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Abstract. This work proposes a new lattice two-stage sampling tech-
nique, generalizing the prior two-stage sampling method of Gentry, Peik-
ert, and Vaikuntanathan (STOC ’08). By using our new technique as
a key building block, we can significantly improve security and effi-
ciency of the current state of the arts of simulation-based function-
al encryption. Particularly, our functional encryption achieves (Q, poly)
simulation-based semi-adaptive security that allows arbitrary pre- and
post-challenge key queries, and has succinct ciphertexts with only an
additive O(Q) overhead.
Additionally, our two-stage sampling technique can derive new feasibili-
ties of indistinguishability-based adaptively-secure IB-FE for inner prod-
ucts and semi-adaptively-secure AB-FE for inner products, breaking sev-
eral technical limitations of the recent work by Abdalla, Catalano, Gay,
and Ursu (Asiacrypt ’20).

1 Introduction

Functional Encryption (FE) [13, 35] is a powerful generalization of public-key
encryption (PKE), allowing more fine-grained information disclosure to a secret
key holder. FE with regular syntax can be described as follows – every secret
key is associated with a function f (in some class F), and the decryptor given
such key (i.e., skf ) and a ciphertext Enc(u) can only learn f(u). During the past
decade, there has been tremendous progress of FE for various function classes,
e.g., [2, 4–6,21,26,27] and more.

To facilitate presentation and comparisons with prior work, we consider the
notion of FE with a more fine-grained syntax, which has been studied in the
literature to capture various settings of FE [1,2,13,27]. Particularly, each message
u consists of two parts, namely u := (x, µ), where x is some index (or attribute)4,

4 We note that both the names “index” and “attribute” have been used interchange-
ably in the literature.



and µ is some message. Additionally, each function f consists of two parts,
namely, f := (P, g) ∈ P × G, where P is a predicate over the index, and g is a
function over the message. The overall function acts as:

f(u) :=

{
g(µ) if P(x) = 1
⊥ otherwise.

When decrypting the ciphertext ctu = Enc(x, µ) by skf := sk(P,g), the decryptor
can learn g(µ) if P(x) = 1, and ⊥ otherwise. Under this syntax, we call a key
skf :=(P,g) a 1-key with respect to an index x if P(x) = 1, or otherwise a 0-key.
Intuitively, a 1-key is allowed to open the ciphertext, but a 0-key is not.

Even though FE with the fine-grained syntax is essentially equivalent to the
regular syntax for sufficiently expressive function/predicate classes, it is more
convenient to present our new results in this way. Moreover as noticed since [13],
many advanced encryption schemes such as identity-based encryption, attribute-
based encryption, predicate encryption can be captured naturally from this no-
tion, by different predicate and function classes P × G.

There are two important settings studied in the literature – FE with private
or public index, according to whether the index x is revealed to the decryption
algorithm. In what follows, we first discuss in more details about challenges of
the state of the arts in both settings. Then we present our contributions and
new techniques to break these barriers and advance the research frontiers.

FE with Private Index. In this setting, FE provides very strong privacy guar-
antee where only g(µ) can be learned given a 1-key skP,g and a Enc(x, µ) with
P(x) = 1. It is worthwhile to point out that in this setting, realizing the class
P × {I} for the identity function I is already general enough, as it suffices to
capture FE (of regular syntax) for the boolean circuit class P. In particular, we
can use skP,I and Enc(x, µ) to simulate the exact effect of skP and Enc(x) of the
regular syntax FE. Therefore, following some prior work [2], this work just focus-
es on the function class P × {I} for FE in the private index setting by default.
We discuss this in more details in the full version of this paper.

To capture security, there have been notions of indistinguishable-based (IND)
and simulation-based (SIM) definitions proposed and studied in the literature
since [13]. As raised by [13], the IND-based security is inadequate (i.e., too weak)
in the private index setting for certain functionalities and applications. Thus, it
would be much desirable to achieve the stronger notion of SIM-based notion.

However, there are various settings that the SIM-based notion is too strong
to be attained. For example, the work [13] showed that for very simple func-
tionalities (identity-based encryption), the SIM-based security is impossible for
multiple challenge ciphertexts, even given just one post-challenge key query.
Additionally, the work [4] showed that for FE scheme with respect to the class
of general functions, the ciphertext size must grow linearly with the number
of pre-challenge key queries. Therefore it is impossible to achieve the notion
(poly, poly)-SIM security (allowing an unbounded number of both 1 and 0-keys)
for general functions.
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Despite these lower bounds, the work [27] identified important feasible set-
tings for SIM-based security, by proposing new constructions in the setting of sin-
gle challenge ciphertext and bounded collusion. More specifically, [27] achieved
(Q,Q)-adaptive-SIM FE for the family of polynomial-sized circuits under the
minimal assumption of PKE. Their attained SIM notion is very strong – the
challenge index can be adaptively chosen and the adversary is allowed to query
both pre- and post-challenge key queries, up to some bounded Q times for both
1 and 0-keys. The ciphertexts however, are not succinct (i.e., dependent on the
circuit description of the function), and their size grows with a multiplicative
factor of O(Q4). Even though a recent work [10] improved the multiplicative fac-
tor to O(Q), their ciphertexts are still not succinct, prohibiting other important
applications, such as reusable garbled circuits [26]. Thus, improvements in this
dimension would be very significant.

A subsequent work [26] constructed the first single-key succinct FE for bound-
ed depth circuits, and showed that this suffices for reusable garbled circuits,
solving a long-term open question in the field. However, their scheme [26] has
drawbacks in the following two aspects. First, the single-key FE of [26] achieves
a weaker notion of selective security and only allows one pre-challenge key query
(either a 1 or 0-key). Second, even though the single-key FE of [26] can be boot-
strapped to Q key FE using the compiler of [27], yet the resulting ciphertexts
grows with O(Q4) multiplicatively.

Tackling these drawbacks, two almost concurrent work [2, 6] advanced this
direction of work significantly. Particularly, the work [6] constructed a single key
succinct FE for NC1, and then showed another bootstrapping method (from NC1
to general circuits) that only induces an O(Q2) additive overhead, yet the result-
ing (offline-part) ciphertexts become no longer succinct. The other concurrent
work [2] designed a new succinct single key FE that supports (1, poly) queries for
general circuits, and a new bootstrapping method that achieves (Q, poly)-SIM se-
curity with succinct ciphertexts and O(Q2) additive overhead. As a substantial
milestone, [2] for the first time identified an important and useful5 subclass of
key queries (i.e., 0-keys), where SIM-based security is feasible beyond bounded
collusion. Recently, the work [10] designed a simple yet very novel compiler that
turns any bounded-collusion FE into one with ciphertext growth O(Q) multi-
plicatively. This compiler improves the ciphertext size significantly, but does not
improve the security over the original scheme.

Challenges. The attainable SIM-based security of [2] is however weaker than
that of the work [27] in three aspects – (1) the challenge index needs to be
semi-adaptive (the adversary commits to the challenge right after the master
public-key); (2) the 1-key queries need to be made at one-shot right before the
challenge ciphertext; (3) no more 1-key is allowed for post-challenge phase. How
to bridge the gap between the two methods [2,27] is an important open question.

5 For example in IBE and ABE, 0-keys are useful for decrypting other ciphertexts with
satisfying indices. They just cannot decrypt the specific (challenge) index.
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To measure how large the gap is, we first notice that the semi-adaptive at-
tribute (i.e., aspect (1)) can be mitigated (though not completely satisfactory)
by the generic complexity leveraging argument as also pointed out by [26]. Par-
ticularly, by scaling up the ` in bit-security of the selective scheme, we can
achieve adaptive security over `-bit index. Even though theoretically this would
require to assume sub-exponential security of the underlying hard problem, yet
nevertheless in practice this assumption is usually in use, given the estimations
of the best-known concrete attacks, e.g., the concrete LWE estimation [7].

On the other hand, how to tackle adaptiveness for pre-challenge and post-
challenge key queries seems beyond the current techniques, as the length to
describe all possible key queries requires Q · poly(λ) bits for some unbounded
polynomial, which is too large for the complexity leveraging argument. Thus,
how to improve aspects (2) and (3) would require substantial new techniques.
This work aims to solve these challenges with the following particular goal.

(Main Goal 1:) Design a succinct FE for general bounded depth circuit-
s with (Q, poly)-SIM-based security6, allowing arbitrary pre- and post-
challenge queries for both 1 and 0-keys.

FE with Public Index. The public index setting does not require the scheme
to hide the index, and for many scenarios in this setting the IND security notion
would already be adequate, as pointed out by [13]. Even though FE with public
index can be generically derived from FE with private index, much more efficient
solutions are desired. For example, current instantiations of FE with private index
either use heavy tools such as garbled circuits or fully homomorphic encryption,
while the identity-based encryption [3] (as a special case of FE with public index)
only requires simple lattice operations and thus can be much more efficient.

A recent work [1] studied the class IB×IP, where the IB is the class of identity
comparison predicates and IP is the class of inner products. Particularly, the
work [1] showed that by connecting ABB [3] encoding for IB and ALS [5] encoding
for IP, one can derive a simple FE for IB × IP from lattices. Albeit simple and
efficient, the work [1] can only prove the selective security (over IB) for their
lattice design in the standard model, even though the ABB and ALS encodings
both achieve the adaptive security in their encryption settings. Moreover, note
that their construction idea [1] naturally extends to the setting of AB × IP by
connecting the AB encoding of [11] with ALS, where AB is the general attribute-
based policy functions. However, their proof of security [1] even for the selective
security would hit a subtle yet challenging technical barrier. Our second goal is
to tackle these challenges.

(Main Goal 2:) Determine new proof strategy for the class of IB × IP
and AB× IP in the public index setting.

1.1 Our Contributions

This work aims at the two main goals and makes three major contributions.

6 We notice that (poly, poly) SIM-based security is not possible by the lower bound
of [4]. Thus, (Q, poly) SIM-based security is the best we can hope for in this model.
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Contribution 1. First we propose a new two-stage lattice two-stage sampling
technique, generalizing the prior GPV type two-stage sampling [24]. Using this
new sampling technique, we design a unified framework that handles major chal-
lenges in our two (seemingly different) main goals as we elaborate next. The crux
of our design relies on adding smudging noise over secret keys, which is critical
in the analysis and conceptually new, as all prior work (to our knowledge) only
considered adding smudging noise over ciphertexts, e.g., [2].

Contribution 2. By using our new sampling technique, we improve the prior
designs of [2] substantially as we elaborate below.

– Our first step is to achieve a (1, poly) selectively secure (over the challenge
index) partially hiding predicate encryption (PHPE), allowing general pre-
challenge but no post-challenge key queries. Technically, our construction
simply replaces the key generation algorithm in the very-selective PHPE
of [2]7 by our new sampler. Our result at this step is already stronger than
the work [2] in the following ways.

1. We notice that our PHPE can achieve the adaptive security by the com-
plexity leveraging argument directly, yet the very-selective PHPE of [2]
cannot, as the description of the function for key queries is too large.

2. The two schemes can be upgraded to semi-adaptive security over the
challenging index without the complexity leveraging, yet the transforma-
tion for ours is much more efficient. Particularly, our upgrade only applies
the very light-weight method of [17,30], whereas the very-selective PHPE
of [2] requires to compose PHPE with another FE (ALS [5]). Moreover,
our resulting scheme allows arbitrary pre-challenge key queries, whereas
the resulting scheme of [2] still requires the adversary to commit to the
1-key query before making further 0-key queries.

– Our (1, poly) PHPE can be turned into FE by using the transformation of [2,
29], resulting in a succinct single key (1, poly) FE that allows arbitrary pre-
challenge key queries as long as there is at most one 1-key. This suffices to
construct the reusable garbled circuits [26]. We present a comparison of our
single key succinct FE with prior work in Table 1.

– Our next step is to achieve a succinct (Q, poly) FE that allows arbitrary pre-
and post-challenge queries. To achieve this, we slightly modify the transfor-
mation (from (1, poly) PHPE to (Q, poly) PHPE) of [2] by using the tech-
nique of secret sharing and a new way of generating cover-free sets inspired
by [10]. By applying our new transformation to our (1, poly) PHPE, we derive
a (Q, poly) PHPE that allows arbitrary pre- and post-key queries. Then the
desired FE again follows from the transformation of [2, 29].

Importantly, our transformation inherits many nice properties in [2], e.g.,
the succinctness of the ciphertexts is preserved. Thus, our resulting FE has

7 A very-selective scheme requires the adversary to commit to both the challenge index
and function in the very beginning of the security experiment.
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succinct ciphertexts, whose size grows additively withO(Q), and are indepen-
dent of the function/circuit size. Our result is better than the transformation
of [10], which incurs a multiplicative O(Q) blowup in the ciphertexts.

Ref. (1-key,0-key) (Pre,Post)-Challenge Index Succinct ct

[27] (a, b) : a + b = 1 (3, 3) AD 7

[26] (a, b) : a + b = 1 (3, 7) Sel† 3

[6] (a, b) : a + b = 1 (3, 7) AD 3 for NC1

[2] (1, poly) (37, 7)∗ SA† 3

Ours (1, poly) (3, 7) SA† 3

Table 1. Comparison of Prior Work of Single Key SIM-Secure Public-Key FE.

(∗) The scheme requires the adversary to commit to the 1-key query right after seeing
the master public key. Then the adversary is allowed to make further arbitrary
0-key queries in the pre- and post-challenge phases, but not any more 1-key query.

(†) The selective (Sel)/semi-adaptive (SA) security can be raised to adaptive security
(AD) by the complexity leveraging argument, at the cost of scaling up the security
parameters.

In summary, we achieve our Main Goal 1 for semi-adaptive security over the
challenge index, and the full-fledged of the goal if we further apply the complexity
leveraging argument. Additionally, our scheme for the first time achieves succinct
ciphertexts with only O(Q) additive overhead. We present a comparison of our
(Q, poly) FE with prior work in Table 2.

Ref. (1-key,0-key) (Pre,Post)-Challenge Index Succinct ct Ciphertext size

[27] (Q,Q) (3, 3) AD 7 × O(Q4)

[26]+ [27] (Q,Q) (3, 7) Sel† 3 × O(Q4)

[6] (Q,Q) (3, 7) AD 3 for NC1 + O(Q2)

[2] (Q, poly) (37, 7)∗ SA† 3 + O(Q2)

[2]+ [10]‡ (Q, poly) (37, 7)∗ SA† 3 × O(Q)

Ours (Q, poly) (3, 3) SA† 3 + O(Q)

Table 2. Comparison of Other Private Index SIM-secure Public-Key FE.

(∗) The scheme requires the adversary to commit to all the Q 1-key queries (in one
shot) right after seeing the master public key. Then the adversary is allowed to
make further arbitrary 0-key queries in the pre- and post-challenge phases, but not
any more 1-key query.

(†) Similar to Table 1.
(‡) The generic method in [10] can transform any bounded collusion FE scheme into

one whose ciphertext size grows with O(Q) multiplicatively.
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Contribution 3. Finally, we identify that our new sampling technique is the key
to break the technical barriers of the lattice-based analysis of [1]. Particularly,
for the setting of public index, we construct new FE schemes for IB × IP and
AB × IP. The crux is to replace the key generation algorithm of [1] by our new
pre-sampler. The novelty of this contribution majorly comes from the proof
techniques. In Table 3 we compare our schemes with [1].

Reference IB-FEIP AB-FEIP

[1] (1, poly)-Sel 7

Ours (1, poly)-AD (Q, poly)-SA

Table 3. Comparison of Public Index IND-Based Construction.

1.2 Technical Overview

We present an overview of our new techniques. We first describe our central
technique – a new two-stage sampling method, and then show how it can be
used to achieve our main goals, together with further new insights. Our two-
stage sampling method can be understood without the context of FE, and might
be useful in other applications. Thus we believe that this technique can be of
general interests.

Two-stage Sampling Method. At a high level, we would like to sample the
following two-stage distribution:

– In the first stage, a random matrix A and a random vector u are sampled;
– In the second stage, an arbitrary small-norm matrix R is first specified, and

then a short vector y is sampled conditioned on [A|AR]y = u.
– The overall distribution consists of (A,AR,u,y).

In a series of lattice-based work [1–3, 11, 14, 24, 28, 29], the proof framework
requires to sample this distribution (or its slight variations) in two ways – with
A’s trapdoor and without A’s trapdoor. On the one hand, given the trapdoor of
A, one can efficiently sample this distribution. On the other hand, without the
trapdoor of A, one can also sample the distribution by using the G-trapdoor
technique [33]. Particularly, if we have the G matrix [33] in the right, i.e., the
matrix is of the form [A|AR +γ ·G] with γ 6= 0, then this sampling task can be
solved easily by the sample-right technique [3, 33]. However, our task (and the
security proofs in this work) does not have G in the second matrix, and thus
the prior technique cannot be applied to sample the required distribution.

Is this task even doable? To answer this question, we first consider a simpler
case where there is no R. Then we notice that this task is achievable via the clas-
sic GPV two-stage sampling technique: we first pre-sample y, and set u = Ay.
By setting parameters appropriately, the work [24] showed that the distributions
(A,u,y) generated in the two ways (with trapdoor and without trapdoor) are
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statistically indistinguishable. Moreover, this idea can be generalized to achieve
a weaker version of our task where R is given in the first stage – we simply pre-
sample y, set u = [A|AR]y, and output (A,AR,u,y). In fact, this approach
has been explored by prior work [2] in the context of functional encryption (more
precisely PHPE). Due to the technical barrier that R must be given in the first
stage, schemes using this approach achieve a weak notion of very selective PHPE,
where the adversary needs to commit to the challenge index and 1-key query at
the beginning. We will elaborate more on the connection of FE and PHPE later.

As we discuss above, the challenge comes from the fact that if R is only
given in the second stage, the prior two-stage sampling method cannot generate
u in a way that depends on R. To tackle this, we aim to “eliminate” the effect
of this matrix R in the two-stage sampling process. In particular, we observe
that if the matrix R has a small norm, we can “smudged” its effect by using a
distribution with some larger parameter. With this intention in mind, we propose
the following new two-stage sampling method:

– In the first stage, generate a random A, and pre-sample x from a discrete
Gaussian for some larger parameter ρ. Set u = Ax.

– In the second stage when R is given, sample z from a discrete Gaussian with

a smaller parameter s, and then output y =

(
x−Rz
z

)
.

– The sampler outputs (A,AR,u,y) at the end.

Clearly the output y satisfies [A|AR]y = u. If ρ � s‖R‖, then we can

intuitively think that x smudges Rz, so y =

(
x−Rz
z

)
behaves like y′ =

(
x′

z

)
such that [A|AR]y′ = u. By formalizing this idea, this task is achieved.

Improving FE with Private Index. Our two-stage sampling method can sig-
nificantly improve FE with private index of [2]. Before presenting our insights,
we first briefly review the framework of [2].

At a high level, [2] constructed FE in the following steps:

(1a) Construct a (1, poly) very-selective partially hiding predicate encryption (PHPE)
where the adversary needs to commit to the challenge index and 1-key query
at the beginning of the security experiment.

(1b) Upgrade the basic scheme to (1, poly) semi-adaptive PHPE by composing the
basic scheme with ALS-FE for inner products [5].

(2) Upgrade the (1, poly) semi-adaptive PHPE to (Q, poly) semi-adaptive PHPE.
Here the transformation preserves succinctness of ciphertexts and only incurs
an additive blow up of O(Q2).

(3) Transform the (Q, poly) semi-adaptive PHPE to (Q, poly) semi-adaptive FE.
This step follows from [29] and an additional technique of adding smudging
noise over the ciphertexts.

8



We notice that Step (3) is generic, so it suffices to focus on improving PHPE in
Steps (1a) - (2). To facilitate presentation of our new ideas, we next identify the
following four limitations in the current framework.

– First, Steps (1a) and (1b) require the adversary to commit to his 1-key
challenge query before asking further 0-key queries.

– Second, the step (1b) uses a composition of FE over another FE, which could
be overly complicated and inefficient.

– Third, Step (3) does not support post-challenge 1-key queries.
– Fourth, Step (3) incurs an additive overhead of O(Q2), which is incomparable

with the multiplicative O(Q) overhead the recent work by [10].

Next, we present our new insights to break all these limitations! To describe
how our techniques work, we start with a highly simplified description of the very
selective PHPE of [2]: the master public key contains matrices A, B1, . . . ,B` for
` being the length of the index (private and public combined), and a matrix
P. Given a key query f , the key generation algorithm defines another related
function Cf and computes BCf from B1, . . . ,B` by the technique of key homo-
morphic evaluation [11]. Then the key generation algorithm samples skf := Y
such that [A|BCf ] ·Y = P. Clearly, this sampling task can be easily performed
if the trapdoor of A is given.

In the proof of security, the trapdoor of A is not given. Yet we can set
Bi := A·Ri+x∗iG for challenge index x∗ = (x∗1, . . . , x

∗
` ). (Note that here we do not

need to distinguish public/private index to demonstrate our idea.) Then by the
key homomorphic evaluation method, we have [A|BCf ] = [A|ARCf +Cf (x∗)G].
From the design of Cf , we have Cf (x∗) = 0 if the key query f corresponds to a
1-key with respect to x∗, or otherwise Cf (x∗) 6= 0 if the key query corresponds
to a 0-key. Therefore in the security analysis, one can clearly answer any 0-key
queries as the G-trapdoor appears in the second matrix.

At this moment, the reader can already see that answering the 1-key query
corresponds to the two-stage sampling as we describe above. In fact, the reason
why [2] starts with the very selective notion comes from the fact that the prior
technique requires RCf to be given in the first stage. This requires the adversary
to commit to the challenge 1-key function f and the challenge index at the
beginning of the security experiment.

Note that by using our new two-stage sampling method for the key generation
algorithm, we are able to answer the 1-key query at any moment just before the
challenge ciphertext. Therefore, we can achieve (1, poly) selective FE, allowing
arbitrary pre-challenge key queries. Moreover by the very light-weight method
of [17, 30], the FE can be upgraded to semi-adaptive security8. This solves the
first two limitations, giving an improved way to achieve (1a) + (1b) of [2].

To further break the third and fourth limitations, we first briefly overview
the transformation in Step (2) of [2]. At a high level, besides A,B1, . . . ,B`,

8 The reason why [2] cannot apply the light-weight method is because its basic con-
struction only achieves very selective security, whereas the technique of [17, 30] can
be applied to the selective security only over index.

9



the method generate additional matrices P1, . . . ,PN . The key generation would
choose a small subset ∆ ⊆ [N ] of some fixed cardinality and generate skf := Y
such that [A|BCf ] ·Y = P∆, where P∆ =

∑
i∈∆ Pi. To encrypt a message µ,

the encryption algorithm just additionally generates β1,i = s>Pi + e + q
2|∆|µ

for all i ∈ [N ]. The decryption algorithm can figure out β1,∆ =
∑
i∈∆ β1,i =

s>Pi + e′ + q
2µ, and the rest of the procedure is similar to the (1, poly)-PHPE.

The work [2] requires that for Q randomly sampled sets ∆1, . . . ,∆Q in [N ], it is
overwhelming that the sets are cover-free. By using the result of [27], this would
require N = O(Q2). This explains why the transformation incurs an additive
O(Q2) overhead.

To further reduce the parameter N , it suffices to generate cover-free sets more
efficiently. We then construct a simple set sampler that only requires requires
N = O(Q), inspired by an implicit construction in the work [10]. We identify
that this more efficient cover-freeness suffices for the rest of the proof.

Finally, we show how to handle post-challenge key queries if the message
space is small, e.g., bit encryption. (Here we do not need to place a constraint
on the index length.) Our idea is to share the plaintext µ ∈ {0, 1}, more precisely,
q
2µ, into µ1, . . . , µN , such that any subset ∆ with some fixed cardinality would
recover the message, i.e., q

2µ =
∑
i∈∆ µi. Then we generate ciphertexts β1,i =

s>Pi + e+ µi for all i ∈ [N ]. As a critical proof insight, we show that given all
secret keys of the form (∆,Y), one can only learn

∑
i∈∆ µi = q

2µ but nothing
more. By using this fact, we can design a simulator, who generates simulated
shares µ1, . . . , µN and 2Q sets ∆1, . . . ,∆Q, ∆′1, . . . ,∆

′
Q such that

∑
∆i
µi = q/2,

and
∑
∆′i
µi = 0. Thus in the post-challenge stage, the simulator can answer a

1-key query by using either {∆i} or {∆′i} according to whether µ = 1 or µ = 0.
Notice that the core and useful properties of the above process are that: (1)

the simulation of the ciphertext does not depend on the plaintext µ; (2) the
post-challenge key simulation can consistently generate a key that opens the
simulated ciphertext to either µ = 1 or µ = 0. By further taking fine care of
the details, we are able to achieve (Q, poly)-PHPE that supports arbitrary key
queries and has succinct ciphertext that grows additively with O(Q). This solves
the third and fourth challenges as above and improves Step (2) of [2]. Clearly,
this PHPE can also be transformed into an FE, following Step (3) as [2].

Improving FE with Public Index. Interestingly, the lattice-based construc-
tion of FE with public index [1] faces exactly the same technical challenge as
the very selective PHPE of [2]. Our new two-stage sampling method is the key
missing link of [1] to achieve adaptive IB × IP and semi-adaptive AB × IP. We
further elaborate on this setting in Section 6. The reader would immediately see
the point even just with a glance at the construction.

1.3 Other Related Work

We notice that FE can be obtained from indistinguishable obfuscation (iO) [21],
achieving the notion of (poly, poly)-IND adaptive security via [9]. Even though

10



recently there has been substantial progress for instantiating iO [15,22,31], the
derived FE (as is) cannot achieve the simulation-based security. This is because
the iO-based FE has ciphertext length independent of the number of collusion Q,
and thus according to the lower bound of [4], the scheme cannot be SIM secure.
Moreover as mentioned in [13, 27], IND-based FE does not imply SIM-based FE.
Therefore for the direction of SIM-based FE, our work would shed light on new
methods and feasibilities beyond what can be implied from the recent progress
on the direction of iO [15, 22,31].

In [18], Canetti and Chen show that a single key SIM-secure private-key
FE suffices to construct reusable garbled circuits. Compared with the reusable
garbled circuits derived from our (Q, poly)-SA-SIM FE with Q = 1,9, the con-
struction in [18] achieves the stronger adaptive security with respect to index
without the complexity leveraging argument, yet can only support either a pre-
or post-challenge key query for a NC1 circuit, rather than a general circuit.

2 Preliminaries

2.1 Notations

In this paper, N, Z and R denote the sets of natural numbers, integers and real
numbers, respectively. We use λ to denote the security parameter, which is the
implicit input for all algorithms in this paper. A function f(λ) > 0 is negligible
and denoted by negl(λ) if for any c > 0 and sufficiently large λ, f(λ) < 1/λc. A
probability is called overwhelming if it is 1−negl(λ). A column vector is denoted
by a bold lower case letter (e.g., x). A matrix is denoted by a bold upper case
letter (e.g., A), and its transposition is denoted by A>.

For a set D, we denote by u
$←− D the operation of sampling a uniformly

random element u fromD, and denote |u| as the bit length of u. For an integer ` ∈
N, we use U` to denote the uniform distribution over {0, 1}`. Given a randomized
algorithm or function f(·), we use y ← f(x) to denote y as the output of f and
x as input. For a distribution X, we denote by x← X the operation of sampling
a random x according to the distribution X. Given two different distributions
X and Y over a countable domain D, we denote their statistical distance as
SD(X,Y ) = 1

2

∑
d∈D |X(d)− Y (d)|, and say that X and Y are SD(X,Y ) close.

Moreover, if SD(X,Y ) is negligible in λ, we say that the two distributions are

statistically close, which is always denoted by X
s
≈ Y . If for any ppt algorithm

A that
∣∣Pr[A(1λ, X) = 1]− Pr[A(1λ, Y ) = 1]

∣∣ is negligible in λ, then we say that

the two distributions are computationally indistinguishable, denoted by X
c
≈ Y .

Matrix norms. For a vector x, its Euclidean norm (also known as the `2 norm)
is defined as ‖x‖ = (

∑
i x

2
i )

1/2. For a matrix R, we denote its ith column vector

as ri, and use R̃ to denote its Gram-Schmidt orthogonalization. In addition,

9 Notice that the reusable garbled circuits following from our SIM-secure FE can
achieve SA-SIM security, and support general circuits and any arbitrary pre- and
post-challenge key query, for one query.
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– ‖R‖ denotes the Euclidean norm of R, i.e., ‖R‖ = maxi ‖ri‖.
– s1(R) denotes the spectral norm of R, i.e., s1(R) = sup‖x‖=1‖Rx‖, with
x ∈ Zm.

We know the facts on the above norms: ‖R̃‖ ≤ ‖R‖ ≤ s1(R) ≤
√
k‖R‖

and s1(R|S) ≤
√
s1(R)2 + s1(S)2, where k denote the number of columns of R.

Besides, we have the following lemma for the bounding spectral norm.

Lemma 2.1 ( [20]) Let X ∈ Rn×m be a subgaussian random matrix with pa-
rameter s. There exists a universal constant c ≈ 1/

√
2π such that for any t > 0,

we have s1(X) ≤ c · s · (
√
m+

√
n+ t) except with probability at most 2

eπt2
.

At the same time, we rely on the following useful lemma on cover-free for our
security proof.

Lemma 2.2 (Cover-Freeness [27]) Let ∆1, · · · , ∆Q ⊆ [N ] be randomly cho-
sen subsets of size v. Let v(κ) = Θ(κ) and N(κ) = Θ(vQ2). Then for all i ∈ [Q],

we have Pr
[
∆i\

(⋃
j 6=i∆j

)
6= φ

]
= 1− 2−Ω(κ), where the probability is over the

random choice of subsets ∆1, · · · , ∆Q.

2.2 Gaussians on Lattices.

Due to space limit, we defer well-known background on lattices to the full version
of this paper. Here we just give some useful preliminaries of gaussians on lattices.

Let σ be any positive real number. The Gaussian distribution Dσ,c with
parameter σ and c is defined by probability distribution function ρσ,c(x) =
exp(−π‖x− c‖2/σ2). For any set S ⊆ Rm, define ρσ,c(S) =

∑
x∈S ρσ,c(x). The

discrete Gaussian distribution DS,σ,c over S with parameter σ and c is defined
by the probability distribution function ρσ,c(x) = ρσ,c(x)/ρσ,c(S) for all x ∈ S.

In [34], Micciancio and Regev introduced a useful quantity called smoothing
parameter.

Definition 2.3 For any m-dimensional lattice Λ and positive real ε > 0, the
smoothing parameter ηε(Λ) is the smallest real s > 0 such that ρ1/s(Λ

∗\{0}) ≤ ε.

Then, we have the following upper bound for the smoothing parameter.

Lemma 2.4 ( [24]) For any m-dimensional lattice Λ and real ε > 0, we have

ηε(Λ) ≤
√

log(2m/(1+1/ε))/π

λ∞1 (Λ∗) . Then for any ω(
√

logm) function, there is a negli-

gible ε(m) for which ηε(Λ) ≤ ω(
√

logm)/λ∞1 (Λ∗).

Furthermore, we have the following useful facts from the literature.

Lemma 2.5 ( [24] and Full Version of [32]) Let n,m, q are integers such that
m > 2n log q. Then for all but an at most q−n fraction of A ∈ Zn×mq , we have
λ∞1 (Λq(A)) > q/4.

Furthermore, for such A and any function ω(
√

logm), there is a negligible
function ε(m) such that ηε(Λ

⊥
q (A)) ≤ ω(

√
logm).
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Lemma 2.6 Let n,m, q are integers such that m > 2n log q, and R ∈ Zm×mq

be arbitrary. Then for all but an at most q−n fraction of A ∈ Zn×mq , we have
λ∞1 (Λq(A|AR)) > q/4.

Furthermore, for such A and any function ω(
√

logm), there is a negligible
function ε(m) such that ηε(Λ

⊥
q (A|AR)) ≤ ω(

√
logm).

Due to space limit, we defer the proof of Lemma 2.6 to full version.

Lemma 2.7 ( [24], Lemma 5.2) Assume the columns of A generate Znq , let

ε ∈ (0, 1/2) and r ≥ ηε(Λ
⊥(A)). Then for e ← DZm,r, the distribution of u =

ATe mod q is within statistical distance 2ε of uniform over Znq .
Furthermore, for any fixed u ∈ Znq , let t ∈ Zm be an arbitrary solution to

At = u mod q. Then the conditional distribution of e ∼ DZm,s given Ae =
u mod q is exactly t+DΛ⊥,s,−t.

Lemma 2.8 ( [34], Lemma 4.4) For any m-dimensional lattice Λ, c ∈ Rm,
real ε ∈ (0, 1) and s ≥ ηε(Λ), we have Prx←DΛ,s,c [‖x− c‖ > s

√
m] 6 1+ε

1−ε · 2
−m.

Lemma 2.9 (Smudging Lemma) Let n ∈ N. For any real σ ≥ ω(
√

log n),
and any c ∈ Zn, it holds SD(DZn,σ,DZn,σ,c) ≤ ‖c‖/σ.

Learning With Errors. The Learning with Errors problem, or LWE, is the
problem of determining a secret vector over Zq given a polynomial number of
“noisy” inner products. The decision variant is to distinguish such samples from
random. More formally, we define the problem as follows:

Definition 2.10 ( [37]) Let n ≥ 1 and q ≥ 2 be integers, and let χ be a proba-
bility distribution on Zq. For s ∈ Znq , let As,χ be the probability distribution on
Znq × Zq obtained by choosing a vector a ∈ Znq uniformly at random, choosing
e ∈ Zq according to χ and outputting (a, 〈a, s〉+ e).

The decision LWEq,n,χ problem is: for uniformly random s ∈ ZNq , given a
poly(n) number of samples that are either (all) from As,χ or (all) uniformly
random in Znq × Zq, output 0 if the former holds and 1 if the latter holds.

We say the decision-LWEq,n,χ problem is infeasible if for all polynomial-time
algorithms A, the probability that A solves the decision-LWEq,n,χ problem (over
s and A’s random coins) is negligibly close to 1/2 as a function of n. The works
of [16,36,37] show that the LWE assumption is as hard as (quantum or classical)
solving GapSVP and SIVP under various parameter regimes.

2.3 Lattice Trapdoor and Gaussian Sampling

Gadget Matrix. We recall the “gadget matrix” G defined in [33]. The “gadget

matrix” G = In ⊗ g> ∈ Zn×ndlog qeq where g> = (1, 2, 4, ..., 2dlog qe−1). We can
also extend the column dimension to any m ≥ ndlog qe by padding 0n×m′ to the
right for m′ = (m− ndlog qe), i.e., G = [In ⊗ g>|0n×m′ ] ∈ Zn×mq .
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Lemma 2.11 (Theorem 4.1, [33]) Let q ≥ 2 be any integer, and n,m ≥ 2 be
integers with m ≥ ndlog qe. There is a full-rank (of columns) matrix G ∈ Zn×mq

such that the lattice Λ⊥q (G) has a publicly known trapdoor matrix TG ∈ Zn×m

with ‖T̃G‖ ≤
√

5, where T̃G is the Gram-Schmidt orthogonalization of TG.

Theorem 2.12 (Trapdoor Generation [8, 33]) There is a probabilistic
polynomial-time algorithm TrapGen(1n, q,m) that for all m ≥ m0 = m0(n, q) =
O(n log q), outputs (A,TA) such that A ∈ Zn×mq is within statistical distance

2−n from uniform, and TA is a basis for Λ⊥q (A) satisfying ‖TA‖ ≤ O(n log q)

and ‖T̃A‖ ≤ O(
√
n log q), where T̃A denotes the Gram-Schmidt orthogonaliza-

tion of TA.

Lemma 2.13 (SampleLeft [3, 19]) Let q > 2, A,B ∈ Zn×mq be two full rank

matrices with m > n, TA be a trapdoor matrix for A, a matrix U ∈ Zn×`q and s ≥
‖T̃A‖·ω(

√
logm). Then there exists a ppt algorithm SampleLeft(A,TA,B,U, s)

that outputs a matrix X ∈ Z2m×`
q , which is distributed statistically close to

DΛU
q (A|B),s.

Lemma 2.14 (SampleRight [33]) Let q > 2, A ∈ Zn×mq be a full rank ma-

trix with m > n, R ∈ Zm×m, U ∈ Zn×`q , y ∈ Zq with y 6= 0, and s ≥
√

5 ·
s1(R) ·ω(

√
logm). Then there exists a ppt algorithm SampleRight(A,R, y,U, s)

that outputs a matrix X ∈ Z2m×`
q , which is distributed statistically close to

DΛU
q (A|A·R+yG),s, where G is the gadget matrix.

2.4 Partially Hiding Predicate Encryption

We recall the notation of partially hiding predicate encryption (PHPE) proposed
by [29], which interpolates attribute-based encryption and predicate encryption.
A Partially-Hiding Predicate Encryption scheme PHPE for a pair of private-
public index spaces X ,Y, a function class F mapping X × Y to {0, 1}, and a
message space M, consists of four algorithms
(PHPE.Setup,PHPE.Enc,PHPE.KeyGen,PHPE.Dec):

PHPE.Setup(1λ,X ,Y,F ,M) → (PHPE.mpk,PHPE.msk). The setup algorithm
gets as input the security parameter λ and a description of (X ,Y,F ,M) and
outputs the public parameter PHPE.mpk, and the master key PHPE.msk.

PHPE.Enc(PHPE.mpk, (x,y), µ)→ cty. The encryption algorithm gets as input
PHPE.mpk, a pair of private-public indexes (x,y) ∈ X × Y and a message
µ ∈M. It outputs a ciphertext cty.

PHPE.KeyGen(PHPE.msk, f)→ skf . The key generation algorithm gets as input
PHPE.msk and a function f ∈ F . It outputs a secret key skf .

PHPE.Dec((skf , f), (cty,y)) → µ ∨ ⊥. The decryption algorithm gets as input
the secret key skf , a function f , and a ciphertext cty and the public part y
of the attribute vector. It outputs a message µ ∈M or ⊥.
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Correctness. We require that for all (PHPE.mpk,PHPE.msk) ← PHPE.Setup
(1λ,X ,Y,F ,M), for all (x,y, f) ∈ X × Y × F and for all µ ∈M,

– For 1-queries, i.e., f(x,y) = 1, Pr [PHPE.Dec((skf , f), (cty,y)) 6= µ] ≤ negl(λ).
– For 0-queries, i.e., f(x,y) = 0, Pr [PHPE.Dec((skf , f), (cty,y)) 6= ⊥] ≤ negl(λ).

Due to space limit, we defer the full security definition of PHPE to full version.

3 Definitions of Functional Encryption

We first present the syntax of functional encryption.

Definition 3.1 (Functional Encryption) Let F be a family of functions, where
each f ∈ F is defined as f : U → Y. A functional encryption (FE) scheme for
F consists of four algorithms as follows.

– Setup(1λ,F) : Given as input the security parameter λ and a description of
the function family F , the algorithm outputs a pair of master public key and
master secret key (mpk,msk). In the following algorithms, mpk is implicitly
assumed to be part of their inputs.

– KeyGen(msk, f ∈ F): Given as input the master secret key msk and a func-
tion f ∈ F , the algorithm outputs a description key skf .

– Enc(mpk, u ∈ U) : Given as input the master public key and a message u ∈ U ,
the algorithm outputs a ciphertext ct.

– Dec(skf , ct) : Given as input the secret key skf and a ciphertext ct, the
algorithm outputs a value y ∈ Y or ⊥ if it fails.

A functional encryption scheme is correct, if for all security parameter λ, any
message u ∈ U and any function f ∈ F , the decryption algorithm outputs the
right outcome, i.e., Pr[Dec(skf , ctu) = f(u)] ≥ 1−negl(λ), where the probability
is taken over (mpk,msk)← Setup(1λ,F), skf ← KeyGen(msk, f), ctu ← Enc(u).

More fine-grained syntax of FE. For FE with fine-grained syntax, each mes-
sage u consists of two parts, namely u := (x, µ), where x ∈ X for some index
(or attribute) space X , and µ ∈ M for message space M. Additionally, each
function f consists of two parts, namely, f := (P, g) ∈ P × G, where P is a
predicate over the index space X , and g is a function of the message space M.
The overall function acts as the following:

f(u) :=

{
g(µ) if P(x) = 1
⊥ otherwise.

(1)

Therefore, when decrypting the ciphertext ctu = Enc(mpk, (x, µ)) by skf =
KeyGen(msk, (P, g)), the algorithm outputs g(µ) if P(x) = 1, and ⊥ otherwise.
Under this fine-grained syntax, we call a key skf :=(P,g) a 1-key with respect to
an index x if P(x) = 1, or otherwise a 0-key. Intuitively, a 1-key is allowed to
open the ciphertext, but a 0-key is not.
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To differentiate the regular FE in Definition 3.1 and FE with the fine-grained
syntax, we use different types of function classes, i.e., FE for F refers to the
former and FE for P × G refers to the latter.

There are two important types of index studied in the literature – FE with
private or public index, according to whether the index x is revealed to the
decryption algorithm or not.

Our security notions simply follow from those in prior work [2, 13, 27]. It is
important that for the simulation-based security, we can achieve a notion where
any pre- and post-challenge key queries are allowed, while the prior work [2]
requires the adversary to commit in one-shot to all the 1-key queries right after
seeing the master public key. Due to space limit, we defer the detailed security
notions of interests on these two cases and comparisons between the notions in
related work to the full version of this paper.

4 Our New Two-Stage Sampling Method

In this section, we present our key technical contribution – a new two-stage
sampling method. At a high level, we would like to sample the following two-
stage distribution: (1) in the first stage, a random matrix A and a random vector
u are sampled, and (2) in the second stage, an arbitrary small-norm matrix R
is given, and then some short vector y is sampled conditioned on [A|AR]y = u.
The distribution then outputs (A,AR,u,y).

For a simpler case where there is no R, this task is achievable via the following
GPV two-stage sampling technique:

Lemma 4.1 ( [24]) For any prime q, integers integer n ≥ 1, m ≥ 2n log q,
s ≥ ω(

√
logm), the following two distributions are statistically indistinguishable:

– (A,u,y): A
$←− Zn×mq , u

$←− Znq , y ← DΛu
q (A),s.

– (A,u,y): A
$←− Zn×mq , y ← DZm,s, u = Ay mod q.

Intuitively, we can pre-sample a short vector y from an appropriate Gaussian
distribution and then set u = Ay. By the indistinguishability as Lemma 4.1,
we can sample the desired distribution with or without the trapdoor of A as
desired.10 Moreover, this idea can be generalized to achieve a weaker version
of our task where R is given in the first stage. The generalized idea has been
explored in the context of functional encryption (more precisely PHPE) by prior
work [2], yet the technique however, would inherently require to know R in the
first stage, resulting in a weak notion of very selective PHPE, where the adversary
needs to commit to the challenge index and 1-key query at the beginning.

10 To sample DΛu
q (A),s, the current sampling algorithm requires that s >

‖T̃A‖ω(
√

logm). According to the best known (to our knowledge) trapdoor gen-
eration, the smallest s we can sample would be ω(

√
n log q ·

√
logm), which is much

larger than the required bound for Lemma 4.1.
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To break this limitation, we design a new two-stage sampling method that
uses smudging noise over keys. Below we first present the two-stage sampling
method and then explain the idea behind it.

For any integers m > n ≥ 1, q ≥ 2, we consider the following two procedures:

Sampler-1(R, ρ, s): Given a matrix R ∈ Zm×m and two values ρ, s ∈ R as input,
this sampler conducts the following steps in two stages.

1. Stage 1: (without the need of R)

– Sample a random matrix A
$←− Zn×mq ;

– Sample a random vector u
$←− Znq ;

2. Stage 2:
– Sample a random x← DZm,ρ;
– Compute z = u−Ax (mod q);

– Sample a vector z′ =

(
z1
z2

)
← DΛz

q (A|AR),s, satisfying (A|AR)

(
z1
z2

)
=

z (mod q);

– Set y =

(
x+ z1
z2

)
∈ Z2m, satisfying (A|AR)y = u (modq);

– Output the tuple (A,AR,y,u).

The Sampler-1(R, ρ, s) can be implemented efficiently given the trapdoor TA

of A, using the SampleLeft algorithm as Lemma 2.13 (with larger parameters of s
than the required bound in Lemma 4.1). Next we present another way to sample
the distribution without the need of the trapdoor.

Sampler-2(R, ρ, s): Given a matrix R ∈ Zm×m and two values ρ, s ∈ R as input,
this sampler conducts the following steps in two stages.

1. Stage 1: (without the need of R)

– Sample a random matrix A
$←− Zn×mq ;

– Sample a random vector x← DZm,
√
ρ2+s2

, and set u = Ax (modq);

2. Stage 2:
– Sample a random vector z2 ← DZm,s;

– Compute a vector y =

(
x−Rz2
z2

)
, satisfying (A|AR)y = u (modq);

– Output the tuple (A,AR,y,u).

In a nutshell, this algorithm first pre-samples a (larger) x and sets u = Ax,
without knowing R. In the second stage when R is given, it samples a smaller
z2 and adjusts y accordingly. Intuitively, the larger x servers as the smudging
noise that “overwrites” the effect of Rz2 as long as the norm of x is super-
polynomially larger. This would hide the information of R, which needs to be
kept secret as required by the proof framework in prior work [2,3]. We formalize
this intuition by the following theorem.
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Theorem 4.2 For integers q ≥ 2, n ≥ 1, sufficiently large m = O(n log q), any
R ∈ Zm×m, s > ω(

√
logm), and ρ ≥ s

√
m‖R‖ · λω(1), the output distributions

(A,AR,y,u) of the above two procedures are statistically close.

Proof. Our high-level proof idea is to introduce an additional two-stage sampling
algorithm Sampler-3, and then prove it statistically indistinguishable from both
Sampler-1 and Sampler-2. Below, we describe the algorithm Sampler-3(R, ρ, s).

Sampler-3(R, ρ, s): Given a matrix R ∈ Zm×mq and two values ρ, s ∈ R as input,
this sampler conducts the following steps in two stages.

1. Stage 1: Sample a random matrix A
$←− Zn×mq ;

2. Stage 2:
– Sample two random vectors x′ ← DZm,

√
ρ2+s2

, z2 ← DZm,s;

– Compute u = (A|AR)

(
x′

z2

)
(modq), and denote y =

(
x′

z2

)
∈ Z2m;

– Output a tuple (A,AR,y,u).

Claim 4.3 For the parameters in the statement of Theorem 4.2, the output
distributions of Sampler-1 and Sampler-3 are statistically close.

Proof. We first observe that in Sampler-3, the x′ component can be decomposed
into x + z1 (within a negligible statistical distance), where x ← DZm,ρ and
z1 ← DZm,s. The decomposition holds as we have ρ > s > ηε(Zm) for some
ε = negl(λ).

Next, we prove a generalization of Lemma 4.1 that the following two distri-
butions are statistically close:

– D1:

(
A,AR,

(
z1
z2

)
,u′
)

: A
$←− Zn×mq , u′

$←− Znq ,

(
z1
z2

)
← DΛu′

q (A|AR),s.

– D2:

(
A,AR,

(
z1
z2

)
,u′
)

: A
$←− Zn×mq ,

(
z1
z2

)
← DZ2m,s,

u′ = (A|AR)

(
z1
z2

)
mod q.

This simply follows from Lemmas 2.6 and 2.7 – for all but q−n fraction of A,
we have ηε(Λ

⊥(A|AR)) ≤ ω(
√

logm) < s; for such an A, the distribution of

(A|AR)

(
z1
z2

)
is uniformly random over Znq , and the conditional distribution

of

(
z1
z2

)
given the constraint is DΛu

q (A|AR),s. Thus, we conclude that D1 and

D2 are statistically close.
The above indistinguishability implies directly that the following two distri-

butions are as well statistically indistinguishable:

– D′1:

(
A,AR,

(
z1 + x′

z2

)
,u′ + Ax′

)
: x′ ← DZm,ρ; the other random vari-

ables are sampled the same way as D1.
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– D′2:

(
A,AR,

(
z1 + x′

z2

)
,u′ + Ax′

)
: x′ ← DZm,ρ; the other random vari-

ables are sampled the same way as D2.

As one can apply the same randomized procedure F such that D′1 = F (D1) and
D′2 = F (D2), we conclude that SD(D′1, D

′
2) ≤ SD(D1, D2) < negl(λ).

Finally, by change of variable with u = u′ + Ax′, we can easily see that the
marginal distribution of u is still uniformly random in D′1, i.e., (u′ serves as
a one-time pad). Then it is not hard to see that D′1 is distributed identical as
Sampler-1 and D′2 is distributed statistically close to Sampler-3. This concludes
the proof of the claim. ut

Claim 4.4 For the parameters in the statement of Theorem 4.2, the output
distributions of Sampler-2 and Sampler-3 are statistically close.

Proof. We first observe that for both Sampler-2 and Sampler-3, the compo-
nent u can be determined (deterministically) from the first three components
(A,AR,y). Therefore, it suffices for us just to prove statistical closeness for the
first three components.

We next note that A is uniformly random and independent with the compo-
nent y in both Sampler-2 and Sampler-3. Therefore, it remains to show that the
distributions of y in these two algorithms are statistically close.

In Sampler-2, we have y =

(
x−Rz2
z2

)
, and in Sampler-3 we have y =

(
x
z2

)
.

As ρ ≥ s
√
m‖R‖ · λω(1), by the smudging lemma (i.e., Lemma 2.9) and the

Gaussian tail bound (i.e., Lemma 2.8), these two distributions are statistically
close. This concludes the proof of the claim. ut

The proof of this theorem follows directly from the above two claims. ut

5 Constructions of PHPE and FE with Private Index

In this section, we present three constructions of partially hiding predicate en-
cryption scheme PHPE. Particularly, we first construct a basic (1, poly)-Sel-SIM
secure PHPE in Section 5.1. Then, we upgrade our basic scheme to a (Q, poly)-
Sel-SIM secure PHPE for any polynomially bounded Q and general key queries
in Section 5.2. In Section 5.3, we show how to obtain a (Q, poly)-SA-SIM se-
cure PHPE via a simple transformation. Finally, we present the construction of
(Q, poly)-SIM-secure Functional Encryption with private input in Section 5.4.

Throughout the whole section, we will work on the function class F as de-
scribed below. Before presenting the class, we first define three basic functions.

Definition 5.1 Let t ∈ N, q ∈ N and t = t′ log q. Define the function PT :
{0, 1}t → Zt′q as: on input x ∈ {0, 1}t, first parse the vector x into a bit

matrix {x′i,j}i∈[t′],j∈[log q]. The function then computes z = (z1, . . . , zt′)
> as

zi =
∑
j∈[log q] x

′
i,j · 2j−1 for i ∈ [t′] and outputs z ∈ Zt′q .
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Definition 5.2 Let t′ ∈ N be the dimension of vectors, q be some modulus, and
γ ∈ Zq be some parameter. Define IP : Zt′q × Zt′q → Zq be the inner product

modulo q, and IPγ : Zt′q ×Zt′q → {0, 1} be function such that IPγ(x,y) = 1 if and

only if γ = IP(x,y) for inputs x,y ∈ Zt′q .

Intuitively, PT acts as the “power-of-two” function that maps {0, 1}t to Zt′q ,
and IPγ acts as the comparison function between the parameter γ and the inner
product of the inputs.

Function Class F . We consider functions of the following form. Any function
in the class F , namely C : {0, 1}t×{0, 1}` → {0, 1} can be described as Ĉ ◦ IPγ ,

where Ĉ : {0, 1}` → {0, 1}t′ is a boolean circuit of depth d, t′ log q = t, and
γ ∈ Zq. More formally, for x ∈ {0, 1}t and y ∈ {0, 1}t, the function is defined as

(IPγ ◦ Ĉ)(x,y) = IPγ
(
PT(x), Ĉ(y)

)
.

Similarly, we define a relevant function (IP ◦ Ĉ) : {0, 1}t × {0, 1}` → Zq as

(IP ◦ Ĉ)(x,y) = IP
(
PT(x), Ĉ(y)

)
= 〈PT(x), Ĉ(y)〉(modq).

Notice that our formulation is slightly different from that of the prior work [2,
29], which directly defined the input x in the domain Zt′q . In full version, we show
that this formulation can also achieve the same effect as the prior work [2, 29]
with a simple tweak. Thus, it is without loss of generality to define functions in
this way. In fact, our modified formulation is for the need of the transformation
(from selective-security to semi-adaptive security) in Section 5.3, which requires
to work on a small input base, e.g., {0, 1}. We notice that both our selective
PHPE and the scheme of [2] require a super-polynomial q, so without the mod-
ification of the input space, the selective scheme would not be compatible with
the transformation.

5.1 (1, poly)-Partially Hiding Predicate Encryption

Our basic construction of PHPE is essentially the same as that of Agrawal [2]
(her basic construction), except that we adopt our new sampling algorithm in
Section 4 for the key generation. Our scheme achieves (1, poly)-Sel-Sim security,
whose formal definition is deferred to the full version of this paper due to the
space limit, where one 1-key pre-challenge query is allowed. This is stronger than
the (1, poly)-very-selective scheme of Agrawal [2], which requires the adversary
to commit to both his challenge index and function of the 1-key query at the
beginning of the experiment. Below we present the construction.

PH.Setup(1λ, 1t, 1`, 1d): Given as input the security parameter λ, the length of
the private and public indices, t and ` respectively, and the depth of the
circuit family d, the algorithm does the following steps:
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1. Choose public parameters (q, ρ, s) as described in the following parame-
ter setting paragraph.

2. Choose random matrices Ai ∈ Zn×mq for i ∈ [`],Bj ∈ Zn×mq for j ∈ [t],
and P ∈ Zn×mq .

3. Sample (A,TA)← TrapGen(1m, 1n, q).

4. Output the public and master secret keys.

PH.mpk = ({Ai}i∈[`], {Bj}j∈[t],A,P),PH.msk = (TA).

PH.KeyGen(PH.msk, Ĉ ◦ IPγ): Given as input a circuit description Ĉ ◦ IPγ and
the master secret key, the algorithm does the following steps:

1. Let AĈ◦IP = Evalpk({Ai}i∈[`], {Bj}j∈[t], Ĉ ◦ IP).

2. Sample matrix J← DZm×m,ρ, and let U = P−AJ(modq).

3. Sample

[
K1

K2

]
← SampleLeft(A,AĈ◦IP + γG,TA,U, s) for parameter s,

i.e., the equation holds for [A|AĈ◦IP + γG] ·
[
K1

K2

]
= U(modq).

4. Let K =

[
J + K1

K2

]
, and output skĈ◦IPγ = K.

PH.Enc(PH.mpk, (x,y), µ): Given as input the master public key, the private
attributes x ∈ {0, 1}t, public attributes y ∈ {0, 1}` and message µ ∈ {0, 1},
the algorithm does the following steps:

1. Sample s← DZn,sB and error terms e← DZm,sB and e′ ← DZm,sD .

2. Let b = [0, · · · , 0, dq/2eµ]> ∈ Zmq . Set β0 = A>s+e, β1 = P>s+e′+b.

3. For i ∈ [`], sample Ri
$←− {−1, 1}m×m and set ui = (Ai+yi·G)>s+R>i e.

4. For j ∈ [t], sample R′j
$←− {−1, 1}m×m and set vj = (Bj + xj ·G)>s +

(R′j)
>e.

5. Output the ciphertext cty =
(
y,β0,β1, {ui}i∈[`], {vj}j∈[t]

)
.

PH.Dec(skĈ◦IPγ , cty): Given as input a secret key and a ciphertext, the algo-

rithm does the following steps:

1. Compute uĈ◦IP = Evalct
(
{Ai,ui}i∈[`], {Bj ,vj}j∈[t], Ĉ ◦ IP,y

)
.

2. Compute η = β1 −K>
(
β0

uĈ◦IP

)
.

3. Round each coordinate of η. If [Round(η[1]), · · · ,Round(η[m − 1])] = 0
then set µ = Round(η[m]) and output µ. Otherwise, output ⊥.

Theorem 5.3 Assuming the hardness of LWE, then the scheme described in
Section 5.1 is a PHPE for the class F , achieving (1, poly)-Sel-Sim security that
allows at most one 1-key pre-challenge query (and an unbounded polynomial
number of 0-keys for both pre and post-challenge queries).

Due to space limit, we defer the correctness, parameter setting and the detailed
proof of Theorem 5.3 to the full version of this paper.
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5.2 (Q, poly)-Partially Hiding Predicate Encryption

In this section, we upgrade our basic scheme to handle arbitrary pre- and post-
challenge 1-key queries up to Q times (and any unbounded polynomially many 0-
keys). Our upgrading technique is similar to that of Agrawal [2] (the Q-bounded
PHPE) except that (1) we adopt our new sampling procedure in Section 4 for
the key generation, (2) we use a simple secret sharing encoding over the message
in a novel way, and (3) we take a more efficient way to generate cover-free sets
by using a technique of [10]. Our resulting scheme achieves (Q, poly) simulation-
based selective security with ciphertext growth additively with O(Q), allowing
general 1-key queries up to Q times, whereas the prior scheme of Agrawal [2]
requires the adversary to be committed to all the functions of the 1-key queries
right after seeing the public parameters, and the ciphertext size grows additively
with O(Q2).

Before presenting the theorem, we first define the following set sampling
algorithm.

Lemma 5.4 Let N = Qvκ2 and v = Θ(κ). There exists an efficient sampler
SamplerSet(N,Q, v) with the following properties: (1) The sampler always outputs
a set ∆ ⊂ [N ] with cardinality v; (2) For independent samples ∆1, . . . ,∆Q from
SamplerSet(N,Q, v), the sets are cover-free with probability (1− 2−Ω(κ)), i.e., for

all i ∈ [Q], Pr
[
∆i\

(⋃
j 6=i∆j

)
6= φ

]
≥ 1− 2Q · 2−Ω(κ).

Proof. We construct SamplerSet(N,Q, v) as follows.

– The sampler first defines an (arbitrary) bijection h : [N ]→ [Q]× [vκ2].
– The sampler selects i ∈ [Q] uniformly random, and a random ∆′ ⊂ [vκ2] of

cardinality v.
– The sampler sets ∆ = {h−1(i, j) : j ∈ ∆′}, and outputs ∆.

The analysis of SamplerSet is similar to that in [10], so we just sketch the
proof idea. We first observe that the bijection splits [N ] into Q buckets, each
with vκ2 elements. If we randomly throw Q balls to the buckets, then from
the Chernoff bound, we have with at least probability (1 − Q · 2−Ω(κ)) that all
buckets will contain at most κ balls. These buckets correspond to the first index
i. Suppose each bucket contains at most κ balls, where each ball corresponds to
a random subset in the second index. Then by Lemma 2.2, for certain bucket,
the probability that κ random subsets of size v are cover-free is at least (1 −
2−Ω(κ)). Furthermore, by union bound, we know that the independent samples
∆1, . . . ,∆Q from SamplerSet(N,Q, v) are cover free with at least probability (1−
Q · 2−Ω(κ)).

The proof of this lemma simply follows from these two facts. ut

In general we can choose κ to be ω(log λ) to achieve negl(λ) security in the
asymptotic setting, or say λ1/3 to achieve 2−Ω(λ) security in the concrete setting.

Below we present the construction.
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QPH.Setup(1λ, 1t, 1`, 1d, 1Q): Given as input the security parameter λ, the length
of the private and public attributes, t and ` respectively, the depth of the
circuit family d, and Q as the upper bound of 1-key queries, do the following:
1. Choose public parameters (q, ρ, s,N, v) as described in the following pa-

rameter setting paragraph.
2. Choose random matrices Ai ∈ Zn×mq for i ∈ [`],Bj ∈ Zn×mq for j ∈ [t],

and Pk ∈ Zn×mq for k ∈ [N ].
3. Sample (A,TA)← TrapGen(1n, q,m).
4. Output the public and master secret keys.

PH.mpk = ({Ai}i∈[`], {Bj}j∈[t],A, {Pk}k∈[N ]),PH.msk = (TA)

QPH.KeyGen(PH.msk, Ĉ ◦ IPγ): Given as input a circuit description Ĉ ◦ IPγ and
the master secret key, do the following:
1. Let AĈ◦IP = Evalpk({Ai}i∈[`], {Bj}j∈[t], Ĉ ◦ IP).
2. Sample a random subset ∆ ⊂ [N ] according sampler SamplerSet(N,Q, v)

with |∆| = v, and compute the subset sum P∆ =
∑
k∈∆ Pk.

3. Sample matrix J← DZm×m,ρ, and let U = P∆ −AJ.

4. Sample

[
K1

K2

]
← SampleLeft(A,AĈ◦IP + γG,TA,U, s) for Gaussian pa-

rameter s, i.e., the equation holds for [A|AĈ◦IP+γG]·
[
K1

K2

]
= U mod q.

5. Let K =

[
J + K1

K2

]
, and output skĈ◦IPγ = (∆,K).

QPH.Enc(PH.mpk, (x,y), µ): Given as input the master public key, the private
attributes x, public attributes y and message µ, do the following:
1. Sample s ← DZn,sB and error terms e ← DZm,sB and e′k ← DZm,sD for
k ∈ [N ].

2. Set β0 = A>s+e, bk = [0, · · · , 0, dq/2ev µ] ∈ Zmq for k ∈ [N ], and compute

the following vectors as: {β1,k = P>k s+ e′k + bk}k∈[N ].

3. For i ∈ [`], sample Ri
$←− {−1, 1}m×m and set ui = (Ai+yi·G)>s+R>i e.

4. For j ∈ [t], sample R′j
$←− {−1, 1}m×m and set vj = (Bj + xj ·G)>s +

(R′j)
>e.

5. Output the ciphertext cty =
(
y,β0, {β1,k}k∈[N ], {ui}i∈[`], {vj}j∈[t]

)
.

QPH.Dec(skĈ◦IPγ , cty): Given as input a secret key skĈ◦IPγ := (∆,K) and a

ciphertext, do the following:
1. Compute uĈ◦IP = Evalct

(
{Ai,ui}i∈[`], {Bj ,vj}j∈[t], Ĉ ◦ IP,y

)
.

2. Compute η =
∑
k∈∆ β1,k −K>

(
β0

uĈ◦IP

)
.

3. Round each coordinate of η. If [Round(η[1]), · · · ,Round(η[m − 1])] = 0
then set µ = Round(η[m]) and output µ. Otherwise, output ⊥.

Theorem 5.5 Assuming the hardness of LWE, then the QPHPE scheme de-
scribed in Section 5.2 is (Q, poly)-Sel-Sim secure that allows both pre- and post-
challenge 1-key queries up to Q times and 0-key queries for an unbounded poly-
nomial times.
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Due to space limit, we defer the correctness and parameter setting to the full ver-
sion of this paper. Additionally, we just describe the simulator Sim for Theorem
5.5 here, and defer the detailed proof to the full version.

Simulator Sim(1λ,y, 1|x|, b, st):

1. Sim1(1λ,y, 1|x|): It generates all public parameters as in the real PH.Setup,
except that it runs (A′,TA′) ← TrapGen(1n+1, q,m), then parses A′ =[

A
z>

]
, where A ∈ Zn×mq , and sets A be the public matrix in PH.mpk.

2. Sim2(1λ,y, 1|x|): It generates all keys using the real PH.KeyGen.
3. Sim3(1λ,y, 1|x|, b, List): It takes as input the public attributes y, the size of

the private attributes x, the message b, and a list List. It constructs the
challenge ciphertext as follows.
– It samples ui,vj independently and uniformly from Zmq , and sets β0 = z,

where z is the vector prepared in Sim1.
– If (b, List) = ⊥, it computes {β1,k}k∈[N ] as follows:

• Sample random vectors β̃k from Zmq for k ∈ [N ].
• Choose 2Q random subsets ∆1, · · · , ∆Q, ∆

′
1, · · · , ∆′Q of [N ] accord-

ing sampler SamplerSet(N,Q, v), each of which has cardinality v. Note
that with an overwhelming probability, the 2Q subsets would be
cover-free under our parameter selection.
• Generate random shares {bk}k∈[N ] over Zq under the following con-

straints: for î ∈ [Q], (1)
∑
k∈∆î

bk = 0, and (2)
∑
k∈∆′

î

bk = dq/2e.
This can be done efficiently by the cover-freeness of the subsets, using
the following standard procedure.
First, let δî be a unique index that only appears in ∆î but not
the other subsets, and δ′

î
be a unique index of ∆′

î
. To generate

the random shares {bk}k∈[N ], we first sample bk randomly for all
k ∈ [N ] \ ({δî}î∈[Q] ∪ {δ′î}î∈[Q]), and then fix bδî = −

∑
k∈∆î\{δî}

bk

for î ∈ [Q], and similarly bδ′
î

= dq/2e −
∑
k∈∆′

î
\{δ′

î
} bk for î ∈ [Q].

• Set bk = [0, · · · , 0, bk] ∈ Zmq for k ∈ [N ], and sample errors {e′k}k∈[N ]

from the distribution DZmq ,sD .

• Set β1,k = β̃k + bk + e′k for k ∈ [N ].

– If b = µ and List = {Ĉ∗
î
◦ IPγî}î∈[Q′] for some Q′ ≤ Q, it computes the

simulated ciphertext as follows.
• For î ∈ [Q′], compute u

Ĉ∗
î
◦IP = Evalct

(
{Ai,ui}i∈[`], {Bj ,vj}j∈[t], Ĉ∗î ◦

IP,y
)
, and let

(
∆î,K

∗
î

=

[
J∗
î

+ K∗
î,1

K∗
î,2

])
be the keys for Ĉ∗

î
◦ IPγî ,

generated by Sim2 for the pre-challenge 1-key queries.
• Sample Q − Q′ random subsets of cardinality v according sampler
SamplerSet(N,Q, v), i.e., {∆î}î∈[Q′+1,Q], starting with the index Q′+
1 and ending with Q. We know that by our setting of parameters, the
subsets {∆î}î∈[Q] are cover-free with an overwhelming probability.
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• Compute vectors {β1,k}k∈[N ] as follows:
∗ Sample random shares {µk}k∈[N ] conditioned that

∑
k∈∆î

µk =

dq/2eµ for î ∈ [Q]. Then set bk = [0, · · · , 0, µk] for k ∈ [N ].

∗ Sample random vectors {β̃k}k∈[N ] condition on the following e-
quations:

∑
k∈∆î

β̃k =

[
J∗
î

+ K∗
î,1

K∗
î,2

]>
·

(
β0

u
Ĉ∗
î
◦IP

)
for î ∈ [Q′].

The above two steps can be done efficiently due to the cover-
freeness of the subsets {∆î}î∈[Q]. The procedure is the same as
we have presented in the previous case.

∗ Sample errors {ek}k∈[N ] according DZmq ,sD .

∗ Set β1,k = β̃k + bk + e′k for k ∈ [N ].
– It outputs the challenge ciphertext

ct∗ =
(
{ui}i∈[`], {vj}j∈[t],y,β0, {β1,k}k∈[N ]

)
.

4. Sim4(1λ,y, 1|x|): If the query is a 0-key, then it generates the key using the

real QPH.KeyGen. Otherwise, we denote function Ĉ∗
î
◦IPγî be the adversary’s

1-key query and (µ, Ĉ∗
î
◦ IPγî) be the message received from the oracle O.

Here we use index î ∈ [Q] to denote the number of overall 1-key queries up
to this point. Then the simulator computes as follows.
– The simulator first considers the following two cases to determine the

parameter ∆:
• Case 1: Q′ = 0, i.e., the adversary did not make any 1-key pre-

challenge query.
∗ If µ = 0, set ∆ := ∆î.
∗ Else ∆ := ∆′

î
, where {∆î}î∈[Q] and {∆′

î
}î∈[Q] are the subsets

prepared by Sim3 in the previous procedure.
• Case 2: 1 ≤ Q′ < Q, i.e., the adversary had made Q′ 1-key pre-

challenge queries.
∗ Set ∆ := ∆î where ∆î is the subset prepared by Sim3 (where µ

had been received by Sim3) in the previous procedure.
– Compute P∗∆ =

∑
k∈∆ Pk, and compute β̃∆ =

∑
k∈∆ β̃k, where {β̃k}k∈[N ]

are the vectors prepared by Sim3 in the previous procedure.
– Compute A

Ĉ∗
î
◦IP = Evalpk({Ai}i∈[`], {Bj}j∈[t], Ĉ∗î ◦ IP), and compute

u
Ĉ∗
î
◦IP = Evalct

(
{Ai,ui}i∈[`], {Bj ,vj}j∈[t], Ĉ∗î ◦ IP,y

)
.

– Sample J∗
î
← DZm×m,ρ, and use TA′ to sample

[
K∗
î,1

K∗
î,2

]
← DZ2m×m,s such

that A A
Ĉ∗
î
◦IP

β>0 u>
Ĉ∗
î
◦IP

 · [K∗î,1
K∗
î,2

]
= −

[
A

β>0

]
· J∗

î
+

[
P∗∆

β̃
>
∆

]
.
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– Output sk
Ĉ∗
î
◦IPγ

î

=
(
∆,

[
J∗
î

+ K∗
î,1

K∗
î,2

])
.

5.3 Semi-Adaptively Secure Partially Hiding Predicate Encryption

In this section, we show how to upgrade our PHPE in Section 5.2 from (Q, poly)-
Sel-SIM security to (Q, poly)-SA-SIM security. Technically, we follow the idea
of [17], yet in the case of bounded-length attributes (as used in this work).
Below, we present the detailed construction.

Let PHSel = {Setup,KeyGen,Enc,Dec} be a PHPE with private-public at-
tribute space {0, 1}t × {0, 1}`, message space M, and function class F that
is closed under bit-shift on {0, 1}t × {0, 1}` (i.e., for any f ∈ F , (r, r′) ∈
{0, 1}t×{0, 1}`, we have fr,r′(x,y) = f(x⊕r,y⊕r′) ∈ F). Moreover, the encryp-
tion algorithm Enc((x,y), µ) can be decomposed into three parts: Enc1(µ;R),
{Enc2(xi;R)}i∈[t], {Enc3(yi;R)}i∈[`], where R is the common random string a-
mong the three algorithms, xi is the i-th bit of the attribute x whose bit-length
is `, and similarly yi is the i-th bit of y. Intuitively, the encryption procedure is
done by three different components: with a common random string R, Enc1 en-
codes the message, and both Enc2 and Enc3 encode the private/public attributes
in the bit-by-bit manner.

Additionally, let PKE = {Gen,Enc,Dec} be any semantically secure public-
key encryption. Then our transformation is defined as below.

PHSA.Setup(1λ, 1t, 1`): the algorithm takes the following steps:
– Run the underlying setup (mpkSel,mskSel)← PHSel.Setup(1λ, 1`).
– Generate {PKE.pki,b,PKE.ski,b}i∈[t],b∈{0,1}, {PKE.pk

′
i,b,PKE.sk

′
i,b}i∈[`],b∈{0,1}

from the scheme PKE.
– Sample a random string (r, r′) ∈ {0, 1}t × {0, 1}`.
– Finally output mpkSA = (mpkSel, {PKE.pki,b}i∈[t],b∈{0,1}, {PKE.pk

′
i,b}i∈[`],b∈{0,1})

as the master public key, and keep private mskSA = (mskSel, {PKE.ski,b}i∈[t],b∈{0,1},
{PKE.sk′i,b}i∈[`],b∈{0,1}, r, r′) as the master secret key.

Note: Here Setup might implicitly take input 1d, 1Q for circuit depth and an
upper bound of the 1-key queries. For simplicity, we omit the description.

PHSA.KeyGen(mskSA, f ∈ F) : the algorithm defines a related function fr,r′(x,y) :=
f(x ⊕ r,y ⊕ r′), and runs skSel,f ← PHSel(mskSel, fr,r′). Then it returns
(r, r′, {PKE.ski,ri}i∈[t], {PKE.sk

′
i,r′i
}i∈[`], skSel,f ) as the secret key.

PHSA.Enc(mpkSA, (x,y), µ) : the algorithms runs the following steps:
– Sample a random string R.
– Run ct1 ← PHSel.Enc1(µ;R), {Li,b ← PHSel.Enc2(xi ⊕ b;R)}i∈[t],b∈{0,1},

and {L′i,b ← PHSel.Enc3(yi ⊕ b;R)}i∈[`],b∈{0,1}.
– Generate {cti,b ← PKE.Enc(PKE.pki,b, Li,b)}i∈[t],b∈{0,1} and {ct′i,b ←

PKE.Enc(PKE.pk′i,b, L
′
i,b)}i∈[`],b∈{0,1}.

– Finally, output the ciphertext as ct = (ct1, {cti,b}i∈[t],b∈{0,1}, {ct′i,b}i∈[`],b∈{0,1}).
PHSA.Dec(skSA,f ,y, ct) :the algorithm runs the following steps:

– Parse ct = (ct1, {cti,b}i∈[t],b∈{0,1}, {ct′i,b}i∈[`],b∈{0,1}).
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– Run the PKE decryption on {cti,ri}i∈[t] and {ct′i,r′i}i∈[`]. Then obtain

{Li,ri}i∈[t] and {L′i,r′i}i∈[`].
– View (ct1, {Li,ri}i∈[t], {L′i,r′i}i∈[`]) as the ciphertext of PHSel, and decrypt

it with skSel,f . Output the decrypted outcome.

Theorem 5.6 Assume that PKE is semantically secure, and PHSel is (q1, q2)-
Sel-SIM secure for private-public attribute space {0, 1}t × {0, 1}`, message space
M, and function class F that is closed under bit-shift on {0, 1}t×{0, 1}`. Then
the scheme PHSA is (q1, q2)-SA-SIM secure for the same attribute and message
spaces and the function class F .

Due to space limit, we defer the correctness and the proof of Theorem 5.6 to the
full version of this paper.

5.4 (Q, poly)-SIM-secure Functional Encryption

In this section, we present the technique from [2], showing that a (Q, poly)-SIM-
secure QPHPE with a fully homomorphic encryption scheme implies a (Q, poly)-
SIM-secure FE, which is what we desire. Due to space limit, we just describe the
theorem from [2], and defer the detailed procedure to the full version.

Theorem 5.7 Let C be the family of bounded depth circuits, QPHPE be a (Q, poly)-
SA-SIM secure partially-hiding predicate encryption scheme for F as defined in
Section 5, and FHE be a secure fully-homomorphic encryption scheme. Then
there exists a functional encryption that is (Q, poly)-SA-SIM secure for the class
C × {I}.

We notice that the required QPHPE can be instantiated by Theorems 5.5
and 5.6. Thus, we obtain the following corollary to summarize the final result.

Corollary 5.8 Assuming the hardness of LWE for a sub-exponential modulus-
to-noise ratio. Then for any bounded polynomial Q = poly(λ), there exists a
(Q, poly)-SA-SIM secure FE for the class C × {I}.

6 Constructions of FE with Public index

We notice that our two-stage sampling technique in Section 4 can be further
used to derived several new feasibilities of FE with public index for the following
two function classes.

– The first scheme is IB-FEIP that achieves (1, poly)-AD-IND security, i.e., a
public-index FE for the class IB × IP. Detailed definitions are deferred to
the full version. This particularly improves the prior analysis of Abdalla et
al. [1], who can only achieve the selectively security. As we discussed in full
version of this paper, (1, poly)-AD-IND is the best we can achieve for the IB
predicates as there is only one 1-key corresponding to the challenge index.
Our construction follows the same design paradigm as [1], except we use the
adaptively secure encoding of matrices by [3] and adopt our new sampling
algorithm in Section 4 for the key generation.
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– The second scheme is a generalization of the first scheme that achieves
(Q, poly)-SA-IND secure AB-FEIP for any polynomially bounded Q, for gen-
eral predicate classes (i.e., bounded depth boolean circuits). This new feasi-
bility result is beyond what the prior technique of [1] can achieve.

Due to space limit, we defer the detailed constructions and security proofs
of our new IB-FEIP and AB-FEIP to the full version.
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