only re-
quires each party to, on average, communicate approximately 3 1

4 field elements
per gate of a highly repetitive circuit. In contrast, the state-of-the-art [16] (an
information-theoretic O(n|C|) protocol for t < n/3) requires each party to com-
municate approximately 4 2

3 field elements per multiplication gate. Thus, (in
theory) we expect our protocol to outperform [16] for circuits with around 75%
multiplication gates with just 125 parties. Since the per-party communication in
our protocol decreases as the number of parties increase, our protocol is expected
to perform better as the number of parties increase.

We confirm our conjecture via a preliminary implementation of our mali-
cious secure protocol and give concrete measurements of running it for up to 300
parties, across multiple network settings. Since state-of-the-art honest-majority
MPC protocol have only been tested with smaller numbers of parties, we show
that our protocol is comparably efficient even for fewer number of parties. More-
over, our numbers suggest that our protocol would outperform these existing
protocols when executed with hundreds or thousands of players at equivalent
circuit depths.

Application to Zero-Knowledge Proofs. The MPC-in-the-head paradigm
of Ishai et al. [28] is a well-known technique for constructing efficient three-round
public-coin honest-verifier zero-knowledge proof systems (aka sigma protocols)
from (honest-majority) MPC protocols. Such proof systems can be made non-
interactive, in the random oracle model [3] via the Fiat-Shamir paradigm [14].
Recent works have demonstrated the practical viability of this approach by con-
structing zero-knowledge proofs [22,5,29,2] where the proof size has linear or
sub-linear dependence on the size of the relation circuit.

Our malicious-secure MPC protocol can be used to instantiate the MPC-in-
the-head paradigm when the relation circuit has highly repetitive form. The size
of the resulting proofs will be comparable to the best-known linear-sized proof
system constructed via this approach [29]. Importantly, however, it can have
more efficient prover and verifier computation time. This is because [29] requires
parallel repetition to get negligible soundness, and have computation time linear
in the number of simulated players. Our protocol (by virtue of being an Order-C
and honest majority protocol), on the other hand, can accommodate massive
numbers of (simulated) parties without increasing the protocol simulation time
and achieve small soundness error without requiring additional parallel repeti-
tion. Finally, we note that sublinear-sized proofs [2] typically require super-linear
prover time, in which case simulating our protocol may be more computationally
efficient for the prover. We leave further exploration of this direction for future
work.

Future Directions. Our protocols achieve O(|C|) complexity for a large class
of non-SIMD circuits, namely, highly repetitive circuits. A natural open question
is whether it is possible to extend our work to handle other classes of circuits.

Another important direction for future work is to further improve upon the
concrete efficiency of our semi-honest O(|C|) protocol. The multiplicative con-
stant in our protocol complexity is primarily dictated by the tunable parameter
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ε, which is inherent in PSS-based protocols. Thus, achieving improvements on
this front will likely require different techniques.

Our malicious security compiler, which builds on ideas from [7], incurs a
multiplicative overhead of somewhere between 2.5 and 3, over the semi-honest
protocol. Recent works of [16,25] achieve even lower overheads than the com-
piler of [7]. Another useful direction would be to integrate our ideas with the
techniques in [16,25] (possibly for a lower corruption threshold) to obtain more
efficient compilers for PSS-based protocols. We leave this for future work.

2 Technical Overview

We begin our technical overview by recalling the key techniques developed in
prior works for reducing dependence on the number of parties. We then proceed
to describe our main ideas in Section 2.2.

2.1 Background

Classical MPC protocols have communication and computation complexity
O(n2|C|). These protocols, exemplified by [4], leverage Shamir’s secret sharing
[37] to facilitate distributed computation and require communication for each
multiplication gate to enable degree reduction. Typical multiplication subpro-
tocols require that each party send a message to every other party for every
multiplication gate, resulting in total communication complexity O(n2|C|). As
mentioned earlier, two different techniques have been developed to reduce the
asymptotic complexity of MPC protocols down to O(n|C|): efficient multiplica-
tion techniques and packed secret sharing.

Efficient Multiplication. In [12], Damg̊ard and Nielsen develop a randomness
generation technique that allows for a more efficient multiplication subprotocol.
At the beginning of the protocol, the parties generate shares of random values,
planning to use one of these values for each multiplication gate. These shares
are generated in batches, using a subprotocol requiring O(n2) communication
that outputs Θ(n) shares of random values. This batched randomness generation
subprotocol can be used to compute O(|C|) shared values with total complexity
O(n|C|). After locally evaluating a multiplication gate, the players use one of
these shared random values to mask the gate output. Players then send the
masked gate output to a leader, who reconstructs and broadcasts the result
back to all players.6 Finally, players locally remove the mask to get a shared
value of the appropriate degree. This multiplication subprotocol has complexity
O(n).

Packed Secret Sharing. In [15], Franklin and Yung proposed a vectorized ver-
sion of Shamir secret sharing called packed secret sharing that trades a lower cor-
ruption threshold for more efficient representation of secrets. More specifically,
their scheme allows a dealer to share a vector of Θ(n) secrets such that each of the

6 The choice of the leader can be rotated amongst the players to divide the total
computation.
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n players still only hold a single field element. Importantly, the resulting shares
preserve a SIMD version of the homomorphisms required to run MPC. Specifi-
cally, if X = (x1, x2, x3) and Y = (y1, y2, y3) are the vectors that are shared and
added or multiplied, the result is a sharing of X+Y = (x1 +y1, x2 +y2, x3 +y3)
or XY = (x1y1, x2y2, x3y3) respectively. Like traditional Shamir secret shar-
ing, the degree of the polynomial corresponding to XY is twice that of original
packed sharings of X and Y . This allows players to compute over Θ(n) gates
simultaneously, provided two properties are satisfied: (1) all of the gates perform
the same operation and (2) the inputs to each gate are in identical positions in
the respective vectors. In particular, it is not possible to compute x1y2 in the
previous example, as x1 and y2 are not aligned. However, if the circuit has the
correct structure, packed secret sharing reduces MPC complexity from O(n2|C|)
to O(n|C|).

2.2 Our Approach: Semi-Honest Security

A Strawman Protocol. A natural idea towards achieving O(|C|) MPC is to
design a protocol that can take advantage of both efficient multiplications and
packed secret sharing. As each technique asymptotically shaves off a factor of
n, we can expect the resulting protocol to have complexity O(|C|). A näıve
(strawman) protocol combining these techniques might proceed as follows:

— Players engage in a first phase to generate packed shares of random vectors
using the batching technique discussed earlier. This subprotocol requires
O(n2) messages to generate Θ(n) shares of packed random values, each con-
taining Θ(n) elements. As we need a single random value per multiplication
gate, O(|C|) total messages are sent.

— During the input sharing phase, players generate packed shares of their in-
puts, distributing shares to all players.

— Players proceed to evaluate the circuit over these packed shares, using a sin-
gle leader to run the efficient multiplication protocol to reduce the degrees of
sharings after multiplication. This multiplication subprotocol requires O(n)
communication to evaluate Θ(n) gates, so the total complexity is O(|C|).

— Once the outputs have been computed, players broadcast their output shares
and reconstruct the output.

While natural, this template falls short because the circuit may not satisfy
the requirements to perform SIMD computation over packed shares. As men-
tioned before, packed secret sharing only offers savings if all the simultaneously
evaluated gates are the same and all gate inputs are properly aligned. However,
this is an unreasonable restriction to impose on the circuits. Indeed, running
into this problem, [10,20] show that any circuit can be modified to overcome
these limitations, at the cost of a significant blowup in the circuit size, which
adversely affects their computation and communication efficiency. (We discuss
their approach in more detail later in this section.)

Our Ideas. Without such a circuit transformation, however, it is not immedi-
ately clear how to take advantage of packed secret sharing (other than for SIMD
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+ + +× × ×

y1x1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6

(x1, x2, x3) (y1, y2, y3) ← Green Inputs → (x4, x5, x6) (y4, y5, y6)

(z1, z2, z3) (z4, z5, z6)← Green Outputs →

z1 z2 z3 z4 z5 z6

(z1, z3, z1) (z2, z5, z4) ← Required Purple Inputs → (z2, z4, z5) (z5, z6, z6)

Fig. 1: A simple example pair of circuit layers illustrating the need for differing-operation

packed secret sharing and our realignment procedure. Players begin by evaluating both addi-

tion and multiplication on each pair of input vectors. However, the resulting vectors are not

properly aligned to compute the purple layer. To get properly aligned packings, the vectors

(zadd
1 , zadd

2 , zadd
3 ), (zmult

1 , zmult
2 , zmult

3 ) and (zadd4 , zadd5 , zadd6 ), (zmult
4 , zmult

5 , zmult
6 ) are masked and

opened to the leader. The leader repacks these values such that the resulting vectors will be prop-

erly aligned for computing the purple layer. For instance, in this case the leader would deal shares

of (zadd1 , zmult3 , zadd1 ), (zadd2 , zadd5 , zmult4 ), (zadd2 , zmult4 , zadd5 ), and (zadd5 , zmult6 , zmult6 )

circuits). To address this challenge, we devise two conceptual tools, each of which
we will “simulate” using existing primitives, as described below:

1. Differing-operation packed secret sharing, a variant of packed secret sharing
in which different operations can be evaluated for each position in the vector.
For example, players holding shares of (x1, x2, x3) and (y1, y2, y3) are unable
to compute (x1y1, x2 +y2, x3y3). With differing-operation packed secret shar-
ing, we imagine the players can generate an operation vector (e.g. (×,+,×))
and apply the corresponding operation to each pair of inputs. Given such a
primitive, there would be no need to modify a circuit to ensure that shares
are evaluated on the same kind of gate.

2. A realignment procedure that allows pre-existing packed secret shares to be
modified so previously unaligned vector entries can be moved and aligned
properly for continued computation without requiring circuit modification.

We note that highly repetitive circuits are layered circuits (that is the inputs
to layer i+ 1 of a circuit are all output wires from layer i). For the remainder of
this section, we will make the simplifying assumption that circuits contain only
multiplication and addition gates and that the circuit is layered. We expand our
analysis to cover other gates (e.g. relay gates) in the technical sections.

Simulating Differing-operation Packed Secret Sharing. To realize differing-
operation packed secret sharing, we require the parties to compute both opera-
tions over their input vectors. For instance, if the player hold share of (x1, x2, x3)
and (y1, y2, y3) and wish to compute the operation vector (×,+,×), they begin
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by computing both (x1 + y1, x2 + y2, x3 + y3) and (x1y1, x2y2, x3y3). Note that
all the entries required for the final result are contained in these vectors, and the
players just need to “select” which of the aligned entries will be included in the
final result.

Recall that in the multiplication procedure described earlier, the leader re-
constructs all masked outputs before resharing them. We modify this procedure
to have the leader reconstruct both the sum and product of the input vec-
tors, i.e. the unpacked values x1 + y1, x2 + y2, x3 + y3, x1y1, x2y2, x3y3 (while
masked). The leader then performs this “selection” process, and packs only the
required values to get a vector (x1y1, x2 + y2, x3y3), and discards the unused
values x1 + y1, x2y2, x3 + y3. Shares of this vector are then distributed to the
rest of the players, who unmask their shares. Note that this procedure only has
an overhead of 2, as both multiplication and addition must be computed.7

Simulating the Realignment Procedure. First note that realigning packed shares
may require not only internal permutations of the shares, but also swapping
values across vectors. For example, consider the circuit snippet depicted in Figure
1. The outputs of the green (bottom) layer are not structured correctly to enable
computing the purple (top) layer, and require this cross-vector swapping. As
such, we require a realignment procedure that takes in all the vectors output
by computing a particular circuit layer and outputs multiple properly aligned
vectors.

Our realignment procedure builds on the ideas used to realize differing-
operation packed secret sharing. Recall that the leader is responsible for re-
constructing the masked result values from all gates in the previous layer. With
access to all these masked values, the leader is not only able to select between a
pair of values for each element of a vector (as before), but instead can arbitrar-
ily select the values required from across all outputs. For instance, in the circuit
snippet in Figure 1, the leader has masked, reconstructed values zadd

i , zmult
i for

i ∈ [6]. Proceeding from left to right of the purple layer, the leader puts the
value corresponding to the left input wire of a gate into a vector and the right
input wire value into the correctly aligned slot of a corresponding vector. Using
this procedure, the input vectors for the first three gates of the purple layer will
be (zadd

1 , zmult
3 , zadd

1 ) (left wires) and (zadd
2 , zadd

5 , zmult
4 ) (right wires).

Putting it Together. We are now able to refine the strawman protocol into a
functional protocol. When evaluating a circuit layer, the players run a protocol
to simulate differing-operation packed secret sharing, by evaluating each gate
as both an addition gate and multiplication gate. Then, the leader runs the re-
alignment procedure to prepare vectors that are appropriate for the next layer
of computation. Finally, the leader secret shares these new vectors, distributing
them to all players, and computing the next layer can commence. Conceptually,

7 In this toy example only one vector is distributed back to the parties. If layers are
approximately of the same size, an approximately equal number of vectors will be
returned.
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the protocol uses the leader to “unpack” and “repack” the shares to simultane-
ously satisfy both requirements of SIMD computation.

Leveraging Circuits with Highly Repetitive Structure. Until this point,
we have been using the masking primitive imprecisely, assuming that it could
accommodate the procedural changes discussed above without modification. This
however, is not the case. Because we need to mask and unmask values while they
are in a packed form, the masks themselves must be generated and handled in
packed form.

Consider the example vectors used to describe differing-operation packed
secret sharing, trying to compute (x1y1, x2 + y2, x3y3) given (x1, x2, x3) and
(y1, y2, y3). If the same mask (r1, r2, r3) is used to mask both the sum and prod-
uct of these vectors, privacy will not hold; for example, the leader will open the
values x1 + y1 + r1 and x1y1 + r1, and thus learn something about x1 and y1.
If (r1, r2, r3) is used to mask addition and (r′1, r

′
2, r
′
3) is used for multiplication,

there is privacy, but it is unclear how to unmask the result. The shared vector
distributed by the leader will correspond to (x1y1 + r1, x2 + y2 + r′2, x3y3 + r3)
and the random values cannot be removed with only access to (r1, r2, r3) and
(r′1, r

′
2, r
′
3). To run the realignment procedure, the same problem arises: the un-

masking vectors must have a different structure than the masking vectors, with
their relationship determined by the structure of the next circuit layer.

We overcome this problem by making modifications to the batched random-
ness generation procedure. Instead of generating structurally identical masking
and unmasking shares, we instead use the circuit structure to permute the ran-
dom inputs used during randomness generation so we get outputs of the right
form. In the example above, the players will collectively generate the masking
vectors (r1, r2, r3) and (r′1, r

′
2, r
′
3), where each entry is sampled independently at

random. The players then generate the unmasking vector (r1, r
′
2, r3) by permut-

ing their inputs to the generation algorithm. For a more complete description of
this subprotocol, see Section 6.1.

However, it is critical for efficiency that we generate all randomness in batches.
By permuting the inputs to the randomness generation algorithm, we get Θ(n)
masks that are correctly structured for a particular part of the circuit struc-
ture. If this particular structure occurs only once in the circuit, only one of the
Θ(n) shares can actually be used during circuit evaluation. In the worst case, if
each circuit substructure is unique, the resulting randomness generation phase
requires O(n|C|) communication complexity.

This is where the requirement for highly repetitive circuits becomes relevant.
This class of circuits guarantees that (1) the circuit layers are wide enough that
using packed secret sharing with vectors containing Θ(n) elements is appropriate,
and (2) all Θ(n) shares of random values generated during the batched random-
ness generation phase can be used during circuit evaluation. We note that this
is a rather simplified version of the definition, we give a formal definition of such
circuits in Section 4.2.

Non-interactive packed secret sharing from traditional secret shares.
Another limitation of the strawman protocol presented above is that the circuit
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must ensure that all inputs from a single party can be packed into a single packed
secret sharing at the beginning of the protocol. We devise a novel strategy (see
Section 5) that allows parties to secret share each of their inputs individually
using regular secret sharing. Parties can then non-interactively pack the appro-
priate inputs according to the circuit structure. This strategy can also be used
to efficiently switch to O(n|C|) protocols when parts of the circuit lack highly
repetitive structure; the leader omits the repacking step, and the parties com-
pute on traditional secret share until the circuits becomes highly repetitive, at
which point they non-interactively re-packing any wire values (see Section 4.4).

Existing O(|C|) protocols like [10] do not explicitly discuss how their proto-
col handles this input scenario. We posit that this is because there are generic
transformations like embedding switching networks at the bottom of the circuit
that allow any circuit to be transformed into a circuit in which a player’s inputs
can be packed together. Unsurprisingly, these transformations significantly in-
crease the size of the circuit. Since [10] is primarily concerned with asymptotic
efficiency, such circuit modification strategies are sufficient for their work.

Comparison with [10]. We briefly recall the strategy used in [10], in order to
overcome the limitations of working with packed secret sharing that we discussed
earlier. They present a generic transformation that transforms any circuit into
a circuit that satisfies the following properties:

1. The transformed circuit is layered and each layer only consists of one type
of gates.

2. The transformed circuit is such that, when evaluating it over packed secret
shares, there is never a need to permute values across different vectors/blocks
that are secret shared. While the values within a vector might need to be
permuted during circuit evaluation, the transformed circuit has a nice prop-
erty that only log ` (where ` is the size of the block) such permutations are
needed throughout the circuit.

It is clear that the first property already gets around the first limitation of
packed secret sharing. The second property partly resolves the realignment re-
quirement from a packed secret sharing scheme by only requiring permutations
within a given vector. This is handled in their protocol by generating permuted
random blocks that are used for masking and unmasking in the multiplication
sub-protocol. Since only log ` different permutations are required throughout the
protocol, they are able to get significant savings by generating random pairs cor-
responding to the same permutation in batches. Our “unpacking” and “repack-
ing” approach can be viewed as a generalization of their technique, in the sense
that we enable permutation and duplication of values across different vectors by
evaluating the entire layer in one shot.

As noted earlier, this transformation introduces significant overhead to the
size of the circuit, and is the primary reason for the large multiplicative and ad-
ditive terms in the overall complexity of their protocol. As such, it is unclear how
to directly use their protocol to compute circuits with highly repetitive struc-
tures, while skipping this circuit transformation step. This is primarily because
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these circuits might not satisfy the first property of the transformed circuit.
Moreover, while it is true that the number of possible permutations required in
such circuits are very few, they might require permuting values across different
vectors, which cannot be handled in their protocol.

2.3 Malicious Security

Significant work has been done in recent years to build compilers that take
semi-honest protocols that satisfy common structures and produce efficient ma-
licious protocols, most notably in the “additive attack paradigm” described in
[21]. These semi-honest protocols are secure up to additive attacks, that is any
adversarial strategy is only limited to injecting additive errors onto each of the
wires in the circuit that are independent of the “actual”wire values. The current
generation of compilers for this class of semi-honest protocols, exemplified by
[7,35,16,25], introduce only a small multiplicative overhead (e.g., 2 in the case
of [7]) and require only a constant number of additional rounds to perform a
single, consolidated check

Genkin et al. showed in [20] (with additional technical details in [19]) that
protocols leveraging packed secret sharing schemes do not satisfy the structure
required to leverage the compilers designed in the “additive attack paradigm.”
Instead, they show that most semi-honest protocols that use packed secret shar-
ing are secure up to linear errors, that is the adversary can inject errors onto
the output wires of multiplication gates that are linear functions of the values
contained in the packed sharing of input wires to this gate. We observe that this
also holds true for our semi-honest protocol. They present a malicious security
compiler for such protocols that introduces a small multiplicative overhead.

To achieve malicious security, we add a new consolidated check onto our
semi-honest protocol, reminiscent of the check for circuits over small-fields pre-
sented in Section 5 of [7]. The resulting maliciously secure protocol has twice
the complexity of our semi-honest protocol, plus a constant sized, consolidated
check at the end – for the first time matching the efficiency of the compilers
designed for protocols secure up to additive attacks.

As in [7], we run two parallel executions of the circuit, maintaining the in-
variant that for each packed set of wires z = (z1, z2, . . . , z`) in C the parties also
compute z′ = rz = (rz1, rz2, . . . , rz`) for a global, secret scalar value r. Once
the players have shares of both z and z′ for each wire in the circuit, we gener-
ate shares of random vectors α = (α1, α2, . . . , α`) (one for each packed sharing
vector in the protocol) using a malicious secure sub-protocol and reconstruct
the value r. The parties then interactively verify that r ∗ α ∗ z = α ∗ z′. Impor-
tantly, this check can be carried out simultaneously for all packed wires in the
circuit, i.e. r ∗

∑
i∈C αi ∗ zi =

∑
i∈C αi ∗ z′i. This simplified check relies heavily

on the malicious security of the randomness generation sub-protocol. Because of
the structure of linear attacks and the fact that α was honestly secret-shared,
multiplying z and z′ with α injects linear errors chosen by the adversary that
are monomials in α only. That is, the equation becomes
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r ∗
∑
i∈C

(αi ∗ zi + E(α)) =
∑
i∈C

(αi ∗ z′i + E′(α))

for adversarially chosen linear functions E and E′. Because α is independent of r
and r is applied to the left hand side of this equation only at the end, this check
will only pass if r ∗E(α) = E′(α). For any functions E(·), E′(·) this only happen
if either (1) both are the zero function (in which case there are no errors), or (2)
with probability 1

|F| . Hence, this technique can also be used with packed secret

sharing to get an efficient malicious security compiler.

3 Preliminaries

Model and Notation. We consider a set of parties P = {P1, . . . , Pn} in which
each party provides inputs to the functionality, participates in the evaluation
protocol, and receives an output. We denote an arbitrarily chosen special party
Pleader for each layer (of the circuit) who will have a special role in the protocol;
we note that the choice of Pleader may change in each layer to better distribute
computation and communication. Each pair of parties are able to communicate
over point-to-point private channels.

We consider a functionality that is represented as a circuit C, with maximum
width w and total total depth d. We visualize the circuits in a bottom-up setting
(like in Merkle trees), where the input gates are at the bottom of the circuit and
the output gates are at the top. As we will see later in the definition of highly
repetitive circuits, we work with layered circuits, which comprise of layers such
that the output of layer i are only used as input for the gates in layer i+ 1.

We consider security against a static adversary Adv that corrupts t ≤ n( 1
2−

2
ε )

players, where ε is a tunable parameter of the system. As we will be working
with both a packed secret sharing scheme and regular threshold secret sharing
scheme, we require additional notation. We denote the packing constant for our
protocol as ` = n

ε . Additionally, we will denote the threshold of our packed
secret sharing scheme as D = t + 2` − 1. We will denote vectors of packed
values with bold alphabets, for instance x. Packed secret shares of a vector x
with respect to degree D are denoted [x] and with respect to degree 2D as 〈x〉.
We let e1, . . . , e` be the fixed x-coordinates on the polynomial used for packed
secret sharing, where the ` secrets will be stored, and α1, . . . αn be the fixed
x-coordinates corresponding to the shares of the parties. For regular threshold
secret sharing, we will only require shares w.r.t. degree t+ `. We use the square
bracket notation to denote a secret sharing w.r.t. degree t+ `. We note that we
work with a slightly modified sharing algorithm of the Shamir’s secret sharing
scheme (see Section 5 for details).

4 Highly Repetitive Circuits

In this section, we formalize the class of highly repetitive circuits and discuss
some examples of naturally occurring highly repetitive circuits.
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4.1 Wire Configuration

We start by formally defining a gate block, which is the minimum unit over which
we will reason.

Definition 1 (Gate Block). We call a set of j gates that are all on the same
layer a gate block. We say the size of a gate block is j.

An additional non-standard functionality we require is an explicit wire map-
ping function. Recall from the technical overview that the leader must repack
values according to the structure of the next layer. To reason formally over this
procedure, we define the function WireConfiguration, which takes in two blocks
of gates blockm+1 and blockm, such that the output wires of the gates in blockm
feed as input to the gates in blockm+1. WireConfiguration outputs two ordered
arrays LeftInputs and RightInputs that contain the indices corresponding to the
left input and right input of each gate in blockm+1 respectively. In general, we
can say that WireConfiguration(blockm+1, blockm) will output a correct align-
ment for blockm+1. This is because for all values j ∈ [|blockm+1|], if the values
corresponding to the wire LeftInputs[j] and RightInputs[j] are aligned, then com-
puting blockm+1 is possible. We describe the functionality for WireConfiguration
in Figure 2. It is easy to see that the blocks blockm+1, blockm must lie on con-
secutive layers in the circuit. We say that a pair of gate blocks is equivalent to
another pair of gate blocks, if the outcome of WireConfiguration on both pairs is
identical.

The Function WireConfiguration(blockm+1, blockm)

1. Initialize two ordered arrays LeftInputs = [ ] and RightInputs = [ ], each with capacity
|blockm+1|.

2. For a gate g, let l(g) = (j, type) denote the index j and type of the gate in block
blockm that feeds the left input of g. Similarly, let r(g) = (j, type) denote the right
input gate index and type of g. For gates with fan-in one, i.e. relay gates, r(g) = 0.
For each gate gj in blockm+1, we set LeftInputs[j] = l(gj) and RightInputs[j] = r(gj)

3. Output LeftInputs,RightInputs.

Fig. 2: A function that computes a proper alignment for evaluating blockm+1

4.2 (A,B)-Repetitive Circuits

With notation firmly in hand, we can now formalize the class of (A,B)-repetitive
circuits, where A,B are the parameters that we explain next. Highly repetitive
circuits are a subset of (A,B)-repetitive circuits, which we will define later.

We define an (A,B)-repetitive circuit using a partition function part that
decomposes the circuit into blocks of gates, where a block consists of gates on
the same layer. Let {blockchild

m,j } be the output of this partition function, where
m indicates the layer of the circuit corresponding to the block and j is its index
within layer m. Informally speaking, an (A,B)-repetitive circuit is one that
satisfies the following properties:
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1. Each block blockm,j consists of at least A gates.
2. For each pair (blockm,j , blockm+1,j), all the gates in blockm+1,j only take in

wires that are output wires of gates in blockm,j . And the output wires of all
the gates in blockm,j only go an input to the gates in blockm+1,j .

3. For each pair (blockm,j , blockm+1,j), there exist at least B other pairs with
identical wiring between the two blocks.

We now give a formal definition.

Definition 2 ((A,B)-Repetitive Circuits). We say that a layered circuit C
with depth d is called an (A,B)-repetitive circuit if there exists a value σ ≥ 1 and
a partition function part which on input layerm (mth layer in C), outputs disjoint
blocks of the form {blockm,j}j∈[σ] ← part(m, layerm), such that the following
holds, for each m ∈ [d], j ∈ [σ]:

1. Minimum Width: Each blockm,j consists of at least A gates.
2. Bijective Mapping: All the gates in blockm,j only take inputs from the

gates in blockm−1,j and only give outputs to gates in blockm+1,j.
3. Minimum Repetition: For each (blockm+1,j , blockm,j), there exist

pairs (m1, j1) 6= (m2, j2) 6= . . . 6= (mB , jB) 6= (m, j) such
that for each i ∈ [B], WireConfiguration(blockmi+1,ji , blockmi,ji) =
WireConfiguration(blockm+1,j , blockm,j).

Intuitively, this says that a circuit is built from an arbitrary number of gate
blocks with sufficient size, and that all blocks are repeated often throughout
the circuit. Unlike the layer focused example in the introduction, this defini-
tion allows layers to comprise of multiple blocks. In fact, these blocks can even
interact by sharing input values. The limitation of this interaction, captured
by the WireConfiguration check, is that the interacting inputs must come from
predictable indices in the previous layer and must have the same gate type.

We also consider a relaxed variant of (A,B)-repetitive circuits, which we
call (A,B,C,D)-repetitive circuits. These circuits differ from (A,B)-repetitive
circuits in that they allow for a relaxation of the minimum width and repetition
requirement. In particular, in an (A,B,C,D)-repetitive circuit, it suffices for all
but C blocks to satisfy the minimum width requirement and similarly, all but D
blocks are required to satisfy the minimum repetition requirement. In this work,
we focus on the following kind of (A,B,C,D)-repetitive circuits.

Definition 3 (Highly Repetitive Circuits). We say that (A,B,C,D)-
repetitive circuits are highly repetitive w.r.t. n parties, if A,B ∈ Ω(n) and C,D
are some constants.

We note that defining a class of circuits w.r.t. to the number of parties that
will evaluate the circuit might a priori seem unusual. However, this is common
throughout the literature attempting to achieve O(|C|) MPC that use packed
secret sharing. For example, the protocols in [11,10,20] achieve Õ(|C|) com-
munication for circuits that are Ω(n) gates wide. Similarly, our work achieves
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O(|C|) communication and computation for circuits that are (Ω(n), Ω(n), C,D)-
repetitive, where C and D are constants. Alternatively, if the number of input
wires are equal to the number of participating parties, we can re-phrase the
above definition w.r.t. the number of input wires in a circuit.

It might be useful to see the above definition as putting a limit on the number
of parties for which a circuit is highly repetitive: any (A,B,C,D)-repetitive
circuit, is highly repetitive for upto min(O(A), O(B)) parties. While our MPC
protocol can work for any (A,B,C,D)-repetitive circuit, it has O(|C|) complexity
only for highly repetitive circuits. In the next subsection we give examples of
such circuits that are highly repetitive for a reasonable range of parties.

For the remainder of this paper, we will use w denote the maximum width
of the circuit C, wm to denote the width of the mth layer and wm,j to denote
the width of blockm,j .

4.3 Examples of Highly Repetitive Circuits

We give brief overviews of three functionalities with circuit representations that
are highly repetitive for up to a large number of parties. Extended discussion of
these applications is included in the full version of this paper.

Machine Learning. Machine learning algorithms extract trends from large
datasets to facilitate accurate prediction in new, unknown circumstances. A
common family of algorithms for training machine learning models is “gradi-
ent descent.” This algorithm iteratively reduces the models error by making
small, greedy changes, terminating when the model quality plateaus. When run
with MPC, the number of iterations must be data oblivious and cover the worst
case scenario. For a more complete description of gradient descent training al-
gorithms, and their adaptation to MPC, see [31].

It is difficult to compute the exact number of gates for privacy-preserving
model training in prior work. In one of the few concrete estimates, Gascón et al.
[18] realize coordinate gradient descent training algorithms with approximately
1011 gates, which would take 3000GB to store [32]. Subsequent work instead
built a library of sub-circuits that could be loaded as needed. As the amount
of data used to train models continues to grow, circuit sizes will continue to
increase. While we are not able to accurately estimate the number of gates for
this kind of circuit, we can still establish that their structure is highly repetitive;
gradient decent algorithm is many iterations of the same functionality. In the
implementation of Mohassel et al. [31], the default configuration for training
is 10000 iterations, deep enough to accommodate massive numbers of players.
Indeed, in the worst case the depth of a gradient descent algorithm must be
linear in the input size. This is because gradient descent usually uses a batching
technique, in which the input data is partitioned into batches and run through
the algorithm one at a time.

The width of gradient descent training algorithms is usually roughly propor-
tional to the dimension of the dataset, which is usually quite high for interesting
applications. We note that if the width of the data is no wide enough, the natural
parallelism of gradient decent training algorithms can be leveraged to provide
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Table 1: Size of the highly repetitive circuits we consider in this work. We compile these functions

into F2 circuits using Frigate [33] (containerized by [26]). The 64 iterations of the compression

function for SHA256 comprise 77% of the gates and the round function of AES comprises 88% of

the gates. Both of these metrics are computed for a single block on input.

Circuit Gates (F2) Iterative Loops Gates per Loop Percent Repeated Structure

SHA256 (1 Block) 119591 64 1437 77%
AES128 (1 Block) 7458 10 656 88%
Gradient Descent — ≥ 10000 — ∼ 100%

more width: it is typical to use a random restart strategy to avoid getting trapped
at local minima, each of which can be execute in parallel.
Cryptographic Hash Functions. All currently deployed cryptographic hash
functions rely on iterating over a round function, each iteration of which round
function is (typically) structurally identical. Moreover, the vast majority of the
gates in the circuit representation of a hash function are contained within the
iterations of the round function.

Consider SHA256 [1], one of the most widely deployed hash functions; given
its common use in applications like Bitcoin [34] and ECDSA [17], SHA256 is
an important building block of MPC applications. SHA256 contains 64 rounds
of its inner function, with other versions that use larger block size containing
80 rounds. We compiled SHA256 for a single block of input into a circuit using
Frigate [33]. As can be seen in Table 1, 77% of all the gates in the compiled
SHA256 are repeated structure, that structure repeating at least 64 times. We
note that these results were for hashing only a single block of input. When
additional blocks of data must be hashed, the percentage of the circuit that is
repeated structure will be higher. For example, if there are as few as 10 blocks
of input, the circuit is already 97% repeated structure. Common applications
of hash functions, like computing a Merkle tree over player inputs, run hash
functions in parallel, ensuring there is sufficient width for accommodate large
numbers of parties.
Block Ciphers. Modern block ciphers, similar to cryptographic functions, are
iterative by nature. For example, Advanced Encryption Standard uses either
10, 12, or 14 iterations of its round function, depending on key length. Per-
forming a similar analysis as with SHA256, we identified that 88% of the gates
in AES128 are part of this repeated structure when encrypting a single block
of input. Just as with hash functions, more blocks of input lead to increased
percentage repeated structure; with 10 blocks of input, 98% of the gates are
repeated structure.

4.4 Protocol Switching for Circuits with Partially Repeated
Structure

Hash functions and symmetric key cryptography are not comprised of 100%
repeated structure. When structure is not repeated, the batched randomness
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generation step cannot be run efficiently. In the worst case, if a particular piece
of structure is only present once in the circuit, O(n2) messages will be used to
generate only a single packet secret share of size Θ(n). If 0 ≤ p ≤ 1 is the fraction
of the circuit that is repeated, our protocol has efficiency O(p|C|+ (1− p)n|C|).

We note that our protocol has worse constants than [7] and [16] when run
on the non-repeated portion of the circuit. Specifically, our protocol requires
communication for all gates, rather than just multiplication gates. As we are
trying to push the constants as low as possible, it would be ideal to run the
most efficient known protocols for the portions of the circuit that are linear
in the number of players. To do this, we note that our protocol can support
mid-evaluation protocol switching.

Recall our simple non-interactive technique to transform normal secret shares
into packed secret shares, presented in Section 5. This technique can be used
in the middle of protocol execution to switch between a traditional, efficient,
O(n|C|) protocol and our protocol. Once the portion of the circuit without re-
peated structure is computed using another efficient protocol, the players can
pause to properly structure their secret shares and non-interactively pack them.
The players can then evaluate the circuit using our protocol. If another patch of
non-repeated structure is encountered, the leader can reconstruct and re-share
normal shares as necessary. Importantly, since all these protocols are linear, it’s
still possible to use the malicious security compiler of [7].

5 A Non-Interactive Protocol for Packing Regular Secret
Shares

We now describe a novel, non-interactive transformation that allows a set of
parties holding shares corresponding to ` secrets [s1], . . . , [s`] to compute a sin-
gle packed secret sharing of the vector v = (s1, . . . , s`). This protocol makes a
non-black-box use of Shamir secret sharing to accomplish this non-interactive.
As discussed in the technical overview, to achieve efficiency, our protocol com-
putes over packed shares. But, if each player follows the näıve strategy of just
packing all their own inputs into a single vector, the values may not be properly
aligned for computation. This non-interactive functionality lets players simply
share their inputs using Shamir secret sharing (using degree t+ ` polynomials),
and then locally pack the values in a way that guarantees alignment.

Let p1, . . . , p` be the degree t+` polynomials that were used for secret sharing
secrets s1 . . . , s` respectively. We require each pi(z) (for i ∈ [`]) to be of the form

si + qi(z)
∏`
j=1(z − ej), where qi is a degree t polynomial. Then each party Pj

(for j ∈ [n]) holds shares p1(αj), . . . , p`(αj).

Given these shares, each party Pj computes a packed secret share of the vector

(s1, . . . , s`) as follows - FSS−to−PSS({pi(αj)}i∈[`]) =
∑`
i=1 pi(αj)Li(αj) = p(αj),

where Li(αj) =
∏`
j=1,j 6=i

(αi−ej)
(ei−ej) is the Lagrange interpolation constant and p

corresponds to a new degree D = t + 2` − 1 polynomial for the packed secret
sharing of vector v = (s1, . . . , s`).
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Lemma 1. For each i ∈ [`], let si ∈ F be secret shared using a degree t + `

polynomial pi of the form si+qi(z)
∏`
j=1(z−ej), where qi is a degree t polynomial

and e1, . . . , e` are some pre-determined field elements. Then for each j ∈ [n],
FSS−to−PSS({pi(αj)}i∈[`]) outputs the jth share corresponding to a valid packed
secret sharing of the vector v = (s1, . . . , s`), w.r.t. a degree-D = t + 2` − 1
polynomial.

Proof. For each i ∈ [`], let pi(z) be the polynomial used for secret sharing the

secret si. We know that pi(z) = si + qi(z)
∏`
j=1(z − ej), where qi is a degree t

polynomial. Let p′i(z) = qi(z)
∏`
j=1(z − ej) and let p(z) be the new polynomial

corresponding to the packed secret sharing. From the description of FSS−to−PSS,
it follows that:

p(z)=
∑`
i=1 p

′
i(z)Li(z)+siLi(z)=

∑`
i=1 p

′
i(z)

∏`
j=1,j 6=i

(z−ej)
(ei−ej)

+
∑`
i=1 siLi(z)

=
∑`
i=1 qi(z)

∏`
j=1,j 6=i

(z−ej)
(ei−ej)

∏`
j=1(z−ej)+

∑`
i=1 siLi(z)

Let q′i(z) = qi(z)
∏`
j=1,j 6=i

(z−ej)
(ei−ej) , then,

p(z)=
∑`
i=1 q

′
i(z)

∏`
j=1(z−ej)+

∑`
i=1 siLi(z)=q(z)

∏`
j=1(z−ej)+

∑`
i=1 siLi(z)

where q(z) =
∑`
i=1 q

′
i(z) is a degree t + ` − 1 polynomial and hence p(z) is

a degree D = t + 2` − 1 polynomial. It is now easy to see that for each i ∈ [`],
p(ei) = si. Hence FSS−to−PSS computes a valid packed secret sharing of the
vector v = (s1, . . . , s`).

6 Our Order-C Protocols

6.1 Sub-Functionalities and Protocols

Both our semi-honest and maliciously secure protocols depend on a number of
sub-functionalities and protocols which we present in this section.

fpack−input functionality. This functionality takes in the inputs of the players
and outputs packed secret shares. Using the circuit information, players can run
WireConfiguration(block0,j , block1,j) for each j ∈ [σ] to determine the alignment
of vectors required to compute the first layer of the circuit. Because each block1,j

in the circuit contains w1,j/` gates, the protocol outputs 2w1/` =
∑
j∈[σ] w1,j

properly aligned packed secret shares, each containing ` values. A detailed de-
scription of this functionality appears in Figure 3. The description of a protocol
that makes use of our non-interactive packing protocol from Section 5, that
securely realizes this functionality is deferred to the full-version of this paper.

fcorr−rand functionality. This functionality generates correlated randomness
for our main construction. Recall from the technical overview that the val-
ues in the packed secret shares of random values must be generated accord-
ing to the circuit structure. More specifically, the unmasking values (degree
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The functionality fpack−input(P := {P1, . . . , Pn}, )

The functionality fpack−input, running with parties {P1, . . . , Pn} and the ideal adversary
Sim proceeds as follows:

— It receives inputs x1, . . . , xM ∈ F from the respective parties and the layers
layer0, layer1 from all parties.

— It computes {block0,j}j∈[σ] ← part(0, layer0) and {block1,j}j∈[σ] ← part(1, layer1).
— For each j ∈ [σ], it computes LeftInputsj ,RightInputsj =

WireConfiguration(block1,j , block0,j).
— For each j ∈ [σ] and q ∈ [w1,j/`],

• Set xj,q = (xLeftInputsj [i]
)i∈{(q−1)`+1,...,q`} and yj,q =

(xRightInputsj [i]
)i∈{(q−1)`+1,...,q`}.

• Receives from Sim, the shares [xj,q]A, [y
j,q]A of the corrupted parties for the

input vectors xj,q,yj,q .

• It computes shares [xj,q] ← pshare(xj,q,A, [xj,q]A, D) and [yj,q ] ←
pshare(yj,q,A, [yj,q]A, D) and sends them to the parties.

Fig. 3: Packed Secret sharing of all inputs functionality

D shares) for some blockm+1,j must be aligned according to the output of
WireConfiguration(blockm+1,j , blockm,j).

Before describing the functionality, we quickly note the number of shares
generated, as it is somewhat non-standard. Let wm,j be the number of gates in
blockm,j and wm+1,j be the number of gates in blockm+1,j . As noted in the tech-
nical overview, our protocol treats each gate as though it performs all operations
(relay, addition and multiplication). This lets the players evaluate different oper-
ations on each value in a packed secret share. Each of these operations must be
masked with different randomness to ensure privacy. As such, the functionality
generates 3wm,j/` shares of uniformly random vectors. To facilitate unmasking
after the leader has run the realignment procedure, the functionality must gener-
ate shares of vectors with values selected from these 3wm,j/` uniformly random
vectors. This selection is governed by WireConfiguration(blockm+1,j , blockm,j). As
there are wm+1,j gates in blockm+1,j , the functionality will output 2wm+1,j/` of
these unmasking shares (with degree D). In total, this is (3wm,j + 2wm+1,j)/`
packed secret sharings. A detailed description of this functionality appears in
Figure 4. The description of a protocol that securely realizes this functionality
is deferred to the full-version of our paper.

πlayer Protocol. This sub-protocol takes properly aligned input vectors{
[xj,q1 ], [yj,q1 ]

}
j∈[σ],q∈[wm,j/`]

held by a set of parties, and computes packed

shares[zj,q,left] and [zj,q,right], for each j ∈ [σ] and q ∈ [wm+1,j/`] that can be
used to evaluate the next layer. We note that for notational convenience, this

protocol takes as input
{

[xj,q1 ], [yj,q1 ], [xj,q2 ], [yj,q2 ]
}
j∈[σ],q∈[wm,j/`]

instead of just{
[xj,q1 ], [yj,q1 ]

}
j∈[σ],q∈[wm,j/`]

. This is because in our maliciously secure protocol,
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The functionality fcorr−rand({P1, . . . , Pn})

The n-party functionality fcorr−rand, running with parties {P1, . . . , Pn} and the ideal ad-
versary Sim proceeds as follows:

— Each honest party sends blockm+1,j , blockm,j to the functionality.

— The ideal simulator Sim sends {uq,left
i ,uq,right

i }q∈[wm+1/`]
and

{vq,mult
i ,vq,add

i ,vq,relay
i }q∈[wm,j/`] for each corrupt party i ∈ A.

— The functionality fcorr−rand samples random vectors

({rq,mult, rq,add, rq,relay}q∈[wm,j/`]) ∈ F`×3wm,j/` of length ` and does the fol-

lowing:

• For each q ∈ [wm+1,j/`] , it sets [rq,left]A = {uq,left
i }i∈A and [rq,right]A =

{uq,right
i }i∈A. .

• For each q ∈ [wm,j/`], it sets 〈rq,mult〉A = {vq,mult
i }i∈A and 〈rq,add〉A =

{vq,add
i }i∈A and 〈rq,relay〉A = {vq,relay

i }i∈A.
• It computes LeftInputs,RightInputs = WireConfiguration(blockm→m+1).
• For each q ∈ [wm+1,j ] and for each k ∈ [`], let eleft = LeftInputs[(q − 1)`+ i] and

eright = RightInputs[(q− 1)`+ i] and set rq,left[k] = rbeleft/`c,GateTypek [eleft−beleft/`c]
and rq,right[k] = rberight/`c,GateTypek [eright − beright/`c], where GateTypek = mult if
gate k on layer m is a multiplication gate, else if it is an addition gate then
GateTypek = add and for relay gates, GateTypek = relay.

• For each q ∈ [wm,j/`], it runs pshare(rq,mult,A, 〈vq,mult〉A, 2D),

pshare(rq,add,A, 〈vq,add〉A, 2D), pshare(rq,relay,A, 〈vq,relay〉A, 2D).

• For each q ∈ [wm+1,j/`], it runs pshare(rq,left,A, [uq,left]A, D) and

pshare(rq,right,A, [uq,right]A, D).

— It hands each honest party Pi its shares {uq,left
i ,uq,right

i }q∈[wm+1,j/`]
and

{vq,mult
i ,vq,add

i ,vq,relay
i }q∈[wm,j/`].

Fig. 4: Random share generation functionality

we invoke this sub-protocol for evaluating the circuit on actual inputs as well as
on randomized inputs. When computing on actual inputs, we set xj,q1 = xj,q2 and

yj,q1 = yj,q2 and when computing on randomized inputs, we set xj,q2 = rxj,q1 and

yj,q2 = ryj,q1 . A detailed description of this sub-protocol appears in Figure 5.

6.2 Semi-Honest Protocol

In this section, we describe our semi-honest protocol. All parties get a finite field
F and a layered arithmetic circuit C (of width w and no. of gates |C|) over F
that computes the function f on inputs of length n as auxiliary inputs.8

Protocol: For each i ∈ [n], party Pi holds input xi ∈ F and the protocol
proceeds as follows:

1. Input Sharing Phase: All the parties {P1, . . . , Pn} collectively invoke
fpack−input as follows — every party Pi for i ∈ [n], sends each of its in-
put xi to functionality fpack−input and records its vector of packed shares

8 For simplicity we assume that each party has only one input. But our protocol can be
trivially extended to accommodate scenarios where each party has multiple inputs.
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The protocol πlayer({P1, . . . , Pn})

Input: The parties {Pi}i∈[n] hold packed secret sharings{
[xj,q1 ], [yj,q1 ], [xj,q2 ], [yj,q2 ]

}
j∈[σ],q∈[wm,j/`]

and configuration of layers layerm and

layerm+1.
Protocol: For each j ∈ [σ], the parties proceed as follows:

— They invoke fcorr−rand to obtain packed secret shares:

{[rj,q,left], [rj,q,right]}j,q∈[wm+1,j/`]
, {〈rj,q,mult〉, 〈rj,q,add〉, 〈rj,q,relay〉}q∈[wm,j/`].

— For each q ∈ [wm,j/`], the parties locally compute the following:

〈xj,q1 · yj,q2 + rj,q,mult〉 = [xj,q1 ] · [yj,q2 ] + 〈rj,q,mult〉
〈xj,q1 + yj,q1 + rj,q,add〉 = [xj,q1 ] + [yj,q1 ] + 〈rj,q,add〉
〈xj,q1 + rj,q,relay〉 = [xj,q1 ] + 〈rj,q,relay〉

— All the parties send their shares to the designated party Pleader for that layer.
— Party Pleader reconstructs all the shares to get individual values

{zj,mult
i , zj,add

i , zj,relay
i }j∈[σ],i∈[wm,j ]. It then computes the values zj,1i , . . . , z

j,wm+1
i on

the outgoing wires from the gates in layer m as follows: For each j ∈ [σ], i ∈ [wm,j ]:

• If gate gj,im is a multiplication gate, it sets zj,i = zj,mult
i .

• If gate gj,im is a multiplication gate, it sets zj,i = zj,add
i .

• If gate gj,im is a relay gate, it sets zj,i = zj,relay
i .

— It then computes LeftInputsj ,RightInputsj = WireConfiguration(blockm+1,j , blockm,j).

— For each j ∈ [σ] and q ∈ [wm+1,j/`] each i ∈ [`], let eleft = LeftInputs[` · (j−1)+ i] and

eright = RightInputs[` · (j − 1) + i], it sets zj,q,left[i] = zj,eleft and zj,q,right[i] = zj,eright .

— For each j ∈ [σ], q ∈ [wm+1,j/`], it then runs pshare(zj,q,left, D) to obtain shares

[zj,q,left
i ] and pshare(zj,q,right, D) to obtain a shares [zj,q,right] for each party.

— For each j ∈ [σ], q ∈ [wm+1,j/`], all parties locally subtract the randomness from

these packed secret sharings as follows— [zj,q,left] = [zj,q,left]−[rj,q,left] and [zj,q,right] =

[zj,q,right]− [rj,q,right].

Output: The parties output their shares in [zj,q,left] and [zj,q,right], for each j ∈ [σ] and
q ∈ [wm+1,j/`].

Fig. 5: A Protocol for Secure Layer Evaluation

{
[xj,q], [yj,q]

}
j∈[σ],q∈[w1,j/`]

of the inputs as received from fpack−input. They

set [zj,q,left
1 ] = [xj,q] and [zj,q,right

1 ] = [yj,q] for each j ∈ [σ] and q ∈ [w1,j/`].

2. Circuit Evaluation: The circuit evaluation proceeds layer-wise,
where for each layer m ∈ [d], where d is the depth of the
circuit, the parties evaluate each gate in that layer simultane-
ously as follows — Given packed input shares

{
[zj,q,left
m ], [zj,q,right

m ]
}

for j ∈ [σ], q ∈ [wm,j/`], the parties run πlayer on inputs
layerm+1, layerm,

{
[zj,q,left
m ], [zj,q,right

m ], [zj,q,left
m ], [zj,q,right

m ]
}
j∈[σ],q∈[wm,j/`]

.

They record their shares in
{

[zj,q,left
m+1 ], [zj,q,right

m+1 ]
}
j∈[σ],q∈[wm+1,j/`]

.

3. Output Reconstruction: For each
{

[zj,q,left
d+1 ], [zj,q,right

d+1 ]
}
j∈[σ],q∈[wd+1,j/`]

,

the parties run the reconstruction algorithm of packed secret sharing to
learn the ouput.
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We give a proof of security for this protocol in the full-version of our paper. Next
we calculate the complexity of this protocol.

Complexity of Our Semi-Honest Protocol. For each layer in the protocol,
we generate 5 × (width of the layer/`) packed shares, where ` = n/ε. We have
t = n

(
1
2 −

2
ε

)
. In the semi-honest setting, n − t = n( 1

2 + 2
ε ) of these can be

computed with n2 communication (this is because in the semi-honest setting, we
do not need to check if the shares were computed honestly). Therefore, overall
the total communication required to generate all the correlated random packed
shares is 5× |C|2ε2/(4 + ε) = 10|C|ε2/(4 + ε).

Additional communication required to evaluate each layer of the circuit is
5n × (width of the layer/`). Therefore, overall the total communication to gen-
erate correlated randomness and to evaluate the circuit is 10|C|ε2/(4+ε)+5|C|ε =
5|C|ε(3ε+4)

4+ε . An additional overhead to generate packed input shares for all inputs
is at most 4n|I|, where |I| is the number of inputs to the protocol. Therefore,

the total communication complexity is 5|C|ε(3ε+4)
4+ε + 4n|I|.

6.3 Maliciously Secure Protocol

In this section, we now describe a protocol that achieves security with abort
against malicious corruptions. In addition to the sub-functionalities and protocol
discussed in Section 6.1, this protocol makes use of the following additional
functionalities, we defer their description to the full version of our paper due to
space constraints:

— Functionality fpack−rand is realised by a protocol that outputs packed secret
sharings of random vectors. Because of our requirements, we assume that this
functionality operates in two modes - the independent mode will generate
packed sharings of vectors in which each element is independent and the
uniform mode will generate packed sharing of vectors in which each element
is the same random value.

— Functionality fmult is realised by a protocol that multiplies 2 pack-secret
shared vectors.

— Functionality fcheckZero takes a pack-shared vector as input and checks
whether or not it correcponds to a 0 vector.

Auxiliary Inputs: A finite field F and a layered arithmetic circuit C (of width
w and |C| gates) over F that computes the function f on inputs of length n.
Inputs: For each i ∈ [n], party Pi holds input xi ∈ F.
Protocol: (Throughout the protocol, if any party receives ⊥ as output from a
call to a sub-functionality, then it sends ⊥ to all other parties, outputs ⊥ and
halts):

1. Secret-Sharing Inputs: All the parties {P1, . . . , Pn} collectively invoke
fpack−input as follows — every party Pi for i ∈ [n], sends each of its in-
put xi to functionality fpack−input. and records its vector of packed shares{

[xj,q], [yj,q]
}
j∈[σ],q∈[w1,j/`]

of the inputs as received from fpack−input. They

set [zj,q,left
1 ] = [xj,q] and [zj,q,right

1 ] = [yj,q] for each j ∈ [σ] and q ∈ [w1,j/`].
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2. Pre-processing:

— Random Input Generation: The parties invoke fpack−rand on mode uniform
to receive packed sharings [r] of a vector r, of the form r = (r, . . . , r).

— The parties also invoke fpack−rand on mode independent to receive
packed sharings {[αj,q,left

m ], [αj,q,right
m ]}m∈[d],j∈[σ],q∈[wm,j/`] of random vec-

tors αj,q,left
m ,αj,q,right

m .

— Randomizing Inputs: For each packed input sharing [zj,q,left
1 ], [zj,q,right

1 ]

(for j ∈ [σ], q ∈ [w1,j/`]), the parties invoke fmult, on [zj,q,right
1 ] and [r] to

receive [rzj,q,left
1 ] and on [zj,q,right

1 ] and [r] to receive [rzj,q,right
1 ].

3. Dual Circuit Evaluation: The circuit evaluation proceeds layer-wise,
where for each layer m ∈ [d], where d is the depth of the circuit, the parties
evaluate each gate in that layer simultaneously as follows:

— The parties run πlayer on inputs layerm, layerm+1,{
[zj,q,left
m ], [zj,q,right

m ], [zj,q,left
m ], [zj,q,right

m ]
}
j∈[σ],q∈[wm,j/`]

and obtain their

respective shares in
{

[zj,q,left
m+1 ], [zj,q,right

m+1 ]
}
j∈[σ],q∈[wm,j/`]

.

— The parties then run πlayer on inputs layerm, layerm+1,{
[zj,q,left
m ], [zj,q,right

m ], [rzj,q,left
m ], [rzj,q,right

m ]
}
j∈[σ],q∈[wm,j/`]

and obtain

their respective shares in
{

[rzj,q,left
m+1 ], [rzj,q,right

m+1 ]
}
j∈[σ],q∈[wm,j/`]

.

4. Verification Step: Each party does the following:

(a) For each m ∈ [d], j ∈ [σ],q ∈ [wm,j/`], the parties invoke fmult on
their packed shares ([zj,q,left

m ], [αj,q,left
m ]), ([rzj,q,left

m ], [αj,q,left
m ]), ([zj,q,right

m ],
[αj,q,right
m ]) and ([rzj,q,right

m ], [αj,q,right
m ]), and locally compute. 9

[v] =
∑
m∈[d]

∑
j∈[σ],q∈[wm,j/`]

[αj,q,left
m ][rzj,q,left

m ] + [αj,q,right
m ][rzj,q,right

m ]

[u] =
∑
m∈[d]

∑
j∈[σ],q∈[wm,j/`]

[αj,q,left
m ][zj,q,left

m ] + [αj,q,right
m ][zj,q,right

m ]

(b) The parties open shares [r] to reconstruct r = (r, . . . , r).

(c) Each party then locally computes [t] = [v]− r[u]

(d) The parties invoke fcheckZero on [t]. If fcheckZero outputs reject, the output
of the parties is ⊥. Else, if it outputs accept, then the parties proceed.

5. Output Reconstruction: For each output vector, the parties run the re-
construction algorithm of packed secret sharing to learn the output. If the
reconstruction algorithm outputs ⊥, then the honest parties output ⊥ and
halt.

9 We remark that for notational convinience we describe this step as consisting of
4|C|/` multiplications (and hence these many degree reduction steps), it can be
done with just two degree reduction step, where the parties first locally multiply
and add their respective shares to compute 〈v〉 and 〈u〉 and then communicate to
obtain shares of [v] and [u] respectively.
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Due to space constraints, we defer the proof of security for this protocol
to the full version of our paper. We note that the above protocol only works
for circuits over large arithmetic fields. In the full version, we also present an
extension to a protocol that works for circuits over smaller fields.

Complexity Calculation for our Maliciously Secure Protocol over
Large Fields. For each layer in the protocol, we generate 5 ×
(width of the layer/`), where ` = n/ε. We have t = n

(
1
2 −

2
ε

)
. In the mali-

cious setting, n − t − 1 ≈ n( 1
2 + 2

ε ) of these packed shares can be computed
with 5n2 +5n(t+1) communication. Therefore, overall the total communication
required to generate all the randomness is the following:

— Correlated randomness for evaluating the circuit on actual inputs:
|C|

n
ε×n( 1

2 + 2
ε )

(
5n2 + 5n2

(
1
2 −

2
ε

))
= 5ε|C|(3ε−4)

ε+4 .

— Correlated randomness for evaluating the circuit on randomized inputs:
5ε|C|(3ε−4)

ε+4

— Shares of random α vectors: 2ε|C|(3ε−4)
ε+4

Additional communication required for dual execution of the circuit is
2 × 5 × n × (width of the layer/`). Therefore, overall the total communica-
tion to generate correlated randomness and for the dual evaluate the circuit

is 12ε|C|(3ε−4)
ε+4 +10|C|ε = 46ε2|C|−8ε|C|

ε+4 . An additional overhead to generate packed

input shares for all inputs is n2|I|, where |I| is the number of inputs to the pro-
tocol. The communication required to generate shares of randomized inputs is
n2|I|. Finally, the verfication step only requires 2n2 communication. Therefore,

the total communication complexity is 46ε2|C|−8ε|C|
ε+4 + 2n2|I|.

7 Implementation and Evaluation

7.1 Theoretical Comparison to Prior Work

We start by comparing the concrete efficiency of our protocol based on the calcu-
lations from Section 6.3, where we show that the total communication complexity

of our maliciously secure protocol is 46ε2|C|−8ε|C|
ε+4 + 2n2|I|. Recall that our pro-

tocol achieves security against t < n
(

1
2 −

2
ε

)
corruptions; we do our comparison

with the state-of-the-art using the same corruption threshold as they consider.
The state-of-the-art in this regime is the O(n|C|) protocol of [16] for t <

n/3 corruptions, that requires each party to communicate approximately 4 2
3

field elements per multiplication gate. In contrast, for n = 125 parties and t <
n/3 corruptions, our protocol requires each party to send approximately 3 1

4
field elements per gate, in expectation. Notice that while we require parties to
communicate for every gate in the circuit, [16] only requires communication per
multiplication gate. However, it is easy to see that for circuits with approximately
75% multiplication gates, our protocol is expected (in theory) to outperform [16]
for 125 parties.
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Table 2: Comparing the runtime of our protocol and that of related work. Results for our circuits

are reported for the average protocol execution time over five randomized circuits each with 1,000,000

gates. All times are rounded to seconds due to space constraints. Asterisk denote extrapolated

runtimes between LAN setting and WAN setting (see text). On the right side of the table, prior

work does not run for this number of parties, so we only include our own results.

Configuration Number of Parties

Net. Config t Depth 30 50 70 90 110 150 200 250 300

LAN (our work) n/4 1000 29 37 49 53 60 - - - -
LAN (our work) n/3 1000 29 41 55 54 63 - - - -

[7] n/2 1000 12 26 33 49 80 - - - -
[16] n/3 20 1 2 3 4 > 4 - - - -

WAN (our work) n/4 1000 261 206 187 278 271 282 263 302 336
WAN (our work) n/3 1000 299 285 215 261 305 315 279 320 378

[7] n/2 20 87 128 164* 204* 257* - - - -
[7] n/2 100 135 197 251* 355* 478* - - - -
[7] n/2 1000 376* 816* 1k* 1.5k* 2.4k* - - - -

The advantage of O(|C|) protocols is that the per-party communication de-
creases as the number of parties increases. For the same corruption threshold of
t < n/3, and n = 150 parties, our protocol would (on paper) only require each
party to communicate 2 2

3 field elements per gate. In this case, our protocol is
already expected to perform better than [16] for circuits that have more that
60% multiplication gates. As the number of parties increase, less of the circuit
must be comprised of multiplication gates in order to show improvements. Alter-
natively, because our communication complexity depends on ε (that is directly
proportional to the corruption threshold t), our protocol outperforms prior work
with fewer parties if we reduce the corruption threshold. or t < n/4 corruptions
and n = 100 parties, we require per-party communication of 2 2

5 field elements
per gate.

Finally, we remark that the above is a theoretical comparison, and assumes
the “best-case scenario”, e.g., where the circuit is such that it has exactly n−t−1
repetitions of the same kinds of blocks, and that each block has an exact multiple
of n/ε gates and n is exactly divisible by ε, etc. In practice, this may not be the
case, and some of the generated randomness will be “wasted” or some packed
secret sharings will not be completely filled.

7.2 Implementation Comparison to Prior Work

To make our comparison more concrete, we implement our protocol and evaluate
it on different network settings. While we do not get the exact same improve-
ments as derived above (likely due to waste), we clearly demonstrate that our
protocol is practical for even small numbers of parties, and becomes more effi-
cient than state-of-the-art for large numbers of parties.

We implemented our maliciously secure protocol from Section 6.3. Additional
details about our implementation can be found in the full version of the paper.
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Our implementation is in C++ and built on top of libscapi [8], which provides
communication and circuit parsing. To evaluate our implementation, we generate
random layered circuits that satisfy the highly repetitive structural requirements.
Benchmarking on random circuits is common, accepted practice for honest ma-
jority protocols [7,16]. We also modify the libscapi [8] circuit file format to allow
for more succinct representation of highly repetitive circuits.

We ran tests in two network deployments, LAN and WAN. In our LAN
deployment, all parties were co-located on a single, large server with two Intel(R)
Xeon(R) CPU E5-2695 @ 2.10 GHz. In our WAN deployment, parties were split
evenly across three different AWS regions: us-east-1, us-east-2, and us-west-2.
Each party was a separate c4.xlarge instances with 7.5 GB of RAM and a 2.9
GHz Intel Xeon E5-2666 v3 Processor.

We compare our work to the most efficient O(n|C|) work, as there is no
comparable work which has been run for a large number of parties.10 These
works only test for up to 110 parties. Therefore our emphasis is not on direct time
result comparisons, but instead on relative efficiency even with small numbers
of players.

We compare the runtime of our protocol in both our LAN deployment and
WAN deployment to [7,16] in Table 2. Because of differences between our proto-
col and intended applications, there are several important things to note in this
comparison. First, we run all our tests on circuits with depth 1,000 to ensure
there is sufficient repetition in the circuit. Furukawa et al. use only a depth 20
circuit in their LAN tests, meaning more parallelism can be leveraged. We note
that when Chida et al. increase the depth of their circuits from 20 to 1,000 in
their LAN deployment, the runtime for large numbers of parties increases 5-10x
[7]. If we assume [16] will act similarly, we see that their runtime is approxi-
mately half of ours, when run with small number of parties. This is consistent
with their finding that their protocol is about twice as fast as [7]. We emphasise
that for larger numbers of parties our protocol is expected to perform better.

Because Chida et al. only run their protocol for up to 30 players and up
to circuit depth 100 in their WAN deployment, there is missing data for our
comparison. We note that their WAN runtimes are consistently just over 30x
higher than their LAN deployment. Using this observation, we extrapolate esti-
mated runtimes for their protocol under different configurations, denoted with
an asterisk. We emphasise that this estimation is rough, and all these measure-
ments should be interpreted with a degree of skepticism; we include them only
to attempt a more consistent comparison to illustrate the general trends of our
preliminary implementation.

Our results show that our protocol, even using an un-optimized implementa-
tion, is comparable to these works for small numbers of parties (see left side of
Table 2). For larger numbers of parties (see right side Table 2), where we have
no comparable results, there is an upward trend in execution time. This could
be a result of networking overhead or varying levels of network congestion when

10 The only protocol to be run on large numbers of parties rests on incomparable
assumptions like CRS [38].
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each of the experiments was performed. For example, when executing with 250
parties and a corruption threshold of n/4 the difference between the fastest and
slowest execution time was over 60,000 ms, whereas in other deployments the
difference is as low as 1,000 ms. In general, an increase is also expected as asymp-
totic complexity has an additive quadratic dependency on n with the input size
of the circuit. Overall our experiments demonstrate that our protocol does not
introduce an impractical overhead in its effort to achieve O(|C|) MPC. As the
number of parties continues to grow (e.g. hundreds or thousands), the benefits of
our protocol will become even more apparent.
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