
On the (in)security of ROS

Fabrice Benhamouda1, Tancrède Lepoint2, Julian Loss3, Michele Orrù4, and
Mariana Raykova2

1 Algorand Foundation, fabrice.benhamouda@gmail.com
2 Google, {tancrede,marianar}@google.com

3 University of Maryland, lossjulian@gmail.com
4 UC Berkeley, michele.orru@berkeley.edu

Abstract. We present an algorithm solving the ROS (Random inhomo-
geneities in a Overdetermined Solvable system of linear equations) prob-
lem mod p in polynomial time for ` > log p dimensions. Our algorithm
can be combined with Wagner’s attack, and leads to a sub-exponential
solution for any dimension ` with best complexity known so far.
When concurrent executions are allowed, our algorithm leads to prac-
tical attacks against unforgeability of blind signature schemes such as
Schnorr and Okamoto–Schnorr blind signatures, threshold signatures
such as GJKR and the original version of FROST, multisignatures such
as CoSI and the two-round version of MuSig, partially blind signatures
such as Abe–Okamoto, and conditional blind signatures such as ZGP17.
Schemes for e-cash and anonymous credentials (such as Anonymous Cre-
dentials Light) inspired from the above are also affected.

1 Introduction

One of the most fundamental concepts in cryptanalysis is the birthday paradox.
Roughly, it states that among O(

√
p) random elements from the range [0, p− 1]

(where p is a prime), there exist two elements a and b such that a = b, with high
probability. In a seminal work, Wagner gave a generalization of the birthday
paradox to ` dimensions which asks to find xi ∈ Li, i ∈ [0, `− 1] such that
x0 + · · ·+ x`−1 = 0 (mod p), where Li are lists of random elements.

His work also showed a simple and elegant algorithm to solve the problem
in subexponential time O((` + 1) · 2dlog pe/(1+blog(`+1)c)) and explained how it
could be applied to perform cryptanalysis on various schemes. Among the most
important applications of Wagner’s technique is a subexponential solution to the
ROS (Random inhomogeneities in a Overdetermined Solvable system of linear
equations) problem [Sch01, FPS20], which is defined as follows. Given a prime
number p and access to a random oracle Hros with range in Zp, the ROS problem
(in dimension `) asks to find (` + 1) affine functions ρi for i = 0, . . . , `, (` + 1)
bit strings auxi ∈ {0, 1}∗ (with i ∈ [0, `]), and a vector c = (c0, . . . , c`−1) such
that:

Hros(ρi, auxi) = ρi(c) for all i ∈ [0, `].

This problem was originally studied by Schnorr [Sch01] in the context of blind
signature schemes. Using a solver for the ROS problem, Wagner showed that the



unforgeability of the Schnorr and Okamoto-Schnorr blind signature schemes can
be attacked in subexponential time whenever more than O(log p) signatures are
issued concurrently. In this work, we revisit the ROS problem and its applica-
tions. We make the following contributions.

– We give the first polynomial time solution to the ROS problem for ` > log p
dimensions.

– We show how the above solution can be combined with Wagner’s techniques
to yield an improved subexponential algorithm for dimensions lower than
log p. The resulting construction offers a smooth trade-off between the work
and the dimension needed to solve the ROS problem. It outperforms the
runtime of Wagner’s algorithm for a broad range of dimensions.

– Finally, we describe how to apply our new attack to an extensive list of
schemes. These include: blind signatures [PS00, Sch01], threshold signa-
tures [GJKR07, KG20a], multisignatures [STV+16, MPSW18a], partially
blind signatures [AO00], conditionally blind signatures [ZGP17, GPZZ19],
and anonymous credentials [BL13, Bra94] in a concurrent setting with ` >
log p parallel executions. While our attacks do not contradict the security ar-
guments of those schemes (which are restricted only to sequential or bounded
number of executions), it proves that these schemes are unpractical for some
real-world applications (cf. Section 7).

1.1 Technical Overview

Let Pgen(1λ) be a parameter generation algorithm that given as input the secu-
rity parameter λ in unary form, outputs a prime p of length λ = dlog pe. In this
work, we prove the following main theorem:

Theorem 1 (ROS attack). If ` > λ, then there exists a (probabilistic) adver-
sary that runs in expected polynomial time and solves the ROS problem relative
to Pgen with dimension ` with probability 1.

Let B(x) :=
∑λ−1
i=0 2iρi(xi) for functions ρi where i ∈ [0, λ− 1]. If we can set

ρi(xi) to be the multivariate polynomials that evaluate to 0 at the point c0i and
to 1 at the point c1i (for i ∈ [0, `− 1]), then we can write any value y ∈ [0, p−1] as

y = B(cb00 , . . . , c
b`−1

`−1 ), where the bi values are such that y =
∑λ−1
i=0 2ibi. Using this

idea, we first define all the functions ρ0, . . . ,ρ`−1 along with the corresponding
pairs of points c0i , c

1
i that are obtained as cbi := Hros(ρi, b). In a second step,

we choose ρ`(x) := B(x), and query y := Hros(ρ`, aux`). Now, we can write

y =
∑λ−1
i=0 2ibi which determines a point cbii from every pair. We can output

the chosen points in c along with the vector of affine functions (ρ0, . . . ,ρ`) as a
solution to the ROS problem. (Note that ρ` = B(x) is also affine.) This attack
runs in expected polynomial time (since with small probability, Hros produces
collisions, in which case steps need to be repeated) and works whenever ` > log p.
This requirement ensures that it is always possible to write any value with `
terms in binary representation. To circumvent the restriction ` > log p, we prove
a second theorem:

2



Theorem 2 (Generalized ROS attack). Let L ≥ 0 be an integer and w ≥ 0
be a real number. If ` ≥ max{2w − 1, d2w − 1 + λ − (w + 1) · Le}, then there
exists a (probabilistic) adversary that runs in expected time O(2w+L) and solves
the ROS problem relative to Pgen and dimension ` with probability 1.

The idea of this attack is to combine the technique from the first attack with
the basic subexponential attack of Wagner. Instead of writing y entirely in bi-
nary as above, which requires ` dimensions, we first find a sum s of 2w values
which include y, but satisfies |s| ∈ [0, p

2(w+1)·L − 1] (mod p). Note that s can
be represented with λ − (w + 1) · L many bits in binary representation. This
approach requires, in total, d2w +λ− (w+ 1) ·L−1e dimensions and 2w+L over-
all work. As illustrated in Figure 4, this leads to improvements over Wagner’s
attack relatively quickly as the dimension ` of the ROS problem increases. We
remark that, while in our first attack we give a concrete probability of failure,
our second attack is based on the conjecture that Wagner’s algorithm for Zp
succeeds with constant probability. While we are not aware of any formal anal-
ysis of Wagner’s algorithm over Zp, we remark that it is considered a standard
cryptanalytic tool [DEF+19]. Our attack can be seen as strictly improving over
its (conjectured) performance when applied to solve the ROS problem.

1.2 Impact of the attacks

Any cryptographic construction that bases its security guarantees on the hard-
ness of the ROS problem is affected by our attacks.

Blind signatures. An immediate consequence of our findings is the first polyno-
mial-time attack against Schnorr blind signatures [Sch01] and Okamoto–Schnorr
blind signatures [PS00] in the concurrent setting with ` > log p parallel execu-
tions.5 Structurally, our attack builds on the one shown by Schnorr [Sch01], who
showed that a solver to the ROS problem can be turned into an attacker against
one-more unforgeability of blind Schnorr and Okamoto-Schnorr signatures. As
a concrete example, the attack in Section 5 breaks one-more unforgeability of
blind Schnorr signatures over 256-bit elliptic curves in a few seconds (when im-
plemented in Sage [S+20]), provided that the attacker can open 256 concurrent
sessions.

Other affected constructions. Our attack can be adapted to an extensive list
of schemes which include threshold signatures [GJKR07, KG20a], multisigna-
tures [STV+16, MPSW18a], partially blind signatures [AO00], conditionally
blind signatures [ZGP17, GPZZ19], blind anonymous group signatures [CFLW04],
blind identity-based signcryption [YW05], and blind signature schemes from bi-
linear pairings [CHYC05]. We note that some of the previous works claim secu-
rity only for non-concurrent executions or with a bounded number of executions;

5 Okamoto–Schnorr signatures are proven secure only for ` parallel executions s.t.
Q`/p� 1, where Q is the number of queries to Hros. Our attack does not contradict
their analysis as our attack requires ` > log2 p > logQ p.

3



Game ROSPgen,A,`(λ)

p← Pgen(1λ)

Tros := [ ](
(ρi, auxi)i∈[0,`], (cj)j∈[0,`−1]

)
← AHros(p)

return
(
∀i 6= j ∈ [0, `], (ρi, auxi) 6= (ρj , auxj)

∧ ∀i ∈ [0, `],
∑`−1
j=0 cjρi,j + ρi,` = Hros(ρi, auxi)

)

Oracle Hros(ρ, aux)

if Tros[ρ, aux] =⊥ then

Tros[ρ, aux]←$Zp
return Tros[ρ, aux]

Fig. 1. The ROSPgen,A,`(λ) game. Above, ρi,j is the j-th coefficient of the polynomial

ρi, i.e., ρi(x) =
∑`−1
j=0 ρi,jxi + ρi,`.

therefore, our attacks do not contradict their security claims but render these
schemes unsuitable for a broad range of real-world use cases.

Scope of our attacks and countermeasures. Our attacks do not extend to the
modified-ROS [FPS20] and the generalized-ROS [HKLN20] problems. The con-
crete hardness of both problems remains an intriguing open question.

2 Preliminaries

In this work, we assume that logarithm is always base 2. Let again Pgen(1λ)
be a parameter generation algorithm that given as input the security parameter
λ in unary outputs a prime p of length λ = dlog pe. The ROS problem for `
dimensions, displayed in Figure 1, is hard if no adversary can solve the ROS
problem in time polynomial in the security parameter λ. i.e.:

AdvrosPgen,A,`(λ) := Pr
[
ROSPgen,A,`(λ) = 1

]
= negl(λ) .

Alternative formulations of ROS. Fuchsbauer et al. [FPS20, Fig. 7] present a
variant of the ROSPgen,A,`(λ) gamewith linear instead of affine functions ρi (i.e.,
where ρi,` = 0). Hauck et al. [HKL19, Fig. 3] allow only for linear functions, and
do not allow for auxiliary information aux within Hros (i.e., where auxi = ⊥).6

These formulations are all equivalent.
First, any adversary A for ROS with affine functions as per Figure 1 can be

reduced to an adversary B for ROS with linear functions as per [FPS20]: B runs
A and for every query of the form ((ρi,0, . . . , ρi,`), auxi) to the oracle Hros (made
by A), it returns Hros((ρi,0, . . . , ρi,`−1), (ρi,`‖auxi)) − ρi,`. Finally, B modifies
accordingly the solution output by A by concatenating ρi,` to the corresponding
auxi.

Second, any adversary A for ROS with linear functions can be reduced to
an adversary B for ROS with linear functions and without auxiliary infor-
mation as per [HKL19]. We assume without loss of generality that A never

6 Our attacks only apply to the case where the scalar set S is a finite field.

4



makes twice the same query. Then B runs A and for every query of the form
((ρi,0, . . . , ρi,`−1, 0), auxi) to the oracle (made by A), it picks a random scalar
r ∈ Z∗p and returns Hros((r · ρi,0, . . . , r · ρi,`−1),⊥) · r−1 mod p. When A outputs
a solution (ρi, auxi)i∈[0,`], (cj)j∈[0,`−1], B outputs (r · ρi)i∈[0,`], (cj)j∈[0,`−1]. The

simulation of the oracle Hros is perfect unless there is a collision in the scalar r,
which happens with negligible probability in λ.

3 Attack

In this section, we prove Theorem 1. We abuse notation and ρi denotes both
the vector ρi = (ρi,0, . . . , ρi,`) ∈ Z`+1

p and the corresponding affine function

ρi(x) =
∑`−1
j=0 ρi,j · xj + ρi,` (where x = (x0, . . . , x`−1)).

Proof (of Theorem 1). We construct an adversary for ROSPgen,A,`(λ), where
` > log p. Recall that to simplify the description of the attack, we use a polyno-
mial formulation of ROS, i.e., we represent vectors ρi = (ρi,0, . . . , ρi,`) as linear
multivariate polynomials in Zp[x0, . . . , x`−1]:

ρi(x0, . . . , x`−1) = ρi,0x0 + · · ·+ ρi,`−1x`−1 + ρi,` . (1)

The goal for the adversary A is to output (ρi, auxi)i∈[0,`] and c = (c0, . . . , c`−1)
such that:

ρi(c) = Hros(ρi, auxi) for all i ∈ [0, `].

Define:

ρi := xi for i = 0, . . . , `− 1,

and find two strings aux0i and aux1i such that cbi := Hros(ρi, auxb) are different
for b = 0 and b = 1.7 Then, let:

x′i :=
xi − c0i
c1i − c0i

for all i = 0, . . . , ` − 1. We remark that, if xi = cbi , then x′i = b (for b = 0, 1).

Define ρ` :=
∑`−1
i=0 2ix′i, and query y := Hros(ρ`,⊥). Finally, write y in binary

as:

y =

`−1∑
i=0

2ibi (mod p).

(As 2` > p, it is possible to write y this way, and this implicitly defines the bi’s.)

The adversary A outputs the solution (ρ0, aux
b0
0 ), . . . , (ρ`−1, aux

b`−1

`−1 ), (ρ`,⊥) and

7 This step is the reason why the algorithm is expected polynomial time instead of
polynomial time. Note that, since aux ∈ {0, 1}∗, there will always be two values
aux0i , aux

1
i ∈ {0, 1}∗ so that c0i 6= c1i .

5



c := (cb00 , . . . , c
b`−1

`−1 ). We have indeed that, for i ∈ [0, `− 1], ρi(c) = cbii =

Hros(ρi, aux
bi
i ) and:

ρ`(c) =

`−1∑
i=0

2ix′i(c) =

`−1∑
i=0

2ibi = y = Hros(ρ`,⊥) .

ut

Remark 1. In [FPS20, Sec. 5], Fuchsbauer, Plouviez, and Seurin proposed a vari-
ant of ROS, called modified ROS. The attack above does not apply to modified
ROS.

4 Generalized attack

We present a combination of Wagner’s subexponential k-list attack and the
polynomial time attack from Section 3. This combined attack yields a subexpo-
nentially efficient algorithm against ROS which requires fewer dimensions than
the attack in the previous section (i.e., less than λ = dlog pe). However, for some
practical cases, the attack significantly outperforms Wagner’s attack in terms of
work, for the same number of dimensions. At a very high level, our attack works
as follows. We set k1 = 2w−1, k2 = max(0, dλ− (w+1) ·Le), and the dimension
` = k1 + k2, for some integer w and some real number L > 0.

First, we use a generalization of Wagner’s algorithm to find a “small” sum
s = y∗k2 +· · ·+y∗` of k1 values y∗i := −Hros(ρi, auxi), where the polynomials ρi(x)
are chosen to make the second step of the attack work.8 As we describe below,
we can obtain that |s| < 2k2−1 using O(2w+L) hash queries and space O(w2L).
Then, we use the technique from the previous section in order to represent the
sum s as a binary sum of at most k2 terms. Finally, we subtract the k1−1 terms
y∗k2 , ..., y

∗
k2+k1−1 = y∗`−1 to extract the term y∗` . This solves the ROS problem. The

attack runs in overall time O(2w+L), space O(w2L), and requires ` = max(2w −
1, d2w − 1 + λ− (w + 1) · Le) dimensions.

We remark that the attack is a generalization of both Wagner’s attack and our
polynomial-time attack from Section 3. Wagner’s attack corresponds to the case
where L = λ/(w + 1) and ` = 2w − 1. Our polynomial-time attack corresponds
to the case w = 0, L = 0, ` = λ.

Examples. For a prime p of λ = 256 bits, a concrete example yields w = 5, L =
15, i.e., ` = 32 + 256 − 6 · 15 − 1 = 197 dimensions and time roughly 220 and
space roughly 5 · 215 (elements of Zp). On the other hand, Wagner’s algorithm

for 197 dimensions requires time roughly 2blog 197c · 2
256

blog 197c+1 = 27 · 232 = 239

and space roughly blog 197c · 2
256

blog 197c+1 = 7 · 232.
For a 512 bit modulus, a concrete example yields w = 6, L = 46, i.e., ` =

64 + 512− 7 · 46− 1 = 253 dimensions and time roughly 253 and space roughly

8 In the actual attack, part of the second step is executed before to allow to choose
these polynomials properly.

6



6 · 246. Wagner’s algorithm for 254 dimensions requires time roughly 2blog 254c ·
2

512
blog 255c+1 = 27 · 264 = 271 and space roughly blog 254c · 2

512
blog 255c+1 = 7 · 264.9

4.1 Generalized k-List Algorithm

In this section, we write elements Zp as signed integers in [−p−12 , p−12 ]. Let w
and L be two positive integers. We define the following integer intervals:

Ii :=

[
−
⌊

p− 1

2(w−i)·L+1

⌋
,

⌊
p− 1

2(w−i)·L+1

⌋]
.

Remark that Zp = Iw.

We now describe the k-list algorithm, which is the core of the Wagner’s
algorithm. We generalize it to match our needs and to output elements that
sum to something in I−1 rather than to exactly 0. (This essentially corresponds
to executing Wagner’s attack as usual, but stopping earlier.) The algorithm is
defined relative to random oracle Hros. It takes as input (w,L,ρ1, . . . ,ρk) and
outputs (aux∗1, . . . , aux

∗
k) with k = 2w such that:

s := y∗1 + · · ·+ y∗k ∈ I−1 where y∗i := Hros(ρi, aux
∗
i ) .

The high-level idea of the algorithm is to use 2w+1−1 lists of about 2L values
organized as a tree, as depicted in Fig. 2, and to ensure that lists Lwi at level i
contains elements from the set Ii.

– Setup/Leaves: k-List fills the lists Lwi in the leaves with 2L points of the
form Hros(ρi, aux) ∈ Zp = Iw, for aux ∈ [1, 2L].

– Collisions/Join: The algorithm now proceeds to find collisions in levels
from w to 1. At level i, process the 2i−1 pairs of lists (Li1,L

i
2), . . . , (L2i−1,L2i)

into 2i−1 lists Li−11 , . . . ,Li−12w−1 as follows:

Li−1j := {a+ b : a ∈ Li2j−1, b ∈ Li2j , a+ b ∈ Ii} .

(Remember that a, b ∈ Zp and a + b is computed modulo p.) Moreover, we
implicitly assume that the algorithm stores back pointers to a and b s.t. they
can efficiently be recovered at a later point.

– Output: Let L0 = L0
1 denote the (only) list created at level 1. The algorithm

finds an element s ∈ L0 such that s ∈ I−1. If no such element exists, it
returns ⊥. Otherwise, it recovers k = 2w strings aux∗1, . . . , aux

∗
k such that

y∗i = Hros(ρi, aux
∗
i ) ∈ Lwi and s = y∗1 + · · ·+ y∗k. It returns (aux∗1, . . . , aux

∗
k).

We formally write the algorithm k-List in Figure 3.

9 Indeed, when considering the exact values of the constants in the asymptotics, the

actual complexity of Wagner’s attack is 2blog(`+1)c · 2
p

b`+1c+1 .

7



⊆ I0

⊆ I1

...

⊆ Iw−1

⊆ Iw = Zp

L0
1

./

L1
1 L1

2

./ ./
...

. . .
...

. . .
...

...
...

...

Lw−1
1 Lw−1

2
. . . Lw−1

2w−1

./ ./ ./

Lw1 Lw2 Lw3 Lw4 . . . Lw2w−1 Lw2w

Fig. 2. Tree of lists for the k-list algorithm (./ represents the join operation in the
algorithm; the sets in the right handside are the sets to which the elements of the lists
of a given level belong).

Correctness. We do not prove correctness of k-List in this work, since our algo-
rithm’s correctness is implied by the correctness of Wagner’s original algorithm.
More precisely, our algorithm performs identical steps as Wagner’s, but stops
upon finding a sum of values with a suitably small absolute value, i.e., one that
falls into I0. On the other hand, Wagner’s algorithm keeps continuing with more
levels until it finds values who sum to 0. However, we remark that we are not
aware of a formal analysis of Wagner’s algorithm for values in Zp. The work
of Minder and Sinclair [MS09] analyses the case of finding a weighted sum of
vectors of Zp values that sum to zero in each component, but uses a different
technique from the one presented in Wagner’s paper (and used here). Our attack
can be seen as working under the assumption that Wagner’s algorithm works
correctly, i.e., has constant failure probability (see below). We can repeat the at-
tack until it succeeds, which makes the resulting algorithm expected polynomial
time. Formally analyzing the failure probability of Wagner’s algorithm over Zp
remains an important open problem.

Complexity. Overall, the algorithm runs in time O(2w+L) and is conjectured
to succeed with constant probability. (As described [Wag02], this running time
is made possible using an optimized join operation such as Hash Join or Merge
Join). The algorithm uses space O(2w+L), but by evaluating the collisions/joins
in postfix order (in the tree), this can be reduced to O(w2L).

8



Algorithm k-ListHros(w,L,ρ1, . . . ,ρ2w )

// Setup

Lwi := {Hros(ρi, aux)}aux∈[1,2L] for i ∈ [1, 2w]

// Collisions

for i = w downto 1:

for j ∈ [1, 2i−1] :

Li−1
j = {a+ b : a ∈ Li2j−1, b ∈ Li2j , a+ b ∈ Ii}

// Output

look for an element s = y∗1 + · · ·+ y∗k ∈ L0 ∩ I−1

if such an element does not exists then return ⊥
return (aux∗1, . . . , aux

∗
k) such that y∗i = Hros(ρi, aux

∗
i )

Fig. 3. The k-list algorithm.

4.2 Combined Attack

We now prove Theorem 2.

Proof. Recall that k1 = 2w−1 and k2 = max(0, dλ−(w+1) ·Le). Set ` = k1+k2.
For all i ∈ [0, `− 1], define:

ρi := xi ,

and find two strings aux0i and aux1i with different hash values c0i = Hros(ρi, aux
0
i )

and c1i = Hros(ρi, aux
1
i ). Then, let:

x′i :=
xi − c0i
c1i − c0i

for all i ∈ [0, k2 − 1]. We remark that, if xi = cbi , then x′i = b (for b = 0, 1).
Define:

ρ` :=

k2−1∑
i=0

2ix′i −
⌊

p− 1

2(w+1)·L+1

⌋
−
k1+k2−1∑
i=k2

xi .

Run (auxk2 , . . . , aux`) := k-ListHros(w,L,ρk2 , . . . ,ρ`) (where k = k1+1 = 2w)
and define for i ∈ [k2, `]:

y∗i := Hros(ρi, aux
∗
i ) ,

and ci := y∗i for i ∈ [k2, `− 1]. Set:

s :=
∑̀
i=k2

y∗i ∈ I−1 =

[
−
⌊

p− 1

2(w+1)·L+1

⌋
,

⌊
p− 1

2(w+1)·L+1

⌋]
. (2)

Write s+ b(p− 1)/2(w+1)·L+1c in binary as:

s+

⌊
p− 1

2(w+1)·L+1

⌋
=

k2−1∑
i=0

2ibi ∈
[
0,

⌊
p− 1

2(w+1)·L

⌋]
, (3)

9



50 100 150 200 250
22

230

258

286

Open sessions (`)

A
tt

a
ck

co
st

This work (Section 4)

Wagner [Wag02]

Fig. 4. Concrete cost of our combined attack compared to Wagner’s [Wag02] for
λ = 256 and ` < 256. The color key indicates the different values of w used to estimate
the cost. For ` ≥ 256, the attack of Section 3 applies.

which is possible since p < 2λ, k2 = λ− (w+1) ·L, hence (p−1)/2(w+1)·L < 2k2 .
Define:

auxi =

{
auxbii for i ∈ [0, k2 − 1] ,

aux∗i for i ∈ [k2, k1 + k2] from k-List.

A outputs: (ρ0, aux0), . . . , (ρ`, aux`) and:

c := (cb00 , . . . , c
bk2

k2
, ck2+1, . . . ck2+k1−1) .

We have indeed that:

ρi(c) = ci =

{
cbii = Hros(ρi, aux

bi
i ) for i ∈ [0, k2 − 1] ,

y∗i = Hros(ρi, aux
∗
i ) for i ∈ [k2, k1 + k2 − 1] .

and:

ρ`(c) =

k2−1∑
i=0

2ix′i(c)−
⌊

p− 1

2(w+1)·L+1

⌋
−
k1+k2−1∑
i=k2

xi(c)

=

k2−1∑
i=0

2ibi −
⌊

p− 1

2(w+1)·L+1

⌋
−
k1+k2−1∑
i=k2

y∗i

= s−
k1+k2−1∑
i=k2

y∗i = y∗k2+k1 = Hros(ρ`, aux
∗
` ) ,

where the third equality comes from Equation (3) while the fourth equality
comes from Equation (2). The attack requires k1 + k2 = max{2w − 1, d2w − 1 +
λ− (w + 1) · Le} dimensions, runs in time O(2w+L), and in space O(w2L). ut

10



5 Affected blind signatures

For simplicity and clarity of exposition, we implement only the attack presented
in Section 3. Our attack can be easily adapted for the one presented in Section 4.

Throughout the remaining of this manuscript, we will assume the existence
of a group generator algorithm GrGen(1λ) that, given as input the security pa-
rameter in unary form outputs the description Γ = (G, p,G) of a group G of
prime order p generated by G. Similarly to Section 2, we assume that the prime
p is of length λ. We use additive notation for the group law.

5.1 Schnorr blind signatures

A Schnorr blind signature [Sch01, FPS20] for a message m ∈ {0, 1}∗ consists of
a pair (R, s) ∈ G×Zp such that sG−cX = R, where c := H(R,m) and X ∈ G is
the verification key. A formal description of the protocol can be found in [FPS20,
Fig. 6], using the same notation employed here.

We construct a probabilistic (expected) polynomial-time adversary A that is
able to produce `+ 1 signatures after opening ` ≥ dlog pe = λ parallel sessions.
A selects a message m` ∈ {0, 1}∗ for which a signature will be forged. It opens `
parallel sessions, querying Sign0() and receiving R = (R0, . . . , R`−1) ∈ G`. Let
mb
i be a random message and cbi := H(Ri,m

b
i ) for i ∈ [0, `− 1] and b ∈ {0, 1}.

If c0i = c1i , two different messages m0
i and m1

i are chosen until c0i 6= c1i . Define
ρ` :=

∑
i 2ix′i as per Section 3, that is:

ρ`(x0, . . . , x`−1) :=

`−1∑
i=0

2i · xi − c
0
i

c1i − c0i
=

`−1∑
i=0

ρ`,ixi + ρ`,` . (4)

Let R` := ρ`(R) − ρ`,` · X, where ρ`(R) denotes the evaluation of the affine

function ρ` over (R0, . . . R`−1). Define c` := H(R`,m`) =
∑`−1
i=0 2ibi and let

c = (cb00 , . . . , c
b`−1

`−1 ). Complete the ` opened sessions querying Sign1(i, cbii ), for

i ∈ [0, `− 1]. The adversary thus obtains responses s := (s0, . . . , s`−1) ∈ Z`p
satisfying:

siG− cbii X = Ri, for i ∈ [0, `− 1].

Let s` := ρ`(s). Then (m`, (R`, s`)) is a valid forgery. In fact, by perfect correct-
ness of Schnorr blind signatures, we have:

R` = ρ`(R)− ρ`,`X =

`−1∑
i=0

ρ`,i ·Ri + ρ`,` · (G−X)

=

`−1∑
i=0

ρ`,i · (siG− cbii X) + ρ`,` · (G−X)

= ρ`(s) ·G− ρ`(c) ·X
= s`G− c`X,

11



where c` = H(R`,m`) = ρ`(c) by Equation (4). Let mi := mbi
i for i ∈ [0, `− 1].

The adversary outputs (mi, (Ri, si)) for i ∈ [0, `].

Remark 2. The attack does not apply to the clause blind Schnorr signature
scheme [FPS20, Sec. 5], which relies on the modified ROS problem.

5.2 Okamoto–Schnorr blind signatures

An Okamoto–Schnorr blind signature [PS00] for a message m consists of a tuple
(R, s, t) ∈ G×Z2

p such that sG+ tH − cX = R, where c := H(R,m), and (G,H)
are two nothing-up-my-sleeve generators of G. The attack of the previous section
directly extends to Okamoto–Schnorr signatures: A operates exactly as before
until Equation (4). Then, the forgery is constructed as:(

R` := ρ`(R) + ρ`,`H − ρ`,`X, s` := ρ`(s), t` := ρ`(t)
)
.

We stress again that this does not contradict the security analysis of Stern
and Pointcheval [PS00], whose security was reduced to DLOGGrGen,A(λ) for a
polylog(λ) number of queries.

6 Other constructions affected

In this section, we overview how the attacks presented in Sections 3 and 4 apply
to a number of other cryptographic primitives. To simplify exposition, we focus
on adapting the attack of Section 3. We note that, in some cases (e.g., multi-
signatures), we break the security claims of the papers, while for other primitives
(e.g., threshold signatures), our attack illustrates the tightness of the security
theorems, which assume either non-concurrent setting, or up to a logarithmic
number of concurrent executions.

6.1 Multi-Signatures

A multi-signature scheme allows a group of signers S1, . . . , Sn, each having their
own key pair (pkj , skj), to collaboratively sign a message m. The resulting sig-
nature can be verified given the message and the set of public keys of all signers.

CoSi. CoSi is a multi-signature scheme introduced by Syta et al. [STV+16],
that features a two-round signing protocol. The signers are organized in a tree
structure, where S1 is the root of the tree. A signature for a message m ∈
{0, 1}∗ consists of a pair (c, s) ∈ Z2

p such that c = H(sG − c · pk,m), where
pk =

∑n
j=1 pkj ∈ G is the aggregated verification key. A formal description of

the protocol can be found in [DEF+19, Sec. 2.5]; we use the same notation,
except that we employ additive notation xG instead of multiplicative notation
gx.

12



Attack. We present an attack for a two-node tree where the attacker controls
the root S1. The attack can easily be extended to other settings, similarly
to [DEF+19, Sec. 4.2]. Our attack allows the signer S1 to forge one signature, for
an arbitrary message m` ∈ {0, 1}∗, after performing ` ≥ dlog pe = λ interactions
with the honest signer S2. Recall that pk = pk1 + pk2 where pki = skiG. The
signing protocol proceeds as follows. First, S1 obtains a commitment t2 = r2G
from S2, and computes t̄ = t1 = r1G+t2 for a random r1. Then, S1 computes the
challenge c = H(t̄, m), and sends (t̄, c) to S2. Next, S2 returns s2 := r2 + c · sk2.
Finally, S1 computes s := s2 + r1 + c · sk1 and outputs the signature (c, s) for
the message m.

The attack proceeds as follows. S1 opens ` parallel sessions with ` arbitrary
distinct messages m0, . . . ,m`−1 ∈ {0, 1}∗. For each session, S1 gets the com-
mitments ti = riG from S2 at the end of the first round of signing. Now, it
samples two random values ri,0, ri,1 for each i ∈ [0, `− 1], defines t̄0i = ri,0G+ ti
and t̄1i = ri,1G + ti, and computes cbi = H(t̄bi ,mi). (As usual, if c0i = c1i , S1

samples again ri,0 and ri,1 until c0i 6= c1i .) S1 then defines the polynomial ρ :=∑`−1
i=0 2ixi/(c

1
i − c0i ), computes t` := ρ(t0, . . . , t`−1) and c` := H(t`,m`). S1 com-

putes d` = c`−ρ(c00, . . . , c
0
`−1) and writes this value in binary as d` =

∑`−1
i=0 2ibi.

It then closes the ` sessions by using t̄i = t̄bii and ci = cbii . At the last step
of the signing sessions, S1 obtains values si = ri + ci · sk2 from S2, and closes
the sessions honestly using ri,bi . Finally, S1 concludes its forgery by defining
s` := ρ(s) + c` · sk1: the pair (c`, s`) is a valid signature for m`. In fact:

s`G− c` · pk = (ρ(s) + c` · sk1)G− c` · pk

=

`−1∑
i=0

2isi
c1i − c0i

G− c` · pk2

=

`−1∑
i=0

2i(ri + cbii · sk2)

c1i − c0i
G− c` · pk2

=

`−1∑
i=0

2iri
c1i − c0i

G+

(
`−1∑
i=0

2icbii
c1i − c0i

− c`

)
· pk2

=

`−1∑
i=0

2iti
c1i − c0i

+

(
`−1∑
i=0

2ibi +

`−1∑
i=0

2ic0i
c1i − c0i

− c`

)
· pk2

=

`−1∑
i=0

2iti
c1i − c0i

+

(
`−1∑
i=0

2ibi + ρ(c00, . . . , c
0
`−1)− c`

)
︸ ︷︷ ︸

=d`−d`=0

·pk2

= ρ(t0, . . . , t`−1) = t` ,

and c` = H(t`,m`) by definition.

13



Two-round MuSig As in [DEF+19], the above technique (with some minor
modifications) can be applied to the two-round MuSig as initially proposed by
Maxwell et al. [MPSW18a], as the main difference between CoSi and two-round
MuSig is in how the public key is aggregated in order to avoid rogue-key attacks.
Our attack does not apply to the updated MuSig that uses a 3-round signing
algorithm [MPSW18b].

6.2 Threshold signatures

A (t, n)-threshold signature scheme assumes that the secret signing key is split
among n parties P1, . . . ,Pn in a way that allows any subset of at least t out of
the n parties to produce a valid signature. As long as the adversary corrupts
less than the threshold number of parties, it is not possible to forge signatures
or learn any information about the signing key.

GJKR07. Gennaro, Jarecki, Krawczyk, Rabin proposed a threshold signa-
ture scheme based on Pedersen’s distributed key generation (DKG) protocol
in [GJKR07, Section 5.2]. At a very high level, Pedersen’s DKG protocol allows
to generate a random group element X = χG so that its discrete logarithm
χ is shared both additively and according to Feldman secret sharing [Fel87]
scheme, between a set of “qualified” parties. For the attack we present below,
all parties P1, . . . ,Pn (included the ones that are controlled by the adversary)
will remain qualified.10 We denote by χj the additive share of party Pj . We have
χ =

∑n
j=1 χj . Importantly for the attack, the adversary controlling for example

P1, can see all the group elements χ2G, . . . , χnG and then can choose its value
χ1. This is due to the way the Feldman secret sharing is performed.

In the threshold signature scheme of Gennaro et al. [GJKR07], the parties
execute a distributed key generation procedure to produce a verification key
pk := sk ·G ∈ G, where the secret key sk is additively shared between the parties:
each party Pj has an additive share skj , so that sk =

∑n
j=1 skj . A signature (R, s)

for a messagem ∈ {0, 1}∗ is generated as follows. The participants run once again
the distributed key generation protocol to produce a commitment t = rG ∈ G,
where r is additively shared between the parties: each party Pj has a share rj ,
so that r =

∑n
j=1 rj . Then, each party computes a share of the response:

sj = rj + c · skj , where c := H(t,m). (5)

Let s :=
∑n
j=1 sj . Then (c, s) is a valid signature on m. In fact:

sG =

n∑
j=1

rjG+ c ·
n∑
j=1

skj ·G = t+ c · pk, (6)

where c = H(t,m).

10 We do not use the fact that only a threshold t+1 of the parties are required to sign in
our attack. We assume that all the parties come to sign, to simplify the description
of the attack.

14



Concurrent Setting Insecurity. Gennaro et al. [GJKR07] proved the security of
the scheme in a standalone sequential setting, where no two instances of the
protocol can be run in parallel. We remark that if an adversary is allowed to
start ` ≥ dlog pe sessions in parallel, the attack against CoSi in Section 6.1 can be
directly adapted to attack this threshold signature scheme for n = 2. The attack
of both schemes use the fact that the adversary P1 (or signer S1 in CoSi) can see
the commitment t2 = r2G of the honest party P2 (or honest signed S2) and only
then choose r1 that defines the commitment t = r1G+ t2. The generalization to
any n ≥ 2 is straightforward.

Scope of the attack. Our attack is an attack against the proposed threshold
signature scheme when instantiated with Pedersen’s DKG, but not an attack
against Perdersen’s DKG itself (i.e., JF-DKG from [GJKR07, Fig. 1]). Further-
more, the attack does not work when Perdersen’s DKG is replaced by the new
DKG protocol from [GJKR07, Fig. 2].

Original version of FROST. Komlo and Goldberg FROST [KG20a] proposed
an extension of the above threshold signature scheme that was similarly affected
by the above concurrent attack. On 19 July 2020, they updated the signing
algorithm [KG20b] in a way that is no more susceptible to the above issue: each
party now shares (Dj , Ej) and the commitment is computed as R =

∑
j Dj +

hjEj , where hj := H((Dj , Ej , j)j∈[t]). We direct the reader to [KG20b, Fig. 3]
for a more detailed illustration of the problem and the fix.

6.3 Partially blind signatures

Partially blind signatures [AO00] are an extension of blind signature schemes
that allow the signer to include some public metadata (e.g., expiration date,
collateral conditions, server name, etc.) in the resulting signature. The original
construction [AO00], as well as schemes inspired from it, such as Anonymous
Credentials Light [BL13] and restrictive partially-blind signatures from bilinear
pairings [CZMS06], might not provide the desired security properties.

Abe–Okamoto. Abe and Okamoto [AO00, Fig. 1] propose a partially blind
signature scheme inspired from Schnorr blind signatures. Given a verification
key X := xG and some public information info that is hashed into the group
Z := H(info), a partially blind signature for the message m ∈ {0, 1}∗ is a tuple
(r, c, s, d) ∈ Zp where c+ d = H(rG+ cX, sG+ dZ, Z, m).

Attack. The security of the above partially blind signature is proved up to a poly-
logarithmic number of parallel open sessions in the security parameter [AO00].
We show that the security claim is tight by showing that there exists a poly-time
attacker against one-more unforgeability in the setting where the adversary can
have ` = O(λ) open sessions using the same metadata info. The attack follows
essentially the same strategy of Section 5.1. First, the attacker opens ` parallel

15



sessions and obtains the commitments (Ai, Bi) ∈ G2 for i ∈ [0, `− 1]. It then
constructs the polynomial ρ` as per Equation (4). The forged signature for an
arbitrary message m∗ is computed using the challenge:

e` := H(ρ`(A) + ρ`,`X, ρ`(B) + ρ`,`Z, Z, m
∗)− ρ`,`

and closing the ` sessions as in Section 5.1, i.e., by using the challenges ebii
where bi is the i-th bit of the canonical representation of e`. Given the signa-
tures (ri, c

bi
i , si, di) for i ∈ [0, `− 1], the attacker can finally create its forgery

(ρ(r),ρ(c),ρ(s),ρ(d)). The forgery is indeed correct because:

ρ(c) + ρ(d) =
∑
i

ρi(c
bi
i + di) + ρ`,` + ρ`,`

= ρ(eb00 , . . . , e
b`−1
`−1 ) + ρ`,`

= H(ρ`(r)G+ ρ`(c)X, ρ`(s)G+ ρ`(d)Z, Z, m∗) .

Anonymous credentials light. Inspired from Abe’s blind signature [Abe01],
Baldimitsi and Lysyanskaya [BL13] developed anonymous credentials light (ACL).
The security proof of their scheme is under standard assumptions in the sequen-
tial settings. The public parameters are a so-called real public key Y = xG and a
tag public key Z = wG (using the paper’s notation). During the signing protocol,
the signer produces two shares Z1, Z2 of Z such that Z1 + Z2 = Z, and proves
either knowledge of Y (referred to as y-side), or of Z1, Z2 (so-called z-side). The
discrete log of Z1, Z2 is never known by the signer, and the z-branch is inherited
by Abe’s blind signature and is necessary for the proof of security.

The essential difference between ACL and Abe’s blind signature is the com-
putation of Z1: while in Abe’s scheme it is computed invoking the random or-
acle over a random string (so that neither the user nor the signer know its
discrete logarithm), in ACL it is computed starting from the user’s commitment
C =

∑n
i=0 liHi+rH (where l0, . . . , ln) is the list of attributes) and the user could

know a discrete-log relation across multiple sessions. This difference is fatal in
the concurrent settings.

Attack. The attacker A opens ` parallel sessions, all with the same commitment
C, and will provide a one-more forgery for an arbitrary message m∗ on the same
commitment C.

After opening the ` concurrent sessions, the attacker proves in zero-knowledge
(as per protocol issuance) that the attributes required are valid, following the
reigistration phase as prescribed in the protocol. Let d0, . . . , d`−1 denote the
randomization key used by the server to re-randomize the commitment C (dis-
played in [BL13, Fig. 1] as rnd) and sent to the user at the end of the registration
phase. Upon receiving Ai ∈ G (the commitment of the y-side) and A′1,i, A

′
2,i (the

commitment of the z-side), for i ∈ [0, `], the attacker computes the polynomial
ρ` defined in Section 3 (using the commitments and the message of the previous
sessions), and computes the commitment forgeries:

16



A` := ρ`(A0, . . . , A`−1) + ρ`,`Y

A1,` := ρ`(A
′
1,0, . . . , A

′
1,`−1) + ρ`,`C

A2,` := ρ`(A
′
2,0, . . . , A

′
2,`−1) + ρ`,`(Z − C)

For simplicity, we assume that the re-randomization of Z is not performed by
the attacker, i.e. τ = 1, and that no blinding is performed: the attacker simply
hashes the values, as they are received from the adversary. A sends the challenges
according to the bits of H(Z,C,A`, A1,`, A2,`), similarly to Section 5, and receives
the responses (ci, ri, c

′
i, r
′
1,i, r

′
2,i) ∈ Z5

p, for i ∈ [0, `]. The adversary A computes
the forged responses for the y-side:

c` := ρ(c) =

`−1∑
i=0

ρi,`ci + ρ`,`

c′` := ρ(c′) =

`−1∑
i=0

ρi,`c
′
i + ρ`,`

r` := ρ(r) =

`−1∑
i=0

ρi,`ri + ρ`,`

r′1,` := ρ(r′1 + c′ ◦ d) =

`−1∑
i=0

ρi,`(r
′
1,i + c′idi) + ρ`,`

r′2,` := ρ(r′2 − c′ ◦ d) =

`−1∑
i=0

ρi,`(r
′
2,i − c′idi) + ρ`,`

In fact, it holds that:

r`G+ c`Y =
∑̀
i=0

ρi,`
(
riG+ ciY

)
+ ρ`,`(Y +G) = A`

r′1,`G+ c′`C =

`−1∑
i=0

ρi,`
(
r′1,iG+ c′i(C + diG)

)
+ ρ`,`(C +G) = A1,`

r′2,`G+ c′`(Z − C) =

`−1∑
i=0

ρi,`
(
r′2,iG+ c′i(Z − C − diG)) + ρ`,`(Z − C) = A2,`

And the verification of the re-randomization τ is trivially satisfied.

6.4 Conditional blind signatures

Conditional blind signatures (CBS), introduced by Grontas et al. [ZGP17], allow
a user to request a blind signature on messages of their choice, and the server has

17



a secret boolean input which determines if it will issue a valid signature or not.
CBS only allow a designated verifier to check the validity of the signature; the
user will not able to distinguish between valid and invalid signatures. Conditional
blind signature have application in e-voting schemes [GPZZ19].

ZGP17. Zacharakis et al. [ZGP17] propose an instantiation of CBS as an exten-
sion of Okamoto–Schnorr blind signatures, where the (designated) verifier holds
a secret verification key k ∈ Zp and publishes K = kG as public information.
During the execution of Okamoto–Schnorr, one of the two responses (s, t) will
be computed in G rather than Zp, using K as a generator. Only the designated
verifier, who knows the discrete log of K can now check the verification equation.

The attack from Section 5.2 directly applies also to their scheme, and leads
to a poly-time adversary that with λ queries to the signing oracle for the same
bit b = 1 can produce one-more forgery with overwhelming probability. This
attack does not invalidate the security claims of [ZGP17], which are argued only
for a poly-logarithmic number of parallel open sessions.

6.5 Other schemes

The following papers prove rely on the hardness of the ROS problem for their
security proofs, and henceforth may not provide the expected security guaran-
tees: blind anonymous group signatures [CFLW04]; blind identity-based sign-
cryption [YW05]; blind signature schemes from bilinear pairings [CHYC05].

7 Conclusions

Our work provides a polynomial attack against ROS`(λ) when ` > log p, and a
sub-exponential attack for ` < log p. This impacts the one-more unforgeability
property of Schnorr and Okamoto–Schnorr blind signatures, plus a number of
cryptographic schemes derived from them. Our attacks run in polynomial time
only in the concurrent setting, and only for ` > log p parallel signing sessions.

Concretely, the cost of the attack and the number of sessions required are
rather small: for today’s security parameters, the attack could be already mounted
with ` = 9 parallel open sessions. As already pointed out by [FPS20], even just
` = 16 open sessions could lead to a forgery in time O(255). For ` = 128, our
attack of Section 4 leads to a forgery in time O(232). For ` = 256, our attack
of Section 3 produces a forgery in a matter of seconds on commodity hardware.
Although 256 parallel signing sessions might seem at first unrealistic, modern
large-scale web servers must handle more than 10 million concurrent sessions11.
Given our attack, the main takeaway of our work is that blind Schnorr signatures
are unsuitable for wide-scale deployments.

The easiest countermeasure to our attack could be to allow only for sequential
signing sessions, as Schnorr blind signatures are unforgeable in the algebraic

11 For further information, read the C10K problem (’99) and the C10M problem (’11).

18



group model for polynomially many sessions [KLRX]. Another countermeasure
to our attack could be to employ (much) larger security parameters, require
the signer to enforce strong ratio limits, and perform frequent key rotations,
accepting the tradeoffs given by our attacks. Finally, Fuchsbauer et al. [FPS20]
recently introduced a variant of blind Schnorr signatures (the clause version)
which is unaffected by our attack. Unfortunately, it relies on the conjectured
hardness of the so-called modified ROS problem, which is still relatively new and
has not been subject to any significant cryptanalysis.

To conclude, other blind signature schemes are to this day considered secure
and should be considered as alternatives: blind RSA [Cha82], blind BLS [Bol03],
and Abe’s blind signature scheme [Abe01, KLRX].

References

Abe01. Masayuki Abe. A secure three-move blind signature scheme for polyno-
mially many signatures. In Birgit Pfitzmann, editor, EUROCRYPT 2001,
volume 2045 of LNCS, pages 136–151. Springer, Heidelberg, May 2001.

AO00. Masayuki Abe and Tatsuaki Okamoto. Provably secure partially blind
signatures. In Mihir Bellare, editor, CRYPTO 2000, volume 1880 of LNCS,
pages 271–286. Springer, Heidelberg, August 2000.

BL13. Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light.
In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM
CCS 2013, pages 1087–1098. ACM Press, November 2013.

Bol03. Alexandra Boldyreva. Threshold signatures, multisignatures and blind
signatures based on the gap-Diffie-Hellman-group signature scheme. In
Yvo Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 31–46.
Springer, Heidelberg, January 2003.

Bra94. Stefan Brands. Untraceable off-line cash in wallets with observers (ex-
tended abstract). In Douglas R. Stinson, editor, CRYPTO’93, volume
773 of LNCS, pages 302–318. Springer, Heidelberg, August 1994.

CFLW04. Tony K. Chan, Karyin Fung, Joseph K. Liu, and Victor K. Wei. Blind
spontaneous anonymous group signatures for ad hoc groups. In ESAS,
volume 3313 of Lecture Notes in Computer Science, pages 82–94. Springer,
2004.

Cha82. David Chaum. Blind signatures for untraceable payments. In David
Chaum, Ronald L. Rivest, and Alan T. Sherman, editors, CRYPTO’82,
pages 199–203. Plenum Press, New York, USA, 1982.

CHYC05. Sherman S. M. Chow, Lucas Chi Kwong Hui, Siu-Ming Yiu, and K. P.
Chow. Two improved partially blind signature schemes from bilinear pair-
ings. In Colin Boyd and Juan Manuel González Nieto, editors, ACISP 05,
volume 3574 of LNCS, pages 316–328. Springer, Heidelberg, July 2005.

CZMS06. Xiaofeng Chen, Fangguo Zhang, Yi Mu, and Willy Susilo. Efficient prov-
ably secure restrictive partially blind signatures from bilinear pairings. In
Giovanni Di Crescenzo and Avi Rubin, editors, FC 2006, volume 4107 of
LNCS, pages 251–265. Springer, Heidelberg, February / March 2006.

DEF+19. Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss,
Gregory Neven, and Igors Stepanovs. On the security of two-round multi-
signatures. In 2019 IEEE Symposium on Security and Privacy, pages
1084–1101. IEEE Computer Society Press, May 2019.

19



Fel87. Paul Feldman. A practical scheme for non-interactive verifiable secret
sharing. In 28th FOCS, pages 427–437. IEEE Computer Society Press,
October 1987.

FPS20. Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind schnorr
signatures and signed ElGamal encryption in the algebraic group model.
In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part II,
volume 12106 of LNCS, pages 63–95. Springer, Heidelberg, May 2020.

GJKR07. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Se-
cure distributed key generation for discrete-log based cryptosystems. Jour-
nal of Cryptology, 20(1):51–83, January 2007.

GPZZ19. Panagiotis Grontas, Aris Pagourtzis, Alexandros Zacharakis, and Bing-
sheng Zhang. Towards everlasting privacy and efficient coercion resis-
tance in remote electronic voting. In Aviv Zohar, Ittay Eyal, Vanessa
Teague, Jeremy Clark, Andrea Bracciali, Federico Pintore, and Massim-
iliano Sala, editors, FC 2018 Workshops, volume 10958 of LNCS, pages
210–231. Springer, Heidelberg, March 2019.

HKL19. Eduard Hauck, Eike Kiltz, and Julian Loss. A modular treatment of
blind signatures from identification schemes. In Yuval Ishai and Vincent
Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS,
pages 345–375. Springer, Heidelberg, May 2019.

HKLN20. Eduard Hauck, Eike Kiltz, Julian Loss, and Ngoc Khanh Nguyen. Lattice-
based blind signatures, revisited. In Daniele Micciancio and Thomas Ris-
tenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages
500–529. Springer, Heidelberg, August 2020.

KG20a. Chelsea Komlo and Ian Goldberg. FROST: Flexible round-optimized
Schnorr threshold signatures, 2020. https://crysp.uwaterloo.ca/

software/frost/frost-extabs.pdf; version from ”January 7, 2020”; ac-
cessed 2020-10-04.

KG20b. Chelsea Komlo and Ian Goldberg. FROST: Flexible round-optimized
Schnorr threshold signatures. Cryptology ePrint Archive, Report
2020/852, 2020. https://eprint.iacr.org/2020/852.

KLRX. Julia Kaster, Julian Loss, Michael Rosenberg, and Jiayu Xu. On pairing-
free blind signature schemes in the algebraic group model. Cryptology
ePrint Archive, Report 2020/1071.

MPSW18a. Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille.
Simple Schnorr multi-signature with applications to Bitcoin. Cryptology
ePrint Archive, Report 2018/068, Revision 20180118:124757, 2018. https:
//eprint.iacr.org/2018/068/20180118:124757.

MPSW18b. Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille.
Simple Schnorr multi-signature with applications to Bitcoin. Cryptology
ePrint Archive, Report 2018/068, Revision 20180520:191909, 2018. https:
//eprint.iacr.org/2018/068/20180520:191909.

MS09. Lorenz Minder and Alistair Sinclair. The extended k-tree algorithm. In
Claire Mathieu, editor, 20th SODA, pages 586–595. ACM-SIAM, January
2009.

PS00. David Pointcheval and Jacques Stern. Security arguments for digital sig-
natures and blind signatures. Journal of Cryptology, 13(3):361–396, June
2000.

S+20. W. A. Stein et al. Sage Mathematics Software (Version 9.1). The Sage
Development Team, 2020. http://www.sagemath.org.

20

https://crysp.uwaterloo.ca/software/frost/frost-extabs.pdf
https://crysp.uwaterloo.ca/software/frost/frost-extabs.pdf
https://eprint.iacr.org/2020/852
https://eprint.iacr.org/2018/068/20180118:124757
https://eprint.iacr.org/2018/068/20180118:124757
https://eprint.iacr.org/2018/068/20180520:191909
https://eprint.iacr.org/2018/068/20180520:191909


Sch01. Claus-Peter Schnorr. Security of blind discrete log signatures against in-
teractive attacks. In Sihan Qing, Tatsuaki Okamoto, and Jianying Zhou,
editors, ICICS 01, volume 2229 of LNCS, pages 1–12. Springer, Heidel-
berg, November 2001.

STV+16. Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp
Jovanovic, Linus Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford.
Keeping authorities “honest or bust” with decentralized witness cosign-
ing. In 2016 IEEE Symposium on Security and Privacy, pages 526–545.
IEEE Computer Society Press, May 2016.

Wag02. David Wagner. A generalized birthday problem. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 288–303. Springer, Heidel-
berg, August 2002.

YW05. Tsz Hon Yuen and Victor K. Wei. Fast and proven secure blind
identity-based signcryption from pairings. In Alfred Menezes, editor, CT-
RSA 2005, volume 3376 of LNCS, pages 305–322. Springer, Heidelberg,
February 2005.

ZGP17. Alexandros Zacharakis, Panagiotis Grontas, and Aris Pagourtzis. Con-
ditional blind signatures. Cryptology ePrint Archive, Report 2017/682,
2017. http://eprint.iacr.org/2017/682.

21

http://eprint.iacr.org/2017/682

	On the (in)security of ROS
	Introduction
	Technical Overview
	Impact of the attacks

	Preliminaries
	Attack
	Generalized attack
	Generalized k-List Algorithm
	Combined Attack

	Affected blind signatures
	Schnorr blind signatures
	Okamoto–Schnorr blind signatures

	Other constructions affected
	Multi-Signatures
	Threshold signatures
	Partially blind signatures
	Conditional blind signatures
	Other schemes

	Conclusions


