
Public-Coin Statistical Zero-Knowledge Batch
Verification against Malicious Verifiers?

Inbar Kaslasi1, Ron D. Rothblum1, and Prashant Nalini Vasudevanr2

1 Technion, Israel
{inbark,rothblum}@cs.technion.ac.il

2 UC Berkeley, USA
prashvas@berkeley.edu

Abstract. Suppose that a problem Π has a statistical zero-knowledge
(SZK) proof with communication complexity m. The question of batch
verification for SZK asks whether one can prove that k instances x1, . . . , xk
all belong to Π with a statistical zero-knowledge proof whose commu-
nication complexity is better than k ·m (which is the complexity of the
trivial solution of executing the original protocol independently on each
input).

In a recent work, Kaslasi et al. (TCC, 2020) constructed such a batch
verification protocol for any problem having a non-interactive SZK (NISZK)
proof-system. Two drawbacks of their result are that their protocol is
private-coin and is only zero-knowledge with respect to the honest veri-
fier.

In this work, we eliminate these two drawbacks by constructing a
public-coin malicious-verifier SZK protocol for batch verification of NISZK.
Similarly to the aforementioned prior work, the communication complex-
ity of our protocol is

(
k + poly(m)

)
· polylog(k,m).

Keywords: Statistical Zero-Knowledge, Batch Verification.

1 Introduction

The concept of zero knowledge proofs, introduced by Goldwasser, Micali and
Rackoff [GMR89], is an incredibly deep and fascinating notion that has proven
to be a fundamental component in the construction and design of cryptographic
protocols (see, e.g., [GMW87]). A zero-knowledge proof allows a prover to con-
vince an efficient verifier that a given statement is true without revealing any-
thing else to the verifier. This is formalized by requiring that for any (possibly
malicious) verifier that participates in such a proof, there is an efficient simula-
tion algorithm that simulates its interaction with the prover.

In this work we focus on statistical zero-knowledge proofs. In this variant,
both the verifier and the prover are guaranteed information-theoretic (rather
than computational) security. On the one hand, the verifier knows that even
an all-powerful prover could not convince it to accept a false statement (other

? The full version is available on the Cryptology ePrint Archive [KRV21].

2 Kaslasi et al.

than with negligible probability). On the other hand, the prover knows that
any polynomial-time cheating strategy of the verifier can only reveal a negligible
amount of information beyond the validity of the statement being proven.

The class of languages having a statistical zero-knowledge protocol is de-
noted by SZK. This class contains several natural problems like Graph Noni-
somorphism, and many of the problems that are central to cryptography such
as quadratic residuosity [GMR89], discrete logarithm [GK93, CP92], and vari-
ous lattice problems [GG00, MV03, PV08, APS18]. It has been found to possess
extremely rich structure [For89,AH91,Oka00,SV03,GSV98,GV99,NV06,OV08]
and to have fundamental connections to different aspects of cryptography [BL13,
KMN+14, LV16, Ost91, OW93, BDRV18, KY18, BBD+20] and complexity the-
ory [For87,AH91,Aar12,GR14,Dru15,AV19,BCH+20].

In a recent work, Kaslasi et al. [KRR+20] raised the question of batch ver-
ification for statistical zero-knowledge proofs: Suppose Π has a statistical zero-
knowledge proof (SZK). Can we prove that x1, . . . , xk ∈ Π with communica-
tion complexity that beats the naive approach of separately proving that each
xi ∈ Π, while still maintaining zero-knowledge? Beyond being of intrinsic inter-
est and teaching us about the structure of SZK, such protocols have potential
cryptographic applications such as the batch verification of cryptographic signa-
tures [NMVR94,BGR98,CHP12] or well-formedness of public-keys [GMR98].

The main result of [KRR+20] was such a generic batch verification result
for a subclass of languages in SZK – specifically for problems having a non-
interactive statistical zero-knowledge proof system (NISZK). Kaslasi et al. con-
struct an (interactive) SZK protocol for batching k instances of Π ∈ NISZK, with
communication complexity

(
k + poly(n)

)
· polylog(k, n), where n is the length

of each of the k inputs, and poly refers to a fixed polynomial that depends only
on the specific problem (and not on k). Their result should be contrasted with
the naive approach of simply executing the NISZK protocol separately on each
input (which has communication complexity k · poly(n)).

Two major drawbacks of the protocol of [KRR+20] are the fact that it is
private-coin and only honest-verifier statistical zero-knowledge (HVSZK). These
drawbacks are significant. Recall that private-coin protocols can only be verified
by a designated verifier, in contrast to public-coin protocols that can be verified
by anyone (as long as they can ensure that the coins were truly unpredicatable to
the prover, e.g., they were generated by some physical phenomenon or a public
randomness beacon). Further, public-coin protocols have the added benefit that
they can be transformed into non-interactive arguments via the Fiat-Shamir
transform (either heuristically [FS86], in the random-oracle model [PS96], or,
more recently, under concrete cryptographic assumptions (see, e.g., [CCH+19])).

The second drawback is arguably even more significant. Recall that honest-
verifier zero-knowledge is a relatively weak privacy guarantee which, in a nutshell,
only guarantees that verifiers that follow the protocol to the letter learn nothing
in the interaction. Usually this weak privacy guarantee is only used as a stepping
stone towards getting full-fledged zero-knowledge (i.e., zero-knowledge that holds
even against arbitrary polynomial-time cheating verifiers).

Title Suppressed Due to Excessive Length 3

At first glance it may seem straightforward to overcome both drawbacks of
the protocol of [KRR+20] by employing the known generic transformations from
private-coin honest-verifier statistical zero-knowledge to public-coin malicious-
verifier statistical zero-knoweldge [Oka00, GSV98,HRV18]. Unfortunately, these
tranformations incur a large polynomial overhead in communication that we
cannot afford in our context (see also Remark 1 below).

1.1 Our Results

In this paper we eliminate the two major drawbacks mentioned above by con-
structing a public-coin malicious-verifier SZK batch verification protocol for ev-
ery problem in NISZK. The communication complexity in our protocol is similar
to that of [KRR+20].

Theorem 1 (Informally Stated, see Theorem 7). Let Π ∈ NISZK. There
exists a public-coin SZK protocol for verifying that x1, . . . , xk ∈ Π, with commu-
nication complexity

(
k + poly(n)

)
· polylog(n, k). The verifier’s running time is

k · poly(n, log k), and the number of rounds is k · polylog(n, k).

Our high-level approach for proving Theorem 1 follows a classical approach for
constructing malicious-verifier zero-knowledge proofs: first construct a public-
coin honest-verifier zero-knowledge batching protocol, and then show how to
transform it to be malicious-verifier zero-knowledge. The main challenge that
we must overcome is in actually implementing these two steps without incurring
the exorbitant price of the generic transformations for SZK [Oka00,SV03,GV99,
GSV98,HRV18]. Thus, our two main steps are:

1. Construct an efficient public-coin HVSZK batch verification protocol.
2. Transform it to be zero-knowledge against malicious verifiers, while preserv-

ing its efficiency.

Our first main technical contribution is in implementing Step 1.

Theorem 2 (Informally Stated, see Theorem 6). Let Π ∈ NISZK. There
exists a public-coin HVSZK protocol for verifying that x1, . . . , xk ∈ Π, with com-
munication complexity

(
k + poly(n)

)
· polylog(n, k). The verifier’s running time

is k · poly(n, log k), and the number of rounds is O(k).

Theorem 2 already improves on the main result of [KRR+20], since it gives a
public-coin batch verification protocol. However, we would like to go further and
obtain security even against malicious verifiers. It is tempting at this point to
apply the generic transformations of [GSV98, HRV18] from public-coin honest-
verifier zero-knowledge, to malicious-verifier. Unfortunately, the overhead intro-
duced in these transformations is too large and applying them to the protocol
of Theorem 1 would yield a trivial result (see Remark 1 for details).

Rather, as our second technical contribution (which may be of independent
interest), we show that the communication complexity of the [GSV98] trans-
formation can be significantly improved for protocols satisfying a strong notion
of soundness. Specifically, we refer to the notion of round-by-round soundness,
introduced in a recent work of Canetti et al. [CCH+19].

4 Kaslasi et al.

Theorem 3 (Informally Stated, see Theorem 5). Any public-coin HVSZK
protocol with negligible round-by-round soundness error can be efficiently trans-
formed into a public-coin SZK protocol. In particular, a message of length ` in
the original protocol grows to length poly(`) in the transformed protocol.

Note that the growth of each message in the transformation above depends
only on its own length and not on n or k – this allows us to take advantage of
the fact that all but one of the messages in the protocol of Theorem 2 have poly-
logarithmic length. We show that the protocol of Theorem 2 indeed has round-
by-round soundness which, in combination with Theorem 3, yields Theorem 1
.

Remark 1 (On Generic Transformations from the Literature). We discuss here
a few known generic transformations for the class SZK from the literature, and
why they are not applicable in our context.

Okamoto [Oka00] showed how to transform any private-coin HVSZK protocol
into a public-coin one. Unfortunately, we cannot use his transformation to derive
Theorem 1 from the private-coin batching protocol of [KRR+20], due to the
overhead involved. In more detail, Okamoto’s protocol starts by taking a t-fold
parallel repetition of the private-coin protocol, where t = `9 · r9, where ` is
the round complexity and r is the randomness complexity of the simulator.
In our context ` = k and r = poly(n) and so the overhead from Okamoto’s
transformation would yield a trivial result (as a matter of fact, we could not
even afford an overhead of t = `, which seems inherent to Okamoto’s approach).

Similarly, we cannot derive Theorem 1 from Theorem 2 by applying the
generic transformation of [GSV98,HRV18] for transforming honest-verifier public-
coin SZK proofs to malicious-verifier ones. In more detail, the transformation
of [GSV98] starts by applying an `-fold parallel repetition of the honest-verifier
protocol (where again ` is the number of rounds). In the context of Theorem 2,
` = Θ(k), and so, applying the [GSV98] transformation yields a protocol with
communication complexity k · poly(n), which we cannot afford.

The more recent work of Hubácek et al. [HRV18] gives an efficiency-preserving
transformation from honest-verifier to malicious-verifier. This transformation
also incurs a polynomial overhead in the communication complexity. In par-
ticular, [HRV18] rely on the instance-dependent commitments of Ong and Vad-
han [OV08], which in turn use the SZK completeness of the Entropy Difference
(or ED) problem [GV99]. The known reduction from SZK to ED (see [Vad99, The-
orem 3.3.13]) generates circuits whose input size is roughly ` · r. This size would
correspond to the size of the decommitments in the [HRV18] protocol and again
would lead to an overhead that we cannot incur.

Indeed, our work motivates the study of communication-preserving transfor-
mations for SZK protocols. In particular, obtaining a generic communication-
preserving transformation from honest-verifier to malicious-verifier SZK is an
interesting open question.

Title Suppressed Due to Excessive Length 5

1.2 Technical Overview

First, in Section 1.2, we describe the public-coin honest-verifier statistical zero-
knowledge (HVSZK) batching protocol. Then, in Section 1.2, we show how to
compile honest-verifier protocols efficiently to be secure against malicious veri-
fiers.

Public-coin HVSZK Batching Our starting point is the aforementioned recent
work of Kaslasi et al. [KRR+20], which gave a private-coin HVSZK batching
protocol. As their first step, they introduced a new (promise) problem called
approximate injectivety (AI) and showed that it is NISZK-complete. They then
designed a private-coin HVSZK batch verification protocol for AI. We follow a
similar route, except that we construct a public-coin HVSZK batch verification
protocol for AI.

The inputs to the AI problem, which is parameterized by a real number
δ ∈ [0, 1], are circuits C : {0, 1}n → {0, 1}m. YES instances are circuits C
for which all but a δ fraction of the inputs are mapped injectively to their
corresponding outputs (i.e., Prx

[
|C−1(C(x))| > 1

]
< δ). NO instances are cir-

cuits for which at most a δ fraction of the inputs are mapped injectively (i.e.,
Prx

[
|C−1(C(x))| > 1

]
> 1− δ).

Since AIδ was shown to be NISZK complete, to prove Theorem 2 it suffices to
show a public-coin HVSZK batching protocol for AIδ. Our main technical result
is precisely such a protocol achieving communication roughly k+ poly(n), where
k is the number of instances being batched. For simplicity, we first focus on the
case that δ = 0 – namely, distinguishing circuits that are injective from those in
which no input is mapped injectively to its output. A discussion of the case of
δ > 0 is deferred to the end of this overview.

In order to present our approach, following [KRR+20], we will first consider
a drastically easier case in which the goal is to distinguish between circuits that
are permutations (rather than merely being injective) or are far from such.

Warmup: Batch Verification for Permutations. We first consider a variant of AI,
called PERM. The inputs to PERM are length-preserving circuits C : {0, 1}n →
{0, 1}n. YES instances are circuits that compute permutations over {0, 1}n,
whereas NO instances are circuits that are far from being permutations in the
sense that no input is mapped injectively (i.e., every image has at least two
preimages).

Consider the following batch verification protocol for PERM. Given com-
mon input C1, . . . , Ck : {0, 1}n → {0, 1}n the parties proceed as follows. The
verifier V samples yk ∈ {0, 1}n and sends it to the prover P. Then, P re-
sponds with an x1 s.t. Ck(Ck−1(...C1(x1)) = yk. The verifier checks that indeed
Ck(Ck−1(...C1(x1)) = yk and accepts or rejects accordingly.

To argue that completeness holds, observe that when all of the Ci’s are
permutations, there exists a unique sequence x1, y1, x2, y2, . . . , xk−1, yk−1, xk,
where xi = yi−1 for every i ∈ [2, k], that is consistent with yk. That is, xi =

6 Kaslasi et al.

C−1i (yi), for every i ∈ [k]). The prover can thus make the verifier accept (with
probability 1) by sending x1 as its message.

For soundness, let i∗ ∈ [k] denote the maximal index i s.t. Ci is a NO instance.
Since Ci∗ is a NO instance, each of its images has at least two preimages and
so the size of its image is at most 2n−1. Since yk is sampled uniformly and
Ci∗+1, . . . , Ck are permutations, we have that yi∗ is also random in {0, 1}n. In
particular this means that with probability at least half it has no preimage under
Ci∗ , and the verifier will eventually reject no matter what value of x1 the prover
sends. Note that the soundness error, which is 1/2 here, can be amplified by
repetition.

For zero-knowledge, consider the simulator that first samples x1 ∈ {0, 1}n
and then computes yk = Ck(Ck−1(...C1(x1)). Since all circuits are permutations,
yk is distributed uniformly over {0, 1}n as in the real interaction between the
honest-verifier and the prover.

The above batch verification protocol for PERM, while simple, will be the
basic underlying idea also for our batch verification protocol for AI0.

Public-coin Batch Verification for AI0. Let C1, . . . , Ck : {0, 1}n → {0, 1}m be
instances of AI0. Since the output size of each circuit Ci is not compatible with
the input size for the following circuit Ci+1, we cannot directly compose the
circuits as we did for PERM.

A natural idea that comes to mind is to use hashing. Namely, choose a
hash function3 g to map Ci’s output yi ∈ {0, 1}m to the next circuit input
xi+1 ∈ {0, 1}n, for every i ∈ [k]. Based on this idea it is natural to consider a
minor modificition of the batch verification protocol for PERM, where the only
difference is that we interleave applications of g as we compose the circuits. Note
that we have to hash the last circuit output yk as well so that we can specify
xk+1 = g(yk) to the prover as a genuine unstructured random string.

If we could guarantee that the hash function g maps the image of each circuit
injectively into the domain of the subsequent circuit, then a similar analysis as
in the protocol for PERM could be applied and we would be done. However,
finding such a hash function in general seems incredibly difficult. Thus, instead,
we choose g to be a random function.4

In what follows, for every i ∈ [k], denote the image of Ci by Si ⊆ {0, 1}m.
Note that if Ci is a YES instance (i.e., injective), the size of Si is exactly 2n,
and if Ci is a NO instance (entirely non-injective) the size of Si is at most 2n−1.

When using a random function g as our hash function, we run into two key
challenges that did not exist in the protocol for PERM. The first of these two
challenges arises from the fact that for any YES instance circuit Ci, with high
probability over the choice of g : {0, 1}m → {0, 1}n, a constant fraction of the

3 The specific type of hash function that we use is left vague for now and will be
discussed in detail shortly.

4 Jumping ahead, we note that we cannot afford for g to be entirely random, and will
have to settle for some de-randomization. For the moment we ignore this issue.

Title Suppressed Due to Excessive Length 7

elements in {0, 1}n have no preimages (under g) in the set Si.
5 If such a situation

occurs for any of the circuits, a situation which is exceedingly likely, then even
the honest prover will not be able to find a suitable preimage x1 and we lose
completeness.

The way we solve this difficulty is relatively simple: we add to the hash
function g a short random auxiliary input that will be chosen independently
for each of the k applications of g. We denote the auxiliary input for the ith

application by zi and its length by d (which we set to polylog(n, k)). Observe

that if g : {0, 1}m × {0, 1}d → {0, 1}n is chosen at random, then we expect all
x’s in the domain of Ci+1 to have roughly the same number of preimages (under

g) that lie in the set Si × {0, 1}d.6
This brings us to the second challege in using a random hash function g,

which is slightly more subtle. When considering a YES instance circuit Ci, even
ignoring the additional auxiliary input, a constant fraction of the domain {0, 1}n
of Ci+1 will have more than one preimage (under g) which falls in Si. Needless
to say, this issue is further exacerbated by the addition of the auxiliary input.
At first glance this may not seem like much of an issue when we consider a YES
circuit. However, on further inspection, we observe that we may very well be in
the case that all of the circuits except for the first circuit C1 are YES instances
(i.e., injective) and only C1 is a NO instance (i.e, non-injective).

If such is the case, due to the collisions that occur in g, it is likely that yk will
have an exponential (in k) number of preimages x2 that are consistent with it.
If the prover has so much flexibility in its choice of x2 then it is likely that, even
though C1 is non-injective, the prover will be able to find a consistent preimage
x1 and we lose soundness.

Borrowing an idea from [KRR+20], we solve this challenge using interaction.
The high-level approach is for the prover to commit to xi before we reveal the
auxiliary information for the next circuit. Thus, the protocol proceeds iteratively,
where in each iteration first the prover commits to xi, and then the verifier
reveals the auxiliary input, which the prover uses to recover yi−1, and so on.
The commitment has the property that as long as we are processing YES input
circuits, with high probability, there is a unique xi that is consistent with the
interaction. In particular, when we reach the first NO instance circuit Ci∗ (recall
that i∗ denotes the maximal i s.t. Ci is a NO instance) there is a unique xi∗+1

that is consistent with the transcript.

Distinguishing Injective Circuits from Non-Injective Circuits. Recall that our
goal is to distinguish an injective circuit from a highly non-injective circuit.
Following our approach thus far, assume that we have processed the circuit up

5 This is similar to the fact that when throwing N balls into N bins, in expectation,
a constant fraction of the bins remain empty. Here the images of Ci play the role of
the balls and the elements in the domain {0, 1}n of Ci+1 play the role of the bins.

6 Here we rely on the fact that when throwing N · polylog(N) balls into N bits, with
high probability, all bins will contain very close to the expected polylog(N) balls.

8 Kaslasi et al.

to the circuit Ci and moreover, that there is a unique xi+1 that is consistent
with the interaction up to this point.

Recall also that if Ci is injective then |Si| = 2n, whereas if it is non-injective
then |Si| ≤ 2n−1. Thus, our approach is to employ a set lower bound protocol (a
la [GS89]) as follows. The verifier chooses a “filter” function hi ∈ Hn, where Hn is

a family of pairwise independent hash functions from domain {0, 1}m×{0, 1}d to
an appropriately chosen range size, as well as a target element αi. If Ci is injective
then we expect each xi+1 to have very close to 2d preimages (yi, zi) ∈ Si×{0, 1}d
under g. On the other hand, if Ci is non-injective, then we expect each xi+1 to
have roughly 2d−1 such preimages or less. Thus, by setting the range size to be
roughly 2d, the probability that one of these preimages hashes correctly via hi
to αi is larger (by a constant) in the YES case than in the NO case.

Balancing Completeness, Soundness and Zero-Knowledge. At this point we ob-
serve that even if g and hi were random functions, the set lower bound approach
only yields a small constant gap between completeness and soundness. This is
insufficient since the completeness error is accumulating across the k different
circuits. Note that we cannot afford a k-fold repetition of the set lower bound
protocol (since it would be prohibitively expensive in our parameter setting).
Moreover, since we cannot generically amplify zero-knowledge, we also need the
zero-knowledge error accumulated by the YES instance circuits to be negligible.

We resolve this issue by considering a new variant of the approximate injec-
tivity problem which we denote by AIL,δ. The YES instances in this variant are
identical to the YES instance in AIδ – namely circuits that are injective on all
but a δ fraction of their domain. However, a circuit C is a NO instance if at
least 1 − δ fraction of its inputs have at least L “siblings” (i.e., inputs that are
mapped to the same output). Thus, the standard AIδ problem corresponds to
the case L = 2. Using a large enough L increases the gap between the number
of preimages in YES and NO instances, letting us set the range size of the hi’s
to obtain a larger gap between completeness and soundness.

We show that AI2,δ reduces to AIL,δ′ , where L = 2polylog(n,k) and δ′ is related
to δ. The idea for the reduction is to simply concatenate sufficiently many copies
of the input circuit.7 Thus, in the sequel it suffices to consider batch verification
for k instances of AIL,0 (and the case that δ > 0 will be discussed later on).

Over-Simplified Batch Verification Protocol for AIL,0. With the foregoing in-
sights in mind, consider the following over-simplified batching protocol for AIL,0
(see also the diagram in Fig. 1 which gives a bird’s eye view of the flow of the
protocol).

1. V samples g and xk+1 ← {0, 1}n and sends both to P.
2. For i = k, ..., 1:

7 In more detail, we transform an instance C of AI2,δ to an instance C′ of AI2`,δ·` by
concatenating ` copies of C. It is not hard to see that if C were (almost) injective)
then C′ is (almost) injective. But, if (almost) every image of C has at least two
preimages then (almost) every image of C′ has at least 2` preimages.

Title Suppressed Due to Excessive Length 9

(a) V samples a filter function hi ← Hn and target value αi (of appropriate
length) and sends both to P.

(b) P selects at random a pair (xi, zi) s.t.

i. g(Ci(xi), zi) = xi+1

ii. hi(Ci(xi), zi) = αi

and sends (xi, zi) to V.

3. V sets x′1 = x1 and for i = 1, . . . , k:

(a) Computes y′i = Ci(x
′
i).

(b) Verifies that hi(y
′
i, zi) = αi.

(c) Computes x′i+1 = g(y′i, zi).

(d) Verifies that x′i+1 = xi+1.

4. If all of V’s checks pass then she accepts. Otherwise she rejects.

Fig. 1: Sampling Process of the Protocol

Note that the communication complexity in this protocol is Ω(k · n) (since
the prover sends x1, . . . , xk), which is more than we can afford. This issue will
be resolved shortly and so we ignore it for now.

For completeness, if all Ci’s are injective, in every iteration i, given that there
exists a consistent xi (i.e., xi for which there exists z where g(Ci(xi), z) = xi+1

and hi(Ci(xi), z) = αi), w.h.p. there exists also a consistent xi−1. Hence, it is not
hard to show, by induction, that with high probability, after the last iteration
there exists an x1 that passes the verifier’s checks , and so V accepts .

For soundness, consider the iteration i∗ which, as defined in the protocol for
PERM, denotes the maximal index of a NO instance circuit. Since the number
of preimages of Ci∗ is less than 2n/L, by the foregoing discussion it is very
likely that there does not exist a pair (xi∗ , zi∗) that is consistent with the rest of
the messages, i.e., s.t. g(Ci∗(xi∗), zi∗) = xi∗+1 and hi∗(Ci∗(xi∗), zi∗) = αi∗ , and
therefore V will eventually reject.

Before arguing why the protocol is zero-knowledge, we first discuss the hash
function family that g is sampled from.

10 Kaslasi et al.

The Hash Function g. One important consideration that arises when derandom-
izing g is that a cheating prover P∗ has some flexibility in the choice of the xi
that she sends for rounds i > i∗. Indeed, by design there will be many such xi’s.
While the honest prover should choose xi at random (from this set), a cheating
prover may try to cleverly choose xi’s that help her cheat. Since all these choices
are made after the function g was revealed, we cannot assume that xi∗+1, . . . , xk
are uniformly random relative to g. Thus, for our analysis it does not suffice that
a random xi+1 has a suitable number of preimages under g.

Instead, we will seek a much stronger, worst-case guarantee, from g. Specifi-
cally, that for every xi+1 ∈ {0, 1}n , the number of preimages (y, z) ∈ g−1(xi+1),
where y ∈ Si, is close to its expectation, i.e., around 2d for Ci ∈ YES and around
2d/L for Ci ∈ NO.

As shown by Alon et al. [ADM+99], this type of guarantee is not offered
by pairwise independent hash function or even more generally by randomness
extractors. On the other hand, what gives us hope is that a totally random
function does have such a worst-case guarantee. Thus, we wish to construct a
small hash function family G where with high probability over the choice of g ←
G, every image has roughly the same number of preimages from a predetermined
set.

Following a work of Celis et al. [CRSW11], we refer to such functions as
load-balancing hash functions. A function in this family maps the set {0, 1}m

together with some auxiliary input {0, 1}d to the set {0, 1}n. We require that
for any set S ⊆ {0, 1}n s.t. |S| ≥ 2n/L and for every x ∈ {0, 1}n, w.h.p over

g ← Gn, it holds that
∣∣{(y, z) : y ∈ S, g(y, z) = x

}∣∣ is roughly |S|·2d
2n . We

construct a suitable load-balancing functions based on poly(n)-wise independent
hash functions (combined with almost pairwise independent hash functions).

Honest Verifier Statistical Zero-Knowledge. To argue zero-knowledge, consider a
simulator that first samples an initial x1. Then, in each iteration i the simulator
samples zi, computes yi = Ci(xi) and xi+1 = g(yi, zi). Then it samples hi and
computes αi = hi(yi, zi).

Fig. 2: Direction of Protocol Progress vs. Simulator Progress – solid lines repre-
sent the protocol, and dashed lines represent the simulator.

Title Suppressed Due to Excessive Length 11

Statistical zero-knowledge is not obvious since the protocol and the simulator
progress in opposite directions. The simulation progress direction is from circuit
C1 up to circuit Ck, while the protocol progress direction is from circuit Ck down
to circuit C1, as shown in Fig. 2. However, due to the special property of the the
load-balancing function g, we manage to achieve statistical zero-knowledge.

We define the hybrid distribution Hi that is sampled as follows:

1. Sample g ∈ Gn and xi ∈ {0, 1}n.
2. Generate (xj , zj , hj , αj)j∈{1,...,i−1} according to the protocol.
3. Generate(zj , hj , αj , xj+1)j∈{i,...,k} according to the simulator.
4. Output g, xk+1 and (xj , zj , hj , αj)j∈{1,...,k}.

Note that the simulator distribution is identical to H1 while the protocol
distribution is identical to Hk+1. We bound the statistical difference between Hi
and Hi+1 and use the hybrid argument.

Note that conditioned on (g, xi, zi, hi, αi, xi+1) the rest of the variables in
Hi,Hi+1 are distributed identically. Therefore it is enough to bound the statistial
differences between those variables as sampled in Hi and Hi+1. Since g is sampled
identically in both hybrids, we can fix it and bound the statistical difference of
those variables conditioned on some g.

For the hybrid Hi+1, the variables (xi, zi, hi, αi, xi+1) are sampled according
to the protocol whereas for the hybrid Hi, the variables (xi, zi, hi, αi, xi+1) are
sampled according to the simulator. Let XS , XP and XU denotes the distribu-
tions of any random variable X according to the simulator, protocol and the
uniform distribution respectively.

Consider the distribution of (xi, zi, hi, αi, xi+1)P which is sampled accord-
ing to the protocol, i.e., (hi, αi, xi+1) are sampled uniformly at first, and then
(xi, zi) are chosen uniformly from the set of (x, z) s.t. g(Ci(x), z) = xi+1 and
hi(Ci(x), z) = αi+1. Consider also the distribution (xi, zi, hi, αi, xi+1)S which
is sampled according to the simulator, i.e., (xi, zi, hi) are sampled uniformly at
first and then it sets xi+1 = g(Ci(xi), zi) and αi = hi(Ci(xi), zi). Note that the
distributions (xi, zi)P and (xi, zi)S are identical conditioned on specific values of
(hi, αi, xi+1), and therefore, it is enough to bound∆

(
(hi, αi, xi+1)P , (hi, αi, xi+1)S

)
.

We define the function ϕi(xi, zi, hi) = (hi, αi, xi+1), where xi+1 = g(Ci(xi), zi)
and αi = hi(Ci(xi)). Note that

∆ ((hi, αi, xi+1)P , (hi, αi, xi+1)S) = ∆

(
(hi, αi, xi+1)U , ϕi

(
(xi, zi, hi)U

))
.

Therefore, what we have left is to show that ϕi’s output on uniform input is
close to uniform.

Consider uniform (xi, zi, hi) and set xi+1 = g(Ci(xi), zi) and αi = hi(Ci(xi), zi).
xi+1 is close to uniform due to the special property of g that every xi+1 has
roughly the same number of preimages (yi, zi), and due to the fact that each
image of Ci has exactly one preimage. Now fix xi+1. the number of pairs (xi, zi)
that are mapped to xi+1 is roughly 2d, i.e, there are d bits of entropy on which
hi is applied. Therefore, since hi is pairwise independent hash function and as
such, also a strong extractor, we get that (hi, αi) is also close to uniform.

12 Kaslasi et al.

Reducing Communication via Hashing. The foregoing soundness analysis relied
on the fact that the prover sent the values (x1, . . . , xk) during the interaction.
However, as noted above, this requires n · k communication which we cannot
afford. In a nutshell, we resolve this inefficiency by having the prover only send
short hashes of the xi’s, details follows.

At the beginning of each round, the verifier V sends a description of a pairwise
independent hash function fi in addition to the filter function hi and target
value αi. Then, in addition to sending zi, the prover P in her turn also sends a
hash value βi = fi(xi) (rather than sending xi explicitly). In order for the hash
value to commit the prover to xi, we would like for the hash function fi to be
injective on the set of consistent (x, z)’s (i.e., those for which g(Ci(x), z) = xi+1

and hi(Ci(x), z) = αi). This set is of size roughly 2d where d = polylog(n, k).
Therefore, setting the output size of fi to be poly(d) (= polylog(n, k)) bits is
sufficient. At the very end of the protocol, the prover P still needs to explicitly
send x′1, so that V can compute y′i = Ci(x

′
i) and x′i+1 = g(y′i, zi), for every

i ∈ [k], and verify that hi(y
′
i, zi) = αi, and lastly that x′k+1 = xk+1. Note that

the verifier can only perform these checks at the end of the interaction (as she
did in the simplified protocol) since she must obtain the value of x′1 in order to
generate x′2, . . . , x

′
k.

Overall, the communication is dominated by the values xk+1 and g, which
are sent by the verifier, and the value x′1 sent by the prover. Each of these
messages has length poly(n, log(k)). All the rest of the messages including the
specification of the hash functions hi, fi as well as the values αi, βi and zi have
length polylog(n, k). Overall we obtain the desired communication complexity(
k + poly(n)

)
· polylog(n, k).

When δ > 0. For the case where δ > 0, the arguments we made for completeness
and zero-knowledge still hold in a straightforward manner, but we need to be
more careful about soundness. More specifically, for some YES instance circuit
Ci (where i > i∗) and xi+1 ∈ {0, 1}n, there potentially can exist a pair (yi, zi) ∈
g−1(xi+1) s.t. hi(yi, zi) = αi and yi has an exponential number of preimages.
Therefore, the set of consistent (x, z) is of exponential size and therefore, in order
to fix the chosen xi by the prover, βi must consist polynomial number of bits,
which is of course too expensive for us.

However, since there is only a small number of images yi that have more
then one preimage (δ fraction of 2n), there is also only a small number of pairs
(yi, zi) ∈ g−1(xi+1) where yi is such an image. Therefore, w.h.p over (hi, αi),
none of those problematic pairs satisfy the condition that hi(yi, zi) = αi, and
therefore, their preimages are inconsistent which allows the earlier setting of the
output size of fi to work.

Comparison to the [KRR+20] Protocol. Our public-coin batching protocol bears
some resemblance to the private-coin batching protocol of [KRR+20]. We high-
light here the similarity and differences between our approaches. We note that
readers who are unfamiliar with [KRR+20] can safely skip this discussion and
proceed directly to Section 1.2.

Title Suppressed Due to Excessive Length 13

In the protocol of [KRR+20] the verifier V first samples x1 and auxiliary
randomnesses (z1, . . . , zk) as part of her setup. She computes yi = Ci(xi) and
determines the next circuit input as xi+1 = g(yi, zi), for every i ∈ [k], where in
contrast to our protocol, the function g is simply a (strong) seeded randomness
extractor (where yi is the min-entropy source and zi is the extractor’s seed).

The actual interaction starts by having the verifier V send yk to P. The parties
then proceed in iterations where in each iteration i, given xi+1, the prover needs
to guess xi using some additional hints that the verifier supplies. The prover’s
guesses are communicated by sending a short hash.

While their protocol bears some similarity to ours, we emphasize several
fundamental ways in which our approach differs from that of [KRR+20] (beyond
the fact that our protocol is public-coin).

– In [KRR+20] the verifier herself samples (z1, . . . , zk) and using it computes
(x1, . . . , xk) as part of her setup, and then she reveals these gradually. This
means that in the [KRR+20] there is a ground truth that the verifier can
compare. In contrast, in our protocol, each xi is chosen via an interactive
process that involves both parties and happens “online”. In particular, and as
discussed above, this means that a cheating prover can bias the distribution
of the xi’s as we process the circuit.

– On a related note, if the prover commits to a wrong xi in some iteration i,
then, in [KRR+20], the verifier V can immediately detect this and reject. In
contrast, in our protocol we are unable to do so and must wait to detect this
at the very end of the interaction.

– In our protocol the xi’s are computed in reverse order starting from xk
down to x1, whereas in the protocol of [KRR+20] the xi’s are computed
in order, starting from x1 up to xk. This may seem like a minor difference
but turns out to complicate matters significantly when considering zero-
knowledge. Indeed, both the [KRR+20] simulator as well as our simulator
compute the xi’s in order. This means that in the current work the protocol
and the simulator, operate in different order. This makes the analysis of the
simulation significantly more challenging.

– Lastly, [KRR+20] use extractors in order to map each circuit output yi to
the next circuit input xi+1. As discussed in detail in the above technical
overview, the average-case guarantee provided by extractors are not good
enough for us and we rely on the stronger notion of load-balancing hash
functions.

Efficient Transformation to Public-Coin Malicious Verifier SZK Goldre-
ich, Sahai, and Vadhan [GSV98] showed that any public-coin HVSZK protocol
can be transformed into a public-coin SZK protocol. Applying their transfor-
mation to the public-coin honest-verifier batch verification protocol described
above would indeed result in a malicious-verifier SZK batch verification proto-
col for AI, and thus NISZK. This transformation, however, starts by repeating
the HVSZK protocol several times in parallel in order to make the soundness

14 Kaslasi et al.

error exponentially small in the number of rounds. This would incur a blowup
in communication by a factor of Ω(k), which we cannot afford.

In order to get around this, we show that the transformation of [GSV98],
when used on protocols with a stronger soundness guarantee called round-by-
round soundness [CCH+19], can be performed without the initial repetition step,
and thus achieve a much smaller blowup in communication. Then we show that
our honest-verifier batching protocol does indeed provide this guarantee, and
thus the transformation can be applied to it with this better blowup, giving us
the desired result. We now briefly describe the transformation, the round-by-
round soundness property, and how they fit together.

The GSV Transformation. Recall that in a public-coin HVSZK protocol, the
honest verifier’s messages consist of uniformly random strings. What breaks when
the verifier is malicious is that it might choose these strings arbitrarily rather
than uniformly at random. In the GSV transformation, the prover and verifier
essentially run the given HVSZK protocol, but instead of the verifier sending
these random strings, they are sampled by the prover and the verifier together
using a Random Selection (RS) protocol. This protocol, which is constructed
by [GSV98], uses four messages, is public-coin, and produces as output a string
r of some desired length `. It provides, very roughly, the following guarantees
when run with security parameter λ:

1. If the prover is honest, the distribution of r is 2−λ-close to uniform over
{0, 1}`, and the transcript of the protocol is simulatable given output r.

2. If the verifier is honest, for any set T ⊆ {0, 1}`, we have Pr [r ∈ T] ≤ 2λ ·
|T | /2`.

The first property above ensures that the resulting protocol is complete and
zero-knowledge. The second property ensures that the prover cannot skew the
distribution of r, and thus soundness is maintained. Following the analysis in
[GSV98], however, it turns out that if the original protocol has soundness error
s and r rounds, the bound obtained on the soundness error of the new protocol
is roughly 2rλ · s. Thus, we would need to start by decreasing the soundness
error of the HVSZK protocol to less than 2−rλ. The only way we know to do this
generically is by repetition, which results in a multiplicative blowup of at least
Ω(r) in communication – in our case this is Ω(k), which is too large for us. We
get around this by showing that our batch verification protocol has a stronger
soundness property that results in a much better bound on the soundness error
when this transformation is applied.

Round-by-Round Soundness. Typically, the soundness property in an interactive
proof places requirements on how likely it is that a verifier accepts on a NO in-
put. Round-by-round soundness, introduced by Canetti et al [CCH+19], instead
places requirements on intermediate stages of the protocol. It involves a map-
ping State from partial transcripts of the protocol to the set {alive, doomed}.
A protocol is ε-round-by-round sound if there exists a mapping State such that

Title Suppressed Due to Excessive Length 15

for any input x and partial transcript τ with State(x, τ) = doomed, and any
subsequent prover message α, the probability over the next verifier message β
that State(x, τ, α, β) = alive is at most ε. Further, any complete transcript that
is doomed always results in a rejection by the verifier, and for any NO instance
x, it is the case that State(x,⊥) = doomed.

In other words, at a point where a protocol is doomed, irrespective of what
the prover does, the set of “bad” verifier messages that make the protocol alive
in the next round has relative size at most ε. To see its implications for stan-
dard soundness, consider a protocol that has r rounds and is ε-round-by-round
sound. The probability that the verifier accepts on a NO instance is at most the
probability that the complete transcript is alive. Thus, since the protocol has
to go from doomed to alive in at least one of the r rounds, the probability that
the verifier accepts is at most rε.

Putting it Together. Now, consider passing an ε-round-by-round sound protocol
through the GSV transformation described above. Here, each verifier message
is replaced by the output of the RS protocol. On a NO instance, in order to
successfully cheat, the prover has to make at least one of the r verifier messages
fall into the “bad” set for that round. Each of these bad sets, however, has
relative size at most ε, and thus the RS protocol’s output falls in each with
probability at most ε2λ. Thus, that total probability that the prover successfully
cheats is at most εr2λ.

So, if the original protocol had round-by-round soundness error somewhat
smaller than (r2λ)−1, the resulting protocol would still be sound. This is a much
more modest requirement than before, and can be achieved with a multiplica-
tive blowup of at most O(λ log r) in communication. Completeness and zero-
knowledge follow from the other properties of the RS protocol, and setting λ to
be polylog(n, k) gives us the desired SZK protocol.

Round-by-Round Soundness of our HVSZK Batching Protocol. To show that our
protocol described earlier has round-by-round soundness, we define the State
function as follows. Consider the partial transcript τj that corresponds to its j’th
iteration – this consists of g, xk+1, (hi, αi, fi, zi, βi)i∈{k,...,j+1}, and (hj , αj , fj).

– For j > i∗: Output doomed on the transcript τj if, for any prover message
(zj , βj) that follows, there exists at most one preimage xj that is consistent
with τj and (zj , βj). Further, if there is no such xj , output doomed on all
future transcripts that extend τj .

• Consider a doomed transcript τj+1, a prover message (zj+1, βj+1), and
the unique xj+1 that is consistent with them as promised (if it doesn’t
exist, future transcripts are already doomed). By our earlier discussion,
w.h.p., there are very few xj ’s which have a zi such that g(Cj(xj), zj) =
xj+1 and hj(Cj(xj), zj) = αj . Therefore, w.h.p., fj maps these xj ’s in-
jectively. Hence for any prover message (zj+1, βj+1), we have that w.h.p.
τj+1, (zj+1, βj+1), (hj , αj , fj) is also doomed.

16 Kaslasi et al.

– For j = i∗: We define the State function to output doomed on the tran-
script τi∗ if for any prover message (zi∗ , βi∗), there does not exist xi∗ that is
consistent with τi∗ and (zi∗ , βi∗).

• Consider any doomed transcripts τi∗+1, a prover message (zi∗+1, βi∗+1),
and the unique xi∗+1 that is consistent with them. As discussed ear-
lier, w.h.p., there does not exist (xi∗ , zi∗) s.t. g(Ci∗(xi∗), zi∗) = xi∗+1

and hi∗(Ci∗(xi∗), zi∗) = αi∗ and therefore for every prover message
(zi∗+1, βi∗+1), it holds w.h.p. that τi∗+1, (zi∗+1, βi∗+1), (hi∗ , αi∗ , fi∗) is
doomed too.

– For j < i∗: We define the State function to answer according to the par-
tial transcript τi∗ , and therefore round-by-round soundness in this case is
immediate.

We set State(x,⊥) to be doomed if x is a NO instance, and anything that
is not doomed is set to be alive. Lastly, consider a complete transcript that
is doomed; there does not exists xi∗ that is consistent with the beginning of
the transcript, and therefore V must reject. This function now witnesses the
round-by-round soundness of our protocol.

1.3 Organization

We start with preliminaries in Section 2. In Section 3 we formalize our notion of
a load-balancing hash function and provide a construction based on k-wise inde-
pendent hash functions. In Section 4 we introduce our variant of the approximate
injectivity (AI) problem and show that it is NISZK-complete. In Section 5 we con-
struct our public-coin honest-verifier batch verification for AI. In Section 6 we
show a generic, and efficient, transformation from public-coin HVSZK (having
round-by-round soundness) to public-coin full-fledged SZK. Lastly, in Section 7
we use the results obtained in the prior sections to obtain our public-coin SZK
batch verification protocol for NISZK.

Due to space restrictions, most of the proofs are deferred to the full version
[KRV21].

2 Preliminaries

For a finite non-empty set S, we denote by x ← S a uniformly distributed
element in S. We also use U` to denote a random variable uniformly distributed
over {0, 1}`.

For a distribution X over a finite set U and a (non-empty) event E ⊆ U ,
we denote by X|E the distribution obtained by conditioning X on E: namely,
Pr[X|E = u] = Pr[X = u |E], for every u ∈ U . The support of X is defined as
supp(X) = {u ∈ U : Pr[X = u] > 0}.

Definition 1. Let Π = (YES,NO) be a promise problem , where YES = (YESn)n∈N
and NO = (NOn)n∈N, and let k = k(n) ∈ N. We define the promise problem

Title Suppressed Due to Excessive Length 17

Π⊗k = (YES⊗k,NO⊗k), where YES⊗k = (YES⊗kn)n∈N, NO⊗k = (NO⊗kn)n∈N
and

YES⊗kn = (YESn)k

and

NO⊗kn = (YESn ∪NOn)k \ (NOn)k.

The statistical distance between two distributions P and Q over a finite set
U is defined as ∆(P,Q) = maxS⊆U (P (S)−Q(S)) = 1

2

∑
u∈U |P (u)−Q(u)|.

2.1 Statistical Zero-knowledge

We use (P,V)(x) to refer to the transcript of an execution of an interactive
protocol with prover P and verifier V on common input x. The transcript includes
the input x, all messages sent by P to V in the protocol and the verifier’s random
coin tosses. We say that the transcript τ = (P,V)(x) is accepting if at the end of
the corresponding interaction, the verifier accepts.

Definition 2 (Interactive proof).
Let c = c(n) ∈ [0, 1] and s = s(n) ∈ [0, 1] . An interactive proof with complete-

ness error c and soundness error s for a promise problem Π = (ΠYES, ΠNO),
consists of a probabilistic polynomial-time verifier V and a computationally un-
bounded prover P such that following properties hold:

– Completeness: For any x ∈ ΠYES:

Pr [(P,V)(x) is accepting] ≥ 1− c(|x|).

– Soundness: For any (computationally unbounded) cheating prover P∗ and
any x ∈ ΠNO:

Pr [(P∗,V)(x) is accepting] ≤ s(|x|).

We denote this proof system by the pair (P,V).

In this paper we focus on public-coin interactive proofs. An interactive proof
(P,V) is public-coin if the verifier’s messages are selected independently and uni-
formly at random (and their lengths are fixed independently of the interaction).

We next define honest-verifier statistical zero-knowledge proofs, in which
zero-knowledge is only guaranteed wrt the honest (i.e., prescribed) verifier’s
behavior.

Definition 3 (HVSZK). Let z = z(n) ∈ [0, 1]. An interactive proof system
(P,V) is an Honest Verifier SZK Proof-System (HVSZK), with zero-knowledge
error z, if there exists a probabilistic polynomial-time algorithm Sim (called the
simulator) such that for any x ∈ ΠYES:

∆ ((P,V)(x),Sim(x)) ≤ z(|x|).

18 Kaslasi et al.

For the malicious verifier SZK definition, we allow the verifier access to non-
uniform advice. Therefore, we also provide the simulator with the same advice.
Let Sim[a] denote the simulator Sim given access to the some advice string a ∈
{0, 1}∗.

Definition 4 (SZK). Let z = z(n) ∈ [0, 1]. An interactive-proof (P,V) is a sta-
tistical zero-knowledge proof-system (SZK), with zero-knowledge error z, if for ev-
ery probabilistic polynomial-time verifier V∗ there exists an algorithm Sim (called
the simulator) that runs in (strict) polynomial time such that for any x ∈ ΠYES

and a ∈ {0, 1}∗:

∆
(

(P,V∗[a])(x),Sim[a](x)
)
≤ z(|x|).

If the completeness, soundness and zero-knowledge (resp., honest-verifier
zero-knoweldge) errors are all negligible, we simply say that the interactive proof
is an SZK (resp., HVSZK) protocol. We also use SZK (resp., HVSZK) to denote
the class of promise problems having such an SZK (resp., HVSZK) protocol.

Non-Interactive Statistical Zero-Knowledge Proofs We also define the
non-interactive variant of SZK as follows.

Definition 5 (NISZK). Let c = c(n) ∈ [0, 1], s = s(n) ∈ [0, 1] and z = z(n) ∈
[0, 1]. An non-interactive statistical zero-knowledge proof (NISZK) with complete-
ness error c, soundness error s and zero-knowledge error z for a promise problem
Π = (ΠYES, ΠNO), consists of a probabilistic polynomial-time verifier V, a com-
putationally unbounded prover P and a polynomial ` = `(n) such that following
properties hold:

– Completeness: For any x ∈ ΠYES:

Pr
r∈{0,1}`(|x|)

[V(x, r, π) accepts] ≥ 1− c(|x|),

where π = P(x, r).
– Soundness: For any x ∈ ΠNO:

Pr
r∈{0,1}`(|x|)

[∃π∗ s.t. V(x, r, π∗) accepts] ≤ s(|x|).

– Honest Verifier Statistical Zero Knowledge: There is a probabilistic
polynomial-time algorithm Sim (called the simulator) such that for any x ∈
ΠYES:

∆ ((U`,P(x, U`)),Sim(x)) ≤ z(|x|).

(Note that the zero-knowledge property in Definition 5 is referred to as “honest-
verifier” simply because the verifier does not send any messages to the prover
and so it is meaningless to consider malicious behavior.)

As above, if the errors are negligible, we say that Π has a NISZK protocol
and use NISZK to denote the class of all such promise problems.

Title Suppressed Due to Excessive Length 19

2.2 Many-wise independence

Definition 6 (δ-almost `-wise Independent Hash Functions). For ` =
`(n) ∈ N, m = m(n) ∈ N and δ = δ(n) > 0, a family of functions F = (Fn)n,
where Fn =

{
f : {0, 1}m → {0, 1}n

}
is δ-almost `-wise independent if for every

n ∈ N and distinct x1, x2, . . . , x` ∈ {0, 1}m the distributions:

– (f(x1), . . . , f(x`)), where f ← Fn; and
– The uniform distribution over ({0, 1}n)`,

are δ-close in statistical distance.

When δ = 0 we simply say that the hash function family is `-wise independent.
Constructions of (efficiently computable) many-wise hash function families with
a very succinct representation are well known. In particular, when δ = 0 we have
the following well-known construction:

Lemma 1 (See, e.g., [Vad12, Section 3.5.5]). For every ` = `(n) ∈ N and

m = m(n) ∈ N there exists a family of `-wise independent hash functions F (`)
n,m =

{f : {0, 1}m → {0, 1}n} where a random function from F (`)
n,m can be selected using

O
(
` ·max(n,m)

)
bits, and given a description of f ∈ F (`)

n.m and x ∈ {0, 1}m, the
value f(x) can be computed in time poly(n,m, `).

For δ > 0, the seminal work of Naor and Naor [NN93] yields a highly succinct
construction.

Lemma 2 ([NN93, Lemma 4.2]). For every ` = `(n) ∈ N, m = m(n) ∈ N
and δ = δ(n) > 0, there exists a family of δ-almost `-wise independent hash

functions F (`)
n,m = {f : {0, 1}m → {0, 1}n} where a random function from F (`)

n,m

can be selected using O
(
` · n + log(m) + log(1/δ)

)
bits, and given a descrip-

tion of f ∈ F (`)
n.m and x ∈ {0, 1}m, the value f(x) can be computed in time

poly(n,m, `, log(1/δ)).

2.3 Round-By-Round Soundness

In this section we define the notion of round-by-round soundness of interactive
proofs, as introduced in the recent work of Canetti et al. [CCH+19].

Let (P,V) be a public-coin interactive proof. We denote by V (x, τ) the distri-
bution of the next message (or output) of V on the input x and partial transcript
τ .

Definition 7. Let (P,V) be a public-coin interactive proof for the promise prob-
lem Π = (ΠYES, ΠNO).

We say that (P,V) has a round-by-round soundness error ε = ε(n) if there
exists some (possibly inefficient) function State that takes as input the main
input x and a partial transcript τ and outputs either alive or doomed and has
the following properties:

20 Kaslasi et al.

1. If x ∈ NO, then State(x,⊥) = doomed (where ⊥ denotes the empty tran-
script).

2. For any transcript prefix τ , if State(x, τ) = doomed, then for any prover
message α it holds that

Pr
β←V (x,τ,α)

[State(x, τ, α, β) = alive] ≤ ε(n).

3. For any full transcript τ (i.e, a transcript in which the verifier halts) such
that State(x, τ) = doomed, it holds that V (x, τ) is rejecting.

Canetti et al. [CCH+19] also show the following simple fact (which follows
from the union bound).

Fact 4. Let (P,V) be a 2r-message interactive proof with round-by-round sound-
ness error ε. Then, (P,V) has standard soundness error r · ε.

3 Load-balancing Functions

We now define load-balancing hash functions, a central tool in our construction.
Loosely speaking, a load balanching hash function is a function mapping a set
{0, 1}m together with a short auxiliary random string {0, 1}d to a range {0, 1}n.
The key property that we seek is that for every subset of {0, 1}m of size roughly
2n it holds that every element x ∈ {0, 1}n has roughly the same number of

preimages (y, z) ∈ S × {0, 1}d.

Definition 8 (Load Balancing Hash Function Family). Let m = m(n) ∈
N, d = d(n) ∈ N and ε : N4 → [0, 1]. We say that a family of hash functions G =

(Gn)n, where Gn =
{
g : {0, 1}m × {0, 1}d → {0, 1}n

}
, is

(
d, ε
)
-load-balancing,

if for every n ∈ N, number of elements v ∈ N, and set S ⊆ {0, 1}m(n)
of size

|S| ≤ 2n it holds that:

Pr
g←G

[
∃x ∈ {0, 1}n :

∣∣∣∣LS,g(x)− |S| · 2
d

2n

∣∣∣∣ > v

]
≤ ε(n, |S| , v, d),

where LS,g(x) =
∣∣∣{(y, z) ∈ S × {0, 1}d : g(y, z) = x

}∣∣∣.
Lemma 3. For any values n, λ ∈ N and m = m(n), d = d(n) , there is an
explicit family of hash functions G = (Gn)n that is

(
d, λ, ε

)
-load-balancing, where

Gn =
{
g : {0, 1}m(n) × {0, 1}d(n) → {0, 1}n

}
and

ελ(n, |S| , v, d) = 2n ·
(

64 · (n+ λ) · µ+ (n+ λ)

v2

)n+λ+4

+ 2−λ−1,

where µ = |S|·2d
2n , s.t. a random function in the family can be sampled using

O(n2 + λ2 + d · (n + λ)) uniformly random bits, and each such function can be
evaluated in time poly(n,m, d, λ).

Title Suppressed Due to Excessive Length 21

Due to space restrictions, the proof of Lemma 3 is deferred to the full version
[KRV21].

Corollary 1. For any n,m(n), λ, `, ε′ ∈ (0, 1] and d ≥ 3 log
(
n+λ
ε′2

)
+`, the family

of hash functions from Lemma 3 has the following properties:

1. For any set S ⊆ {0, 1}m s.t. 2n−` ≤ |S| ≤ 2n it holds that

Pr
g←G

[
∃x ∈ {0, 1}n :

∣∣∣∣LS,g(x)− |S| · 2
d

2n

∣∣∣∣ > |S| · 2d2n
· ε′
]
≤ 2−λ.

2. For every ν s.t. 12 · (n+ λ) ≤ ν and set S ⊆ {0, 1}m s.t. |S| ≤ 2n−d it holds
that

Pr
g←G

[
∃x ∈ {0, 1}n : LS,g(x)− |S| · 2

d

2n
> v

]
≤ 2−λ.

4 Approximate Injectivity

In this section we analyze the approximate injectivity problem, introduced by
Kaslasi et al. [KRR+20]. In particular, we consider a variant in which NO cases
are (approximately) many-to-one and show that it is NISZK-complete.

We say that x′ is a sibling of x, with respect to the circuit C, if C(x) = C(x′).
We omit C from the notation if it is clear from the context.

Definition 9. The problem AIn,mL,δ is defined as the promise problem of circuits
with n input bits and m output bits, where

(AIn,mL,δ)Y =
{

circuit C : Pr
x

[
|C−1(C(x))| > 1

]
< δ
}
,

and

(AIn,mL,δ)N =
{

circuit C : Pr
x

[
|C−1(C(x))| < L

]
< δ
}
.

We omit m and n from the notation when they are clear from the context.

To show that AIL,δ is NISZK-hard, we rely on the fact that it is known to be
NISZK-hard in the special case when L = 2.

Lemma 4 ([KRR+20]). Let δ = δ(n) ∈ [0, 1] be a non-increasing function

such that δ(n) > 2−o(n
1/4). Then, AI2,δ is NISZK-hard.

Thus, to show that AIL,δ is NISZK-hard, it suffices to reduce AI2,δ to AIL,δ.

Lemma 5. For every parameter ` = poly(n), there exists a polynomial time

Karp-reduction from AIn,m2,δ to AIn·`,m·`
2`,`·δ .

22 Kaslasi et al.

Before proving Lemma 5, we observe that Lemma 4 together with Lemma 5
immediately implies that AIL,δ is NISZK-hard. Since AI2,δ is a special case of
AIL,δ, we get also that AIL,δ is NISZK-complete.

Corollary 2. Let δ = δ(n) ∈ [0, 1] be a non-increasing function and ` = poly(n)

such that δ(n) > 2−o(n1/4)

` . Then, there exist constants c, d ∈ N such that AIn
c,md

2`,δ
is NISZK-complete.

Due to space restrictions, the proof of Lemma 5 is deferred to the full version
[KRV21].

5 Public-coin Batch Verification for AIL,δ

In this section we prove the following lemma by showing a public-coin HVSZK
protocol for batch verification of AIL,δ (as defined in Definition 9).

Lemma 6. Let δ = δ(n) ∈ [0, 1] and k = k(n) ∈ N. Also, let λ = λ(n) ∈ N
be a security parameter and let ` = `(n) ∈ N, with `(n) ≥ λ(n) for all n. Set
d = 7 · (log n+ log k + λ) + ` and assume that δ ≤ 2−d and d < 2`− 2λ.

Then, AI⊗k2`,δ has an HVSZK public-coin protocol with completeness error

2−λ+1, round-by-round soundness error 2−λ and statistical zero knowledge error
k·(δ·2d+2+2−λ+6). The communication complexity is O(n2)+k·poly(log n, log k, λ)
and the verifier running time is k · poly(n, log k, λ).

Furthermore, the protocol consists of k rounds. The length of the verifier’s
first message is O(n2+`·n·poly(log n, log k, λ) and the length of all other verifier
messages is poly(log n, log k, λ).

The protocol establishing Lemma 6 is presented in Fig. 3. Due to space
restrictions, the analysis of the protocol is deferred to the full version [KRV21].

6 From Honest to Malicious Verifier

In this section, we show how efficiently to transform an honest-verifier SZK
protocol with round-by-round soundness, into a malicious-verifier SZK proto-
col. Our transformation builds on the prior work of Goldreich, Sahai and Vad-
han [GSV98] who showed a generic transformation from honest to malicious
verifiers for SZK, which unfortunately (and as discussed in more detail in the
introduction) is not efficient enough for our purposes.

Theorem 5. Suppose a problem Π has a public-coin honest-verifier SZK proof
system. This protocol can be transformed into a public-coin malicious-verifier
SZK proof system for Π with the following properties when given security pa-
rameter λ:

1. Suppose the original protocol has r rounds and the prover and verifier com-
munication in its ith round are si and `i, respectively. Then the transformed

protocol has 2r rounds, and its total communication is
(∑

i∈[r] si +O
(∑

i∈[r] `
4
i

))
.

Title Suppressed Due to Excessive Length 23

Public-coin HVSZK Batching Protocol for AI2`,δ.

Parameters: input length n, output length m, number of instances k, security
parameter λ, arity ` and seed length d = 7 · (logn+ log k + λ) + `.

Input: Circuits C1, . . . , Ck : {0, 1}n → {0, 1}m, where all circuitsa have size at
most N , input length n, and output length m ≤ N .

Ingredients:

– Let G = (Gn)n, where Gn =
{
g : {0, 1}m × {0, 1}d → {0, 1}n

}
, be the

explicit family of load-balancing functions from Lemma 3, with seed length d
and accuracy 2−λ with respect to security parameter λ+ log k + 1.

– Let H = (Hn)n, where Hn =
{
h : {0, 1}m × {0, 1}d → {0, 1}d/2

}
, be the

explicit family of 2−3d/2-almost pairwise independent hash function from
Lemma 2.

– Let F = (Fn)n, where Fn =
{
f : {0, 1}n → {0, 1}2d+λ+log k }, be the ex-

plicit family of 2−(2d+λ+log k)-almost pairwise independent hash functions
from Lemma 2.

The Protocol:

1. V samples g ← Gn and xk+1 ← {0, 1}n and sends both to P.
2. For i = k, ..., 1:

(a) V samples αi ← {0, 1}d/2, hi ← Hn, and fi ← Fn, and sends (αi, hi, fi)
to P.

(b) P generates the set

XZi =
{

(x, z) ∈ {0, 1}n × {0, 1}d : g(Ci(x), z) = xi+1 and hi(Ci(x), z) = αi
}
.

(c) P samples (xi, zi) ← XZi, and sends (zi, βi) to V, where βi = fi(xi).
In case the set XZi is empty, P sends an arbitraryb (zi, βi) ∈ {0, 1}d ×
{0, 1}2d+λ+log k.
We denote the pair received by V by (z′i, β

′
i) (allegedly equal to (zi, βi)).

3. P sends x1 to V.
4. V receives x′1 ∈ {0, 1}n (allegedly equal to x1) and computes:

(a) For i = 1, . . . , k:
i. y′i = Ci(x

′
i)

ii. x′i+1 = g(y′i, z
′
i)

5. V checks that xk+1 = x′k+1 and that ∀i ∈ [k], β′i = fi(x
′
i) and αi = hi(y

′
i, z
′
i).

6. If all of V’s checks passed then she accepts. Otherwise she rejects.

a The circuits can be trivially modified to have the same output length m ≤ N
by padding.

b Alternatively, we could simply have the prover abort in this case. However, it
will be more convenient for our analysis that P send an arbitrary (zi, βi) pair
rather than sending a special abort symbol.

Fig. 3: A Public-coin HVSZK Batching Protocol for AI2`,δ

24 Kaslasi et al.

2. The completeness and statistical zero-knowledge errors are at most poly(r, `max)·
2−Ω(λ) more (additively) than the respective errors in the original protocol,
where `max = maxi `i.

3. If the original protocol has round-by-round soundness error ε, then this pro-
tocol has soundness error

(
εr2λ + 1

2λ

)
.

4. The verifier runs in time polynomial in the input length, r, `max, and λ, as
does the prover, if given oracle access to the prover from the original protocol.

The transformation that we use to prove Theorem 5 is almost exactly the
same as the one of Goldreich, Sahai and Vadhan [GSV98]. The main difference
is that [GSV98] first perform an O(r)-fold parallel repetition of the underlying
HVSZK protocol, where r is its round complexity. This increases the communi-
cation complexity by a factor of r, which we cannot afford.

In contrast, in our analysis we avoid the use of parallel repetition and in-
stead rely on the underlying protocol satisfying a stronger notion of soundness
- namely, round-by-round soundness (Definition 7).

Due to space restrictions, we defer the proof of Theorem 5 to the full version
[KRV21].

7 Public-coin Malicious Verifier SZK Batching for NISZK

In this section we state our main theorems. The proof, which build on results
established in the prior sections is deferred to the full version [KRV21]. We first
state our public-coin HVSZK batch verification protocol for NISZK.

Theorem 6. Let Π ∈ NISZK and k = k(n) ∈ N such that k(n) ≤ 2n
0.01

and let
λ = λ(n) ∈ N be a security parameter such that λ(n) ≤ n0.1. Then, Π⊗k has
a public-coin HVSZK protocol with completeness, zero-knowledge, and round-by-
round soundness errors of 2−λ.

The communication complexity is
(
k + poly(n)

)
· poly(log n, log k, λ) and the

verifier running time is k · poly(n, log k, λ).

Furthermore, the protocol consists of k rounds. The length of the verifier’s
first message is poly(n) and the length of each of the verifier’s other messages is
polylog(n, k, λ).

Combining Theorem 6 with Theorem 5, we get a malicious-verifier SZK batch
verification protocol.

Theorem 7. Let Π ∈ NISZK and k = k(n) ∈ N such that k(n) ≤ 2n
0.01

and let λ = λ(n) ∈ N be a security parameter such that λ(n) ≤ n0.09. Then,
Π⊗k has a public-coin SZK protocol with completeness, soundness, and zero-
knowledge errors of 2−Ω(λ), and communication complexity of

(
k + poly(n)

)
·

poly(log n, log k, λ). The verifier running time is k ·poly(n, λ, log k) and the num-
ber of rounds is O(k · λ).

Title Suppressed Due to Excessive Length 25

Acknowledgments

We thank the anonymous Eurocrypt 2021 reviewers for useful comments.
Inbar Kaslasi and Ron Rothblum were supported in part by a Milgrom family

grant, by the Israeli Science Foundation (Grants No. 1262/18 and 2137/19), and
grants from the Technion Hiroshi Fujiwara cyber security research center and
Israel cyber directorate.

Prashant Vasudevan was supported in part by AFOSR Award FA9550-19-1-
0200, AFOSR YIP Award, NSF CNS Award 1936826, DARPA and SPAWAR
under contract N66001-15-C-4065, a Hellman Award and research grants by the
Okawa Foundation, Visa Inc., and Center for Long-Term Cybersecurity (CLTC,
UC Berkeley). The views expressed are those of the authors and do not reflect
the official policy or position of the funding agencies.

References

Aar12. Scott Aaronson. Impossibility of succinct quantum proofs for collision-
freeness. Quantum Information & Computation, 12(1-2):21–28, 2012.

ADM+99. Noga Alon, Martin Dietzfelbinger, Peter Bro Miltersen, Erez Petrank, and
Gábor Tardos. Linear hash functions. J. ACM, 46(5):667–683, 1999.

AH91. William Aiello and Johan Hastad. Statistical Zero-knowledge Languages
can be recognized in two rounds. Journal of Computer and System Sciences,
42(3):327–345, 1991.

APS18. Navid Alamati, Chris Peikert, and Noah Stephens-Davidowitz. New (and
old) proof systems for lattice problems. In Michel Abdalla and Ricardo
Dahab, editors, Public-Key Cryptography - PKC 2018 - 21st IACR Interna-
tional Conference on Practice and Theory of Public-Key Cryptography, Rio
de Janeiro, Brazil, March 25-29, 2018, Proceedings, Part II, volume 10770
of Lecture Notes in Computer Science, pages 619–643. Springer, 2018.

AV19. Benny Applebaum and Prashant Nalini Vasudevan. Placing conditional
disclosure of secrets in the communication complexity universe. In Avrim
Blum, editor, 10th Innovations in Theoretical Computer Science Confer-
ence, ITCS 2019, January 10-12, 2019, San Diego, California, USA, vol-
ume 124 of LIPIcs, pages 4:1–4:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019.

BBD+20. Marshall Ball, Elette Boyle, Akshay Degwekar, Apoorvaa Deshpande, Alon
Rosen, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan. Cryptog-
raphy from information loss. In Thomas Vidick, editor, 11th Innovations
in Theoretical Computer Science Conference, ITCS 2020, January 12-14,
2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 81:1–81:27.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

BCH+20. Adam Bouland, Lijie Chen, Dhiraj Holden, Justin Thaler, and
Prashant Nalini Vasudevan. On the power of statistical zero knowledge.
SIAM J. Comput., 49(4), 2020.

BDRV18. Itay Berman, Akshay Degwekar, Ron D. Rothblum, and Prashant Nalini
Vasudevan. From laconic zero-knowledge to public-key cryptography - ex-
tended abstract. In Hovav Shacham and Alexandra Boldyreva, editors,

26 Kaslasi et al.

Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceed-
ings, Part III, volume 10993 of Lecture Notes in Computer Science, pages
674–697. Springer, 2018.

BGR98. Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification for
modular exponentiation and digital signatures. In Kaisa Nyberg, editor, Ad-
vances in Cryptology - EUROCRYPT ’98, International Conference on the
Theory and Application of Cryptographic Techniques, Espoo, Finland, May
31 - June 4, 1998, Proceeding, volume 1403 of Lecture Notes in Computer
Science, pages 236–250. Springer, 1998.

BL13. Andrej Bogdanov and Chin Ho Lee. Limits of provable security for homo-
morphic encryption. In Ran Canetti and Juan A. Garay, editors, Advances
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, volume 8042
of Lecture Notes in Computer Science, pages 111–128. Springer, 2013.

CCH+19. Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Roth-
blum, Ron D. Rothblum, and Daniel Wichs. Fiat-shamir: from practice to
theory. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019,
Phoenix, AZ, USA, June 23-26, 2019, pages 1082–1090. ACM, 2019.

CHP12. Jan Camenisch, Susan Hohenberger, and Michael Østergaard Pedersen.
Batch verification of short signatures. J. Cryptology, 25(4):723–747, 2012.

CP92. David Chaum and Torben P. Pedersen. Wallet databases with observers. In
Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 16-20, 1992,
Proceedings, pages 89–105, 1992.

CRSW11. L. Elisa Celis, Omer Reingold, Gil Segev, and Udi Wieder. Balls and bins:
Smaller hash families and faster evaluation. Electronic Colloquium on Com-
putational Complexity (ECCC), 18:68, 2011.

Dru15. Andrew Drucker. New limits to classical and quantum instance compression.
SIAM J. Comput., 44(5):1443–1479, 2015.

For87. Lance Fortnow. The complexity of perfect zero-knowledge (extended ab-
stract). In Alfred V. Aho, editor, Proceedings of the 19th Annual ACM
Symposium on Theory of Computing, 1987, New York, New York, USA,
pages 204–209. ACM, 1987.

For89. Lance Jeremy Fortnow. Complexity-theoretic aspects of interactive proof
systems. PhD thesis, Massachusetts Institute of Technology, 1989.

FS86. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In Conference on the Theory and
Application of Cryptographic Techniques, pages 186–194. Springer, 1986.

GG00. Oded Goldreich and Shafi Goldwasser. On the limits of nonapproximability
of lattice problems. J. Comput. Syst. Sci., 60(3):540–563, 2000.

GK93. Oded Goldreich and Eyal Kushilevitz. A perfect zero-knowledge proof sys-
tem for a problem equivalent to the discrete logarithm. J. Cryptology,
6(2):97–116, 1993.

GMR89. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

GMR98. Rosario Gennaro, Daniele Micciancio, and Tal Rabin. An efficient non-
interactive statistical zero-knowledge proof system for quasi-safe prime
products. In Li Gong and Michael K. Reiter, editors, CCS ’98, Proceedings

Title Suppressed Due to Excessive Length 27

of the 5th ACM Conference on Computer and Communications Security,
San Francisco, CA, USA, November 3-5, 1998, pages 67–72. ACM, 1998.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
1987, New York, New York, USA, pages 218–229, 1987.

GR14. Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. J.
Cryptol., 27(3):480–505, 2014.

GS89. Shafi Goldwasser and Michael Sipser. Private coins versus public coins in
interactive proof systems. Advances in Computing Research, 5:73–90, 1989.

GSV98. Oded Goldreich, Amit Sahai, and Salil Vadhan. Honest-verifier statistical
zero-knowledge equals general statistical zero-knowledge. In STOC, 1998.

GV99. Oded Goldreich and Salil P. Vadhan. Comparing entropies in statistical
zero knowledge with applications to the structure of SZK. In CCC, 1999.

HRV18. Pavel Hubácek, Alon Rosen, and Margarita Vald. An efficiency-preserving
transformation from honest-verifier statistical zero-knowledge to statisti-
cal zero-knowledge. In Jesper Buus Nielsen and Vincent Rijmen, editors,
Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part III, volume 10822
of Lecture Notes in Computer Science, pages 66–87. Springer, 2018.

KMN+14. Ilan Komargodski, Tal Moran, Moni Naor, Rafael Pass, Alon Rosen, and
Eylon Yogev. One-way functions and (im)perfect obfuscation. In 55th
IEEE Annual Symposium on Foundations of Computer Science, FOCS
2014, Philadelphia, PA, USA, October 18-21, 2014, pages 374–383. IEEE
Computer Society, 2014.

KRR+20. Inbar Kaslasi, Guy N. Rothblum, Ron D. Rothblum, Adam Sealfon, and
Prashant Nalini Vasudevan. Batch verification for statistical zero knowledge
proofs. Electronic Colloquium on Computational Complexity (ECCC), 2020.

KRV21. Inbar Kaslasi, Ron D. Rothblum, and Prashant Nalini Vasudevan. Public-
coin statistical zero-knowledge batch verification against malicious verifiers.
Cryptology ePrint Archive, Report 2021/233, 2021. https://eprint.iacr.
org/2021/233.

KY18. Ilan Komargodski and Eylon Yogev. On distributional collision resistant
hashing. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in
Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part
II, volume 10992 of Lecture Notes in Computer Science, pages 303–327.
Springer, 2018.

LV16. Tianren Liu and Vinod Vaikuntanathan. On basing private information
retrieval on np-hardness. In Theory of Cryptography - 13th International
Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceed-
ings, Part I, pages 372–386, 2016.

MV03. Daniele Micciancio and Salil P. Vadhan. Statistical zero-knowledge proofs
with efficient provers: Lattice problems and more. In Advances in Cryptology
- CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa
Barbara, California, USA, August 17-21, 2003, Proceedings, pages 282–298,
2003.

NMVR94. David Naccache, David M’Räıhi, Serge Vaudenay, and Dan Raphaeli. Can
D.S.A. be improved? complexity trade-offs with the digital signature stan-
dard. In Alfredo De Santis, editor, Advances in Cryptology - EUROCRYPT

https://eprint.iacr.org/2021/233
https://eprint.iacr.org/2021/233

28 Kaslasi et al.

’94, Workshop on the Theory and Application of Cryptographic Techniques,
Perugia, Italy, May 9-12, 1994, Proceedings, volume 950 of Lecture Notes
in Computer Science, pages 77–85. Springer, 1994.

NN93. Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient con-
structions and applications. SIAM J. Comput., 22(4):838–856, 1993.

NV06. Minh-Huyen Nguyen and Salil P. Vadhan. Zero knowledge with efficient
provers. In Proceedings of the 38th Annual ACM Symposium on Theory of
Computing, Seattle, WA, USA, May 21-23, 2006, pages 287–295, 2006.

Oka00. Tatsuaki Okamoto. On relationships between statistical zero-knowledge
proofs. J. Comput. Syst. Sci., 60(1):47–108, 2000.

Ost91. Rafail Ostrovsky. One-way functions, hard on average problems, and statis-
tical zero-knowledge proofs. In Structure in Complexity Theory Conference,
pages 133–138, 1991.

OV08. Shien Jin Ong and Salil P. Vadhan. An equivalence between zero knowledge
and commitments. In Theory of Cryptography, Fifth Theory of Cryptography
Conference, TCC 2008, New York, USA, March 19-21, 2008, pages 482–
500, 2008.

OW93. Rafail Ostrovsky and Avi Wigderson. One-way fuctions are essential for
non-trivial zero-knowledge. In ISTCS, pages 3–17, 1993.

PS96. David Pointcheval and Jacques Stern. Security proofs for signature schemes.
In International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 387–398. Springer, 1996.

PV08. Chris Peikert and Vinod Vaikuntanathan. Noninteractive statistical zero-
knowledge proofs for lattice problems. In Advances in Cryptology -
CRYPTO 2008, 28th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2008. Proceedings, pages 536–553, 2008.

SV03. Amit Sahai and Salil Vadhan. A complete problem for statistical zero
knowledge. Journal of the ACM (JACM), 50(2):196–249, 2003.

Vad99. Salil Pravin Vadhan. A study of statistical zero-knowledge proofs. PhD
thesis, Massachusetts Institute of Technology, 1999.

Vad12. Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical
Computer Science, 7(1-3):1–336, 2012.

	Public-Coin Statistical Zero-Knowledge Batch Verification against Malicious Verifiers

