
Alibi: A Flaw in Cuckoo-Hashing based
Hierarchical ORAM Schemes and a Solution

Brett Hemenway Falk1, Daniel Noble2, and Rafail Ostrovsky3

1 University of Pennsylvania, fbrett@cis.upenn.edu
2 University of Pennsylvania, dgnoble@cis.upenn.edu

3 UCLA, rafail@cs.ucla.edu

Abstract.
There once was a table of hashes
That held extra items in stashes
It all seemed like bliss
But things went amiss
When the stashes were stored in the caches

The first Oblivious RAM protocols introduced the “hierarchical solu-
tion,” (STOC ’90) where the server stores a series of hash tables of geo-
metrically increasing capacities. Each ORAM query would read a small
number of locations from each level of the hierarchy, and each level of
the hierarchy would be reshuffled and rebuilt at geometrically increas-
ing intervals to ensure that no single query was ever repeated twice at
the same level. This yielded an ORAM protocol with polylogarithmic
overhead.
Future works extended and improved the hierarchical solution, replacing
traditional hashing with cuckoo hashing (ICALP ’11) and cuckoo hashing
with a combined stash (Goodrich et al. SODA ’12). In this work, we
identify a subtle flaw in the protocol of Goodrich et al. (SODA ’12) that
uses cuckoo hashing with a stash in the hierarchical ORAM solution.
We give a concrete distinguishing attack against this type of hierarchical
ORAM that uses cuckoo hashing with a combined stash. This security
flaw has propagated to at least 5 subsequent hierarchical ORAM proto-
cols, including the recent optimal ORAM scheme, OptORAMa (Euro-
crypt ’20).
In addition to our attack, we identify a simple fix that does not increase
the asymptotic complexity.
We note, however, that our attack only affects more recent hierarchical
ORAMs, but does not affect the early protocols that predate the use of
cuckoo hashing, or other types of ORAM solutions (e.g. Path ORAM or
Circuit ORAM).

1 Introduction

In this work, we describe an attack on a wide variety of hierarchical Oblivious
RAM (ORAM) protocols in the literature. Oblivious RAM is a cryptographic
primitive designed to allow a client to securely execute RAM programs using an

untrusted memory. ORAM provides a method for simulating a virtual memory
array, such that for any two equal-length sequences of reads and writes into the
virtual array, the sequences of accesses to the underlying physical memory are
indistinguishable.

Typically, encryption protects the data content, however, even when the un-
derlying data are encrypted simply observing the data access pattern can leak
significant information.

ORAM is applicable in several different types of scenarios, including:

1. Outsourced storage: If a client makes use of an outsourced (cloud) storage
provider, even if the content is encrypted, the storage provider can observe
the client’s access pattern. This may leak sensitive information. ORAM al-
lows all sequences of accesses (of equal length) to be indistinguishable to the
server. (Note that if the amount of data that the user accesses is sensitive,
then ORAM cannot hide this.)

2. Secure hardware: If a small, trusted hardware component makes use of
a (cheaper) untrusted memory, observing the memory access pattern can
compromise the security of the processes running within the trusted com-
ponent. This was the original proposed application [Ost90] and is a con-
cern where memory side-channel attacks exist. A secure enclave, such as
Intel SGX, is a recent real-world computing environment in which com-
putation is performed on secure hardware, but the application needs the
memory resources of an untrusted operating system. A series of works have
shown that revealing memory access patterns is indeed a problem for SGX
[BMD+17, GESM17, MIE17, JHOvD17], and this leakage can be mitigated
using ORAM and other oblivious data structures to allow enclaves to use
untrusted memory without leaking access patterns [SGF17].

3. Secure multiparty computation (MPC): ORAM is also useful in se-
cure multiparty computation (MPC), where a group of parties engage in a
distributed protocol to compute a joint function of their private data. Most
MPC protocols use cryptographic secret sharing to protect the content of
the data, and execute computations in the circuit model to ensure that the
computation’s control flow remains independent of the private data. Efficient
ORAM protocols have the potential for allowing efficient, secure multiparty
computation in the RAM model [OS97, LHS+14, Ds17, WHC+14].

The first ORAM construction [Ost90], introduced the hierarchical solution,
and many subsequent works have expanded and built on this paradigm [Ost92,
GO96, GMOT12, KLO12, LO13, PPRY18, AKL+20]. We review the hierarchical
solution in Section 2.5.

The original Hierarchical ORAM builds a hierarchy of O(log(n)) levels, each
containing a hash table with buckets of size O(log(n)), leading to lookups (ig-
noring the costs of rebuilds4) having a cost of O(log2(n)).

4 Rebuilds require constructing oblivious hash tables, which is relatively costly, so the
amortized cost of lookups is usually dominated by the rebuild cost. Much of the
progress in the literature has been towards reducing this cost, but to simplify the
narrative, we focus here only on the costs of lookups without rebuilds.

2

To reduce the cost of each lookup, the traditional hash tables at each level
can be replaced with cuckoo hashing, which reduces the cost of accessing each
hash table to O(1) per virtual access. The initial solution [PR10] allowed cuckoo
hashing to fail with some non-negligible probability, and in the case that it
did, the hash table would be reconstructed. The failure (and rebuilding) of a
cuckoo hash led to security problems, however, since the ORAM protocol would
rebuild the hash table until there were no collisions, an adversary who observed
a collision in the physical access pattern, would learn that the client had made
queries for elements not stored in that level [GM11].

This problem was resolved by reducing the cuckoo hash failure probability by
including a stash [PR04]. If each Cuckoo Hash Table in the hierarchy includes
a O(log(n))-sized stash, the probability of a build failure becomes negligible,
and no rehashing is needed [GM11].5 At query time, every element of the stash
at each level needed to be accessed, so although this eliminated the security
problem created by cuckoo hashing failures, it did not improve the asymptotic
overhead, which remained O

(
log2(n)

)
.

Scanning separate cuckoo stashes at every level of the hierarchy significantly
adds to the query complexity, and Goodrich et al. [GMOT12] then observed that
even though the size of the stash for each level needs to be O(log(n)) in order
to ensure a negligible probability of failure, the same failure probability could
be maintained by combining the stashes at all levels into a single O (log(n))-
sized stash. Similarly, Kushilevitz et al. [KLO12] proposed that elements that
would otherwise be placed in a cuckoo stash could instead be re-inserted directly
into the ORAM data structure. Both these techniques improved the asymptotic
complexity of accesses in the hierarchical solution to O(log(n)) physical accesses
per virtual access.

In this work, we show that the techniques of combining cuckoo stashes across
different levels of the hierarchy (introduced by Goodrich et al. and Kushilevitz et
al.) creates a subtle security flaw which gives an adversary non-negligible advan-
tage in distinguishing access patterns. The problem is similar to the problem in
[PR10], where rehashing in the event of a build failure leaked information about
the elements being stored at that level. Removing the elements from the stash
on each level, like performing a rehashing, causes the elements that would have
been in the stash to no longer be in that level. Therefore, if these elements are
searched for they will be found before this level is reached, so instead of access-
ing the locations for the stashed elements at that level, random locations will
be accessed instead. This means that, if all elements that were placed in a given
level are searched for (including the items that were stashed), the access pattern
of that level is less likely to contain any collisions in the physical access pattern.
In contrast, if no elements from that level are accessed, all accessed locations

5 Even though a logarithmic-sized stash provides a negligible failure probability, for
the smaller levels, a failure probability that is negligible in the size of the level may
be non-negligible in the overall size of the ORAM. To avoid this problem, [GM11]
suggested using traditional hash tables (rather than cuckoo hashing) for the smaller
levels of the hierarchy, i.e., until the level size reached O

(
log7(n)

)
.

3

will be random. The expected number of collisions will therefore be higher in
the second case, and we will show that this difference is non-negligible.

This flaw affects a large number of papers [GMOT12, KLO12, LO13, PPRY18,
KM19, AKL+20] which combine stashes in order to eliminate super-constant
sized stashes at each level. This does not affect earlier hierarchical solutions that
did not combine the stash e.g. [Ost90, Ost92, GO96] or non-hierarchical ORAMs
such as PathORAM [SvDS+13] or Circuit ORAM [WCS15]. In addition to find-
ing this flaw, we present a simple solution. Our solution applies to all schemes
which suffer from the flaw without affecting their asymptotic complexity.

In Section 2.3, we review cuckoo hashing, and in Section 2.5 we review the ba-
sic hierarchical ORAM construction. In Section 3, we present our concrete attack
that allows an adversary to distinguish two different access patterns with non-
negligible probability in hierarchical ORAM solutions that use Cuckoo Hashing
with a combined stash. This attack has a nice intuitive interpretation. How-
ever, this attack does not apply directly to PanORAMa and OptORAMa, so in
Section 4 we present a generic version of our attack which does apply to these
protocols. The generic attack is also shorter and simpler. In Section 5 we present
our solution and prove that it is correct. Finally, we present the protocols that
have been affected by this flaw in Section 6.

2 Preliminaries

2.1 Notation and Model

For any positive integer x, [x]
def
= {1, . . . , x}. For a set Z, z

$← Z denotes that z
is chosen uniformly at random from Z and 2Z denotes the powerset of Z.

We denote a sequence using parenthesis as follows: v = (v1, . . . , vt). Sequences
can alternatively be thought of as vectors or tuples, and we use the standard
subscript vi to denote the element at location i of sequence v. Set notation (e.g.
∈,∪) is often applied to sequences, in which case the sequence is implicitly first
mapped to the set of elements it contains.

We think of an ORAM as an oblivious implementation of a RAM. Therefore,
the index space, which we denote V, is simply [N], where N is the size of the
ORAM.6 We assume that the payloads are chosen from a spaceW. For all w ∈ W
we assume that |w|, the length of the bit-representation of w, is the same, so
that items cannot be distinguished by volumetric attacks.

As is standard practice, we model the hash functions as truly random func-
tions (see [Mit09] for a discussion of this assumption). Assuming that the hash
functions are truly random implies that the adversary (who only learns outputs
of the hash function) cannot gain any additional information about the hash

6 With some additional work, an ORAM scheme can be made to be an oblivious
implementation of a dictionary, i.e., that have keys chosen from a space different
than [N], but we avoid this version for simplicity.

4

function. Our protocols are secure against computationally unbounded adver-
saries in this model.7 We consider protocols secure (information-theoretically
secure in the random hash function model) if the distributions of adversary
views do not change much based on sensitive data. Formally, let D(x), D(x′)
be two distributions of views of the adversary on differing sensitive data x and
x′. Let ∆(D(x), D(x′)) denote the statistical distance between two distributions.
Protocols are secure if ∆(D(x), D(x′)) is negligible (in N) for all pairs x, x′.

2.2 Oblivious Hash Tables

The hierarchical ORAM scheme builds on Oblivious Hash Tables which we for-
malize and abstract in Definition 1. We view a hash table as a method for storing
(v, w) pairs, where v ∈ V = [N] is a (virtual) index, and w ∈ W is a payload.
Let X = V ×W.

Definition 1 (Oblivious Hash Tables). An Oblivious Hash Table

T = (Gen,Build, Lookup,Delete,Extract)

is a tuple of polynomial-time algorithms

– Setup: k← Gen(N,m) generates a key for a hash table of capacity m, storing
(virtual) indices from [N]. In most cases, the key is simply the description
of the hash functions.

– Building: The function T ← Build(k, X) takes a set, X ⊂ X , |X| ≤ m and
builds a table, T , containing the elements in X. For any X, the probability
that Build(k, X) fails is negligible in N , i.e., is bounded by N−ω(1).

– Lookup: The deterministic function Q← Lookup(k, v) takes a (virtual) in-
dex v ∈ V, and returns a set of query locations Q ⊂ [|T |].

– Delete: The deterministic function Delete(k, v, T) removes items (v, w) if
they exist in any location T [i] where i ∈ Q ← Lookup(k, v). Delete accesses
exactly the indexes of T in Q and does not access any other memory.

– Extract: The function X̄ ← Extract(k, T), takes a key k and a table T and
returns a set of elements X̄.

These algorithms satisfy the following correctness properties. Suppose k← Gen(N,m)
and X ⊂ X with |X| ≤ m.

– Building: If T ← Build(k, X), then T ∈ X |T |. For every (v, w) ∈ X, we say
that the payload w was stored in virtual location v and that (v, w) is stored
in T .

– Lookup: If T ← Build(k, X), then for any (v, w) ∈ X, if v has not been
deleted from T , the lookup Q← Lookup(k, v) produces a set of indices, Q ⊂
[|T |] such that (v, w) ∈ T [i] for some i ∈ Q with probability at least 1 −
N−ω(1).

7 In practice, implementations must use hash functions that are not truly random,
but seem sufficiently random to a computationally bounded adversary.

5

– Extraction: If k, T are constructed as above, and D is the set of items
deleted from table T , and X̄ ← Extract(k, T) then x = (v, w) ∈ X̄ iff (v, w) ∈
X, v /∈ D,

Additionally, these algorithms will need to allow the above functions to be ex-
ecuted obliviously. We define two notions of obliviousness: access-obliviousness
and full obliviousness. Full obliviousness includes access-obliviousness. In our
attack, we show that “combined-stash” cuckoo hashing schemes are not access-
oblivious, and hence cannot be fully oblivious. Since the techniques used to obliv-
iously perform builds and extractions are complex and varied, focusing on access-
obliviousness will simplify exposition.

In brief, a protocol is access-oblivious if equal-length non-repeating sequences
of indexes have indistinguishable outputs from Lookup. This is the best that can be
achieved. Since Lookup is deterministic, repeated indexes in the input to Lookup
will result in repeated outputs, so if one sequence contains repeats and another
doesn’t the outputs of Lookup will be easily distinguishable. ORAM can be viewed
as a way of modifying an Oblivious Hash Table to allow repeated queries of the
same index.

Definition 2. A sequence v = (v1, . . . , vt) is said to be non-repeating if for all
1 ≤ i < j ≤ t, vi 6= vj.

– Obliviousness:
• Access-obliviousness: For any two sets X,X ′ ⊂ X with |X|, |X ′| ≤
m and any non-repeating sequences of virtual indices v, v′ ∈ Vt the
sequence of outputs of Lookup(k, ·) on v and v′ have negligible statistical
distance (in N). In other words

∆ ((Q1, . . . , Qt) , (Q
′
1, . . . , Q

′
t)) < Nω(1)

where the sequence of queries (Q1, . . . , Qt) and (Q′1, . . . , Q
′
t) are gener-

ated according to the following experiments:(Q1, . . . , Qt)

∣∣∣∣∣∣∣∣∣
T ← Build(k, X)
Q1 ← Lookup(k, v1)

...
Qt ← Lookup(k, vt)

and (Q′1, . . . , Q

′
t)

∣∣∣∣∣∣∣∣∣
T ′ ← Build(k′, X ′)
Q′1 ← Lookup(k′, v′1)

...
Q′t ← Lookup(k′, v′t)

 .

• Full obliviousness: The complete sequence of accesses from building,
lookups, deletions and extractions are oblivious, provided that the lookup
and deletion sequences are the same, and the sequences are non-repeating.

6

Note that deletions access the same locations as the results of lookups,
so the access pattern of deletions do not provide additional informa-
tion and can be ignored. Concretely, for any two sets X,X ′ ⊂ X with
|X|, |X ′| ≤ m and any non-repeating sequences v, v′ ∈ Vt and

A
def
=

{
Acc

(
T ← Build(k, X)
X̄ ← Extract(k, T)

) ∣∣∣∣ k← Gen(N,m)

}
and

A′
def
=

{
Acc

(
T ′ ← Build(k′, X ′)
X̄ ′ ← Extract(k′, T ′)

) ∣∣∣∣ k′ ← Gen(N,m)

}
where Acc (f(·)) are the set of physical memory accesses when executing
function f and Qi, Q

′
i are defined as above using the same v, v′, X,X ′, k, k′,

then
∆ ((A,Q1, . . . , Qt) , (A

′, Q′1, . . . , Q
′
t)) < Nω(1)

Remark 1 (Full Obliviousness). In a single-party ORAM setting, the hash-table
must provide full obliviousness. It is possible in a multi-party setting to have
the construction, accessing and extraction of the hash table be performed by
different parties (e.g., [LO13]). In this case, the set of functions executed by
each individual party must be oblivious, but the combined set of all functions
need not be.

Remark 2 (Insertions). Although most hash tables support insertion, the hier-
archical ORAM construction does not require this feature – instead, elements are
inserted into the ORAM only during rebuilds. Thus we do not include insertion
as a necessary functionality in our formal definition of a hash table.

Remark 3 (Deletions and Extraction). Some ORAM schemes do not delete items
as they are accessed, but rather extract data from all levels and then perform
deduplication. However, the definition presented here simplifies proofs.

2.3 Cuckoo hashing

Cuckoo hashing was introduced in [PR04] as a method of multiple-choice hashing
with expected constant-time lookups. Since its introduction, many variants of
cuckoo hashing have been proposed and analyzed (see [Mit09] for a review). In
this section, we review a basic common form of cuckoo hashing, but we emphasize
that our attack works for almost all types of hashing with a stash.

We view a Cuckoo Hash Table as an array, T , with cn + s locations, each
having capacity one. Each element, x, can be placed in one of d locations given
by hi(x) for i = 1, . . . , d where hi(x) ∈ [cn]. If an element cannot be placed in
one of its d locations, it is placed in a logarithmic-sized “stash,” i.e., a location
in cn+ 1, . . . , cn+ s.

With appropriate choices of constants c and d, and a stash of size s = log(n),
cuckoo hashing will succeed except with probability negligible in n (Theorem 2
of [ADW14]).

7

– Key generation: Generate d ≥ 2 hash functions hi : V → [cn] for i ∈ [d].
– Building: The build algorithm must place each element (v, w) ∈ X in either
T [hi(v)] for some 1 ≤ i ≤ d or in T [cn+ j] for some 1 ≤ j ≤ s. If there is no
allocation of elements that satisfies this condition, the build fails. Building can
be accomplished by repeated insertions, or an “offline” algorithm. We do not
specify how the build is accomplished obliviously as this varies significantly
between protocols.

– Lookups: Return Q = (h1(v), . . . , hd(v), cn + 1, . . . , cn + s). To read an ele-
ment from a virtual index, v, read T [hi(v)] for i = 1, . . . , d, and check if any
of the elements retrieved are of the form (v, x) for some x.

– Deletions: Find Q ← Lookup(k, v) and for any i ∈ Q if T [i] = (v, x) set
T [i] = (⊥,⊥).

– Extractions: Again, the method for performing extractions obliviously varies
significantly between protocols, so we do not outline it here.

Fig. 1. Cuckoo Hash Table (1-table version) [PR04]

Lemma 1. Cuckoo Hash Tables, as presented in Figure 1 are access oblivious.

Proof. Since each hash function is truly random, the first time an item is queried
to a hash function, the result is chosen uniformly at random and independent
of all previous choices. Therefore, within the scope of the access obliviousness
experiment, the values Qi and Q′i will all be chosen uniformly at random and
independently, since each access sequence is distinct, and the keys are different
in the two experiments. Therefore, (Q1, . . . , Qt) and (Q′1, . . . Q

′
t) will actually be

chosen from the same random distribution, and the statistical distance between
them is 0.

Remark 4 (Set Membership in Table). The access pattern of a Cuckoo Hash Ta-
ble does not reveal whether the queried elements were present in the table or not.
This follows because non-stash locations accessed are always chosen uniformly
at random from [cm]d (and the stash locations are always accesssed).

Unlike some other constructions, Cuckoo Hash Tables hide set membership
without the insertion of dummy elements, i.e., pre-inserted elements that should
be searched for in the case the item is not in the table.

If Cuckoo hashing is combined with an appropriate Build and Extract con-
struction, it can be fully oblivious. Note that this not only requires that the Build
and Extract functions are oblivious in themselves, but that when Build, Lookup
and Extract are all performed by a single entity, that the combined sequence of
accesses is still oblivious.

Remark 5 (1-table vs d-table cuckoo hashing). We describe a single-table cuckoo
hashing scheme, where all d hash functions hash into the same table. Alter-
natively, some cuckoo hashing constructions use d tables, and hash function

8

i hashes into table i. Setting d to 2 is a common choice, resulting in 2-table
cuckoo hashing. Using 1- vs d-table cuckoo hashing does not change the asymp-
totic performance of the hashing scheme, although it does change some details
in the analysis.

A single-table Cuckoo Hash Table corresponds naturally to bipartite multi-
graph with n left-hand nodes (corresponding to [n]) and cn right-hand nodes cor-
responding to the hash buckets (i.e., the first cn locations in the array T). Then

a left hand node, v, is connected to d right hand neighbors given by {hi(v)}di=1.
It is straightforward to see that the build procedure can succeed if there is a bi-
partite matching that includes |X| − s left-hand vertices. The matched elements
can be placed in their right-hand neighbors (given by the matching) and the
remaining s elements can be placed in the stash.

This also shows that the build procedure can be implemented by building
this bipartite multigraph and calculating a maximum matching. We assume that
whatever build procedure is used does find such a maximum matching. In prac-
tice, analyses of build processes generally assume that a maximum matching is
found, even if they use an algorithm which is not known to provide a maximum
matching. For instance, in [KMW09] builds use a bounded-time insertion which
is not guaranteed to find an optimal allocation, but is heuristically found to be
nearly optimal.

To be an Oblivious Hash Table, the functions Build and Lookup need to
fail with probability N−ω(1). If a Cuckoo Hash Table is successfully built, the
locations returned by Lookup will always include the location of the queried item
if it is stored in the table, so the probability of failure is 0. Build, however, can fail.
If the stash is chosen by finding a maximum matching, the probability of failure is
O(n−s) for any constant s [KMW09]. A similar result holds for s = O(log n), for
which the probability of failure is O(n−

s
2) [ADW14]. Therefore, if s = Θ(log(n))

the failure probability is O(n−Θ(logn)), which is negligible in n. Note that for
ORAMs, the failure probability needs to be negligible not in the capacity of the
Cuckoo Hash Table, n, but in the capacity of the ORAM, N . If N is polynomial
in n this will hold. Goodrich and Mitzenmacher show that if the stash size is
Θ(log(N)) and n = Ω(log7(N)) the failure probability is still negligible in N and
propose using another type of oblivious hash table for n = o(log7(N)) [GM11].
We similalry assume that for n = o(log7(N)) some alternative Oblivious Hash
Table is used so that the failure probability of each hash table is indeed negligible
in N , rather than n.

We have shown here that the Cuckoo Hash Table presented here, with ap-
propriate Build and Extract functions, is an example of an oblivious hash table
(with failure negligible in n). We next show how oblivious hash tables can be
used to construct a hierarchical ORAM. This is secure, but we will later show
that if the stashes are combined this breaks obliviousness.

9

2.4 ORAM

An Oblivious RAM (ORAM) provides access to a virtual memory such that all
equal-length sequences of virtual memory accesses have indistinguishable phys-
ical access sequences. We define an ORAM formally below.

Definition 3 (ORAM). An ORAM O = (Init,Query) is a tuple of polynomial-
time algoirthms:

– Init: O ← Init(A,N), where N is an integer, and A is an array of length N of
elements from some space W. This initializes the value of index i ∈ V = [N]
to A[i] ∈ W.

– Query: w′ ← Query(O, v, w) where O is an ORAM object, v ∈ V is an index
and w ∈ W ∪ {⊥}. If w = ⊥ this is a read query and it returns the value at
index v. If w 6= ⊥ this is a write query and it returns ⊥ and sets the value
at index v to w.

The ORAM must satisfy the following correctness guarantee.

– Consistency: When a read is performed on index v, the result equals the
value that was last written to index v, or if a write has never been performed
on index v, it returns the initial value of index v, A[v].

The ORAM must additionally satisfy the following security property.

– Obliviousness:
Regardless of the data, or the sequence of queries, the access pattern to the
physical memory is indistinguishable. Formally, for any initial arrays A, A′

of length N and any sequence of queries (v1, w1), . . . , (vt, wt), (v′1, w
′
1), . . . , (v′t, w

′
t),

where vi, v
′
i ∈ V, wi, w

′
i ∈ W ∪ {⊥}, given

C
def
=

Acc

O ← Init(A,N)
Query(O, v1, w1)

. . .
Query(O, vt, wt)

and

C ′
def
=

Acc

O′ ← Init(A′, N)
Query(O′, v′1, w

′
1)

. . .
Query(O′, v′t, w

′
t)

then
∆ (C,C ′) < Nω(1)

Note that the basic ORAM security definition only gives the adversary the
ability to see the access pattern, but not the underlying data itself. To hide the
data, each record can be encrypted under the client’s key using a symmetric-
key cryptosystem, or, in multi-server ORAMs, each record can be secret-shared
among the servers (e.g. [KM19]).

10

2.5 Hierarchical ORAM

The hierarchical ORAM construction was originally put forward in [Ost90, Ost92,
GO96] and has since been used as a basis for many future ORAM protocols
including [GMOT12, LO13, PPRY18, AKL+20]. In this section, we lay out a
generic version of hierarchical ORAM and show it to be secure. In Section 3, we
show how modifications to this basic scheme caused a subtle security problem
that caused future schemes (using this modification) to be insecure.

A hierarchical ORAM consists of `+1 levels. Of these, there are ` levels each
consisting of an Oblivious Hash Table of increasing capacities. Additionally, there
is one level L0, also called the cache, which is an oblivious object similar to an
Oblivious Hash Table but that additionally supports insertions and repeated
queries in the access sequence. The cache only ever contains at most c elements
(where typically c = Θ(log(N))). We choose ` such that c2` ≥ N . Since c is
small, the cache can be implemented easily by performing a linear scan of its
contents on each access.

We present the Hierarchical ORAM formally in Figure 2. We will now show
why such ORAMs are secure, provided that the hash tables are fully oblivious.
First, we need the following lemma.

Lemma 2. The ORAM of Figure 2 satisfies an invariant that all possible in-
dexes v ∈ V are stored in exactly one level in the ORAM. This invariant holds
after initialization, after each cache insertion and after each rebuild, though need
not hold between these points.

Proof. By induction. The ORAM is initialized to store all indexes v ∈ V in level
L`. Each query is to some v ∈ V. When a lookup to some index v is made, by
induction this index will exist at some level. Since each level is searched, this
index will be found and deleted from this level. It will then be placed in the
cache. Therefore, once the item has been inserted into the cache, each index
v ∈ V will be stored in exactly one location. If a rebuild occurs, certain levels
will be emptied and merged into a larger level. However, this merge preserves
the set of indexes in the ORAM, since all indexes from levels i = 0, . . . , i∗ are
extracted and placed in level i∗.

Lemma 3. An index is queried at most once at each (non-cache) level between
rebuilds of that level, or equivalently, an index is queried at most once to any
Oblivious Hash Table.

Proof. If an index, v ∈ V is queried at a level Li, it will be found at some
level, (since by Lemma 2 it must exist at some level). It will then be placed
in the cache. Until Li is rebuilt, it will not exist in Li, since the tables only
support deletions, not insertions. Since the sizes of the tables are exponentially
increasing, if Lj is rebuilt for some j > i, Li will also be rebuilt (possibly to an
empty table) so conversely, if Li has not been rebuilt, Lj will also have not been
rebuild for all j > i. Therefore, the index will not be stored at Lj for any j > i.
Therefore, since the index must be stored somewhere, it is stored at some level

11

– Input: A virtual memory size N . An array of initial values A.
– Init: Set t = 0

Set X = (v,A[v]) for all 1 ≤ v ≤ N .
For i = 0, . . . , `− 1, set ki ← Gen(N, c2i), Ti ← Build(ki, ∅).
Set k` ← Gen(N, c2`), T` ← Build(k`, X).

Hierarchical ORAM Initialization

– Input: A virtual memory address, v. A payload, x. (For read queries x = ⊥.)
– State: A counter, t. Hash tables {Ti}i∈[`]. Hash keys {ki}i∈[`]. Local memory,
m.

– Scan the cache: Initialize found = false. Read every element in the cache
L0. If a pair (v, w) is found, set m = w, found = true, and delete the old item
from the cache.

– Search each level: For i in 1, . . . , `
• If found = false set Qi ← Lookup(ki, v), otherwise set Qi ←

Lookup(ki, dummy◦t) where ◦ denotes concatenation, ensuring dummy◦t /∈
V.

• Access Ti[j] for all j ∈ Qi. If there is a j ∈ Qi, and a w such that
Ti[j] = (v, w), then set m = w and found = true.

• Delete(ki, v, Ti)
– Insert into the cache: If x 6= ⊥ (i.e., it was a write query), insert (v, x) into

the cache, otherwise insert (v,m) into the cache.
– Rebuilding: Increment t. Let τ = 2c be the rebuild period. If t is a multiple

of τ initiate a rebuild (as described below).
– Output: Output m. If it was a read query, m will contain the read value.

Hierarchical ORAM queries.

– State: A counter, t. Hash tables {Ti}i∈[`]. Hash keys {ki}i∈[`].

– Identify level: Let ī be the largest value such that t
τ

= 0 mod 2ī. Let i∗ =
min(̄i+ 1, `). We will merge levels 0, . . . , i∗ into level i∗.

– Merge levels: Initialize X = ∅. For i = 0, . . . , i∗, and obliviously evaluate
X = X ∪ Extract(ki, Ti). Set ki∗ ← Gen(N, c2i

∗
), and Ti∗ = Build(ki∗ , X).

– Clear lower levels: For i = 0, . . . , i∗ − 1, set ki ← Gen(N, c2i), Ti ←
Build(ki, ∅).

Hierarchical ORAM rebuilds.

Fig. 2. Hierarchical ORAM

12

Lk, where k < i. Since the Hierarchical ORAM searches levels sequentially, it
will find the item before Li is reached, will set found = true and will therefore
search for dummy ◦ t. Therefore each v ∈ V will only be searched for once in Li
between rebuilds of Li. The values of t increment with each ORAM query, so
each query of form dummy ◦ t will also be queried at most once at any level.

We now show that the oblivious property of the ORAM follows easily from
this lemma and the properties of Oblivious Hash Tables:

Theorem 1. The Hierarchical ORAM protocol in Figure 2, when using an Obliv-
ious Hash Table at each level, is oblivious as per Definition 3.

Proof. The security of the ORAM protocol rests on two key facts: (1) No repeated
accesses: An index is queried once in each level between rebuilds, or equivalently,
the sequence of queries to each hash table is non-repeating. This was demon-
strated in Lemma 3. (2) Oblivious accesses: Our definition of an Oblivious Hash
Table (Definition 1) produces indistinguishable physical access patterns provided
that the two sequences of virtual indices are non-repeating. This is satisfied as
per fact (1), so the combined access patterns of builds, lookups, deletions and
extractions at each level have distributions separated by negligible statistical
distances. Accesses to the cache are always the same, so these do not increase
the statistical distance between access distributions. Furthermore the access pat-
terns of builds, lookups, deletions and extractions of each Oblivious Hash Table
are independent of each other Oblivious Hash Table, since different keys are used
each time. Therefore the combined access pattern of the entire data structure
also has distributions separated by negligible statistical distances so is secure by
Definition 3.

Remark 6 (Efficiency). While rebuilding the hash tables is expensive,8 these
rebuilds occur at a frequency proportional to the capacity of the table, thus
the amortized cost can remain low. The exact communication cost depends on
how the hash tables are implemented, and how the oblivious functions Build and
Extract are implemented. We do not focus on these details here, as they do not
bear directly on our attack.

3 The Attack

In this section, we describe a novel attack on hierarchical ORAM protocols
that use cuckoo hashing with a combined stash. This attack applies directly to
[GMOT12, KLO12, LO13] and Instantiation 2 of [KM19]. The recent works of
PanORAMa [PPRY18] and OptORAMa [AKL+20] use a modified hierarchical
solution with multiple cuckoo tables at each level. Since the attack presented here
assumes that the adversary can know which indexes are stored in the Cuckoo

8 In the client-server setting expense is measured by communication between the client
and the server. In the MPC setting, expense is measured as the communication
between the parties in the computation.

13

Hash Table, it does not apply directly to PanORAMa and OptORAMa. In Sec-
tion 4 we present a more general attack that also applies to PanORAMa and
OptORAMa. The general attack is also simpler, but this attack has the advan-
tage of having an intuitive interpretation.

3.1 Simplified attack

First, we describe this attack in a simplified setting, which we later show is
equivalent to the ORAM setting.

Imagine the following construction of a hash table. A Cuckoo Hash Table,
as defined in Figure 1, is modified in the following way. When querying some
item v ∈ V, the stash will be searched first. If the item is found in the stash,
then some new unique index v′ /∈ V will be searched for in the remainder of the
table, i.e., hi(v

′) will be accessed for 1 ≤ i ≤ d. This construction is presented
in Figure 3. We will show that this object is no longer an Oblivious Hash Table.

Build, Delete and Extract are the same as in Cuckoo Hash Tables (Figure 1)

– Lookups: Lookup takes the key k, an index v and the table object T , and
returns a set of indexes, Q. If v is not in the stash, (i.e., T [j] 6= (v, w) for
any cm+ 1 ≤ j ≤ cm+ s) return Q = (cm+ 1, . . . , cm+ s, h1(v), . . . , hd(v)).
However, if v is in the stash pick a new v′ /∈ V, using an internal counter
to ensure that the same v′ is never selected twice, and return Q = (cm +
1, . . . , cm+ s, h1(v′), . . . , hd(v

′)).

Fig. 3. Stash-Resampling Cuckoo Hash Table

Observe that previously, Lookup only took k and v as parameters, whereas in
this definition, its behavior depends on an additional parameter T . Specifically,
Lookup now depends on which items were placed in T ’s stash. The fact that the
access pattern changes depending on how the table is constructed breaks the
abstraction of an Oblivious Hash Table. We will next show that this break leads
to a concrete vulnerability.

Remark 7. We describe our attack in terms of cuckoo hashing, but essentially
the same argument goes through with other hashing schemes that use a stash.

Let T be a Stash-Resampling Cuckoo Hash Table containing indices v =
(v1, . . . , vt) and using hash functions h = (h1, . . . , hd). Imagine computing Lookup(k, vi, T)
for 1 ≤ i ≤ t. Let v′ be the sequence of inputs to the hash functions. If vi was
not stashed, v′i = vi, but if vi was stashed, v′i will be some other unique value.

Now imagine that a Cuckoo Hash Table is constructed using hash functions h,
but with indices v′. All items that were already stored in the table can continue

14

to be stored in the table. However, it is likely that if vi was stashed, v′i will not
need to be stashed, since it is hashed to new locations, one of which is probably
empty. Therefore the stash size of this Cuckoo Hash Table is smaller than usual.
Now, an adversary does not know h or v′, but it does learn hj(v

′
i) since these

are returned by Lookups. Therefore, it can learn what the stash size would have
been in a table that used hash functions h and indexes v′.

In contrast, let v′′ be a sequence of t accesses, none of which are in T . Since
none are in the stash, v′′ are also the inputs to the hash functions and the
adversary can learn from the access pattern the size the stash would have been
if the table stored v′′. The values of hj(v

′′
i) will be chosen uniformly at random,

so this stash would be chosen from the usual stash size distribution. Hence,
if the adversary calculates what the stash size would have been if a table was
constructed from the hash function inputs, the distribution of stash sizes will be
smaller if v is queried than if v′′ is queried.

We now prove formally that a Stash-Resampling Cuckoo Hash Table is not
access-oblivious. We formalize the intuition above by representing the accesses
as a bipartite graph, with m left-vertices corresponding to the m inputs to the
hash functions, with cm right-vertices corresponding to the non-stash locations
in the table and edges from a left-vertex to a right-vertex if one of the hash
functions maps the left-vertex to the right-vertex. A maximum matching in the
graph therefore corresponds to a possible assignment of elements to locations in
the hypothetical hash table constructed by the adversary. The number of un-
matched elements then will correspond to the stash size. Below, we formalize the
correspondance from access sequences to graphs and show that the distribution
of the number of unmatched elements in the graphs indeed differs non-negligibly.

Definition 4 (Graph Representation of an Access-Pattern). The Graph
Representation of an Access Pattern, B(m, c,Q) is a function that takes as inputs
integers m and c and a sequence of access sets, Q = Q1, . . . , Qm, and returns a
bipartite multigraph with left vertices a1, . . . , am, right vertices b1, . . . , bcm and
edges (ai, bj) for j ∈ Qi ∩ [cm].

Definition 5 (Left-regular bipartite multigraph). We define a left-regular
bipartite multigraph to be a graph G = (L ∪R,E) with the following properties.

– It is bipartite, with vertex sets L and R, and each edge being directed from
L to R, i.e., ∀(u, v) ∈ E, u ∈ L, v ∈ R.

– Every vertex in L has a constant number of edges, denoted d.
– E is a multiset, i.e., the edge (u, v) may occur multiple times.

Definition 6 (Random left-regular bipartite multigraph). We define H0(m, c, d)
to be a function that produces a random left-regular bipartite multigraph, where
|L| = m, |R| = c · m, d ≥ 1 is the degree of each vertex in L and where each
outgoing edge from a vertex u ∈ L has an end-point, v ∈ R, that is chosen
uniformly at random from R (and independent of all other choices).

If Q = (Q1, . . . , Qm) is the result of outputs of Lookup to a sequence of
queries to a (Stash-Resampling) Cuckoo Hash Table with capacity m and degree

15

d, then G ← B(m, c,Q) will be a left-regular bipartite multigraph, since every
Qi will contain d vertices in [cm]. We will soon show that for a Stash-Resampling
Cuckoo Hash Table, if none of the queried elements are in the table, G will be
sampled as a random left-regular bipartite multigraph, but if the table contents
are queried, the left-regular bipartite multigraph will be sampled from a different
distribution of graphs which will have fewer unmatched elements.

Definition 7 (Matching of a bipartite multigraph). For a bipartite multi-
graph G = (L ∪R,E), a matching is a set of edges E′ ⊆ E such that

(u, v), (u′, v′) ∈ E′ ⇒ u 6= u′, v 6= v′.

A maximum matching is a matching of maximum size. There may be multiple
such matchings, but they will all be the same size; we use M(G) to denote some
such matching and |M(G)| to be this size, which is independent of which match-

ing is chosen. S(G)
def
= m−|M(G)| is the number of unmatched elements on the

left-hand side.

Note that for any G, 1 ≤ |M(G)| ≤ m, so 0 ≤ S(G) ≤ m− 1.

Lemma 4 (Lower bound on unmatched elements). For all 0 ≤ s ≤ m− 1
and G← H0(m, c, d), where d, c are constants,

Pr [S(G) ≥ s] ≥
(

1

cm

)ds+d−1
which is non-negligible in m.

Proof. Pick s+1 elements of L. The probability that all d · (s+1) edges of these

elements will have the same endpoint v ∈ R is
(

1
cm

)d(s+1)−1
=
(

1
cm

)ds+d−1
. If

this occurs, any matching can contain at most 1 of these elements, which means
that at least s of these elements will be unmatched. Thus S(G) ≥ s. Note that
for any constant d and s, this probability is non-negligible.

Next, we describe two distributions on the integers [m− 1].

Definition 8. Fix constants d,m ∈ N, and c > 1. Let M(·) be an algorithm
that takes a bipartite multigraph G, and returns a maximum matching M(G).

– Distribution 0: Let s0 be the random variable denoting the number of un-

matched elements in a random bipartite multigraph. s0
def
= S(H0(m, c, d)).

– Distribution 1: Define a distribution of graphs according to the following
process. First construct a graph G′ ← H0(m, c, d). Let G′ = (L∪R,E′). Let
M(G′) be a maximum matching in G′. Initialize E = E′. For every u ∈ L
s.t. @(u, v) ∈ M(G′), remove every edge (u, v) ∈ E′, and replace it with a
new edge (u, v′) where v′ is chosen uniformly at random from R. Let G =
(L1∪R1, E) be the modified graph. Let H1(m, c, d,M(·)) denote the function
that samples a graph from this distribution. Define s1 to be the number of

unmatched elements in this experiment, i.e., s1
def
= S(H1(m, c, d,M(·))).

16

Although the distributions s0 and s1 depend on parameters, we generally suppress
these dependencies for notational convenience.

Intuitively, the expected value of s1 should be smaller than the expected
value of s0, since the vertices which were not matched get another chance to be
matched when new end-points are chosen for them. In Lemma 5 we show that
this is indeed the case, and that the distributions of s0 and s1 are statistically
different (i.e., non-negligibly different).

Lemma 5. If s0 and s1 are the random variables described above, then the sta-

tistical distance between s0 and s1 is at least 1
m

(
1−

(
1
c

)d) (1
cm

)2d−1
which is

non-negligible in m.

Proof. Consider the graph G′ = (L ∪ R,E′) ← H0(m, c, d) generated as the
first step in generating distribution s1, where |R| = c · m. Let M = M(G′).
Let S ⊂ L be the unmatched vertices in L. We know |S| is distributed by s0.
When G is constructed (as the second step of distribution s1), each u ∈ S will
receive d new random neigbors. For v ∈ L/S we can use the existing matching
M for G and for u ∈ S we can match it to a neighbor directly if this neighbor
is not already matched.9 Since at most m elements of R will ever be matched,
the probability that a new random neighbor is already matched is at most 1

c .

There is then at most a
(
1
c

)d
probability that all d right-hand neighbors of u

are already matched. Let e′i be the event that vi is unmatched in G′, and ei the
event that vi is unmatched in G. This shows:

Pr[ei] ≤
(

1

c

)d
Pr[e′i]

Thus by linearity of expectation

E [s1] =
∑

1≤i≤m

Pr[ei] ≤
∑

1≤i≤m

(
1

c

)d
Pr[e′i] =

(
1

c

)d
E [s0] .

By Lemma 4, Pr(s0 ≥ s) ≥
(

1
cm

)ds+d−1
. Since s0 is a non-negative distribution,

E [s0] ≥ Pr(s0 ≥ 1) ≥
(

1
cm

)2d−1
so

|E [s0]− E [s1]| ≥

(
1−

(
1

c

)d)(
1

cm

)2d−1

.

In particular, this means that the expected values, E [s0] and E [s1] are non-
negligibly different. Finally, notice that 0 ≤ s0, s1 ≤ m, so

∆ (s0, s1) ≥ 1

m
|E [s0]− E [s1]| ≥ 1

m

(
1−

(
1

c

)d)(
1

cm

)2d−1

which means that ∆ (s0, s1) is also non-negligible.

9 This greedy matching assignment not give an optimal matching for G, but it will
provide an upper bound for s1 in terms of s0.

17

Now we show that the Stash-Resampling Cuckoo Hash Table is not access
oblivious.

Theorem 2. The Stash-Resampling Cuckoo table presented in Figure 3 is not
access-oblivious.

Proof. Let X = X ′ = {1, . . . ,m} for some m ≤ N
2 . Let vi = i+m and let v′i = i

for 1 ≤ i ≤ m. The adversary will generate a table with the input data, lookup
the sequence of virtual indices and construct a bipartite graph based on these
lookup results.

Let there be two experiments:

k ← Gen(N,m)
T ← Build(k,X)
{Qi ← Lookup(k, vi, T)}i∈[m]

G← B(m, c,Q)
s = S(G)

 and

k′ ← Gen(N,m)
T ′ ← Build(k,X ′)
{Q′i ← Lookup(k′, v′i, T

′)}i∈[m]

G′ ← B(m, c,Q′)
s′ = S(G′)

In the first experiment, none of the queries are in X, therefore none will

be in the stash. Therefore Qi = (cm + 1, . . . , cm + s, h1(vi), . . . , hd(vi)). Since
the vi are distinct from each other and the elements stored in the table, hj(vi)
will be chosen uniformly at random from [cm] and independently of all previous
variables. Therefore, each left-vertex in G will have d neighbors, chosen uniformly
at random from bj . Therefore G is chosen exactly according to H0.

In the second experiment, all of the queries are in X ′. If we were to search
according to the oblivious Cuckoo Hash Table of Figure 1 then the corresponding
graph would be distributed according to H0(m, c, d). However, for any element
that was not in the maximum matching, (i.e., the elements in the stash) the
Stash-Resampling Cuckoo Hash Table will instead pick new indices to query, v̄′j
and return locations hi(v̄

′
j) which will not have been queried before so will be new

random locations. Therefore, for these elements that were not in the maximum
matching, the corresponding edges will be re-chosen uniformly at random. The
graph from the second experiment will therefore be constructed according to
distribution H1(m, c, d,M(·)), assuming the stash was chosen by some maximum
matching algorithm M(·).

We have already shown that distributions H0(m, c, d) and H1(m, c, d,M(·))
are distinguishable. Therefore an adversary can distinguish the two experiments,
so Stash-Resampling Cuckoo Hash Tables are not access-oblivious.

Remark 8. Note that the attack described above is immediately applicable in
cases where the stash is accessed before the associated Cuckoo Hash Table, and
if the target is found in the stash, the protocol searches for dummy elements in
the table. For instance, our attack would apply to a hierarchical ORAM that
stored a stash at the same level, but accessed the stash first, and searches for a
dummy in the rest of the table if the element is found in the stash.

18

3.2 Hierarchical ORAM with a combined stash

We now present how hierarchical ORAMs were constructed using a combined
stash. We will show that this breaks the abstraction of an Oblivious Hash Table,
and results in access patterns identical to those of the Stash-Resampling Cuckoo
Hash Table, which breaks obliviousness.

Beginning with the protocol of Goodrich et al. [GMOT12], a number of hi-
erarchical ORAM schemes stored stashed items from a table construction in a
shared stash or re-inserted them into the cache. Since most schemes re-insert
stash items into the cache, we will present this version. Figure 4 presents the
changes between the stash-reinserting hierarchical ORAM and the original hier-
archical ORAM protocol from Section 2.5. All other parts of the protocol remain
the same.

A Stash-Reinserting ORAM is an ORAM equivalent to that of Figure 2 with the
following modifications:

– Rebuild: Rather than table Ti∗ storing all elements in X, at most c of these
elements can be stored in a stash. The stash is not stored at this level, but is
is padded to size c and inserted into the cache.

– Rebuild frequency: Since the cache is of size c after a rebuild, the rebuild
period is now τ = c.

Fig. 4. Stash-Reinserting Hierachical ORAM

Theorem 3. The Stash-Reinserting ORAM of Figure 4 is insecure; i.e., it does
not satisfy the oblivious property in Definition 3.

Proof. Let A = A′ = 0N . Let the hierarchical ORAM be such that there will
be some level Li of capacity m ≤ N

2 that is implemented using a Cuckoo Hash
Table.10

Let U = ((1, 0), . . . , (2m, 0)) and U ′ = ((1, 0), . . . , (m, 0), (1, 0), . . . , (m, 0))
be two sequences of ORAM queries.

10 Some schemes use a mixture of hash table types at different levels. We do not require
that all levels use a Cuckoo Hash Table, only that there is at least one such level of
size ≤ N

2
that has its stash re-inserted into the ORAM data structure.

19

After m queries, Li will be constructed.11 In both experiments Li will be
constructed using the elements (1, 0), . . . , (m, 0). A Cuckoo Hash Table will be
constructed in both cases, with these contents.12

The stash will be re-inserted in both cases. We have from Lemma 2 that
each of these stashed elements will exist at a single location at the start of each
access. Since levels Lj for all j ≥ i will only be rebuilt when Li is also rebuilt,
we know that these elements must remain in some level Lk with k < i until Li
is rebuilt. This means that, until this point in time, they will always be found
before Li is accessed. Thus, by the ORAM query algorithm, a dummy query will
be performed in Li.

Therefore, the access pattern in the Cuckoo Hash Table at Li will be the
same as that of the Stash-Resampling Cuckoo Hash Table in Figure 3, where
elements were searched in the stash first, and if found in the stash a dummy was
searched in the remainder of the table. The only difference is that in the Stash-
Resampling Cuckoo Hash Table, the algorithm also accessed a pre-assigned stash,
but this is not an issue since the attack to the stash-resampling algorithm does
not use the access pattern to the stash (as this access pattern is always the same).
Observe that, exactly like in the attack of Theorem 2, one sequence of accesses
(U) will only access elements that were not in the data table, and the other
sequence (U ′) will only access elements that were in the data table (including the
stash). Therefore, by the same argument as Theorem 2 the statistical distance
between ORAM access pattern distributions is non-negligible. Therefore, the
ORAM protocol is insecure.

4 The Generic Attack

The attack in Section 3 assumes that an adversary knows all m elements that
were placed in the Cuckoo Hash Table. However, in PanORAMa [PPRY18] and
OptORAMa [AKL+20] each level contains multiple Cuckoo Hash Tables and
only some of the elements are placed in any given table. We therefore now
construct a more general attack that assumes only that the adversary knows
a superset of the elements that were placed in the table. More formally, we

11 This is not quite true. We would like to construct Li such that it contains indices
1, . . . ,m (although some may of these may be stashed). However, due to reinsersions
of the stash this will actually need to occur in a level with capacity roughly 2m. If
additional accesses are needed to trigger the rebuild, then the same element, e.g.,
(1, 0) can be looked up multiple times. The exact details of what sequence of accesses
is needed in order to cause elements 1, . . . ,m to be inserted into a particular level
also varies depending on how exactly the ORAM is constructed. More generally, the
sequence (1, 0), . . . , (m, 0) at the beginning of both U and U ′ should be replaced
with whatever sequence in the given ORAM is needed in order to instantiate a level
to contain exactly the indices 1, . . . ,m.

12 It is possible that when the ORAM is initialized, elements from L` are stashed and
stored in the cache. These elements would inadvertently also be stored in Li. The
effect of this on the Cuckoo Hash Table is small.

20

can weaken the definition of Access-Obliviousness in Definition 1 such that the
contents of the data in the two experiments are the same, and the access patterns
cannot depend directly on the table contents, but are functions of any superset
of the contents.

Definition 9. A hash-table is access-oblivious in the knowledge of a content
superset if for all datasets X ⊂ X with indices V ⊂ V, and all PPT algorithms
f, f ′ : 2V → Vt, there exists Y , with V ⊂ Y ⊂ V, |Y | ≤ |V| − 3 such that the
distribution of outputs of Lookup(k, f(Y), T) has negligible (in |Y |) statistical
distance from the distribution of outputs of Lookup(k′, f ′(Y), T ′) where T ←
Build(k,X), T ′ ← Build(k′, T ′).

We show that a Stash-Resampling Cuckoo Hash Table (Figure 3) does not
satisfy this weaker security guarantee. We will then show that an adversary
can then use this to differentiate sequences in PanORAMa and OptORAMa
with non-negligible probability. For simplicity, our proof assumes d = 2 hash
functions, which is the choice used by PanORAMa and OptORAMa, but can
easily be extended to any constant number of hash functions.

4.1 Generic Stash-Resampling Cuckoo Hash Table Attack

Theorem 4. Stash-Resampling Cuckoo Hash Tables with d = 2 are not access-
oblivious in the knowledge of a content superset.

Proof. Let |X| = |V | = n′ ≥ 3 and |Y | = m. The adversary algorithms are as

follows: f chooses distinct v1, v2, v3
$← Y and outputs A = (v1, v2, v3). f ′ chooses

distinct v′1, v
′
2, v
′
3

$← V/Y and outputs A′ = (v′1, v
′
2, v
′
3).

Let the set S ⊂ V denote the indexes stored in the stash constructed by the
table T , that is built in the first experiment, and let |S| = s. Define B = V/S
to be the indexes that were successfully stored in their hashed locations in T
and define C = S ∪ Y/V = Y/B to denote indexes in Y that are not (either
because they weren’t in V to begin with, or because they were stashed). As
previously assumed, there are 2 hash functions. By the definition of a Stash
Resampling Cuckoo Hash Table, if v1, v2, v3 ∈ B are distinct elements, it is
impossible for (h1(vi), h2(vi)) to be equal for all i ∈ {1, 2, 3}. Let r be the size
of the set of outputs of (h1(v), h2(v)). For the Cuckoo Hash Table of Figure 1

r = (cn′)
2
. Let Qi = Lookup(k, T, vi) and Q′i = Lookup(k′, T ′, v′i) be the results

of Lookups in the first and second experiments respectively, but ignoring the
stash locations (since these are chosen deterministically). We now show that
∆((Q1, Q2, Q3), (Q′1, Q

′
2, Q

′
3)) ≥ m−Θ(1), i.e., that the accesses to A and A′ are

statistically different.
Let us first look at the distribution of (Q1, Q2) and (Q′1, Q

′
2). Since v′1, v

′
2 /∈

Y ⊃ V , Q′1 and Q′2 contain random locations in the table. Therefore, the prob-
ability that Q′1 = Q′2 is exactly 1

r .
Now let us look at the distribution of (Q1, Q2). If both v1, v2 ∈ C, Q1 and

Q2 will both be chosen uniformly at random, and the probability that Q1 = Q2

21

would be 1
r . Even if only one of v1 or v2 is in C, the locations returned by Lookup

for this element will be chosen uniformly at random and independent from all
previous choices, so the probability that Q1 = Q2 would be 1

r in this case also.

Now let us examine the probability that Q1 = Q2 for a randomly selected
v1, v2 ∈ B. Let this probability be denoted by p for a given Cuckoo Hash Table
implementation. For a random v1, v2 ∈ V , the probability that (h1(v1), h2(v1)) =
(h1(v2), h2(v2)) is 1

r . However, the build algorithm has some choice in which
items it places in the stash. It is possible that elements that cause collisions
are either more, or less, likely to be placed in S. Therefore p could be different
from 1

r , but we show it cannot be much different without making the output
distributions non-negligibly statistically distant.

Pr(Q1 = Q2) =

(|B|
2

)(|Y |
2

)p+

(
1−

(|B|
2

)(|Y |
2

) 1

r

)

Pr(Q1 = Q2)− Pr(Q′1 = Q′2) =

(|B|
2

)(|Y |
2

) (p− 1

r

)
There are two cases. In the first case |p− 1

r | ≥ mΘ(1) then |Pr(Q1 = Q2)−
Pr(Q′1 = Q′2)| is non-negligible in m, (Q1, Q2) and (Q′1, Q

′
2) will be statistically

different, and the proof is done. In the second case |p − 1
r | = mω(1) and we

will proceed to show that then (Q1, Q2, Q3) and (Q′1, Q
′
2, Q

′
3) are statistically

different.

Let us examine the probability that Q1 = Q2 = Q3. If v1, v2, v3 ∈ C, then
this probability is 1

r2 , since we can imagine one vi being pre-set, and each other
vj is chosen uniformly at random and independently from a space of size 1

r . If
at least two of v1, v2, v3 are in C, then the one that is not can be pre-set, and
by the same argument as above the probability that Q1 = Q2 = Q3 is 1

r2 .

Now if vi, vj ∈ B, vk ∈ C for some distinct i, j, k ∈ {1, 2, 3}, the probability
that Qi = Qj is exactly p, by our definition of p. Qk is chosen uniformly at
random and independently from a space of size 1

r , so the probability that Qi =
Qj = Qk is p 1

r .

Finally, let us examine the case where v1, v2, v3 ∈ B. Since these items were
successfully stored in the table, they cannot all have been hashed to the same 2
locations. Therefore in this case Pr(Q1 = Q2 = Q3) = 0.

We therefore have:

Pr(Q1 = Q2 = Q3)− Pr(Q′1 = Q′2 = Q′3) =

(|C|
1

)(|B|
2

)(|Y |
3

) (
p− 1

r

)
−
(|B|

3

)(|Y |
3

) 1

r

But we are looking at the case that p − 1
r is negligible. On the other hand

(|B|3)
(|Y |3)

1
r = n′(n′−1)(n′−2)

m(m−1)(m−2)r which, since r = O(m2), is non-negigible in m.

Therefore |Pr(Q1 = Q1 = Q3) − Pr(Q′1 = Q′2 = Q′3)| and subsequently
∆((Q1, Q2, Q3), (Q′1, Q

′
2, Q

′
3)) are also non-negligible in m.

22

4.2 Attack against PanORAMa and OptORAMa

In PanORAMa and OptORAMa, rather than each ORAM level containing a
single Cuckoo Hash Table, each level has a number of equal-size bins, an Overflow
Table and a (level-specific) Combined Stash. The bins, the Overflow Table and
the Combined Stash are all implemented as Cuckoo Hash Tables. The Combined
Stash Table contains the combined stashes of all bins on that level. The Overflow
Table and the Combined Stash additionally have their own stashes. These stashes
are removed from the level and reinserted into the ORAM.

Provided that items found in the Combined Stash are still searched for at
each bin, the fact that the stashes of all bins in a given level are combined is
not an issue.13 However, the fact that the stashes of the Overflow Table and of
the (level-specific) Combined Stash are removed from the level and re-inserted
into the ORAM makes the protocols vulnerable to the attack described in this
paper.

Like in the regular ORAM attack, let u1, . . . , um be a sequence of distinct
accesses of length m ≤ N − 3 such that following this sequence of accesses, a
level Li is built with the the set Y = {u1, . . . , um} as input.

Let T be the Overflow Hash Table,14 and X be the set of items input the the
Build function. X is unknown to the adversary, but it is guaranteed that X ⊆ Y .
Let S be the set of stashed elements in the Overflow Hash Table.

Observe that if an index x ∈ S is queried, PanORAMa and OptORAMa will
find x before reaching Li and will query a nonce in T instead. Therefore, the
access sequence to the Overflow Hash Table in the ORAM is the same as that
of a Stash-Resampling Cuckoo Hash Table.

Since the Overflow Hash Table is not access-oblivious, to an adversary that
knows Y ⊇ X, by Theorem 4, the ORAM protocols are not access-oblivious
either. In particular, let the adversary choose distinct v1, v2, v3 uniformly at
random from Y . Let A = (u1, . . . , um, v1, v2, v3). Let v′1, v

′
2, v
′
3 /∈ Y be distinct

elements and A′ = (u1, . . . , um, v
′
1, v
′
2, v
′
3). The access sequences of the ORAM

on A and A′ will have non-neglible statistical distance in m (and N).

5 Alibi: Secure Hierarchical ORAM with Reinserted
Stashes

The basic problem arises when a stashed element is found before the appropriate
level of the ORAM hierarchy is searched. As a successful criminal needs not only

13 OptORAMa seaches in the Combined Stash after searching in the bins, so the access
pattern in the bins will be the same for items that are later found in the Combined
Stash. However, in PanORAMa, the Combined Stash is accessed before the bins
are accessed and a random bin is chosen in the case that the data is found in
the Combined Stash. Therefore, the access patterns in the individual bins are also
vulnerable to a distinguishing attack based on the fact that stashed elements will
not be searched for. This can simply be solved by searching the bins before searching
the Combined Stash.

14 The proof would work out the same if T was the Combined Stash Hash Table.

23

to be hidden in the location where they committed a crime, but also needs an
alibi who claims to have seen them enacting their everyday life, likewise the
stashed elements need not only hide their presence in the levels to which they
are reinserted, but also need to hide their absence from the levels from which
they came. To fix this problem, we need to ensure that even when an element
cannot be stored at a certain level of the ORAM hierarchy (i.e., because it falls
in the cuckoo stash), it must still be searched for at this level. This way, the
set of physical accesses at a level will always be chosen uniformly at random
and be fully independent. Each element therefore needs to store a record of
the locations where it would have been, and needs to be searched for in these
locations if accessed.

There are some small subtleties here. First, an element needs to store the
fact that it was ejected from a level not only when it is in the cache, but at least
until this level is rebuilt or the item is searched for, since if it is looked up at any
point before this level is rebuilt it needs to be searched for in this level. Second,
it is entirely possible that the same element that had been stashed at some level
Li could be stashed again at some level Lk with k < i, before Li is rebuilt or
the element queried. Therefore each element needs to store the location of all
levels from which it was ejected due to having fallen in the stash. Since there are
` ≤ logN levels in the hierarchical ORAM, it is possible to store which levels
the item was ejected from using logN bits.

The flaw can be fixed using the following simple modification. For each ele-
ment (v, x) the algorithm will additionally store a bit array e of length `, which
records at which levels the item was “stashed.”

Our solution modifies the generic hierarchical ORAM protocol of Figure 2;
these modifications15 are presented in Figure 5.

Lemma 6. In the Alibi protocol presented in Figure 5 there is an invariant that
given a tuple (v, w, e) stored at some level, e[i] = 1 if and only if v was stashed
at level Li during the last rebuild and v has not been queried by the ORAM
since this rebuild. This invariant holds initially, after each query and after each
rebuild.

Proof. By induction. This is initially true, as no items have been stashed and
e[i] = 0 for all items.

If a level Li is rebuilt, all levels Lj for j < i will be rebuilt as empty levels.
Therefore following the rebuild e[j] = 0 for all such levels, satisfying the invariant
for these levels. For level Li, some elements may be stashed after the rebuild,
e[i] = 1 for exactly these elements, so the invariant is satisfied for level i. For
any level Lj with j > i, the level has not been rebuilt and e[j] is not modified,
so the invariant will hold if it held before.

After a query e[j] is set to 0 for all j, so e[i] will only be 1 if there has not
been a query since the last rebuild.

15 This protocol uses a slightly definition of Oblivious Hash Tables. Rather than re-
turning a single array, Build returns a tuple (Ti, Si), where Ti is the main table and
Si is the stash. Lookup only contains the non-stash locations.

24

– Initializing records: When initializing the ORAM, for each input tuple
(v, x) store the tuple (v, x, 0`) in the ORAM.

– On rebuilds: When a hash table, Ti, is constructed at level i, suppose
(Ti, Si)← Build(ki, X).
• Stashed records: For each record (v, x, e) ∈ Si, set e[i] = 1, and e[j] = 0

for j = 1, . . . , i − 1. Finally, insert (v, x, e) into the cache (or combined
stash) as usual.

• Regular records: For each record (v, x, e) ∈ Ti, set e[i] = 0, and e[j] = 0
for j = 1, . . . , i− 1.

– On queries: On input (v, x), initialize found = false, f = 0`.
• Scan the cache: If a record (v, w, e) is found in the cache, set m = w,

found = true and f = e and delete the item from the cache.
• Search each level: For i in 1, . . . , `

∗ If found = true and f[i] = 0 then set Qi ← Lookup(ki, dummy ◦ t).
Otherwise set Qi ← Lookup(ki, v),

∗ Probe locations Ti[j] for j ∈ Qi.
∗ If there is a j ∈ Qi, such that Ti[j] = (v, w, e), then set m = w,

found = true and f = e.
∗ Execute Delete(ki, v, Ti)

• Rewrite the cache: If x 6= ⊥ (i.e., it was a write query), insert (v, x, 0`)
into the cache. Otherwise insert (v,m, 0`) into the cache.

Fig. 5. Alibi Hierarchical ORAM protocol (delta to standard protocol of Figure 2)

25

Therefore, by induction, this invariant always holds.

Theorem 5. Let (v1, · · · , vm) be the sequence of indices that are looked up at
level Li with i > 0, between two subsequent rebuilds of that level. Then the
Alibi protocol satisfies the following property. If vk = v′k for some k′ < k, then
Qk = Lookup(ki, dummy ◦ t) else Qk = Lookup(ki, vk).

Proof. Immediately after Li is rebuilt, all levels Lj for 0 < j < i are empty.
Furthermore, the cache L0 contains only elements from Si, the stash of level i.
Therefore, by Lemma 6 every element (v, w, e) either exists in level Lj for some
j ≥ i or has e[i] = 1. This will remain true until Li is rebuilt or v is queried. If
vk = v is queried and v is stored at some level j ≥ i, then it will be looked up
at level i, i.e., Qk = Lookup(ki, vk). Similarly, if vk = v is queried, and e[i] = 1
then when v is found f[i] will be set to e[i] so v will still be looked up at level Li,
i.e., Qk = Lookup(ki, vk). In both cases e[i] will be set to 0 (if it wasn’t already)
and it will be moved to a level j < i (if it wasn’t already). Only a rebuild on
level Li could change either of these facts. Therefore, until Li is rebuilt, for
any subsequent queries v′k = v, a dummy item will be looked for in Li, i.e.,
Q′k = Lookup(ki, dummy ◦ t).

Theorem 6. The Alibi Stash-Reinserting ORAM protocol, when instantiated
with an Oblivious Hash Table with a stash, is secure, i.e., it satisfies the security
property of Definition 3.

Proof. This follows similarly to the proof of Theorem 1. The ORAM satisfies
two properties: (1) No repeated accesses: Each query is queried at most once to
each level between rebuilds. This follows directly from Theorem 5. Any query
in the form v ∈ V is queried at most once, since the theorem implies that any
future accesses will be to dummy items. Any query in the form dummy ◦ t is
queried at most once, because t is incremented after each query. Therefore the
lookups to the Oblivious Hash Table are non-repeating. (2) Oblivious accesses:
The Oblivious Hash Table satisfies a property that the results of Lookup have
distributions with negligible distances for all non-repeating access patterns. We
know from (1) that in an ORAM the accesses to each Oblivious Hash Table
are indeed non-repeating. The ORAM only accesses the non-stash part of the
Oblivious Hash Table, and since it is only accessing a subset, the distribution of
access patterns of the ORAM on each level still differ negligibly. Furthermore,
for an Oblivious Hash Table satisfying Full Obliviousness, the distribution of all
memory accesses by an ORAM on each level differ negligibly.

Since each Oblivious Hash Table is built independently, the distance between
distributions of their combined accesses will be at most the sum of the distances
between distributions of accesses at each Oblivious Hash Table. Also, the distri-
bution of accesses to the cache is the same each time, since the entire cache is
scanned initially and a single item is written at the end, so this does not increase
the distance between the access patterns of the ORAM. The distance between
distributions of the entire sequences of tmax queries to an ORAM system with
` levels, will therefore be at most `tmax times that of any individual Oblivious

26

Hash Table. Since the latter is negligible in N , and `tmax is polynomial in N ,
then the the total distance between distributions of ORAM access will also be
negligible in N . Therefore the ORAM is oblivious.

Remark 9. It may initially seem that the proof of security above would apply to
the flawed schemes as well. However, because the schemes resample the queries
based on whether they were stored in the stash, the access pattern of the re-
maining table changes, and changes specifically in a way that depends on the
structure of the table. We showed that in the case of Cuckoo Hashing this change
causes a change in the combined set of accesses that is distinguishable.

Complexity: Since each element only needs to store one bit for each level,
and there are at most logN levels, then the additional size of each element is
increased by logN bits. Since the index is at least logN bits and the payload is
Ω(log n) the items still have the same asymptotic sizes so this does not change
the asymptotic communication complexity. All of the modifications above only
involve modifying or reading e when v and/or x would also be read or modified.
We have that |e| = O(|v|), |e| = O(|x|). Therefore the modification only increases
communication costs by up to constant factors.

Correctness: The modifications do not change the output of the program,
only the access patterns. The only operation that does not involve only modifi-
cations of e is that during an access, if the item has already been found, the real
item may be searched for in subsequent levels rather than a random item. This
does not change the output of the program, since the value that was already
found is the one that will be used.

Note that this fix also applies to PanORAMa and OptORAMa. Even though
these protocols contain multiple Cuckoo Hash Tables at each level, it is possible
to view the entire level as a single Oblivious Hash Table with a stash. (The
stash of the level would be the union of the stashes of the Overflow Table and
the level-specific Combined Stash Table).

6 Summary of Affected Papers

Goodrich et al. [GMOT12] introduced the idea of using Cuckoo tables with
combined stashes for Hierarchical ORAM. This introduced the flaw described
in this paper. Kushilevitz et al. [KLO12] introduced the alternative approach of
reinserting elements from the stash into the ORAM (“cache the stash”). While
there are differences between these approaches, in either case an element that
was stashed will be found prior to the the level from which it was ejected and
random locations accessed at this level instead. Therefore both approaches are
vulnerable to our attack.

Lu and Ostrovsky [LO13] then used the stash-reinsertion of [KLO12] in their
2-server ORAM protocol, inheriting this vulnerability. Similarly Kushilevitz and
Mour [KM19] created a 3-server ORAM that also uses cuckoo hashing (Instan-
tiation 2) based on [KLO12], but using a shared stash [GMOT12] rather than
reinserting the stash. This ORAM protocol is therefore vulnerable to the attack

27

from this paper. Kushilevitz and Mour also present other multi-party ORAM
protocols based on other techniques which are not subject to this attack.

Two alternative Hierarchical ORAM protocols were also published that avoided
the flaw described in this paper. The Hierarchical ORAM protocol [MZ14] of
Mitchell and Zimmerman uses a different model where the client can keep track
of which level each item should be stored at. Knowing before-hand that an
element does not exist at a certain level allows the algorithm to search for pre-
inserted dummy elements at these levels. The data-structure therefore no longer
needs to hide where data is stored, but only whether an element is real or a
dummy, so any standard hash tables can be used instead of Cuckoo hashing.
The two-tiered Hierarchical ORAM protocol of Chan et al. [CGLS17] then pre-
sented an alternative to cuckoo hashing with a stash. Instead, two hash tables
existed, each with bins of size logε(λ) for some constant ε ∈ (0.5, 1) and security
parameter λ. They presented an oblivious construction in which elements would
be placed in the first hash table if possible and in the second if not. They showed
that the probability that an element could not be placed was negligible. Since
this protocol used two-tier hashing rather than Cuckoo hashing with a combined
stash it is immune to the attack we have presented.16

However, the flaw resurfaced again in the recent asymptotic breakthroughs of
PanORAMa [PPRY18] and OptORAMa [AKL+20].17 These achieved efficiency
by storing most of the data in small bins, which are small enough to be sorted
without increasing the asymptotic performance, while remaining items are placed
in an overflow pile. Each of these bins is implemented as a cuckoo table and
stashes are shared, but the combined stash for the bins is kept at the same level
as the bins. Therefore it is possible to search the bins for the stashed elements
and then to access the single-level combined stash, so the bin tables are not
vulnerable to this attack. However, in both papers, the overflow and single-
level combined stash cuckoo tables both have stashes that are re-inserted into
the ORAM data structure. They are therefore vulnerable to the variant of our
attack in Section 4.

Our attack does not affect the tree-based ORAM protocols, such as Binary
Tree ORAM [SCSL11], Path ORAM [SvDS+13] and Circuit ORAM [WCS15],
as these do not use cuckoo hashing.

In summary, this flaw existed in the the ORAM literature for almost a decade
and has affected six significant protocols, including the most recent asymptotic
breakthroughs. The fact that such a flaw could exist unnoticed for so long mo-
tivates the development of simpler protocols for oblivious data structures.

16 Chan et al. also presented a concrete instantiation of Goodrich and Mitzenmacher’s
ORAM protocol in an appendix of the full version of their paper. The protocol they
present uses a Cuckoo Hash Table at each level and a shared stash, so is vulner-
able to the attack described in this paper. However, they recommend, somewhat
clairvoyantly, that since Cuckoo hashing is complex and hard to prove correct, that
their two-tier hash-table protocol should be used rather than the Cuckoo-hashing
protocol.

17 In response to our preprint, Asharov et al. have updated the OptORAMa paper to
include a fix.

28

References

[ADW14] Martin Aumüller, Martin Dietzfelbinger, and Philipp Woelfel. Explicit and
efficient hash families suffice for cuckoo hashing with a stash. Algorithmica,
70(3):428–456, 2014.

[AKL+20] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Pe-
serico, and Elaine Shi. OptORAMa: Optimal oblivious RAM. In EURO-
CRYPT, pages 403–432. Springer, 2020.

[BMD+17] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software grand exposure: SGX
cache attacks are practical. In WOOT, 2017.

[CGLS17] T-H. Hubert Chan, Yue Guo, Wei-Kai Lin, and Elaine Shi. Oblivious
hashing revisited, and applications to asymptotically efficient ORAM and
OPRAM. In ASIACRYPT, pages 660–690. Springer, 2017.

[Ds17] Jack Doerner and abhi shelat. Scaling ORAM for secure computation. In
CCS, pages 523–535, 2017.

[GESM17] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller.
Cache attacks on Intel SGX. In Proceedings of the 10th European Workshop
on Systems Security, pages 1–6, 2017.

[GM11] Michael T Goodrich and Michael Mitzenmacher. Privacy-preserving access
of outsourced data via oblivious RAM simulation. In ICALP, pages 576–
587. Springer, 2011.

[GMOT12] Michael T Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and
Roberto Tamassia. Privacy-preserving group data access via stateless obliv-
ious RAM simulation. In SODA, pages 157–167. SIAM, 2012.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation
on oblivious RAMs. JACM, 43(3):431–473, 1996.

[JHOvD17] Tara Merin John, Syed Kamran Haider, Hamza Omar, and Marten
van Dijk. Connecting the dots: Privacy leakage via write-access patterns
to the main memory. IEEE Transactions on Dependable and Secure Com-
puting, 2017.

[KLO12] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in) security of
hash-based oblivious RAM and a new balancing scheme. In SODA, pages
143–156. SIAM, 2012.

[KM19] Eyal Kushilevitz and Tamer Mour. Sub-logarithmic distributed oblivious
RAM with small block size. In PKC, pages 3–33. Springer, 2019.

[KMW09] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More robust
hashing: Cuckoo hashing with a stash. SIAM Journal on Computing,
39(4):1543–1561, 2009.

[LHS+14] Chang Liu, Yan Huang, Elaine Shi, Jonathan Katz, and Michael Hicks.
Automating efficient RAM-model secure computation. In S&P, pages 623–
638. IEEE, 2014.

[LO13] Steve Lu and Rafail Ostrovsky. Distributed oblivious RAM for secure two-
party computation. In TCC, pages 377–396. Springer, 2013.

[MIE17] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. Cachezoom:
How SGX amplifies the power of cache attacks. In CHES, pages 69–90.
Springer, 2017.

[Mit09] Michael Mitzenmacher. Some open questions related to cuckoo hashing. In
ESA, pages 1–10, 2009.

29

[MZ14] John C Mitchell and Joe Zimmerman. Data-oblivious data structures. In
STACS. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

[OS97] Rafail Ostrovsky and Victor Shoup. Private information storage. In STOC,
volume 97, pages 294–303. Citeseer, 1997.

[Ost90] Rafail Ostrovsky. Efficient computation on oblivious RAMs. In STOC,
pages 514–523, 1990.

[Ost92] Rafail Ostrovsky. Software protection and simulation on oblivious RAMs.
PhD thesis, Massachusetts Institute of Technology, 1992.

[PPRY18] Sarvar Patel, Giuseppe Persiano, Mariana Raykova, and Kevin Yeo.
PanORAMa: Oblivious RAM with logarithmic overhead. In FOCS, pages
871–882. IEEE, 2018.

[PR04] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of
Algorithms, 51:122–144, 2004.

[PR10] Benny Pinkas and Tzachy Reinman. Oblivious RAM revisited. In
CRYPTO, pages 502–519. Springer, 2010.

[SCSL11] Elaine Shi, T-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious
RAM with O((logN)3) worst-case cost. In ASIACRYPT, pages 197–214.
Springer, 2011.

[SGF17] Sajin Sasy, Sergey Gorbunov, and Christopher W Fletcher. Zerotrace:
Oblivious memory primitives from Intel SGX. IACR Cryptol. ePrint Arch.,
2017:549, 2017.

[SvDS+13] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling
Ren, Xiangyao Yu, and Srinivas Devadas. Path ORAM: an extremely
simple oblivious RAM protocol. In CCS, pages 299–310, 2013.

[WCS15] Xiao Wang, T-H. Hubert Chan, and Elaine Shi. Circuit ORAM: On tight-
ness of the Goldreich-Ostrovsky lower bound. In CCS, pages 850–861,
2015.

[WHC+14] Xiao Shaun Wang, Yan Huang, T-H. Hubert Chan, abhi shelat, and Elaine
Shi. SCORAM: oblivious RAM for secure computation. In CCS, pages
191–202. ACM, 2014.

30

Supplementary Material

A Distinguishing distributions

In this section, we review a basic fact that if two distributions are statistically
different, and supported on polynomial-sized sets, then they are polynomial-time
distinguishable.

Lemma 7. Let {Xn}, {Yn} denote two sequences of distributions supported on
polynomial-sized sets, i.e., there is a constant c, such that max(|Xn|, |Yn|) < nc.
In addition, assume that Xn and Yn are efficiently samplable.

Then if ∆(Xn, Yn) is non-negligible, the distributions {Xn} and {Yn} are
polynomial-time distinguishable.

Proof. Consider the following maximum likelihood distinguisher, D. Let W =
supp(Xn) ∪ supp(Yn), and m = |W |. Define

pz
def
= Pr [Xn = z]

qz
def
= Pr [Yn = z]

Fix t = poly(n).

Recall that if W = Xn ∪ Yn,∑
w∈W

max(pw, qw) =
1

2

∑
w∈W

[[max(pw, qw) + min(pw, qw)] + [max(pw, qw)−min(pw, qw)]]

=
1

2

[
2 +

∑
w∈W

[max(pw, qw)−min(pw, qw)]

]

=
1

2
[2 + 2∆(Xn, Yn)]

= 1 +∆(Xn, Yn)

First, D will estimate the frequency of elements in both Xn and Yn by sam-
pling. First D will draw tm samples from Xn, let Xsampled denote the multiset
corresponding to these samples. Similarly D will draw tm samples from Yn. Let
Ysampled be the multiset corresponding to these samples.

Then D defines

p̃w
def
=

number of times w occurred in Xsampled

tm

q̃w
def
=

number of times w occurred in Ysampled

tm

31

Finally, given a sample z from a distribution Z ∈ {Xn, Yn}, the adversary
will guess

A(z) =

{
X if p̃z ≥ q̃z
Y if p̃z < q̃z.

A Hoeffding bound shows that

Pr [|p̃z − pz| > δ] < 2e−2mtδ
2

and similarly

Pr [|q̃z − qz| > δ] < 2e−2mtδ
2

Fix δ > 0, and define

G
def
= {z ∈W | |pz − qz| > 2δ}

B
def
= {z ∈W | |pz − qz| ≤ 2δ}

Now, notice that

max(pz, qz)− 2δ < min(pz, qz) for all z ∈ B . (1)

The Hoeffding bounds give

Pr [max(pz, qz) = max (p̃z, q̃z)] > 1− 2e−2mtδ
2

for z ∈ G (2)

Let ε = maxz (|Pr(Xn = z)− Pr(Yn = z)|). Thus ε ≥ ∆(Xn,Yn)
m , which is

non-negligible.

Pr [A is correct]

=
1

2

[∑
z∈Z

Pr [max (p̃z, q̃z) = max (pz, qz)] max (pz, qz) +
∑
z∈Z

Pr [max (p̃z, q̃z) 6= max (pz, qz)] min (pz, qz)

]

=
1

2

[∑
z∈Z

Pr [max (p̃z, q̃z) = max (pz, qz)] max (pz, qz) +
∑
z∈B

Pr [max (p̃z, q̃z) 6= max (pz, qz)] min (pz, qz)

]

≥ 1

2

[∑
z∈G

Pr [max (p̃z, q̃z) = max (pz, qz)] max (pz, qz) +
∑
z∈B

[max (pz, qz)− 2δ]

]

≥ 1

2

[(
1− 2e−2mtδ

2
)∑
z∈Z

max (pz, qz)− 2mδ

]

=
1

2

[(
1− 2e−2mtδ

2
)

[1 +∆(Xn, Yn)]− 2mδ
]

=
(

1− 2e−2mtδ
2
)[1

2
+

1

2
∆(Xn, Yn)

]
−mδ

Which is a non-negligible advantage for sufficiently large t and sufficiently small
δ.

32

B Acknowledgements

This research was sponsored in part by ONR grant (N00014-15-1-2750) “Syn-
Crypt: Automated Synthesis of Cryptographic Constructions”. This research was
supported in part by DARPA under Cooperative Agreement No: HR0011-20-2-
0025, NSF-BSF Grant1619348, US-Israel BSF grant 2012366, Google Faculty
Award, JP Morgan Faculty Award, IBM Faculty Research Award, Xerox Fac-
ulty Research Award, OKAWA Foundation Research Award, B. John Garrick
Foundation Award, Teradata Research Award, and Lockheed-Martin Corpora-
tion Research Award. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of DARPA, the Department of Defense,
or the U.S. Government. The U.S. Government is authorized to reproduce and
distribute reprints for governmental purposes not withstanding any copyright
annotation therein.

33

