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Abstract. We initiate the study of multi-party computation for clas-
sical functionalities in the plain model, with security against malicious
quantum adversaries. We observe that existing techniques readily give
a polynomial-round protocol, but our main result is a construction of
constant-round post-quantum multi-party computation. We assume mildly
super-polynomial quantum hardness of learning with errors (LWE), and
quantum polynomial hardness of an LWE-based circular security as-
sumption. Along the way, we develop the following cryptographic prim-
itives that may be of independent interest:

– A spooky encryption scheme for relations computable by quantum
circuits, from the quantum hardness of (a circular variant of) the
LWE problem. This immediately yields the first quantum multi-key
fully-homomorphic encryption scheme with classical keys.

– A constant-round post-quantum non-malleable commitment scheme,
from the mildly super-polynomial quantum hardness of LWE.

To prove the security of our protocol, we develop a new straight-line
non-black-box simulation technique against parallel sessions that does
not clone the adversary’s state. This technique may also be relevant to
the classical setting.

1 Introduction

Secure multi-party computation (MPC) allows a set of parties to compute a joint
function of their inputs, revealing only the output of the function while keep-
ing their inputs private. General secure MPC, initiated in works such as [68,
33, 6, 14], has played a central role in modern theoretical cryptography. The
last few years have seen tremendous research optimizing MPC in various ways,
enabling a plethora of practical applications that include joint computations
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on distributed medical data, privacy-preserving machine learning, e-voting, dis-
tributed key management, among others. The looming threat of quantum com-
puters naturally motivates the problem of constructing protocols with provable
security against quantum adversaries.

After Watrous’ breakthrough work on zero-knowledge against quantum ad-
versaries [64], the works of [20, 51, 41] considered variants of quantum-secure
computation protocols, in the two-party setting. Very recently, Bitansky and
Shmueli [10] obtained the first constant-round classical zero-knowledge argu-
ments with security against quantum adversaries. Their techniques (and those
of [1] in a concurrent work) are based on the recent non-black-box simula-
tion technique of [8], who constructed two-message classically-secure weak zero-
knowledge in the plain model. Unfortunately, it is unclear whether these proto-
cols compose under parallel repetition. As a result, they become largely inappli-
cable to the constant-round multi-party setting.

There has also been substantial effort in constructing protocols for securely
computing quantum circuits [25, 26, 23] (see Section 2.6 for further discussion).
However, to the best of our knowledge, generic multi-party computation pro-
tocols with classical communication and security against quantum adversaries
have only been studied in models with trusted pre-processing or setup. To make
things even worse, [23] construct a maliciously-secure multi-party protocol for
computing quantum ciruits, assuming the existence of a maliciously-secure post-
quantum classical MPC protocol. This means that the only available implemen-
tations of such a building block require trusted pre-processing or a common
reference string.

Post-Quantum MPC. In this work we initiate the study of MPC protocols
that allow classical parties to securely compute general classical functionalities,
and where security is guaranteed against malicious quantum adversaries. Our
focus is on MPC in the plain model : Fully classical participants interact with
each other with no access to trusted/pre-processed parameters or a common
reference string. Multi-party protocols achieving security in these settings do
not seem to have been previously analyzed in any number of rounds.

We stress that the challenges of proving post-quantum security of MPC pro-
tocols stretch far beyond the appropriate instantiations of the cryptographic
building blocks (e.g. avoiding factoring- or discrete logarithm-based cryptosys-
tems): Because quantum information behaves very differently from classical in-
formation, designing post-quantum protocols often requires new techniques to
achieve provable security. As an example, a common strategy to prove classical
security of MPC protocols is to define a simulator that can extract the inputs of
the corrupted parties by “rewinding” them, i.e. taking a snapshot of the state
of the adversary and split the protocol execution in multiple branches. However,
when the adversary is a quantum machine, this technique becomes largely in-
applicable since the no-cloning theorem (one of the fundamental principles of
quantum mechanics) prevents us from creating two copies of an arbitrary quan-
tum state. One of our key contributions is a new parallel no-cloning non-black-box
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simulation technique that extends the work of [10], to achieve security against
multiple parallel quantum verifiers.

1.1 Our Results

We begin by summarizing our main result: Classical multi-party computation
with security against quantum circuits in the plain model. Here, parties commu-
nicate classically via authenticated point-to-point channels as well as broadcast
channels, where everyone can send messages in the same round. In each round,
all parties simultaneously exchange messages. The network is assumed to be
synchronous with rushing adversaries, i.e. adversaries may generate their mes-
sages for any round after observing the messages of all honest parties in that
round, but before observing the messages of honest parties in the next round.
The (quantum) adversary may corrupt upto all but one of the participants. In
this model, we obtain the following main result.

Theorem 1 (Informal). Assuming mildly super-polynomial quantum hardness
of LWE and AFS-spooky encryption for relations computable by polynomial-size
quantum circuits, there exists a constant-round classical MPC protocol (in the
plain model) maliciously secure against quantum polynomial-time adversaries.

In more detail, our protocol is secure against any adversary A = {Aλ, ρλ}λ,
where each Aλ is the (classical) description of a polynomial-size quantum circuit
and ρλ is some (possibly inefficiently computable) non-uniform quantum advice.
Beyond being interesting in its own right, our plain-model protocol may serve as
a useful stepping stone to obtaining interesting protocols for securely computing
quantum circuits in the plain model, as evidenced by the work of [23]. This
protocol is constructed in Sections 8 and 9 in the full version.

By “mildly” super-polynomial quantum hardness of LWE, we mean to as-
sume that there exists a constant c ∈ N, such that for large enough security
parameter λ ∈ N, no quantum polynomial time algorithm can distinguish LWE
samples from uniform with advantage better than negl(λilog(c,λ)), where ilog(c, λ)
denotes the c-times iterated logarithm log log · · ·c times(λ). We note that this is
weaker than assuming the quasi-polynomial quantum hardness of LWE, i.e. the
assumption that quantum polynomial-time adversaries cannot distinguish LWE
samples from uniform with advantage better than 2−(log λ)

c

for some constant
c > 1.

A central technical ingredient of our work is an additive function sharing
(AFS) spooky encryption scheme [21] for relations computable by quantum cir-
cuits. An AFS-spooky encryption scheme has a publicly-computable algorithm
that, on input a set of ciphertexts Enc(pk1,m1), . . . ,Enc(pkn,mn) encrypted un-
der independently sampled public keys and a (possibly quantum) circuit C, com-
putes a new set of ciphertexts

Enc(pk1, y1), . . . ,Enc(pkn, yn) s.t.

n⊕
i=1

yi = C(m1, . . . ,mn).
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In Section 4 in the full version we show how to construct AFS-spooky encryp-
tion for relations computable by quantum circuits, under an LWE-based circu-
lar security assumption. We refer the reader to Section 4.4 in the full version
for the exact circular security assumption we need, which is similar to the one
used in [52]. As a corollary, this immediately yields the first multi-key fully-
homomorphic encryption [50] for quantum circuits with classical key generation
and classical encryption of classical messages.

Theorem 2 (Informal). Under an appropriate LWE-based circular security
assumption, there exists an AFS-spooky encryption scheme for relations com-
putable by polynomial-size quantum circuits with classical key generation and
classical encryption of classical messages.

Along the way to proving our main theorem, we construct and rely on
constant-round zero-knowledge arguments against parallel quantum verifiers,
and constant-round extractable commitments against parallel quantum com-
mitters. Parallel extractable commitments and zero-knowledge are formally con-
structed and analyzed in Sections 5 and 6 in the full version, respectively. We
only show the construction of parallel extractable commitments in Section 3 in
this paper. We point out that we do not obtain protocols that compose un-
der unbounded parallel repetition. Instead we build a bounded variant (that we
also refer to as multi-verifier zero-knowledge and multi-committer extractable
commitments) that suffices for our applications.

Theorem 3 (Informal). Assuming the quantum polynomial hardness of LWE
and the existence of AFS-spooky encryption for relations computable by polynomial-
size quantum circuits, there exists:

– A constant-round classical argument for NP that is computational-zero-knowledge
against parallel quantum polynomial-size verifiers.

– A constant-round classical commitment that is extractable against parallel
quantum polynomial-size committers.

In addition, we initiate the study of post-quantum non-malleable commit-
ments. Specifically, we construct and rely on constant-round post-quantum non-
malleable commitments based on the super-polynomial hardness assumption de-
scribed above. The formal construction and analysis can be found in Section 7
in the full version.

Theorem 4 (Informal). Assuming the mildly super-polynomial quantum hard-
ness of LWE and the existence of fully-homomorphic encryption for quantum
circuits, there exists a constant-round non-malleable commitment scheme secure
against quantum polynomial-size adversaries.

We also obtain quantum-secure non-malleable commitments in O(ilog(c, λ))
rounds for any constant c ∈ N based on any quantum-secure extractable com-
mitment. In particular, plugging in these commitments instead of our constant
round non-malleable commitments gives an O(ilog(c, λ)) round quantum-secure
MPC from any quantum AFS-spooky encryption scheme.
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2 Technical Overview

2.1 Background

Our starting point is any constant-round post-quantum MPC protocol mali-
ciously secure in the programmable common reference string (CRS) model. Such
a protocol can be obtained, for example, based on the semi-maliciously secure
MPC protocols of [2, 53] in the CRS model. Specifically, assuming the exis-
tence of post-quantum zero-knowledge in the CRS model (that can be obtained
based on the quantum hardness of LWE [60]) and the quantum hardness of
LWE, these works obtain multi-party computation for classical circuits in the
CRS model with the following property: There exists an ideal-world simulator
that programs the CRS, interacts in a straight-line, black-box manner with any
quantum adversary corrupting an arbitrary subset of the players, and outputs a
view that is indistinguishable from the real view of the adversary, including the
output of honest parties.

Thus, a natural approach to achieving post-quantum MPC in the plain model
is to then securely implement a multi-party functionality that generates the
aforementioned CRS. Specifically, we would like a set of n parties to jointly
execute a coin-flipping protocol. Such a protocol outputs a uniformly random
string that may then be used to implement post-quantum secure MPC according
to [2, 53]. The programmability requirement on the CRS roughly translates to
ensuring that for any quantum adversary, there exists a simulator that on input
a random string s, can force the output of the coin-flipping protocol to be equal
to s. A protocol satisfying this property is often referred to as a fully-simulatable
multi-party coin-flipping protocol.

Post-Quantum Multi-Party Coin-Flipping. Existing constant-round pro-
tocols [65, 36] for multi-party coin-flipping against classical adversaries make use
of the following template. Each participant first commits to a uniformly random
string using an appropriate perfectly binding commitment.1 In a later phase,
all participants reveal the values they committed to, without actually revealing
the randomness used for commitment. Additionally, each participant proves (in
zero-knowledge) to every other participant that they opened to the same value
that they originally committed to. If all zero-knowledge arguments verify, the
protocol output is computed as the sum of the openings of all participants. To
highlight challenges to construct constant-round protocols, we elaborate on this
template and outline a simple polynomial-round coin tossing protocol. Readers
familiar with this template for multi-party coin-tossing may skip to the next
page.

A Simple Protocol in Polynomially Many Rounds. In order to motivate
the challenges involved in constructing a post-quantum constant-round multi-
party coin tossing protocol, we first outline a simple protocol that requires poly-
nomially many rounds, and follows from ideas in existing work. Our starting

1We actually require this commitment to also satisfy a property called non-
malleability, which we discuss later in this section.
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point is the polynomial-round post-quantum zero-knowledge protocol due to
Watrous [64]. Ideas developed in [10] can be used almost immediately to convert
this to a post-quantum extractable commitment scheme, assuming polynomial
hardness of LWE (or, more generally, any post-quantum oblivious transfer). For
completeness, we outline how this is done in Appendix A in the full version.
Next, it is possible to use the resulting post-quantum secure extractable com-
mitment to obtain post-quantum multiparty fully-simulatable coin flipping, that
admits a straight-line simulator in the dishonest majority setting. The protocol
requires rounds that grow linearly with the number of parties and polynomially
with the security parameter, as described in Figure 1.

n-Party Coin tossing
Common input: 1λ, 1n.

1. For each i ∈ [n], party Pi samples ri ← {0, 1}λ.
2. Sequentially, for every i ∈ [n], j ∈ [n] \ {i} parties Pi, Pj execute a post-

quantum extractable commitment where Pi commits to ri and Pj is the
receiver.

3. Pi broadcasts ri.
4. For every i ∈ [n], j ∈ [n] \ {i} parties Pi, Pj sequentially execute a post-

quantum ZK protocol where Pi is the prover and Pj is the verifier. Pi proves
to Pj (in zero-knowledge) that the value committed via the extractable com-
mitment (in Step 2) is consistent with the value broadcasted (in Step 3).

5. If all the proofs where Pi is verifier are accepting, Pi outputs
⊕n

i=1 ri.

Fig. 1: Multiparty Coin Tossing

Recall that the simulator Sim of any coin-flipping protocol will obtain a
uniformly random string r∗ from the ideal functionality, and must force this
value as the output. The Sim for the protocol in Figure 1 samples ri uniformly
at random on behalf of each honest party Pi, and commits to ri in Step 2
following honest sender strategy. At the same time, Sim runs Ext to (sequentially)
extract the value committed by every corrupted party in Step 2. This allows the
simulator to compute

⊕
i∈M ri, where M denotes the set of corrupted parties. In

Step 3, the simulator broadcasts values r′i on behalf of honest parties such that⊕
i∈[n]\M r

′
i =

⊕
i∈M ri⊕ r∗. Finally, it invokes the simulator of the ZK protocol

to produce proofs on behalf of honest parties. It is easy to see that the output
would indeed end up being the intended output r∗.

Notice that replacing Watrous’ polynomial-round ZK protocol with the constant-
round ZK of [10, 1] only decreases the rounds to linear in the number of parties.
To decrease the number of rounds to constant, it is clear that one would need to
find a way to execute the commitment sessions (Step 2) and ZK sessions (Step 4)
in parallel. While the recent work of Bitansky and Shmueli [10] builds constant-
round post-quantum zero-knowledge, their protocol and its guarantees turn out
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to be insufficient for the parallel setting. In this setting, a single prover would
typically need to interact in parallel with (n− 1) different verifiers, a subset or
all of which may be adversarial. It should be possible for a simulator to simulta-
neously simulate the view of multiple parallel verifiers. In addition, the argument
should continue to satisfy soundness, even if a subset of verifiers colludes with a
(cheating) prover.

Post-Quantum Parallel Zero-Knowledge. We overcome this barrier by build-
ing the first constant-round zero-knowledge argument secure against parallel
quantum verifiers from quantum polynomial hardness of an LWE-based circu-
lar security assumption. This improves upon the work of [10, 1] who provided
arguments with provable security only against a single quantum verifier. Very
roughly, the approach in [10, 1] relies on a modification of the [8] homomor-
phic trapdoors paradigm. We do not assume familiarity with the details of this
protocol or paradigm, and will in fact discuss a (variant of) this in the next
subsection. For now, we simply point out that in this paradigm, the verifier
generates an initial FHE ciphertext and public key, as well as some additional
information to enable simulation. The simulator homomorphically evaluates the
verifier’s (quantum) circuit over the initial FHE ciphertext and then uses the
result of this evaluation to recover secrets that will enable simulation.

However, when a prover interacts with several verifiers at once, each veri-
fier will generate its own FHE ciphertexts. In a nutshell, in the parallel setting
the simulator can no longer perform individual homomorphic evaluations corre-
sponding to each verifier, due to no-cloning. To address this issue, we develop a
novel parallel no-cloning simulation strategy. This strategy relies on a novel
technique that enables the simulator to peel away secret keys of this FHE scheme
layer-by-layer. An overview of this technique can be found in Section 2.2.

Our technique also crucially relies on a strong variant of quantum fully-
homomorphic encryption that allows for homomorphic operations under multiple
keys at once. The encryption scheme that we use is a quantum generalization
of the notion of additive function sharing (AFS) spooky encryption [21]. As a
contribution of independent interest, we build the first AFS-spooky encryption
(that also implies multi-key FHE) for quantum circuits from a circular variant
of the LWE assumption. We give an overview of our construction in Section 2.3.

Post-Quantum Non-malleable Commitments. Our construction of zero-
knowledge against parallel quantum verifiers gives rise to a coin-flipping protocol
that is secure as long as at least one participant is honest, and all committed
strings are independent of each other. However, ensuring such independence is
not straightforward, even in the classical setting. In fact, upon seeing an hon-
est party’s commitment string c, a malicious, rushing adversary may be able to
produce a string c′ that commits to a related message. This is known as a mal-
leability attack, and can be prevented by relying on non-malleable commitments.
In this work, we devise the first post-quantum non-malleable commitments based
on slightly superpolynomial hardness of LWE. An overview of our construction
can be found in Section 2.4.
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Finally, we discuss how to combine all these primitives to build our desired
coin-tossing protocol, and a few additional subtleties that come up in the process,
in Section 2.5.

2.2 A New Parallel No-Cloning Non-Black-Box Simulation
Technique

In the following we give a high-level overview of our constant-round zero-knowledge
protocol secure against parallel quantum verifiers. In favor of a simpler exposi-
tion, we first describe a parallel extractable commitment protocol. A parallel
extractable commitment is a commitment where a single receiver interacts in
parallel with multiple committers, each committing to its own independent mes-
sage. The main challenge in this setting is to simulate the view of an adversary
corrupting several of these committers, while simultaneously recovering all com-
mitted messages. Once we build a parallel extractable commitment, obtaining
a parallel zero-knowledge protocol becomes a simple exercise (that we discuss
towards the end of this overview).

Throughout the following overview we only consider adversaries that are (i)
non-aborting, i.e. they never interrupt the execution of the protocol, and (ii)
explainable, i.e. their messages always lie in the support of honestly generated
messages, though they can select their random coins and inputs arbitrarily. We
further simplify our overview by only considering (iii) classical adversaries, while
being mindful to avoid any kind of state cloning during extraction. In the end
of this overview we discuss how to remove these simplifications.

Cryptographic Building Blocks. Before delving into the description of our
protocol, we introduce the technical tools needed for our construction. A fully-
homomorphic encryption (FHE) scheme [29] allows one to compute any function
(in its circuit representation) over some encrypted message Enc(pk,m), without
the need to decrypt it first. We say that an FHE is multi-key [50] if it supports
the homomorphic evaluation of circuits even over messages encrypted under
independently sampled public keys:

{Enc(pki,mi)}i∈[n]
Eval((pk1,...,pkn),C,·)−−−−−−−−−−−−−→ Enc((pk1, . . . , pkn), C(m1, . . . ,mn)).

Clearly, decrypting the resulting ciphertext should require the knowledge of all
of the corresponding secret keys (sk1, . . . , skn). Other than semantic security, we
require that the scheme is compact, in the sense that the size of the evaluated
ciphertext is proportional to |C(m1, . . . ,mn)| (and possibly the number of parties
n) but does not otherwise depend on the size of C.

The second tool that we use is compute and compare obfuscation [66, 35]. A
compute and compare program CC[f, u, z] program is defined by a function f ,
a lock value u, and an output z. On input a string x, the program returns z if
and only if f(x) = u. The obfuscator Obf is guaranteed to return an obfuscated

program C̃C that is indistinguishable from a program that rejects any input,
as long as u has sufficient entropy conditioned on f and z. Finally, we use a
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conditional disclosure of secret (CDS)2 scheme. Recall that this is an interactive
protocol parametrized by an NP relation R where both the sender and the
receiver share a statement x and in addition, the sender has a secret message
m. At the end of the interaction, the receiver obtains m if and only if it knows
a valid witness w such that R(x,w) = 1.

A Strawman Solution. We now describe a naive extension of the [10, 1] ap-
proach to the parallel setting (where a receiver interacts with multiple commit-
ters), and highlight its pitfalls. We do not assume familiarity with [10, 1]. To
commit to messages (m1, . . . ,mn), the committers and the receiver engage in
the following protocol.

– Each committer samples a key pair of a multi-key FHE scheme (pki, ski), a
uniform trapdoor tdi, and a uniform lock value lki, and sends to the receiver:

1. A commitment ci = Com(tdi).

2. An FHE encryption Enc(pki, tdi).

3. An obfuscation C̃Ci of the program CC[Dec(ski, ·), lki, (ski,mi)].

– The receiver engages each committer in a (parallel) execution of a CDS
protocol where the i’th committer sends lki if the receiver correctly guesses
a valid pre-image of ci.

At a high level, the fact that the protocol hides the message mi is ensured by
the following argument. Since the receiver cannot invert ci, it cannot guess tdi
and therefore the CDS protocol will return 0. This in turn means that the lock
lki is hidden from the receiver, and consequently that the obfuscated program is
indistinguishable from a null program. This is, of course, an informal explanation,
and we refer the reader to [8, 10, 1] for a formal security analysis.

We now turn to the description of the extractor. The high-level strategy is the
following: Upon receiving the first message from all committers, the extractor
uses the FHE encryption Enc(pki, tdi) and the code of the adversary to run the
CDS protocol homomorphically (on input tdi) to recover an FHE encryption

of lki. Then the extractor feeds it as an input to the obfuscated program C̃Ci,
which returns (ski,mi).

Unfortunately this approach has a major limitation: It implicitly assumes
that each corrupted party is a local algorithm. In other words, we are assuming
that the adversary consists of individual subroutines (one per corrupted party),
which may not necessarily be the case. As an example, if the adversary were
to somehow implement a strategy where corrupted machines do not respond
until all receiver messages have been delivered, then the above homomorphic
evaluation would get stuck and return no output. It is also worth mentioning
that what makes the problem challenging is our inability to clone the state of the
adversary. If we were allowed to clone its state, then we could extract messages
one by one, by running a separate thread under each FHE key.

2In the body of the paper we actually resort to a slightly stronger tool, namely a
secure function evaluation protocol with statistical circuit privacy.
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Multi-Key Evaluation. A natural solution to circumvent the above issue is to
rely on multi-key FHE evaluation. Using this additional property, the extractor
can turn the ciphertexts Enc(pk1, td1), . . . ,Enc(pkn, tdn) into a single encryption

Enc((pk1, . . . , pkn), (td1, . . . , tdn))

under the hood of all public keys (pk1, . . . , pkn). Given this information, the ex-
tractor can homomorphically evaluate all instances of the CDS protocol at once,
using the code of the adversary, no matter how intricate. This procedure allows
the extractor to obtain the encryption of each lock value Enc((pk1, . . . , pkn), lki).
In the single committer setting, we could then feed this into the corresponding
obfuscated program and call it a day.

However, in the parallel setting, even given multi-key FHE, it is unclear

how to proceed. If the compute and compare program C̃Ci tried to decrypt
such a ciphertext, it would obtain (at best) an encryption under the remaining
public keys. Glossing over the fact that the structure of single-key and multi-key
ciphertexts might be incompatible, it is unlikely that

Dec(ski,Enc((pk1, . . . , pkn), lki)) = lki

which is what we would need to trigger the compute and compare program.
The general problem here is that each compute and compare program cannot
encode information about other secret keys, thus making it infeasible to decrypt
multi-key ciphertexts. One approach to resolve this issue would be to ask all
committers to jointly obfuscate a compute and compare program that encodes
all secret keys at once. However, this seems to require a general-purpose MPC
protocol, which is what we are trying to build in the first place. Therefore,
we outline a different approach by imagining a special kind of multi-key fully
homomorphic encryption scheme.

A spooky encryption3 scheme [21] is an FHE scheme that supports a spe-
cial spooky evaluation algorithm, that generates no-signaling correlations among
independently encrypted messages. We will restrict attention to a sub-class of
no-signaling relations called additive function sharing (AFS) relations, and we
will call the scheme AFS-spooky. More concretely, on input a circuit C and n in-
dependently generated ciphertexts (under independently generated public keys),
the algorithm Spooky.Eval produces

{Enc(pki,mi)}i∈[n]
Spooky.Eval((pk1,...,pkn),C,·)−−−−−−−−−−−−−−−−−−→ {Enc(pki, yi)}i∈[n] s.t.

n⊕
i=1

yi = C(m1, . . . ,mn).

It is not hard to see that AFS-spooky encryption is a special case of multi-key
FHE where multi-key ciphertexts have the following structure

Enc((pk1, . . . , pkn),m) = {Enc(pki, yi)}i∈[n] s.t.

n⊕
i=1

yi = m.

3As a historical remark, while the name is inspired by Einstein’s quote “spooky
action at a distance” referring to entangled quantum states, the concept of spooky
encryption (as defined in [21]) is entirely classical.
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This additional structure is going to be our main leverage for constructing an
efficient extractor.

The Extractor. Going back to our extractor, our next technical insight is to
look for a mechanism to peel away encryption layers one by one from an AFS-
spooky (multi-key) ciphertext. Our extractor will achieve this via careful homo-

morphic evaluation of the independently generated programs (C̃C1, . . . , C̃Cn),
as described below.

– First, homomorphically execute the code of the adversary using the AFS-
spooky scheme to obtain

ct1 = Enc((pk1, . . . , pkn), lk1), . . . , ctn = Enc((pk1, . . . , pkn), lkn),

as described above.
– Parse ctn as a collection of individual ciphertexts

Enc((pk1, . . . , pkn), lkn) = {Enc(pki, yi)}i∈[n] = {Enc(pki, yi)}i∈[n−1] ∪ {Enc(pkn, yn)}︸ ︷︷ ︸
c̃tn

.

Note that we can interpret the first n−1 elements as an AFS-spooky cipher-
text encrypted under (pk1, . . . , pkn−1) :

c̃t = {Enc(pki, yi)}i∈[n−1] = Enc

((
pk1, . . . , pkn−1

)
,

n−1⊕
i=1

yi

)
= Enc

((
pk1, . . . , pkn−1

)
, ỹ
)

where ỹ =
n−1⊕
i=1

yi.

– Let Γ be the following function

Γ (ζ) : Spooky.Eval(pkn, ζ ⊕ ·, c̃tn)

which homomorphically computes the XOR of ζ with the plaintext of c̃tn.
Compute the following nested AFS-spooky correlation

ĉt = Spooky.Eval((pk1, . . . , pkn−1), Γ, c̃t)

= Enc
((
pk1, . . . , pkn−1

)
,Spooky.Eval(pkn, ỹ ⊕ ·, c̃tn)

)
(1)

= Enc

((
pk1, . . . , pkn−1

)
,Enc

(
pkn,

n⊕
i=1

yi

))
(2)

= Enc
((
pk1, . . . , pkn−1

)
,Enc (pkn, lkn)

)
(3)

by interpreting c̃tn as a single key ciphertext. Here (1) follows by substituting
Γ , and (2) follows by correctness of the AFS-spooky evaluation.

– Run the obfuscated compute and compare program homomorphically to ob-
tain an encryption of skn and mn under (pk1, . . . , pkn−1)

Spooky.Eval
(

(pk1, . . . , pkn−1), C̃Cn, ĉt
)

= Enc
((

pk1, . . . , pkn−1
)
, C̃Cn (Enc (pkn, lkn))

)
= Enc

((
pk1, . . . , pkn−1

)
, (skn,mn)

)
.
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– Using the encryption of skn under (pk1, . . . , pkn−1), update the initial cipher-
texts (ct1, . . . , ctn−1) by homomorphically decrypting their last component
and adding the resulting string. This allows the extractor to obtain

Enc((pk1, . . . , pkn−1), lk1), . . . ,Enc((pk1, . . . , pkn−1), lkn−1).

– Recursively apply the procedure described above until Enc(pk1, lk1) is recov-

ered, then feed this ciphertext as an input to C̃C1 to obtain (sk1,m1) in the
clear. Iteratively recover (sk2, . . . , skn) by decrypting the corresponding ci-
phertexts. At this point the extractor knows all secret keys and can decrypt
the transcript of the interaction together with the committed messages.

To summarize, this extractor will isolate single-key ciphertexts (albeit in a nested
form) by relying on AFS-spooky encryption. These ciphertexts by design will be
compatible with compute and compare programs. In turn, evaluating the pro-
gram under the encryption allows us to escape from the newly introduced layer.
Repeating this procedure recursively eventually leads to a complete recovery of
the plaintexts.

We stress that, although the extraction algorithm repeats the nesting op-
eration n times, the additional encryption layer introduced in each iteration
is immediately peeled off by executing the obfuscated compute and compare
program. Thus the above procedure runs in (strict) polynomial time for any
polynomial number of parties n.

Parallel Zero Knowledge. The above outline is deliberately simplified and
ignores some subtle issues that arise during the analysis of the protocol. As an
example, we need to ensure that the adversary is not able to maul the commit-
ment of the trapdoor into a CDS encryption to be used in the CDS protocol.
This issue also arose in [10], and we follow their approach of using non-uniformity
in a reduction to the semantic security of the quantum FHE scheme. [10] also
present the technical tools needed to lift the protocol to the setting of malicious
and possibly aborting adversaries (as opposed to explainable), and we roughly
follow their approach. However, it is worth pointing out that [10] directly con-
struct a zero-knowledge argument, without first constructing and analyzing a
stand-alone extractable commitment. Since we use a parallel extractable com-
mitment as a building block in the our coin-flipping protocol, we analyze the
above as a stand-alone commitment, which requires a few modifications to the
protocol and proof techniques. More discussion about this can be found in Sec-
tion 3.

Now, we describe how to obtain parallel zero-knowledge (i.e. zero-knowledge
against multiple verifiers) from parallel extractable commitment. This is ac-
complished in a routine manner by enhancing a standard Σ protocol with a
stage where each verifier commits to its Σ protocol challenge using a paral-
lel extractable commitment. Using the extractor, the simulator can obtain the
challenges ahead of time and can therefore simulate the rest of the transcript,
without the need to perform state cloning.

It remains to argue that our extraction strategy does not break down in
the presence of quantum adversaries. Observe that the only step that involves
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the execution of a quantum circuit is the AFS-spooky evaluation of the CDS
protocol, under the hood of (pk1, . . . , pkn). Assuming that we can construct
AFS-spooky encryption for relations computable by quantum circuits (which we
show in Section 2.3), the remainder of the extraction algorithm only depends on
the encryptions of (lk1, . . . , lkn), which are classical strings. Once the extractor
recovers all the secret keys, it can decrypt the (possibly quantum) state of the
adversary resulting from the homomorphic evaluation of the CDS, and resume
the protocol execution, without the need to clone the adversary’s state.

2.3 Quantum AFS-Spooky Encryption

We now turn to the construction of AFS-spooky encryption for relations com-
putable by quantum circuits. The main technical contribution of this section is
a construction of multi-key fully-homomorphic encryption for quantum circuits
with classical key generation and classical encryption of classical messages. Such
schemes were already known in the single-key setting, due to [52, 11].

Background. At a very high level, these single-key schemes follow a paradigm
introduced by Broadbent and Jeffery [13], which makes use of the quantum one-
time pad (QOTP). The QOTP is a method of perfectly encrypting arbitrary
quantum states with a key that consists of only classical bits. [13] suggest to en-
crypt a quantum state with a quantum one-time pad (QOTP), and then encrypt
the classical bits that comprise the QOTP using a classical fully-homomorphic
encryption scheme. One can then apply quantum gates to the encrypted quan-
tum state, and update the classical encryption of the one-time pad appropri-
ately. A key feature of this encryption procedure is that while an encryption of
a quantum state necessarily must be a quantum state, an encryption of classical
information does not necessarily have to include a quantum state. Indeed, one
can simply give a classical one-time pad encryption of the data, along with a
classical fully-homomorphic encryption of the pad.

However, the original schemes presented by Broadbent and Jeffery [13] and
subsequent work [24] based on their paradigm left much to be desired. In par-
ticular, they required even a classical encryptor to supply quantum “gadgets”
encoding their secret key. These gadgets were then used to evaluate a particular
non-Clifford gate over encrypted data.4 The main innovation in the work of [52]
was to remove the need for quantum gadgets, instead showing how to evaluate
an appropriate non-Clifford gate using just classical information supplied by the
encryptor.

Encrypted CNOT Operation. In more detail, evaluating a non-Clifford gate
on a ciphertext (ct, |φ〉), where ct is an FHE encryption of a QOTP key and |φ〉 is
a quantum state encrypted under the QOTP key, involves an operation (referred
to as encrypted CNOT) that somehow must “teleport” the bits encrypted in ct

4We also remark here that [34] presented a multi-key scheme based on this
paradigm, but with the same drawbacks. Note that compactness and classical encryp-
tion are crucial in our setting, as per the discussion in the previous section.
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into the state |φ〉. [52] gave a method for doing this, as long as the ciphertext
ct is encrypted under a scheme with some particular properties. Roughly, the
scheme must support a “natural” XOR homomorphic operation, it must be
circuit private with respect to this homomorphism, and perhaps most stringently,
there must exist some trapdoor that can be used to recover the message and the
randomness used to produce any ciphertext.

[52] observed that the dual-Regev encryption scheme [30] (with large enough
modulus-to-noise ratio) does in fact satisfy these properties, as long as one gener-
ates the public key matrix A along with a trapdoor. However, recall that ct was
supposed to be encrypted under a fully-homomorphic encryption scheme. [52]
resolves this by observing that ciphertexts encrypted under the dual variant of
the [31] fully-homomorphic encryption scheme actually already contain a dual-
Regev ciphertext. In particular, a dual-GSW ciphertext encrypting a bit µ is a
matrix M = AS+E+µG, where G is the gadget matrix. The final column of M
is As + e + µ[0, . . . , 0, q/2]>, which is exactly a dual-Regev ciphertext encrypt-
ing µ under public key A. Note that, crucially, if the dual-GSW public key A is
drawn with a trapdoor, then this trapdoor also functions as a trapdoor for the
dual-Regev ciphertext. Thus, an evaulator can indeed perform the encrypted
CNOT operation on any ciphertext (ct, |φ〉), by first extracting a dual-Regev
ciphertext ct′ from ct and then proceeding.

Challenges in the Multi-Key Setting. Now, it is natural to ask whether
this approach readily extends to the multi-key setting. Namely, does there ex-
ist a multi-key FHE scheme where any (multi-key) ciphertext contains within
it a dual-Regev ciphertext with a corresponding trapdoor? Unfortunately, this
appears to be much less straightforward than in the single-key setting, for the
following reason. Observe that (dual) GSW homomorphic operations over ci-
phertexts Mi = ASi + Ei +µiG always maintain the same A matrix, while up-
dating Si, Ei, and µi. Thus, a trapdoor for A naturally functions as a trapdoor
for the dual-Regev ciphertext that consitutes the last column of Mi. However,
LWE-based multi-key FHE schemes from the literature [18, 53, 59, 12] include
a ciphertext expansion procedure, which allows an evaluator, given public keys
pk1, . . . , pkn, and a ciphertext ct encrypted under some pki, to convert ct into
a ciphertext ĉt encrypted under all keys pk1, . . . , pkn. Now, even if these pub-
lic keys are indeed matrices A1, . . . ,An drawn with trapdoors τ1, . . . , τn, it is
unclear how to combine τ1, . . . , τn to produce a trapdoor τ̂ for the “expanded”
ciphertext. Indeed, the expanded ciphertext generally can no longer be written
as some AS + E +µG, since the expansion procedure constructs a highly struc-
tured matrix that includes components from the ciphertexts ct1, . . . , ctn, as well
as auxiliary encryptions of the randomness used to produce the ciphertexts (see
e.g. [53]).

A Solution Based on Key-Switching. Thus, we take a different approach.
Rather than attempting to tweak known ciphertext expansion procedures to also
support “trapdoor expansion”, we rely on the notion of key-switching, which is a
method of taking a ciphertext encrypted under one scheme and converting it into
a ciphertext encrypted under another scheme. The observation, roughly, is that
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we do not need to explicitly maintain a trapdoor for the multi-key FHE scheme,
as long as it is possible to convert a multi-key FHE ciphertext into a dual-Regev
ciphertext that does explicitly have a trapdoor. In fact, we will consider a natural
multi-key generalization of dual-Regev, as described below. Key switching is
possible as long as the second scheme has sufficient homomorphic properties,
namely, it can support homomorphic evaluation of the decryption circuit of the
first scheme.

Fortunately, the dual-Regev scheme is already linearly homomorphic, and
many known classical multi-key FHE schemes [18, 53, 59, 12] support nearly
linear decryption, which means that decrypting a ciphertext simply consists of
applying a linear function (derived from the secret key) and then rounding. Thus,
as long as the evaluator has the secret key of the multi-key FHE ciphertext
encrypted under a dual-Regev public key with a trapdoor, they can first key-
switch the multi-key FHE ciphertext ct into a dual-Regev ciphertext ct′, and
then proceed with the encrypted CNOT operation.

It remains to show how an evaluator may have access to such a dual-Regev en-
cryption. Since we are still in the multi-key setting, we will need a ciphertext and
corresponding trapdoor expansion procedure for dual-Regev. However, we show
that such a procedure is much easier to come by when the scheme only needs to
support linear homomorphism (as is the case for the dual-Regev scheme) rather
than full homomorphism. Each party can draw its own dual-Regev public key
Ai along with a trapdoor τi, and encrypt its multi-key FHE secret key under
Ai to produce a ciphertext cti. The evaluator can then treat the block-diagonal
matrix Â = diag(A1, . . . ,An) as an “expanded” public key.5 Now, the message

and randomness used to generate a ciphertext encrypted under Â may be recov-
ered by applying τ1 to the first set of entries of the ciphertext, applying τ2 to the
second set of entries and so on. This observation, combined with an appropri-
ate expansion procedure for the ciphertexts cti, allows an evaluator to convert
any multi-key FHE ciphertext into a multi-key dual-Regev ciphertext with trap-
door. Given a classical multi-key FHE scheme with nearly linear decryption,
this suffices to build multi-key quantum FHE with classical key generation and
encryption.

Distributed Setup. We showed above how to convert any classical multi-key
FHE scheme into a quantum multi-key FHE scheme, as long as the classical
scheme has nearly linear decryption. However, most LWE-based classical multi-
key FHE schemes operate in the common random string (CRS) model, which
assumes that all parties have access to a common source of randomness, gener-
ated by a trusted party. Thinking back to our application to parallel extractable
commitments, it is clear that this will not suffice, since we have no CRS a priori,
and a receiver that generates a CRS maliciously may be able to break hiding of
the scheme. Thus, we rely on the multi-key FHE scheme of [12], where instead
of assuming a CRS, the parties participate in a distributed setup procedure. In
particular, each party (and in our application, each committer) generates some

5Actually this expansion should be done slightly more carefully, see Section 4.4 in
the full version for details.
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public parameters ppi, which are then combined publicly to produce a single set
of public parameters pp, which can be used by anyone to generate their own
public key / secret key pair.

This form of distributed setup indeed suffices to prove the hiding of our par-
allel commitment, so it remains to show that our approach, combined with [12],
yields a quantum multi-key FHE scheme with distributed setup. First, the [12]
scheme does indeed enjoy nearly linear decryption, so plugging it into our com-
piler described above gives a functional quantum multi-key FHE scheme. Next,
we need to confirm that our compiler does not destroy the distributed setup
property. This follows since each party draws its own dual-Regev public key
with trapdoor without relying on any CRS, or even any public parameters.

Quantum AFS-Spooky Encryption. Finally, we show, via another appli-
cation of key-switching, how to construct a quantum AFS-spooky encryption
scheme (with distributed setup). Recall that we only require “spooky” inter-
actions to hold over classical ciphertexts. That is, for any quantum circuit C
with classical outputs, given ciphertexts ct1, . . . , ctn encrypting |φ1〉, . . . , |φn〉
respectively under public keys pk1, . . . , pkn, an evaluator can produce ciphertexts

ct′1, . . . , ct
′
n where ct′i encrypts yi under pki, and such that

n⊕
i=1

yi = C(|φ1〉, . . . , |φn〉).

Now, using our quantum multi-key FHE scheme, it is possible to compute
a single (multi-key) ciphertext ĉt that encrypts C(|φ1〉, . . . , |φn〉) under all pub-
lic keys pk1, . . . , pkn. Then, if each party additionally drew a key pair (pk′i, sk

′
i)

for a classical AFS-spooky encryption scheme, and released c̃t1, . . . , c̃tn, where
c̃ti = Enc(pk′i, ski) encrypts the i-th party’s quantum multi-key FHE secret key
under their AFS-spooky encryption public key, then the evaluator can homo-
morphically evaluate the quantum multi-key FHE decryption circuit (which is
classical for classical ciphertexts) with ĉt hardcoded, where ĉt is the multi-key
ciphertext defined at the beginning of this paragraph. This circuit on input
c̃t1, . . . , c̃tn produces the desired output ct′1, . . . , ct

′
n. Finally, note that the clas-

sical AFS-spooky encryption scheme must also have distributed setup, and we
show (see Section 4.5 in the full version) that one can derive a distributed-setup
AFS-spooky encryption scheme from [12] using standard techniques [21].

2.4 Post-Quantum Non-malleable Commitments

In this section, we describe how to obtain constant-round post-quantum non-
malleable commitments under the assumption that there exists a natural number
c > 0 such that quantum polynomial-time adversaries cannot distinguish LWE
samples from uniform with advantage better than λ−ilog(c,λ), where ilog(c, λ) =
log log · · ·c times log(λ) and λ denotes the security parameter.

We will focus on perfectly binding and computationally hiding constant-
round interactive commitments. Loosely speaking, a commitment scheme is said
to be non-malleable if no adversary (also called a man-in-the-middle), when
participating as a receiver in an execution of an honest commitment Com(m),
can at the same time generate a commitment Com(m′), such that the message m′

16



is related to the original message m. This is equivalent (assuming the existence
of one-way functions with security against quantum adversaries) to a tag-based
notion where the commit algorithm obtains as an additional input a tag in
{0, 1}λ, and the adversary is restricted to using a tag, or identity, that is different
from the tag used to generate its input commitment. We will rely on tag-based
definitions throughout this paper. We will also only focus on the synchronous
setting, where the commitments proceed in rounds, and the man-in-the-middle
sends its own message for a specific round before obtaining an honest party’s
message for the next round.

Before describing our ideas, we briefly discuss existing work on classically-
secure non-malleable commitments. Unfortunately, existing constructions of constant-
round non-malleable commitments against classical adversaries from standard
polynomial hardness assumptions [4, 56, 57, 48, 54, 46, 65, 58, 47, 36, 37, 40, 38,
16, 17, 44, 39] either rely on rewinding, or use Barak’s non-black-box simulation
technique, both of which require the reduction to perform state cloning. As such,
known techniques fail to prove quantum security of these constructions.

We now discuss our techniques for constructing post-quantum non-malleable
commitments. Just like several classical approaches, we will proceed in two steps.

– We will obtain simple “base” commitment schemes for very small tag/identity
spaces from slightly superpolynomial hardness assumptions.

– Then assuming polynomial hardness of LWE against quantum adversaries,
and making use of constant-round post-quantum zero-knowledge arguments,
we will convert non-malleable commitments for a small tag space into com-
mitments for a larger tag space, while only incurring a constant round over-
head.

For the base schemes, there are known classical constructions [58] that as-

sume hardness of LWE against 2λ
δ

-size adversaries, where λ denotes the security
parameter and 0 < δ < 1 is a constant. We observe that these constructions can
be proven secure in the quantum setting, resulting in schemes that are suitable
for tag spaces of O(log log λ) tags.

Tag Amplification. Since an MPC protocol could be executed among up to
poly(λ) parties where poly(·) is an arbitrary polynomial, we end up requiring non-
malleable commitments suitable for tag spaces of poly(λ). This is obtained by
combining classical tools for amplifying tag spaces [22] with constant round post-
quantum zero-knowledge protocols. Our tag amplification protocol, on input a
scheme with tag space 2t, outputs a scheme with tag space 2t, for any t ≤ poly(λ).
This follows mostly along the lines of existing classical protocols, and as such we
do not discuss the protocol in detail here. Our protocol can be found in Section
7.3 in the full version.

Base Schemes from λ−ilog(c,λ) Hardness. Returning to the question of con-

structing appropriate base schemes, we also improve the assumption from 2λ
δ

-
quantum hardness of LWE (that follows based on [58]) to the mildly superpoly-
nomial hardness assumption discussed at the beginning of this subsection. Recall

17



that we will only need to assume that there exists an (explicit) natural num-
ber c > 0 such that quantum polynomial time adversaries cannot distinguish
LWE samples from uniform with advantage better than negl(λilog(c,λ)) where
ilog(c, λ) = log log · · ·c times log(λ). Our base scheme will only be suitable for
identities in ilog(c + 1, λ), where c > 0 is a natural number, independent of λ.
We will then repeatedly apply the tag amplification process referred to above to
boost the tag space to 2λ, by adding only a constant number of rounds.

To build our base scheme, we take inspiration from the classically secure non-
malleable commitments of Khurana and Sahai [45]. However, beyond considering
quantum as opposed to classical adversaries, our protocol and analysis will have
the following notable differences from [45]:

– The work of [45] relies on sub-exponential hardness (i.e. 2λ
δ

security), which
is stronger than the type of superpolynomial hardness we assume. This is
primarily because [45] were restricted to two rounds, but we can improve
parameters while allowing for a larger constant number of rounds.

– [45] build a reduction that rewinds an adversary to the beginning of the
protocol, and executes the adversary several times, repeatedly sampling the
adversary’s initial state. This may be undesirable in the quantum setting.6

On the other hand, we have a simpler fully straight-line reduction that only
needs to run the adversary once.

Specifically, following [45], we will establish an erasure channel between the
committer and receiver that transmits the committed message to the receiver
with probability ε. To ensure that the commitment satisfies hiding, ε is chosen
to be a value that is negligible in λ. At the same time, the exact value of ε is
determined by the identity (tag) of the committer. Recall that tag ∈ [1, ilog(c+
1, λ)]. We will set ε = η−tag where η = λilog(c+1,λ) is a superpolynomial function
of λ.

Next, for simplicity, we restrict ourselves to a case where the adversary’s tag
(which we denote by tag′) is smaller than that of the honest party (which we de-
note by tag). In this case, the adversary’s committed message is transmitted with
probability ε′ = η−tag

′
, whereas the honest committer’s message is transmitted

with probability only ε = η−tag, which is smaller than ε′.
We set this up so that the transcript of an execution transmits the adversary’s

message with probability ε′ (over the randomness of the honest receiver), and
on the other hand, an honestly committed message will remain hidden except
with probability ε < ε′ (over the randomness of the honest committer). This
gap in the probability of extraction will help us argue non-malleability, using a
proof strategy that bears resemblance to the proof technique in [9] (who relied
on stronger assumptions to achieve such a gap in the non-interactive setting).

We point out one subtlety in our proof that does not appear in [9]. We must
rule out a man-in-the-middle adversary that on the one hand, does not commit
to a related message if its message was successfully transmitted, but on the

6In particular this state may not always be efficiently sampleable, in which case it
would be difficult to build an efficient reduction.
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other hand, can successfully perform a mauling attack if its message was not
transmitted. To rule out such an adversary, just like [45], we will design our
erasure channel so that the adversary cannot distinguish transcripts where his
committed message was transmitted from those where it wasn’t.

Finally, our erasure channel can be cryptographically established in a manner
similar to prior work [45, 42, 3] via an indistinguishability-based variant of two-
party secure function evaluation, that can be based on quantum hardness of
LWE. Specifically, we would like to ensure that the SFE error is (significantly)
smaller than the transmission probabilities of our erasure channels: therefore,
we will set parameters so that SFE error is λ−ilog(c,λ). We refer the reader to
Section 7 in the full version for additional details about our construction.

On Super-Constant Rounds from Polynomial Hardness. We also ob-
serve that for any t(λ) ≤ poly(λ), non-malleable commitments for tag space of
size t(λ) can be obtained in O(t(λ)) rounds based on any extractable commit-
ment using ideas from [22, 15], where only one party speaks in every round.
These admit a straight-line reduction, and can be observed to be quantum-
secure. As such, based on quantum polynomial hardness of LWE and quantum
FHE, we can obtain a base protocol for O(log log . . .c times log λ) tags requir-
ing O(log log . . .c times log λ) rounds, for any constant c ∈ N. Applying our tag-
amplification compiler to this base protocol makes it possible to increase the
tag space to 2λ while only adding a constant number of rounds. Therefore, this
technique gives O(log log . . .c times log λ) round non-malleable commitments for
exponentially large tags from quantum polynomial hardness. It also yields con-
stant round non-malleable commitments for a constant number of tags from
polynomial hardness.

2.5 Putting Things Together

Finally, we show how to combine the primitives described above to obtain a
constant-round coin-flipping protocol that supports straight-line simulation. As
we saw above, in the setting of multi-verifier zero-knowledge, simultaneously sim-
ulating the view of multiple parties without rewinding can be quite challenging,
so a careful protocol and proof is needed.

Recall the outline presented at the beginning of this section, where each
party first commits to a uniformly random string, then broadcasts the committed
message, and finally proves in ZK that the message broadcasted is equal to the
previously committed message. If all proofs verify, then the common output is
the XOR of all broadcasted strings. Recall also that the coin-tossing protocol
should be fully-simulatable. This means that a simulator should be able to force
the common output to be a particular uniformly drawn string given to it as
input.

It turns out that in order to somehow force a particular output, the simu-
lator should be able to simultaneously extract in advance all the messages that
adversarial parties committed to. In particular, we require commitments where
a simulator can extract from multiple committers committing in parallel. Here,
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we will rely on our parallel extractable commitment described above. Note that
we will also need to simulate the subsequent zero-knowledge arguments given by
the malicious parties in parallel, and thus we instantiate these with our parallel
zero-knowledge argument described above. However, an issue remains. What if
an adversary could somehow maul an honest party’s commitment to a related
message and then broadcast that commitment as their own? This could bias the
final outcome away from uniformly random.

Thus, we need to introduce some form of non-malleability into the protocol.
Indeed, we will add another step at the beginning where each party commits
to its message ci and some randomness ri using our post-quantum many-to-
one non-malleable commitment.7 Each party will then commit to ci again with
our extractable commitment, using randomness ri. Finally, each party proves in
zero-knowledge that the previous commitments were consistent.

This protocol can be proven to be fully simulatable. Intuitively, even though
the simulator changes the behavior of honest players in order to extract from
the adversary’s commitments and then later force the appropriate output, the
initial non-malleable commitments given by the adversary must not change in a
meaningful way, due the the guarantee of non-malleability. However, additional
subtleties arise in the proof of security. In particular, during the hybrids the
simulator will first have to simulate the honest party zero-knowledge arguments,
before changing the honest party commitments in earlier stages. However, when
changing an honest party’s commitment, we need to rely on non-malleability
to ensure that the malicious party commitments will not also change in a non-
trivial way. Here, we use a proof technique that essentially invokes soundness of
the adversary’s zero-knowledge arguments at an earlier hybrid but allows us to
nevertheless rely on non-malleable commitments to enforce that the adversary
behaves consistently in all future hybrids. More discussion and a formal analysis
can be found in Section 8 in the full version.

2.6 Related Work

Classical secure multi-party computation was introduced and shown to be achiev-
able in the two-party setting by [67] and in the multi-party setting by [33]. Since
these seminal works, there has been considerable interest in reducing the round
complexity of classical protocols. In the setting of malicious security against
a dishonest majority, [49] gave the first constant-round protocol for two-party
computation, and [43] gave the first constant-round protocol for multi-party
computation. Since then, there has been a long line of work improving on the
exact round complexity and assumptions necessary for classical multi-party com-
putation (see e.g. [55, 27]).

Post-quantum classical protocols. The above works generally focus on se-
curity against classical polynomial-time adversaries. Another line of work, most
relevant to the present work, has considered the more general goal of proving

7Above we described a construction of one-to-one non-malleable commitment,
though a hybrid argument [48] shows that one-to-one implies many-to-one.
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the security of classical protocols against arbitrary quantum polynomial-time
adversaries.

This study was initiated by van de Graaf [63], who observed that the useful
rewinding technique often used to prove zero-knowledge in the classical set-
ting may be problematic in the quantum setting. In a breakthrough work, Wa-
trous [64] showed that several well-known classical zero-knowledge protocols are
in fact zero-knowledge against quantum verifiers, via a careful rewinding ar-
gument. However, these protocols require a polynomial number of rounds to
achieve negligible security against quantum attackers. Later, Unruh [62] devel-
oped a more powerful rewinding technique that suffices to construct classical
zero-knowledge proofs of knowledge secure against quantum adversaries, though
still in a polynomial number of rounds. In a recent work, [10] managed to con-
struct a constant-round post-quantum zero-knowledge protocol, under assump-
tions similar to those required to obtain classical fully-homomorphic encryp-
tion. In another recent work, [1] constructed a constant-round protocol that is
zero-knowledge against quantum verifiers under the quantum LWE assumption,
though soundness holds against only classical provers.

There has also been some work on the more general question of post-quantum
secure computation. In particular, [20] used the techniques developed in [64] to
build a two-party coin-flipping protocol, and [51, 41] constructed general two-
party computation secure against quantum adversaries, in a polynomial number
of rounds. More recently, [10] gave a constant-round two-party coin-flipping pro-
tocol, with full simulation of one party. However, prior to this work, nothing was
known in the most general setting of post-quantum multi-party computation (in
the plain model).

Finally, we remark that post-quantum classical protocols do exist in the lit-
erature, as long as some form of trusted setup is available. For example, the
two-round protocol of [53] from LWE is in the programmable common ran-
dom string model, and was shown to be semi-maliciously secure via straight-line
simulation. Thus, applying the semi-malicious to malicious compiler of [2] in-
stantiated with a NIZK from LWE [60] gives a post-quantum maliciously secure
protocol in the common random string model from the quantum hardness of
LWE. Another example is the maliciously secure OT-based two-round protocol
of [28, 7] instantiated with maliciously-secure oblivious transfer from LWE [61].

Quantum protocols. Yet another line of work focuses on protocols for se-
curely computing quantum circuits. General multi-party quantum computation
was shown to be achievable in the information-theoretic setting (with honest
majority) in the works of [19, 5]. In the computational setting, [25] gave a two-
party protocol secure against a quantum analogue of semi-honest adversaries,
and [26] extended security of two-party quantum computation to the malicious
setting. In a recent work [23] constructed a maliciously secure multi-party pro-
tocol for computing quantum circuits, assuming the existence of a maliciously
secure post-quantum classical MPC protocol. We remark that all of the above
protocols operate in a polynomial number of rounds.
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3 Quantum-Secure Multi-Committer Extractable
Commitment

In this section, we follow the outline presented in Section 2.2 to construct a
commitment scheme that allows for simultaneous extraction from multiple par-
allel committers. The protocol is somewhat more involved than the high-level
description given earlier, so we briefly highlight the differences.

First, the committer is instructed to (non-interactively) commit to its mes-
sage and trapdoor at the very beginning of the protocol. We use these commit-
ments to take advantage of non-uniformity in the reductions between hybrids in
the extractability proof. In particular, hybrids that come before the step where
the simulator goes “under the hood” of the FHE may still need access to the
trapdoor and commitment, and this can be given to any reduction via non-
uniform advice consisting of each committer’s first message and corresponding
openings.

Next, the CDS described earlier is replaced with a function-hiding secure
function evaluation (SFE) protocol. In order to rule out the malleability attack
mentioned in Section 2.2, where a malicious receiver mauls the AFS-spooky en-
cryption of the committer’s trapdoor into an SFE encryption of the trapdoor,
we do the following. The first message sent by the receiver to each committer Ci
will actually be a commitment to some key ki of a generic secret-key encryption
scheme. After Ci sends its AFS-spooky encryption ciphertext and compute and
compare obfuscation, the receiver prepares and sends a secret-key encryption of
an arbitrary message. Then, the receiver’s input to the SFE consists of the open-
ing to its earlier commitment ki, and the SFE checks if the secret-key encryption
sent by the receiver is actually an encryption of the committer’s trapdoor under
secret key ki. If so, it returns the lock and otherwise it returns ⊥. This setup
ensures that a malicious receiver cannot maul the AFS-spooky encryption of the
committer’s trapdoor, for the following reason. If it could, then a non-uniform
reduction to the semantic security of AFS-spooky encryption may obtain the
receiver’s committed ki as advice and decrypt the receiver’s secret-key encryp-
tion to obtain the trapdoor. Of course, this assumes the receiver actually acted
explainably in sending a valid commitment at the beginning of the protocol,
and this is ensured by the opening check performed under the SFE. We note
that this mechanism is somewhat different than what was presented in [10], as
they directly build a zero-knowledge argument (i.e. without first constructing a
stand-alone extractable commitment) and are able to take advantage of witness
indistinguishability to enforce explainable behavior.

Compliant Distinguishers. Finally, we discuss the issue of committer explain-
ability. Recall from the high-level overview that a simulator is able to extract
from a committer by homomorphically evaluating its code on an AFS-spooky
encryption ciphertext generated by the committer. Thus, if the committer acts
arbitrarily maliciously and does not return a well-formed ciphertext, the extrac-
tion may completely fail. Again, [10] address this issue by only analyzing their
commitment within the context of a larger zero-knowledge argument protocol,
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and having the verifier prove to the prover using a witness indistinguishable
proof that it performed the commitment explainably.

Thus, without adding zero-knowledge and performing [32]-style analysis to
handle non-explainable and aborting committers, we will only obtain extractabil-
ity against explainable committers. However, since we will be using this pro-
tocol inside larger protocols where participants are not assumed to be acting
explainably, restricting the class of committers we consider in our definition is
problematic. We instead consider arbitrary committers but restrict the class of
distinguishers (who are supposed to decide whether they received the view of a
committer interacting in the real protocol or the view of a committer interacting
with the extractor) to those that always output 0 on input a non-explainable
transcript. In other words, any advantage these distinguishers may have must be
coming from their behavior on input explainable views. Even though checking
whether a particular view is explainable or not is not efficient, it turns out that
this definition lends itself quite nicely to composition, since one can use witness
indistinguishability/zero-knowledge to construct provably compliant distinguish-
ers between hybrids for the larger protocols.

For completeness, and because post-quantum multi-committer extractable
commitments may be of independent interest, we also show in Appendix D in
the full version how to add zero-knowledge within the extractable commitment
protocol itself to obtain security against arbitrary committers.

3.1 Definition

Definition 1 (Quantum-Secure Multi-Committer Extractable Commit-
ment). A quantum-secure multi-committer extractable commitment scheme is
a pair (C,R) of classical PPT interactive Turing machines. In the commit phase,
R interacts with n copies {Ci}i∈[n] of C (who do not interact with each other)

on common input 1λ and 1n, with each Ci additionally taking a private input
mi ∈ {0, 1}∗. This produces a transcript τ , which may be parsed as a set of n
transcripts {τi}i∈[n], one for each set of messages exchanged between R and Ci.
In the decommitment phase, each Ci outputs mi along with its random coins ri,
and R on input (1λ, τi,mi, ri) either accepts or rejects. The scheme should satisfy
the following properties.

– Perfect Correctness: For any λ, n ∈ N, i ∈ [n],

Pr[R(1λ, τi,mi, ri) = 1 | {τi}i∈[n] ← 〈R,C1(m1; r1), . . . ,Cn(mn; rn)〉(1λ, 1n)] = 1.

– Perfect Binding: For any λ ∈ N and string τ ∈ {0, 1}∗, there does not exist
(m, r) and (m′, r′) with m 6= m′ such that R(1λ, τ,m, r) = R(1λ, τ,m′, r′) =
1.

– Quantum Computational Hiding: For any non-uniform quantum polynomial-
size receiver R∗ = {R∗λ, ρλ}λ∈N, any polynomial `(·), and any sequence of sets

of strings {m(0)
λ,1, . . . ,m

(0)
λ,n}λ,n∈N, {m(1)

λ,1, . . . ,m
(1)
λ,n}λ,n∈N where each |m(b)

λ,i| =
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`(λ),

{VIEWR∗λ
(〈R∗λ(ρλ),C1(m

(0)
λ,1), . . . ,Cn(m

(0)
λ,n)〉(1λ, 1n))}λ,n∈N

≈c{VIEWR∗λ
(〈R∗λ(ρλ),C1(m

(1)
λ,1), . . . ,Cn(m

(1)
λ,n)〉(1λ, 1n))}λ,n∈N.

The extractability property will require the following two definitions. First, for
any adversary C∗ = {C∗λ, ρλ}λ∈N representing a subset I ⊆ [n] of n committers,
any honest party messages {mi}i/∈I , and any security parameter λ ∈ N, define
VIEWmsg

C∗λ
(〈R,C∗λ(ρλ), {Ci(mi)}i/∈I〉(1λ, 1n)) to consist of the following.

1. The view of C∗λ on interaction with the honest receiver R and set {Ci(mi)}i/∈I
of honest parties; this view includes a set of transcripts {τi}i∈I and a state
st.

2. A set of strings {mi}i∈I , where each mi is defined relative to τi as follows.
If there exists m′i, ri such that R(1λ, τi,m

′
i, ri) = 1, then mi = m′i, otherwise,

mi = ⊥.

Next, we consider distinguishers D = {Dλ, σλ}λ∈N that take as input a sample
({τi}i∈I , st, {mi}i∈I) from the distribution just described. We say that D is com-
pliant if whenever {τi}i∈I is not an explainable transcript with respect to the set
I, D outputs 0 with overwhelming probability (over the randomness of D).

– Multi-Committer Extractability: There exists a quantum expected-polynomial-
time extractor Ext such that for any compliant non-uniform polynomial-size
quantum distinguisher D = {Dλ, σλ}λ∈N, there exists a negligible function
µ(·), such that for all adversaries C∗ = {C∗λ, ρλ}λ∈N representing a subset of
n committers, namely, {Ci}i∈I for some set I ⊆ [n], the following holds for
all polynomial-size sequences of inputs {{mi,λ}i/∈I}λ∈N and λ ∈ N.∣∣Pr[Dλ(VIEWmsg

C∗λ
(〈R,C∗λ(ρλ), {Ci(mi,λ)}i/∈I〉(1λ, 1n)), σλ) = 1]

− Pr[Dλ(Ext(1λ, 1n, I,C∗λ, ρλ), σλ) = 1]
∣∣ ≤ µ(λ).

Remark 1. Observe that the above definition of quantum computational hiding
does not consider potentially malicious committers that interact in the protocol
to try to gain information about commitments made by other committers. This
is without loss of generality, since all communication occurs between R and some
Ci. In particular, no messages are sent between any Ci and Cj .

3.2 Construction

Ingredients: All of the following are assumed to be quantum-secure, and the
construction is presented in Protocol 2.

– A non-interactive perfectly-binding commitment Com.
– A secret-key encryption scheme (Enc,Dec).8

8We use the syntax that for key k, a ciphertext of message m is computed as
ct← Enc(k,m) and decrypted as m := Dec(k, ct).
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– A compute-and-compare obfuscator Obf.
– A quantum AFS-spooky encryption scheme with distributed setup

(Spooky.Setup,Spooky.KeyGen, Spooky.Enc, Spooky.QEnc, Spooky.Eval,
Spooky.Dec, Spooky.QDec).

– A two-message function-hiding secure function evaluation scheme
(SFE.Gen,SFE.Enc,SFE.Eval,SFE.Dec).

Protocol 2

Common input: 1λ, 1n.
Ci’s additional input: A string mi.

1. Each Ci computes tdi ← Uλ and sends c
(msg)
i ← Com(1λ,mi), c

(td)
i ←

Com(1λ, tdi) to R.

2. For each i ∈ [n], R computes ki, ri ← Uλ and sends c
(key)
i := Com(1λ, ki; ri) to

Ci.
3. Each Ci computes and sends ppi ← Spooky.Setup(1λ) to R.
4. R defines pp := {ppi}i∈[n], and sends pp to each Ci. Each Ci checks that the

ppi it received matches the ppi it sent in Step 3, and if not, it aborts.
5. Each Ci computes

– lki ← Uλ,
– (pki, ski)← Spooky.KeyGen(1λ, pp),
– cti ← Spooky.Enc(pki, tdi),

– and C̃Ci ← Obf (CC[Spooky.Dec(ski, ·), lki, (ski,mi)]),

and sends (pki, cti, C̃Ci) to R.

6. For each i ∈ [n], R computes ct
(td)
i ← Enc(ki, 0

λ), dki ← SFE.Gen(1λ), and

ct
(SFE)
i ← SFE.Enc(dki, (ki, ri)) and sends (ct

(td)
i , ct

(SFE)
i ) to Ci.

7. Define the circuit C[c
(key)
i , ct

(td)
i , tdi, lki](·) to take as input (ki, ri), check if

c
(key)
i opens to ki with opening ri and if tdi = Dec(ki, c

(td)
i ), and if so out-

put lki, and otherwise output ⊥. Each Ci computes and sends ĉt
(SFE)
i ←

SFE.Eval(C[c
(key)
i , ct

(td)
i , tdi, lki], ct

(SFE)
i ).

Fig. 2: Constant round post-quantum multi-committer extractable commitment.

Analysis. We state the security of our scheme in the following and we refer the
reader to the full version of this work for the proofs.

Lemma 1. Protocol 2 is quantum computational hiding.

Lemma 2. Protocol 2 is multi-committer extractable.
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