
Indistinguishability Obfuscation
from Simple-to-State Hard Problems:

New Assumptions, New Techniques, and
Simplification

Romain Gay1, Aayush Jain2, Huijia Lin3, and Amit Sahai2

1 IBM, Zurich, Switzerland
romain.rgay@gmail.com,

2 UCLA, Los Angeles, CA 90095, USA
aayushjain@cs.ucla.edu

sahai@cs.ucla.edu,
3 University of Washington, Seattle, WA 98195, USA

rachel@cs.washington.edu

Abstract. In this work, we study the question of what set of simple-to-
state assumptions suffice for constructing functional encryption and in-
distinguishability obfuscation (iO), supporting all functions describable
by polynomial-size circuits. Our work improves over the state-of-the-art
work of Jain, Lin, Matt, and Sahai (Eurocrypt 2019) in multiple dimen-
sions.
New Assumption: Previous to our work, all constructions of iO from
simple assumptions required novel pseudorandomness generators involv-
ing LWE samples and constant-degree polynomials over the integers,
evaluated on the error of the LWE samples. In contrast, Boolean pseudo-
random generators (PRGs) computable by constant-degree polynomials
have been extensively studied since the work of Goldreich (2000).4 We
show how to replace the novel pseudorandom objects over the integers
used in previous works, with appropriate Boolean pseudorandom gen-
erators with sufficient stretch, when combined with LWE with binary
error over suitable parameters. Both binary error LWE and constant de-
gree Goldreich PRGs have been a subject of extensive cryptanalysis since
much before our work and thus we back the plausibility of our assump-
tion with security against algorithms studied in context of cryptanalysis
of these objects.
New Techniques: we introduce a number of new techniques:
– We show how to build partially-hiding public-key functional encryp-

tion, supporting degree-2 functions in the secret part of the message,
and arithmetic NC1 functions over the public part of the message, as-
suming only standard assumptions over asymmetric pairing groups.

– We construct single-ciphertext secret-key functional encryption for
all circuits with linear key generation, assuming only the LWE as-
sumption.

4Goldreich and follow-up works study Boolean pseudorandom generators with
constant-locality, which can be computed by constant-degree polynomials.

Simplification: Unlike prior works, our new techniques furthermore let
us construct public-key functional encryption for polynomial-sized cir-
cuits directly (without invoking any bootstrapping theorem, nor trans-
formation from secret-key to public key FE), and based only on the
polynomial hardness of underlying assumptions. The functional encryp-
tion scheme satisfies a strong notion of efficiency where the size of the
ciphertext grows only sublinearly in the output size of the circuit and not
its size. Finally, assuming that the underlying assumptions are subexpo-
nentially hard, we can bootstrap this construction to achieve iO.

1 Introduction

This paper studies the notion of indistinguishability obfuscation (iO) for general
programs computable in polynomial time [22, 51, 41], and develops several new
techniques to strengthen the foundations of iO. The key security property for iO
requires that for any two equivalent programs P0 and P1 modeled as circuits of
the same size, where “equivalent” means that P0(x) = P1(x) for all inputs x, we
have that iO(P0) is computationally indistinguishable to iO(P1). Furthermore,
the obfuscator iO should run in probabilistically polynomial time.

This notion of obfuscation was coined by [22] in 2001. However, until 2013,
there was not even a single candidate construction known. This changed with the
breakthrough work of [41]. Soon after, the floodgates opened and a flurry of over
100 papers were published reporting applications of iO (e.g. [76, 34, 49, 56, 60, 25]
[39, 43, 55]). Not only did iO enable the first constructions of numerous important
cryptographic primitives, iO also expanded the scope of cryptography, allowing
us to mathematically approach problems that were previously considered the
domain of software engineering. A simple example along these lines is the notion
of crippleware [41]: Alice, a software developer, has developed a program P using
powerful secrets, and wishes to sell her work. Before requiring payment, Alice
is willing to share with Bob a weakened (or “crippled”) version of her software.

Now, Alice could spend weeks developing this crippled version P̃ of her software,
being careful not to use her secrets in doing so; or she could simply disable
certain inputs to cripple it yielding an equivalent P′, but this would run the
risk of Bob hacking her software to re-enable those disabled features. iO brings
this problem of software engineering into the realm of mathematical analysis.
With iO, Alice could avoid weeks of effort by simply giving to Bob iO(P′), and

because this is indistinguishable from iO(P̃), Alice is assured that Bob can learn
no secrets.

Not only has iO been instrumental in realizing new cryptographic applica-
tions, it has helped us advance our understanding of long-standing theoretical
questions. One such recent example is that of the first cryptographic evidence
of the average-case hardness of the complexity class PPAD (which contains of
the problem of finding Nash equilibrium). In particular, [25] constructed hard
instances for the End Of the Line (EOL) problem assuming subexponentially
secure iO and one-way functions.

Our Contributions. In this work, we show how to simplify, both technically and
conceptually, the task of constructing secure iO schemes. Notably, the ideas we
develop in this work helped pave the way for the recent first construction of iO
from well-studied assumptions [58], resolving the central open question in the
area of iO. The follow-up work of [58] builds upon this paper.

We now discuss the contributions of our paper in detail.

What hardness assumptions suffice for constructing iO? Given its importance,
a crucial question is to identify what hardness assumptions, in particular, simple
ones, suffice for constructing iO. While it is hard to concretely measure simplic-
ity in assumptions, important features include i) having succinct description, ii)
being falsifiable and instance independent (e.g., independent of the circuit being
obfuscated), and iii) consisting of only a constant number of assumptions, as op-
posed to families of an exponential number of assumptions. However, research on
this question has followed a tortuous path over the past several years, and so far,
despite of a lot of progress, before our work, no known iO constructions [41, 21,
32, 10, 19, 42, 38, 62, 14, 47, 72, 66, 63, 65, 46, 23, 3, 5, 11, 57, 30] were based on as-
sumptions that have all above features.

Our new assumption. In this work, building upon assumptions introduced in [11,
57], we introduce a new simple-to-state assumption, that satisfies all the features
enumerated above. We show how to provably achieve iO based only on our
new assumption combined with standard assumptions, namely subexponentially
secure Learning With Errors (LWE) problem [73], and subexponentially secure
SXDH and bilateral DLIN assumptions over bilinear maps [59, 28]. Let us now
describe, informally, our new assumption. In this introductory description, we
will omit discussion of parameter choices; however, they are crucial (even for
standard assumptions), and we discuss them in detail in our technical sections.
We start by describing the ingredients that will go into the assumption.

Constant-degree5 Boolean PRGs generalize constant-locality Boolean PRGs,
as for Boolean functions, locality upper bounds the degree. The latter is tightly
connected to the fundamental topic of Constraint Satisfaction Problems (CSPs)
in complexity theory, and were first proposed for cryptographic use by Goldre-
ich [48] 20 years ago. The complexity theory and cryptography communities
have jointly developed a rich body of literature on the cryptanalysis and the-
ory of constant-locality Boolean PRGs [48, 69, 16, 27, 15, 70, 17, 40]. Our new as-
sumption first postulates that there exists a constant d-degree Boolean PRG,
G : {0, 1}n → {0, 1}m with sufficient stretch m ≥ nd

d
2 e·(0.5+ε)+ρ for some con-

stants ε, ρ > 0, whose output r = G(x) should satisfy the standard notion
of pseudorandomness. Furthermore, our assumption postulates that the pseu-
dorandomness holds even when its Boolean input x ∈ {0, 1}n is embedded in
LWE samples as noises, and the samples are made public. The latter is known
as Learning With Binary Errors (LWBE), which has been studied over the

5throughout this work, unless specified, by degree of boolean PRGs, we mean the
degree of the polynomial computing the PRG over the reals.

last decade [68, 18, 36, 37]. Our new assumption, combining Boolean PRGs and
LWBE, is as follows:

The G-LWEleak-security assumption (informal).(
{ai, 〈ai, s〉+ ei mod p}i∈[n], G,G(e)

)
//e = (e1, . . . , en)← {0, 1}n, ai, s← Zn

0.5+ε

p

≈
(
{ai, 〈ai, s〉+ ei mod p}i∈[n], G, r

)
//r ← {0, 1}m

As is evident here, this assumption is quite succinct, is falsifiable and instance-
independent, does not involve an exponential family of assumptions, and does not
use multilinear maps. Furthermore, the ingredients that make up the assumption
– Constant-degree Boolean PRGs and LWBE – have a long history of study
within cryptography and complexity theory. As we discuss in detail in the full
version, this assumption avoids attacks by all known cryptanalytic techniques.
We note that the parameter n of LWBE samples is chosen to be sub-quadratic
in the length |s| of the secret. This is needed in order to avoid Arora-Ge attacks
on LWBE [18], and also avoid all known algebraic attacks [36]. Indeed, the
parameter choices we make are not possible using the previous work of [57], and
the parameters used in [57] would render LWBE insecure.

Comparison of our assumption with the subsequent follow-up work of [58]. Our
shift to considering Boolean PRGs in the context of the approach of [57] provided
a conceptual starting point for the subsequent work of [58], which finally achieved
iO from four well-founded assumptions: LPN over Fp, LWE, Boolean PRGs in
NC0, and SXDH. Indeed, the work of [58] essentially succeeds in “separating”
the two ingredients in our assumption above — that is, basing iO on LWBE
and the security of Goldreich’s PRG with appropriate parameters separately,
through a novel leveraging of the LPN over Fp assumption. Indeed, their work
goes further and actually eliminates the need for the LWBE assumption entirely,
and also eliminates the parameter requirements that we needed for Goldreich’s
PRG.

Complexity and clarity in iO constructions. Another motivation for our work is
to address the complexity of existing iO constructions. Current constructions of
iO are rather complex in the sense they often rely on many intermediate steps,
each of which incur a complexity blow up, both in the sense of computational
complexity and in the sense of difficulty of understanding. Ideally, for the sake
of simplicity, iO schemes would minimize the number of such transformations,
and instead aim at a more direct construction. In our case, we solely rely on
the generic transformation of [13, 26], which shows that iO can be build from
Functional Encryption [77], a primitive that was originally formulated by [29,
71]. Roughly speaking, FE is a public-key or secret-key encryption scheme where
users can generate restricted decryption keys, called functional keys, where each
such key is associated with a particular function f . Such a key allows the decryp-
tor to learn from an encryption of a plaintext m, the value f(m), and nothing
beyond that.

Previous constructions fell short in directly constructing a full-fledged FE
needed for the implication of iO [13, 26]. For example, the work of [57] first obtain
a “weak” FE that: i) is secret-key, ii) only generates function keys associated with
function computable only by NC0 circuits, iii) only ensures weak security, and iv)
is based on subexponential hardness assumptions. Then, generic transformations
are applied to “lift” the function class supported and the security level, which
inevitably makes the final FE and iO schemes quite complex.

This state of affairs motivates simplifying iO constructions, for efficiency
and simplicity itself, but also for making a technically deep topic more broadly
accessible to the community. That is also one of the goals of this paper.

1.1 Our Results

Our main result is a simpler and more direct iO construction from the following
assumptions.

Theorem 1. There is a construction of iO for obfuscating all polynomial-sized
circuits based on the following assumptions:

– There exists a constant-degree d Boolean PRG G : {0, 1}n → {0, 1}m with

sufficient stretch m ≥ nd d2 e·(0.5+ε)+ρ for some constant ε, ρ > 0, and satisfies
subexponential G-LWEleak-security,

– the subexponential LWBE assumption, and
– the subexponential bilateral DLIN and SXDH assumption over asymmetric

pairing groups.

Our techniques and additional results. Our construction of FE and iO are en-
abled by our new assumption and a number of new techniques designed to enable
basing the security of iO on simple-to-state assumptions. We briefly summarize
them here, but we elaborate on how they are used in the iO construction in the
technical overview section immediately following this introduction.

Single-Ciphertext Functional Encryption with Linear Key Generation. We con-
struct, assuming only LWE, a single-ciphertext secret-key functional encryption
scheme able to give functional keys associated with any polynomial-sized circuit
with depth bounded by λ, whose key generation and decryption algorithms have
certain simple structures: i) The key generation algorithm computes a linear
function on the master secret key and randomness, and ii) the decryption algo-
rithm, given a ciphertext ct, a functional secret key skf associated with a function
f and the description of f itself, first performs some deterministic computation
on the ciphertext to get an intermediate ciphertext ctf , followed by simply sub-
tracting the skf from it, and then rounds to obtain the outcome. This object is
previously known as special homomorphic encryption in the literature [6, 3, 64].
However, prior constructions only handles functional keys associated with NC0

circuits (for those based on LWE) or NC1 circuits (for those based on ring LWE).
In this work, we view it through the FE lens, and construct it from LWE for
all functions computable by polynomial-size circuits with any depth bounded by

the security parameter λ. Constructing such single-ciphertext (or single-key) FE
(that do not have compact ciphertexts) from standard assumptions is a meaning-
ful goal on its own. In the literature, there are constructions of single-ciphertext
FE from the minimal assumption of public-key encryption [74, 52], and several
applications (e.g., [9]). However, they do not have the type of simple structures
(e.g., linear key generation algorithm) our construction enjoys, and consequently
cannot be used in our iO construction. These simple structural properties may
also find uses in other applications.

Partially-Hiding Functional Encryption for NC1 Public Computation and Degree-
2 Private Computation. Partially-hiding Functional Encryption (PHFE) schemes
involve functional secret keys, each of which is associated with some 2-ary func-
tion f , and decryption of a ciphertext encrypting (x,y) with such a key reveals
f(x,y), x, f , and nothing more about y. Since only the input y is hidden,
such an FE scheme is called partially-hiding FE. The notion was originally in-
troduced by [53] where it was used to bootstrap FE schemes. A similar notion
of partially-hiding predicate encryption was proposed and constructed by [54].
PHFE beyond the case of predicate encryption was first constructed by [12]
for functions f that compute degree-2 polynomials on the input y and degree-1
polynomials in x, under the name of 3-restricted FE, in the secret-key setting. In
this work, we construct a PHFE scheme from standard assumptions over bilinear
pairing groups, that is public-key and supports functions f that have degree 2
in the private input y, while performs an arithmetic NC1 computation on the
public input x, More precisely, f(x,y) = 〈g(x), q(y)〉 where g is computable
by an arithmetic log-depth circuit and q is a degree-2 polynomial. The previous
best constructions of partially-hiding FE were secret-key, and could only handle
NC0 computation on the public input [57].

This contribution is interesting in its own right, as a step forward towards
broadening the class of functions supported by FE schemes from standard as-
sumptions. In particular, it can be used to combine rich access-control and per-
form selective computation on the encrypted data. In that context, the public
input x represents some attributes, while the private input y is the plaintext.
Functional secret keys reveal the evaluation of a degree-2 polynomial on the
private input if some policy access, represented by an NC1 arithmetic circuit
evaluates to true on the attributes. This is the key-policy variant of a class of
FE with rich access-control introduced in [2]. In the latter, the authors build
an FE scheme where ciphertexts encrypt a Boolean formula (the public input)
and a vector (the private input). Functional secret keys are associated with at-
tributes and a vector of weights, and decryption yields the weighted sum of the
plaintexts if the formula embedded in the ciphertext evaluates to true on the
attributes embedded in the functional secret key. Their construction, as ours,
rely on standard pairing assumptions, but only permits computation of degree-1
polynomials on the private input. They also give a lattice-based construction,
which is limited to identity-based access structures.

2 Technical Overview

Below, we will use several different encryption schemes, and adopt the following
notation to refer to ciphertexts and keys of different schemes. For a scheme x
(e.g., a homomorphic encryption scheme HE, or a functional encryption scheme
FE), we denote by xct, xsk a ciphertext, or secret key of the scheme x. At times,
we write xct(m), xsk(f) to make it explicit what is the encrypted message m and
the associated function f ; and write xct(k,m), xsk(k, f) to make explicit what
is the key k they are generated from. We omit these details when they do not
matter or are clear from the context.

2.1 Overview of Our FE Construction

Basic template of FE construction in prior works. We start with reviewing the
basic template of FE construction in recent works [3, 11, 57]. FE allows one to
generate so-called functional secret key fesk(f) associated with a function f that
decrypts an encryption of a plaintext x, fect(x) to f(x). Security ensures that
beyond the evaluation of the function f on x, nothing is revealed about x. For
constructing iO, it suffices to have an FE scheme whose security is guaranteed
against adversaries seeing only a single functional secret key, for a function with
long output f : {0, 1}n → {0, 1}m and where the ciphertexts are sublinearly-
compact in the sense that its size depends sublinearly in the output length m.

Towards this, the basic idea is encrypting the message using a Homomor-
phic Encryption scheme HE, which produces the ciphertext hect(s,x), where s
is the secret key of HE. It is possible to publicly evaluate homomorphically any
function f directly on the ciphertext to obtain an so-called output ciphertext
hect(s, f(x)) ← HEEval(hect, f), that encrypts the output f(x). Then, we use
another much simpler FE scheme to decrypt hect(s, f(x)) so as to reveal f(x)
and nothing more. Using this paradigm, the computation of the function f is
delegated to HE, while the FE only computes the decryption of HE. This is moti-
vated by the fact that HE for arbitrary functions can be built from standard as-
sumptions, while existing FE schemes is either not compact, in the sense that the
ciphertext grows with the output size of the functions [75, 50], or are limited to
basic functions — namely, degree-2 polynomials at most, [20, 44] for the public-
key setting, [63, 14] for the private-key setting6Furthermore, known HE schemes
have very simple decryption — for most of them, it is simply computing an inner
product, then rounding. That is, decryption computes 〈hectf , s〉 = p/2·f(x)+ef
(mod p) for some modulus p, where s is the secret key of HE, and ef is a small,
polynomially bounded error (for simplicity, in this overview, we assume w.l.o.g
that f(x) ∈ {0, 1}). While there are FE schemes that support computing inner
products [1, 4], sublinearly compact FE that also computes the rounding are
currently our of reach. Omitting this rounding would reveal f(x), but also ef ,

6As mentioned in the introduction, partially hiding functional encryption allows to
further strengthen the function class supported, by essentially adding computation on
a public input, however computation on the private input is still limited to degree 2.

which hurts the security of HE. Instead, we will essentially realize an approximate
version of the rounding — thereby hiding the noise ef .

A natural approach to hide the noises ef is to use larger, smudging noises.
Since ef depends on the randomness used by HEEnc, and the function f , the
smudging noises must be fresh for every ciphertext. Hard-wiring the smudging
noise in the ciphertext, as done in [7], leads to non-succinct ciphertext, whose
size grows linearly with the output size of the functions. Instead, we generate
the smudging noises from a short seed, using a PRG. The latter must be simple
enough to be captured by state of the art FE schemes.

Previous constructions use a weak pseudo-random generator, referred to as
a noise generator NG, to generate many smudging noises r = NG(sd) for hiding
ef . To see how it works, suppose hypothetically that there is a noise generator
computable by degree-2 polynomials. Then we can use 2FE, an FE scheme that
support the generation of functional key for degree-2 polynomials, to compute
p/2 · f(x) + ef + NG(sd), which reveals only f(x) as desired. This gives a basic
template of FE construction summarized below.

Basic Template of FE Construction (Intuition only, does not
work)

fesk(f) contains : 2fsk(g)
fect(x) contains : hect(s,x), 2fct(s||sd)

The basic idea is using HE with a one-time secret key s to perform the
computation and using a simple FE for degree-2 polynomials, 2FE, to de-
crypt the output ciphertext and add a smudging noise generated via a noise
generator NG. That is, we would like g(s||sd) = (p/2 ·f(x)+ef +NG(sd)).
However, there are many challenges to making this basic idea work.

Unfortunately, to make the above basic idea work, we need to overcome
a series of challenges. Below, we give an overview of the challenges, how we
solve them using new tools, new techniques, and new assumptions, and how our
solutions compare with previous solutions. In later subsections 2.2,2.3, and in
the full version, we give more detail on our solutions.

Challenge 1: No Candidate Degree-2 Noise Generator. Several constraints are
placed on the structure of the noise generators NG which renders their instanti-
ation difficult.

– Minimal Degree. To use degree-2 FE to compute NG, the generator is
restricted to have only degree 2 in the secret seed sd.

– Small (Poly-sized) Outputs. Existing degree-2 FE are implemented us-
ing pairing groups: They perform the degree-2 computation in the exponent
of the groups, and obtain the output in the exponent of the target group.
This means the output p/2 ·f(x) +ef +NG(sd) resides in the exponent, and
the only way to extract f(x) ∈ {0, 1} is via brute force discrete logarithm to

extract the whole p/2 · f(x) + ef + NG(sd). This in particular restricts NG
to have polynomially bounded outputs.

Previous works [11, 57] used new assumptions that combine LWE with constant-
degree polynomials over the integers (see discussion in the introduction) to in-
stantiate the noise generator. The resulting generator do not have exactly degree
2, but “close” to degree 2 in following sense:

Degree “2.5” Noise Generator: NG(pubsd, privsd) is a polynomial in a pub-
lic seed pubsd and a private seed privsd both of length n′, and has polynomial
stretch. The seeds are jointly sampled (pubsd, privsd) ← Dsd from some dis-
tribution and pubsd is made publc. Degree 2.5 means that NG has constant
degree in pubsd and degree 2 in privsd.

Previous degree-2.5 noise generators produce small integer outputs, and can only
satisfy certain weak pseudo-randomness property (as opposed to standard pseu-
dorandomness). To get a flavor, consider the fact that the outputs of previous
candidates are exactly the outputs of some constant-degree polynomials com-
puted over the integers. Individual output elements are not uniformly distributed
in any range, and two output elements that depend on the same seed element
are noticably correlated. Hence, they are not pseudorandom or even pseudo-
independent. In this work, our new assumption combines Learning With Binary
Errors (LWBE) and constant-degree Boolean PRGs, and gives new degree-2.5
noise generators with Boolean outputs as follows:

– pubsd = {ci = (ai,ais+ei)}i∈[n]: LWBE samples where s,ai ← Zn0.5+ε

p , ei ←
{0, 1}.

– privsd = ⊗(s|| − 1)d
d
2 e: tensoring (s|| − 1) for dd2e times.

– PRG(pubsd, privsd) = G(· · · ||ei = 〈ci, (s|| − 1)〉|| · · ·) = G(e), where G is a
constant degree Boolean PRG.

When the PRG G has sufficient stretch m ≥ nd
d
2 e·(0.5+ε)+ρ for some constant

ε, ρ > 0, our new generator has polynomial stretch m = |pubsd||privsd|1+ε′ for
some ε′ depending on ε, ρ. Constant-degree Boolean PRGs are qualitatively dif-
ferent from constant-degree polynomials over the integers and have been exten-
sively studied. Furthermore, our new assumption implies that the outputs of our
generator are pseudo-random – in other words, we obtain a degree-2.5 Boolean
PRG.

Not surprisingly, the stronger security property of degree-2.5 PRG lets us
significantly simplify the construction and security proof.

Challenge 2: How to Evaluate Degree 2.5 Polynomials? To evaluate our degree-
2.5 Boolean PRG, we need an FE scheme that is more powerful than 2FE. The
notion of Partially-Hiding Functional Encryption PHFE, originally introduced
by [54] in the form of Partially Hiding Predicate Encryption (PHPE), fits exactly
this task. As mentioned in introduction, PHFE strengthens the functionality of
FE by allowing the ciphertext phfct(x,y) to encode a public input x, in addition
to the usual private input y. Decryption by a functional key phfsk(f) reveals x

and f(x,y) and nothing else. The works of [11, 57] constructed private-key PHFE
for computing degree-2.5 polynomials (i.e., constant degree in x and degree 2 in
y) from pairing groups. (Like 2FE, the output is still computed in the exponent
of the target group.) This suffices for evaluating degree-2.5 noise generator or
PRG in the FE construction outlined above. The only drawback is that since
PHFE is private-key, the resulting FE is also private-key.

In this work, we give a new construction of PHFE from pairing groups that is
1) public-key and 2) supports arithmetic NC1 computation on the public input —
more specifically, f(x,y) = 〈g(x), q(y)〉 where g is computable by an arithmetic
log-depth circuit and q is a degree-2 polynomial.

Theorem 2 (Public-key (NC1,deg-2)-PHFE, Informal). There is a con-
struction of a public-key PHFE for arithmetic NC1 public computation and degree-
2 private computation from standard assumptions over asymmetric pairing groups.

This new construction allows us to obtain public key FE directly. Furthermore,
our construction supports the most expressive class of functions among all known
FE schemes from standard assumptions; we believe this is of independent inter-
ests.

Challenge 3: How to Ensure Integrity? Now that we have replaced 2FE with
PHFE to compute degree-2.5 polynomials, the last question is how to ensure that
PHFE decrypts only the right evaluated ciphertext hectf (instead of any other ci-
phertext)? The function g we would like to compute via PHFE is g(s, pubsd, privsd) =
〈hectf , s〉 + NG(pubsd, privsd). The difficulty is that hectf is unknown at key-
generation time or at encryption time (as it depends on both f and hect(s,x)),
and is too complex for PHFE to compute (as the homomorphic evaluation has
high polynomial depth). To overcome this, we replace homormophic encryption
with a single-ciphertext secret-key FE for polynomial size circuits with depth λ
with linear key generation, denoted as ε-1LGFE, which has the following special
structure.

Single Ciphertext FE with Linear Key Generation

PPGen(1λ) : generate public parameters pp
Setup(1λ, pp) : generate master secret key s ∈ Zλp
Enc(pp, s) : generates a ciphertext ε-1LGFE.ct
KeyGen(pp, s, f) : ppf ← EvalPP(pp, f) , r ← ([0, B − 1] ∩ Z)m,

output f and secret key,
ε-1LGFE.sk(f) = 〈ppf , s〉 − r

Dec(ε-1LGFE.ct, (f, ε-1LGFE.sk)) : ε-1LGFE.ctf ← EvalCT(ε-1LGFE.ct, f)
output q

2y + ef + r ← ε-1LGFE.ct− ε-1LGFE.sk,
|ef |∞ ≤ B′

The single-ciphertext FE has i) a key generation algorithm that is linear in the
master secret key s and randomness r, and ii) decryption first performs some
computation on the ciphertext ε-1LGFE.ct to obtain an intermediate ciphertext
ε-1LGFE.ctf , and then simply subtracts the secret key from ε-1LGFE.ctf , and
obtains the output y perturbed by a polynomially-bounded noise.

We replace the ciphertext hect(s,x) now with a ciphertext ε-1LGFE.ct(s,x)
of ε-1LGFE. By the correctness and security of ε-1LGFE, revealing ε-1LGFE.sk(f)
only reveals the output f(x). Hence, it suffices to use PHFE to compute the secret
key. Thanks to the special structure of the key generation algorithm, this can be
done in degree 2.5, using pseudoradnomness r expanded out via our degree-2.5
PRG. More concretely, PHFE computes the following degree-2.5 function g.

g(s||pubsd||privsd) = 〈ppf , s〉+ r = ε-1LGFE.sk(f), // g has degree 2.5

where rj =

logB−1∑
k=0

2kPRG(j−1) logB+k(pubsd, privsd) .

One more technical caveat is that known pairing-based PHFE schemes actually
compute the secret key ε-1LGFE.sk in the exponent of a target group element,
which we denote by [ε-1LGFE.sk]T , where for any exponent a ∈ Zp, [a]T = gaT
for a generator gT . Thanks to the special structure of the decryption algo-
rithm of ε-1LGFE — namely, it is linear in ε-1LGFE.sk — these group elements
are sufficient for decryption. A decryptor can first compute ε-1LGFE.ctf from
ε-1LGFE.ct(s,x) and f in the clear, then perform the decryption by subtracting
[ε-1LGFE.ctf − ε-1LGFE.sk]T in the exponent. This gives [p/2 · f(x) + ef + r]T ,
whose exponent p/2 · f(x) + ef + r can be extracted by enumrating all possible
ef + r, which are of polynomial size, and f(x) ∈ {0, 1}.

Our single-ciphertext FE with linear key generation is essentially the same no-
tion as that of Special Homomorphic Encryption (SHE) used in [3, 64]. SHE are
homomorphic encryption with a special decryption equation hectf − 〈ppf , s〉 =
p/2 ·f(x) +ef where ppf (as in ε-1LGFE) can be computed efficiently from pub-
lic parameters pp and f . We think it is more accurate to view this object as a

functional encryption scheme, since what the special decryption equation gives
is exactly a functional key 〈ppf , s〉 + r where r are smudging noises for hiding
ef to guarantee that only p/2 · f(x) is revealed.

Viewing this through the lens of FE brought us a significant benefit. Previ-
ous works constructed SHE by modifying the Brakerski-Vankuntanathan FHE
scheme [33], but are limited to supporting NC1 computations based on RLWE [7],
and NC0 based on LWE [7, 64]. Instead, the FE lens led us to search for ideas
in the predicate encryption literature. We show how to construct ε-1LGFE for
polynomial sized circuits with depth bounded by λ from LWE by modifying
the predicate encryption scheme of [54]. This new construction allowed us to
construct FE for polynomial sized circuits with depth bounded by λ directly
without invoking any bootstrapping theorem from weaker function classes.

Theorem 3 (ε-1LGFE from LWE, informal). There is a construction of a
single-ciphertext FE for polynomial size circuits of depth λ with linear key gen-
eration as described above, from LWE.

In summary, putting all the pieces together, our construction of FE for poly-
nomial size circuits with depth λ is depicted below. Comparing with previous
constructions, it enjoys several features: 1) it is public key, 2) it can be based
on the polynomial-hardness of underlying assumptions, 3) it has simpler proofs
(e.g., no bootstrapping theorem).

Our FE Construction

fesk(f) contains : phfsk(g)
fect(x) contains : ε-1LGFE.ct(s,x) phfct(s||pubsd||privsd)

FEDec(fect, (f, fesk)) : [ε-1LGFE.sk]T ← PHFEDec(phfct, phfsk)
ε-1LGFE.ctf ← EvalCT(ε-1LGFE.ct, f)
[y + ef + r]T = ε-1LGFE.ctf − [ε-1LGFE.sk]T
extract y + ef + r and round to recover y

The basic idea is using PHFE to compute a ε-1LGFE secret key
ε-1LGFE.sk(f) in the exponent of the target group, and then decrypting
the ciphertext ε-1LGFE.ct(s,x) to reveal f(x) only.

The only aspect of our construction that we have not discussed explicitly is
how to deal with the fact that the pseudorandom smudging error is of polynomial
size, and therefore reveals a 1/poly amount of information. We thus need to
amplify security, but because the source of our error is so simple, we are able
to achieve this amplification in a simple and direct construction (found in the
full version) that avoids any need to use hard-core measures or any other such
sophisticated and/or delicate amplification technology.

2.2 Instantiating Our Assumption

To instantiate our assumption, we need to choose a degree d PRG with a stretch
more than nd

d
2 e·(0.5+δ)+ρ. The good news is that there is a rich body of literature

on both ingredients of our assumption that existed way before our work to guide
the choice. Binary LWE was first considered by [18] and then by [68, 8, 35, 36].
Goldreich PRGs have been studied even before that. There are many prior works
spanning areas in computer science devoted to cryptanalysis of these objects
from lattice reduction algorithms and symmetric-key cryptanalysis, to algebraic
algorithm tools such as the Gröbner basis algorithm and attacks arising from
the Constraint Satisfaction Problem and Semi-Definite Programming literature.
Guided by them, we list three candidates below. In the full-version [45], we
survey many of these attack algorithms, and we compute approximate running
times of the attacks arising out of these algorithms on our candidates. For the
parameters we choose, all those attacks are subexponential time.

A Goldreich’s PRG G is defined by a predicate P : {0, 1}`′ → {0, 1}, where
`′ is the locality of the PRG, and a bipartiate input-output dependency graph
Λ, which specifies for every output index j ∈ [m], the subset Λ(j) ⊂ [n] of
input indexes of size `′ it depends on – the j’th output bit is simply set to
G(j) = P (Λ(j)). Hence the degree of the PRG G is identical to the degree of the
predicate P . Usually, the input-output dependency graph Λ is chosen at random,
and the non-trivial part lies in choosing the predicate P .

Instantiation 1. The first instantiation is that of the predicate XORMAJ, which
is a poplular PRG predicate [17, 40].

XORMAJ`,`(x1 . . . , x2`) = ⊕i∈[`]xi ⊕MAJ(x`+1, . . . , x2`).

The predicate above has a degree of 2·`; thus, our construction require expansion
m > n

`
2+`δ+ρ. The predicate is `+1 wise independent and thus it provably resists

subexponential time SoS refutation attacks when m(n) ≤ n `+1
2 −c for c > 0 [61].

All other known attacks that we consider and even the algebraic attacks when
instantiated in our combined assumption require subexponential time. We refer
the reader to the full-version [45] for a detailed discussion.

Instantiation 2. An slightly unsatisfactory aspect of the XORMAJ predicate is
that the lower bound on the stretch of the PRG instantiated by XORMAJ for it
to be useful in our FE construction is > n

`
2+δ

′
, whereas the upper bound on the

stretch to withstand existing attacks is very close ≤ n `+1
2 −c, leaving only a tiny

margin to work with. This motivates us to we consdier predicates with degree
lower than the locality. One such predicate was analyzed in [67] for stretch upto
n1.25−c for c > 0:

TSPA(x1, x2, x3, x4, x5) = x1 ⊕ x2 ⊕ x3 ⊕ ((x2 ⊕ x4) ∧ (x3 ⊕ x5)) .

What is nice about this predicate is that, it has locality 5 but only degree 3;
thus, our construction only require expansion m > nd

3
2 e(0.5+ε)+ρ = n1+2ε+ρ. In

[67], it was proven that the PRG istantiated with TSPA resists subexponential
time F2 linear and SoS attacks. We present analysis against other attacks in the
full-version [45], all taking subexponential time.

Instantiation 3. We present a degree reduction transformation that takes as
input a non-linear predicate g : {0, 1}k → {0, 1} and constructs a predicate P.

Pg(x1 . . . , x2k+1) = ⊕i∈[k+1]xi ⊕ g(xk+2 ⊕ x2, . . . , x2k+1 ⊕ xk+1).

We show in the full version [45] that the predicate above has a locality of 2k+ 1
but a degree equal to k + 1; thus, our construction requires expansion m >

nd
k+1
2 e(0.5+ε)+ρ. The predicate is also k + 1 wise independent. We show that all

known attacks run in subexponential time even when the stretch is bounded

by m ≤ n
k+1
2 −δ for some δ > 0. Thanks to the gap between the locality and

degree, we now have a very large margin between the lower and upper bounds
on the stretch. Hence, our work motivates the interesting question of studying
such predicates.

2.3 Single Ciphertext Functional Encryption with Linear Key
Generation

We describe our construction of a single-ciphertext (secret-key) FE scheme for
all polynomial-sized circuits with depth bounded by λ, that have the simple
structure outlined in Section 2, denoted as ε-1LGFE, from LWE. In particular,
the key generation and decryption algorithms have the following form, where s
is the master secret key and pp is the public parameters.

KeyGen(pp, s, f) : ppf ← EvalPP(pp, f) , r ← ([0, B − 1] ∩ Z)m,
output f and secret key ε-1LGFE.sk(f) = 〈ppf , s〉 − r

Dec(ε-1LGFE.ct, (f, ε-1LGFE.sk)) : ε-1LGFE.ctf ← EvalCT(ε-1LGFE.ct, f)
output q

2y + ef + r ← ε-1LGFE.ct− ε-1LGFE.sk, |ef |∞ ≤ B′

Importantly, decryption recovers a perturbed output where the error ef+r is
polynomially bounded. As mentioned before, this object is essentially the same
as the notion of Special Homomorphic Encryption (SHE) in the literature [7, 64].
Previous SHE schemes are constructed by modifying existing homomorphic en-
cryption schemes of [33, 31]. These constructions are recursive and quite complex,
and the overhead due to recursion prevents them from supporting computations
beyond NC1. In this work, viewing through the FE lens, we search the litera-
ture of predicate encryption, and show how to modify the predicate encryption
scheme of [54] (GVW) to obtain single-ciphertext FE with the desired structure.
The GVW predicate encryption provide us with a single-ciphertext encryption
scheme with the following properties:

– The public parameter generation algorithm PPGen samples a collection of
random LWE matrices Ai,Bj ← Zn×mp , and sets the public parameters to
pp = ({Ai}, {Bj}).

– The setup algorithm Setup samples a master secret key constaining an LWE
secret s← χn drawn from the noise distribution χ.

– The encryption algorithm to encrypt x, generates a ciphertext hect(x) con-
taining two sets of LWE samples of form ci = sTAi + x̂iG + ei and
dj = sTBj+ k̂jG+e′j , where G ∈ Zn×mp is the gadget matrix, vk is a freshly
sampled secret key of a homomorphic encryption scheme, and ei, e

′
j ← χm

are LWE noises. Furthermore, x̂i is the i’th bit of a homomorphic encryption
ciphertext of x under key k.

– The predicate encryption scheme of [54] provides two homomorphic proce-
dures: The EvalCT procedure homomorphically evaluate f on {ci,Ai} and
{dj ,Bj} to obtain cf , and the EvalPP seperately homormorphically evalu-
ates on {Ai} and {Bi} to obtain Af .

– The homomorphic evaluation outcomes cf ,Af , has the property that the
first coordinate cf,1 of cf and the first column Af,1 of Af satisfy the special
decryption equation.

cf,1 − sTAf,1 = f(x)bp/2e+ ef mod p

The above described encryption scheme almost gives the FE scheme we want
except for the issue that it has super-polynomially large decryption error ef .
Thus, we turn to reducing the norm of the decryption error, by applying the
rounding (or modulus switch) technique in the HE literature [31]. Namely, to
reduce the error norm by a factor of p/q for a q < p, we multiply cf,1 and Af,1

with q/p over the reals and then round to the nearest integer component wise.
The rounding results satisfy the following equation

bq
p
cf,1e − sT b

q

p
Af,1e = f(x)bq/2e+ bq

p
efe+ error mod p

where the rounding error error is bounded by |hesk|1+O(1), which is polynomially
bounded as the secret is sampled from the LWE noise distribution instead of
uniformly.

We are now ready to instantiate the FE scheme we want. It uses the same
public parameter generation, setup, and encryption algorithm. Now to generate
a functional key for f , it first computes Af ← EvalPP({Ai}, {Bj}) and sets
ppf = b qpAf,1e, and then outputs a functional key ε-1LGFE.sk = 〈ppfs〉 − r
where r is a random vector of smudging noises of sufficiently large but still poly-
nomially bounded magnitude. The decryption algorithm decrypts a ciphertext
ε-1LGFE.ct = ({ci}, {dj}) using a functional key ε-1LGFE.sk as follows: It first
computes cf ← EvalPP({Ai, ci}, {Bj ,dj}), and sets ε-1LGFE.ctf = b qpcf,1e, it

then subtracts ε-1LGFE.sk from it, yielding f(x)bq/2e + b qpefe + error + r as
desired.

3 Preliminaries

In this section, we describe preliminaries that are useful for rest of the paper.
We denote the security parameter by λ. For any distribution X , we denote by
x← X (or x←R X) the process of sampling a value x from the distribution X .

Similarly, for a set X we denote by x← X (or x←R X) the process of sampling
x from the uniform distribution over X. For an integer n ∈ N we denote by [n]
the set {1, .., n}. A function negl : N→ R is negligible if for every constant c > 0
there exists an integer Nc such that negl(λ) < λ−c for all λ > Nc.

By ≈c we denote the standard polynomial time computational indistin-
guishability. We say that two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N are
(s(λ), ε(λ))− indistinguishable if for every adversary A (modeled as a circuit) of

size bounded by s(λ) it holds that:

∣∣∣∣Prx←Xλ [A(1λ, x) = 1]−Pry←Yλ [A(1λ, y) =

1]

∣∣∣∣ ≤ ε(λ) for every sufficiently large λ ∈ N.

For a field element a ∈ Fprmtr represented in [−p/2, p/2], we say that a ∈
[−B,B] for some positive integer B if its representative in [−p/2, p/2] lies in
[−B,B].

Throughout, when we refer to polynomials in security parameter, we mean
constant degree polynomials that take positive value on non negative inputs. We
denote by poly(λ) an arbitrary polynomial in security parameter satisfying the
above requirements of non-negativity.

3.1 Pairing Groups

Throughout the paper, we use a sequence of asymmetric prime-order pairing
groups:

G = {(pλ, Gλ,1,Gλ,2,Gλ,T , Pλ,1, Pλ,2, Pλ,T , eλ)}λ∈N,

where for all s ∈ {1, 2, T}, (Gλ,s,+) is an cyclic group (for which we use additive

notation) of order pλ = 2λ
Θ(1)

. Gλ,1 and Gλ,2 are generated by Pλ,1 and Pλ,2
respectively, and e : Gλ,1 ×Gλ,2 → GT is a non-degenerate bilinear map, that
is, satisfying eλ(aPλ,1, bPλ,2) = abPT for all integers a, b ∈ Zp, where PT =
e(Pλ,1, Pλ,2) is a generator of Gλ,T . We require the group operations as well as
the pairing operation to be efficiently computable. The rest of the paper will
refer to this sequence of bilinear pairing groups, and the corresponding sequence
of prime orders of the groups {pλ}λ∈N. In the full version [45], we describe the
assumptions bilateral DLIN and SXDH over such groups, which we use for our
construction.

4 Functional Encryption Definitions

We denote by F = ∪n,d,`,size∈poly
(
{Fλ,n(λ),d(λ),`(λ),size(λ)}λ∈N

)
an abstract func-

tion class, which is parameterised by λ ∈ N and four polynomials n(λ), d(λ), `(λ), size(λ)).
We call prmtr the tuple (n, d, `, size). In this abstract class, every function f ∈
Fλ,prmtr takes an input from Xλ,prmtr × Yλ,prmtr and outputs in Zλ,prmtr. We will
specify what the exact denotes in the exact constructions. Two specific instan-
tiations of those classes are described below:

– The function class FCIRC
λ,prmtr: Here Yλ,prmtr consists of {0, 1}n, Xλ,prmtr is empty,

Zλ,prmtr = {0, 1}`. This family consists of Boolean circuits of depth d and
size size.

– The function class FPHFE
λ,prmtr: Here Xλ,prmtr = Yλ,prmtr = ZO(n)

pλ where pλ is the
prime order for the group Gλ. The class consists of certain kinds of arithmetic
cicuits over Zp. We describe the exact class later when we need it.

Here we provide the relevant definition regarding functional encryption (FE)
and partially-hiding FE (PHFE) along with several notions of efficiency and
security properties. FE corresponds to the particular case where the public part
of the message (referred to as Xλ,prmtr below) is empty.

Definition 1. (Syntax of a PHFE Scheme.) A partially-hiding functional en-
cryption scheme, PHFE, for a functionality {Fλ,prmtr : Xλ,prmtr × Yλ,prmtr →
Zλ,prmtr}λ,prmtr, consists of the following PPT algorithms:

– PPGen(1λ, prmtr) : Given as input the security parameter 1λ and additional
parameters prmtr = (n, d, `, size), it outputs a string pp. We assume that pp
is implicitly given as input to all the algorithms below.

– Setup(pp): Given as input pp, it outputs a public key pk and a master secret
key msk.

– Enc(pk, (x, y)): Given as input the public key pk and a message (x, y) with
public part x ∈ Xλ,prmtr and private part y ∈ Yλ,prmtr, outputs the ciphertext
ct along with the input x.

– KeyGen(msk, f): Given as input the master secret key msk and a function
f ∈ Fλ,prmtr, it outputs a functional decryption key skf .

– Dec(skf , (x, ct)): Given a functional decryption key skf and a ciphertext
(x, ct), it deterministically outputs a value z in Zλ,prmtr, or ⊥ if it fails.

Remark 1. (On Secret Key Schemes.) An FE scheme is said to be secret-key is
pk is empty, and the encryption algorithm takes as additional input the master
secret key msk.

Remark 2. (On FE vs PHFE.) The syntax of FE is identical to PHFE described
above except that for all λ ∈ N, the set Xλ,prmtr = ∅, that is, all the input remains
private.

Definition 2. (Correctness.) A Partially hiding FE scheme PHFE for the func-
tionality F = {Fλ,prmtr}λ,prmtr is correct if for security parameter λ ∈ N and
every polynomials n, d, `, size there exists a negligible function negl(λ) such that
for all messages (x, y) ∈ Xλ,prmtr × Yλ,prmtr and all functions f ∈ F , we have:

Pr

pp← PPGen(1λ, prmtr)

(pk, sk)← Setup(pp)
(x, ct)← Enc(pk, (x, y))
skf ← KeyGen(sk, f)

Dec(skf , x, ct)) 6= f(x, y)

 ≤ negl(λ).

Now we give the security notions for PHFE and FE.

4.1 Security Definition

We discuss two security notions. First, for any constant ε ∈ (0, 1], we present the
notion of ε-simulation security below:

Definition 3 (ε-simulation security). For all ε ∈ (0, 1], we say a PHFE
scheme for the functionality F = {Fλ,prmtr}λ,prmtr denoted by PHFE is ε-simulation

secure if there exists a (possibly stateful) PPT simulator S = (S̃etup, Ẽnc, K̃eyGen)
such that for all stateful PPT adversaries A = (A1,A2), there exists a negligi-
ble function negl such that for all security parameters λ ∈ N, all polynomials
prmtr = (n, d, `, size), we have:

advSIMPHFE,A(1λ, prmtr) := |Pr[1← RealPHFEA (1λ, prmtr)]−Pr[1← IdealPHFEA,S (1λ, prmtr)]| < negl(λ),

where the experiments RealPHFEA (1λ) and IdealPHFEA,S (1λ) are defined below. The
differences between these two experiments are highlighted in red.

RealPHFEA (1λ, prmtr):

(x∗, y∗) ∈ Xλ,prmtr × Yλ,prmtr, (fj ∈ Fλ,prmtr)j∈[Qsk] ← A1(1λ)
pp← PPGen(1λ, prmtr)
(pk,msk)← Setup(pp)
(x∗, ct∗)← Enc(pk, (x∗, y∗))
∀j ∈ [Qsk]: skfj ← KeyGen(msk, fj)
α← A2(pp, pk, (skfj)j∈Qsk

, x∗, ct∗)
Output α.

IdealPHFEA,S (1λ, prmtr):

(x∗, y∗) ∈ Xλ,prmtr × Yλ,prmtr, (fj ∈ Fλ,prmtr)j∈[Qsk] ← A1(1λ)
pp← PPGen(1λ, prmtr)

(p̃k, td)← S̃etup(pp), ω ← Sample(x∗, y∗, (fj)j∈[Qsk])

(x∗, c̃t∗)← Ẽnc(td, ω)

∀j ∈ [Qsk] : s̃kfj ← K̃eyGen(td, fj , ω)

α← A2

(
pp, p̃k, (s̃kfj)j∈Qsk

, x∗, c̃t∗
)

Output α.

The algorithm Sample, given as input the tuple
(
x∗, (fj , fj(x

∗, y∗))j∈[Qsk]

)
,

flips a biased coin. If the outcome is tails (which happens with probability ε over
the coin flip), then it outputs ω =

(
x∗, (fj , fj(x

∗, y∗))j∈[Qsk]

)
. If the outcome is

heads (which happens with probability 1 − ε over the coin flip), then it outputs
ω =

(
x∗, y∗(fj)j∈[Qsk]

)
.

Remark 3 (Standard simulation security). If ε = 1, the algorithm Sample al-
ways outputs ω = (x∗, (fj , fj(x

∗, y∗))j∈[Qsk]), which corresponds to the standard
simulation security definition.

Remark 4 (Secret-Key schemes). This definition can be easily adapted to a
secret-key scheme simply by having the encryption algorithm get the additional
input msk.

Remark 5 (Subexponential security). If ε = 1, and the negl above is 2−λ
Ω(1)

, then
the scheme is said to satisfy subexponential security.

Remark 6 (Number of functional decryption keys). We say a a scheme is many-
key secure if security holds for any polynomial Qsk, and one-key secure if Qsk = 1.
When we do not specify it explicitly, we mean one-key security.

We also give an indistinguishability-based security definition.

Definition 4 (IND security). We say an FE scheme FE for functionality F =
{Fλ,prmtr}λ∈N is IND secure if for all stateful PPT adversaries A, all polynomial
parameters prmtr = (n, d, `, size) there exists a negligible function negl such that
, we have:

advINDFE,A(λ) := 2 · |1/2− Pr[1← INDFE
A (1λ, prmtr)]| < negl(λ),

where the experiment INDFE
A (1λ, prmtr) is defined below.

INDFE
A (1λ, prmtr):

{xi0, xi1}i∈[Qct], {f j}j∈[Qsk] ← A(1λ)
pp← PPGen(1λ, prmtr)
Where ∀i ∈ [Q]: xi0, x

i
1 ∈ Yλ,prmtr, ∀j ∈ [Qsk]: f

j ∈ Fλ,prmtr

(pk,msk)← Setup(pp), b←R {0, 1}
∀i ∈ [Qct] : cti ← Enc(pk, xib), ∀j ∈ [Qsk] : skj ← KeyGen(msk, f j)
b′ ← A({cti}i∈[Qct], {skj}j∈[Qsk], pk)
Return 1 if b = b′ and ∀ i ∈ [Qct], j ∈ [Qsk], f

j(xi0) = f j(xi1), 0 otherwise.

As for simulation security, we say that FE satisfies subexponential security if

negl(λ) = 2−λ
Ω(1)

.

4.2 Efficiency Features

We now define various efficiency notions for PHFE (which are straightforward
to adapt to FE).

Definition 5 (Linear efficiency).
We say a PHFE for the functionality F = {Fλ,prmtr}λ,prmtr satisfies linear

efficiency if there exists a polynomial poly such that for all security parameters
λ ∈ N and all polynomial parameters prmtr = (n, d, `, size), all messages (x, y) ∈
Xλ,prmtr×Yλ,prmtr, all pp in the support of PPGen(1λ, prmtr), all (pk,msk) in the
support of Setup(pp) the size of the circuit computing Enc(pk, ·) on the input
(x, y) is at most (|x|+ |y|) ·poly(λ), for some fixed polynomial poly where |x| and
|y| denote the size of x and y, respectively.

Now we define the notion of sublinearity for FE scheme for the functionality
F (i.e. all polynomial circuits, defined in Section 3). It was shown in a series of
works [13, 26, 24] that such FE schemes for P/poly imply obfuscation (assuming
subexponential security).

Definition 6 (Sublinearity). Let FE be an FE scheme for the functionality
F = {Fλ,prmtr}λ,prmtr. If there exists ε ∈ (0, 1) and a polynomial poly such that
for all tuple of polynomials prmtr = (n, d, `, size), all λ ∈ N, all pp in the support
of PPGen(1λ, prmtr), all (pk,msk) in the support of Setup(pp):

– if the size of the circuit Enc(pk, ·) is at most size1−ε · poly(n, λ) then FE is
said to be sublinearly efficient. It is said to be compact if ε = 1.

– if for all x ∈ {0, 1}n, all ciphertexts ct in the support of Enc(pk, x), the size
of ct is at most size1−ε ·poly(n, λ) then FE is said to be sublinearly ciphertext-
efficient.

– if for all x ∈ {0, 1}n, all ciphertexts ct in the support of Enc(pk, x), the size of
ct is at most `1−ε ·poly(n, λ) then FE is said to be sublinearly output-efficient.

Remark 7 (levelled linear efficiency, compactness, and sublinearity). More gen-
erally, we say that the scheme satisfies levelled linear efficiency or levelled com-
pactness, or levelled sublinearity if the multiplicative factor poly(n, λ) in Defini-
tion 5 or Definition 6 is replaced by poly(λ, n, d), i.e. the polynomial also depends
on the depth bound d.

4.3 Structural Properties

Now we define some structural properties that are very specific to our construc-
tion. First we define the notion of special structure which captures the property
of a function key can be generated just by applying a linear function of the
master secret key over some field along with the fact that the decryption of a
ciphertext is “almost linear” (specified below).

Definition 7. (Special Structure*.) We say that a functional encryption scheme
FE for FCIRC = {FCIRC

λ,prmtr}λ,prmtr satisfies special structure* if there exist polyno-

mials h1, h2, h3, h4 such that the following holds. Recall FCIRC
λ,prmtr for prmtr =

(n, d, `, size) consists of all Boolean circuits with n bits of input, ` bits of output,
depth d and size size.

– (PP Syntax.) The pp generated by the PPGen(1λ, prmtr) algorithm contains
a h1(λ)-bit prime modulus p.

– (Linear secret key Structure.) The master secret key is a vector in s ∈ Zh2(λ)
p .

For any function f ∈ Fλ,prmtr, let f = {fi}i∈[`] denote the circuit computing

ith bit of f . The functional secret key is of the form skf = {skfi}i∈[`] where
each skfi = 〈ppfi , s〉+ ei mod p where ei ←R {0, . . . , h3(λ, n, `, d)} and ppfi
is some deterministic polynomial time computable function of pp and fi.

– (Linear + Round Decryption with polynomial decryption error.) There exists
a deterministic poly-time algorithm such that given an encryption ct of m ∈
{0, 1}n and a function f = (f1, . . . , f`) ∈ Fλ,prmtr, for every i ∈ [`], computes
ctfi such that |ctfi−〈ppfi , s〉−fi(m)dp2e| ≤ h4(λ, d, `, size). Given the secret-
key for a function f = (f1, . . . , f`), this can be used to recover f(m) =
(f1(m), . . . , f`(m)).

Outline In the rest of the paper, we just discuss one of the aspect, which is
to construct an from a PHFE scheme, an ε-1LGFE scheme and an sPRG an
ε-secure Functional Encryption scheme. We show how to construct each of these
primitives in the full version [45]. We also show in the full version how to amplify
its security resulting into a sublinearly efficient Functional Encryption scheme.
Such a scheme can be used to build iO using known results [13, 26].

5 Definition of Structured-Seed PRG

We recall the notion of a structured seed PRG sPRG [58].

Definition 8 (Syntax of Structured-Seed Pseudo-Random Generators
(sPRG)). Let τ be a positive constant. A structured-seed Boolean PRG, sPRG,
with stretch τ that maps (n ·poly(λ))-bit binary strings into (m = nτ)-bit strings,
where poly is a fixed polynomial, is defined by the following PPT algorithms:

– PPGen(1λ, 1n) takes as input the security parameter λ, and an input length
1n, which is a polynomial in λ. It outputs public parameters pp, which
amongst other things contains an odd prime modulus p(λ) which is poly(λ)
bit prime for some polynomial independent of n.

– IdSamp(pp) samples a function index I.
– SdSamp(I) jointly samples two binary strings, a public seed and a private

seed, sd = (P,S). These are vectors over Zp. The combined dimension of
these vectors is n · poly(λ).

– Eval(I, sd) computes a string in {0, 1}m.

Remark 8 (The modulus p(λ)). The size of the modulus p(λ) is some fixed poly-
nomial in the security parameter λ independent of n.

Remark 9 (Polynomial Stretch.). We say that an sPRG has polynomial stretch
if τ > 1 for some constant τ .

Remark 10 (Linear Efficiency.). We say that an sPRG has linear-efficiency if the
time to sample sd is n · poly(λ).

Remark 11 (On poly(λ) multiplicative factor in the seed length.). As opposed
to a standard Boolean PRG definition where the length of the output is set to
be nτ where n is the seed length, we allow the length of the seed to increase
multiplicatively by a fixed polynomial poly in a parameter λ. Looking ahead,
one should view n as an arbitrary large polynomial in λ, and hence sPRG will
be expanding in length.

Definition 9 (Security of sPRG). A structured-seed Boolean PRG, sPRG,
satisfies

Pseudorandomness: Let λ ∈ N be the security parameter, let n(λ) be a poly-
nomial in λ. Then, following distributions are indistinguishable.

(pp, I, P, Eval(I, sd))

(pp,I, P, r)

where pp ← PPGen(1λ, 1n), I ← IdSamp(pp), sd ← SdSamp(I), r ←
{0, 1}m.

Definition 10 (Complexity and degree of sPRG). Let D ∈ N, let λ ∈ N
and n = n(λ) be arbitrary positive polynomial in λ, and p = p(λ) denote a prime
modulus which is sampled during PPGen. Let C be a complexity class. A sPRG
has complexity C in the public seed and degree D in private seed over Zp, denoted
as, sPRG ∈ (C, deg D), if for every I in the support of IdSamp(1λ, 1n), there
exists an algorithm ProcessI in C and an m(n)-tuple of polynomials QI that can
be efficiently generated from I, such that for all sd in the support of SdSamp(I),
it holds that:

Eval(I, sd) = QI(P
′,S) over Zp , P′ = ProcessI(P) ,

where QI has degree 1 in P and degree D in S.

We remark that the above definition generalizes the standard notion of fam-
ilies of PRGs in two aspects: 1) the seed consists of a public part and a private
part, jointly sampled and arbitrarily correlated, and 2) the seed may not be
uniform. In the full version, we show how to construct an sPRG from our new
assumption G-LWEleakD,ε,ρ.

6 Construction of ε-Simulation Secure FE

In this section, we construct a ε-simulation secure public-key functional encryp-
tion scheme FE for circuits FCIRC = {FCIRC

λ,prmtr}λ,prmtr for some ε ∈ (0, 1). FCIRC
λ,prmtr

is the function class where for all λ and all polynomials prmtr = (n, d, `, size) it
denotes the set of Boolean circuits with input length n(λ), depth at most d(λ),
output length `(λ), and size at most size(λ). It uses the following ingredients:

– ε-1LGFE: a secret-key FE scheme for the function class FCIRC defined above,
satisfying the following properties:
• (Security.) 1-key single ciphertext ε-simulation security as in Definition

4 for some constant ε ∈ (0, 1) specified later. Note that although the
scheme is for a single key, it however allows circuits with multiple output
bits.

• (Efficiency.) levelled compactness as in Definition 5. In particular, ci-
phertext size as well as the size of encryption circuit is poly(λ, n, d),
independent of the function size size and output length `.

• (Structural property.) Special Structure* as per Definition 7. Recall, it
says that:

∗ (PP Syntax.) The pp generated by the PPGen(1λ, prmtr) algorithm
contains a h1(λ)-bit prime modulus which is the modulus of the
bilinear map Gλ, p.

∗ (Linear secret key Structure.) The master secret key is a vector in

s ∈ Zh2(λ)
p . For any function f ∈ Fλ,prmtr, let f = {fi}i∈[`] denote the

circuit computing ith bit of f . The functional secret key is of the form
skf = {skfi}i∈[`] where each skfi = 〈ppfi , s〉+ei mod p where ei ←R

{0, . . . , h3(λ, n, `, d)} and ppfi is some deterministic polynomial time
computable function of pp and fi. For our construction below we
require that h3(λ, n, `, d) = 2t − 1 for some natural number t =
O(log(n · d · ` · size)). We can always choose an a constant ε ∈ (0, 1)
for the construction in the full version [45] such that there exists an
ε-1LGFE scheme with this property, satisfying ε-simulation security.
We use that value of ε.

∗ (Linear + Round Decryption with polynomial decryption error.)
There exists a deterministic poly-time algorithm such that given an
encryption ct of m ∈ {0, 1}n and a function f = (f1, . . . , f`) ∈
FCIRC
λ,prmtr, for every i ∈ [`], computes ctfi such that |ctfi − 〈ppfi , s〉 −

fi(m)dp2e| ≤ h4(λ, d, `, size). Given the secret-key for a function f =
(f1, . . . , f`), this can be used to recover f(m) = (f1(m), . . . , f`(m)).

Such a scheme is constructed in the full version [45].
– PHFE: a public-key PHFE for the class of functions FPHFE defined with

respect to bilinear groups of order p (which is the same as the modulus
of ε-1LGFE) and is in fact the order of group Gλ. FPHFE = {FPHFE

λ,n′ }λ,n′ for
every polynomial n′ consists of all functions f that takes an input of the form
(x,y) ∈ Zn′

p × Zn′

p , and computes f(x,y) = [
∑
j,k fj,k(x) · yj · yk]T ∈ GT

where fj,k is a constant degree polynomial over x (i.e. an arithmetic circuit
in NC0), and GT denotes the target group (see def pairings). The scheme
PHFE satisfies the following properties:
• (Security.) 1-simulation security for unbounded key queries.
• (Efficiency.) Linear run-time as per Definition 5.

Such a scheme is constructed in the full version. We set n′ later.
– sPRG: a structured-seed PRG with stretch τ > 1, linear efficiency as per

Definition 8. This sPRG works with the modulus p(λ) of the bilinear map
Gλ. The evaluation algorithm of sPRG computes an arithmetic NC0 circuit
on the public part of the seed, and a degree-2 polynomial on the secret part
of the seed, that is, sPRG ∈ (arith-NC0,deg 2). This sPRG is implementable
by FPHFE.

We now describe the construction.

Parameters: For sPRG, we set the length parameter to be `
1
τ · λ. Thus, `sPRG =

`
1
τ poly(λ) is the number of Zp elements in the sPRG seed for some polynomial

poly independent of the `. Define n′ = h2(λ, d)+`sPRG. Let t = log2(h3(λ, n, `, d)+
1).

Construction: Please refer to the construction in Figure 6.
Due to lack of space, we argue correctness, efficiency and security properties

in the full version [45].

FE.PPGen(1λ, prmtr) :

Given 1λ and the tuple of polynomials prmtr = (n, size, d, `),
it samples PHFE.pp ← PHFE.PPGen(1λ, 1n

′
), ε-1LGFE.pp ←

ε-1LGFE.PPGen(1λ, prmtr) and sPRG.pp ← sPRG.PPGen(1λ, 1`
1
τ ·λ),

I ← sPRG.IdSamp(sPRG.pp). Let p denote the prime modulus of Gλ. Output
pp = (PHFE.pp, ε-1LGFE.pp, sPRG.pp, I, p).

FE.Setup(pp) : Run PHFE.Setup(PHFE.pp) → (PHFE.pk,PHFE.msk). Set
and output FE.pk = PHFE.pk and FE.msk = PHFE.msk.

FE.Enc(FE.pk,m ∈ {0, 1}n) :

– msk′ ← ε-1LGFE.Setup(ε-1LGFE.pp)
– ct1 ← ε-1LGFE.Enc(msk′,m).
– (P,S)← SdSamp(I).
– ct2 ← PHFE.Enc(PHFE.pk, (P, (S,msk′))).

It returns ct = (ct1, ct2).

FE.KeyGen(FE.msk, C) : Given as input a circuit C ∈ Fprmtr, denote

C = (C1, . . . , C`) where each Ci is the circuit computing the ith output
bit of C. For every i ∈ [`], do the following:

– let ε-1LGFE.ppCi be the vector computed deterministically from ε-1LGFE.pp
and Ci such that skCi ≈ 〈msk′, ε-1LGFE.ppCi〉 (see the linear secret key
structure in Definition 7).

– Compute skCi ← PHFE.KeyGen(PHFE.msk, fi) where fi takes as input
(P, (S,msk′)) and outputs 〈msk′, ε-1LGFE.ppCi〉 +

∑
j∈[1,t] 2j−1 · r(i−1)·t+j ,

where for all θ ∈ [m], rθ denotes the θ’th bit output by sPRG.Eval(I, sd) ∈
{0, 1}m.

It returns skC = (skC1 , . . . skC`).

FE.Dec(skC , ct) : Parse skC = (skC1 , ..., skC`) and ct = (ct1, ct2). For ev-
ery i ∈ [`], do the following:

– By the special structure* of ε-1LGFE, compute ctC,i using the ciphertext ct1.
– Compute [wi]T ← PHFE.Dec(skCi , ct2).
– Compute [zi]T = [ctCi − wi]T .
– Check if |zi| ≤ h3(λ, n, d, `) + h4(λ, n, d, `) (by brute-force). If so set yi = 0.

Otherwise, set yi = 1. Output (y1, ..., y`).

Fig. 1. Construction of Functional Encryption Scheme FE.

7 Acknowledgements

Aayush Jain was partially supported by grants listed under Amit Sahai, a Google
PhD fellowship. Huijia Lin was supported by NSF grants CNS-1528178, CNS-
1929901, CNS-1936825 (CAREER), the Defense Advanced Research Projects
Agency (DARPA) and Army Research Office (ARO) under Contract No. W911NF-
15-C-0236, and a subcontract No. 2017-002 through Galois.

Amit Sahai was supported in part from DARPA SAFEWARE and SIEVE
awards, NTT Research, NSF Frontier Award 1413955, and NSF grant 1619348,
BSF grant 2012378, a Xerox Faculty Research Award, a Google Faculty Research
Award, an equipment grant from Intel, and an Okawa Foundation Research
Grant. This material is based upon work supported by the Defense Advanced
Research Projects Agency through Award HR00112020024 and the ARL under
Contract W911NF-15-C- 0205.

The views expressed are those of the authors and do not reflect the official
policy or position of the Department of Defense, DARPA, ARO, Simons, Intel,
Okawa Foundation, ODNI, IARPA, DIMACS, BSF, Xerox, the National Science
Foundation, NTT Research, Google, or the U.S. Government.

References

1. Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Sim-
ple functional encryption schemes for inner products. In Jonathan Katz, ed-
itor, PKC 2015, volume 9020 of LNCS, pages 733–751. Springer, Heidelberg,
March / April 2015.

2. Michel Abdalla, Dario Catalano, Romain Gay, and Bogdan Ursu. Inner-product
functional encryption with fine-grained access control. Cryptology ePrint Archive,
Report 2020/577, 2020. https://eprint.iacr.org/2020/577.

3. Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: New
methods for bootstrapping and instantiation. In Yuval Ishai and Vincent Rij-
men, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 191–225.
Springer, Heidelberg, May 2019.

4. Shweta Agrawal, Benoit Libert, and Damien Stehle. Fully secure functional en-
cryption for inner products, from standard assumptions. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages
333–362. Springer, Heidelberg, August 2016.

5. Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation without
maps: Attacks and fixes for noisy linear FE. In Anne Canteaut and Yuval Ishai,
editors, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, May 10-14, 2020, Proceedings, Part I, volume 12105 of Lecture Notes in
Computer Science, pages 110–140. Springer, 2020.

6. Shweta Agrawal and Alon Rosen. Functional encryption for bounded collusions,
revisited. In TCC, pages 173–205, 2017.

7. Shweta Agrawal and Alon Rosen. Functional encryption for bounded collusions,
revisited. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume
10677 of LNCS, pages 173–205. Springer, Heidelberg, November 2017.

8. Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick, and
Ludovic Perret. Algebraic algorithms for LWE problems. ACM Commun. Comput.
Algebra, 49(2):62, 2015.

9. Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From
selective to adaptive security in functional encryption. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS,
pages 657–677. Springer, Heidelberg, August 2015.

10. Prabhanjan Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimizing ob-
fuscation: Avoiding Barrington’s theorem. In ACM CCS, pages 646–658, 2014.

11. Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai.
Indistinguishability obfuscation without multilinear maps: New paradigms via low
degree weak pseudorandomness and security amplification. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 284–332. Springer, Heidelberg, August 2019.

12. Prabhanjan Ananth, Aayush Jain, and Amit Sahai. Indistinguishability obfusca-
tion without multilinear maps: io from lwe, bilinear maps, and weak pseudoran-
domness. IACR Cryptology ePrint Archive, 2018:615, 2018.

13. Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from com-
pact functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 308–326. Springer,
Heidelberg, August 2015.

14. Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryp-
tion and indistinguishability obfuscation from degree-5 multilinear maps. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I,
volume 10210 of LNCS, pages 152–181. Springer, Heidelberg, April / May 2017.

15. Benny Applebaum. Pseudorandom generators with long stretch and low locality
from random local one-way functions. In Howard J. Karloff and Toniann Pitassi,
editors, 44th ACM STOC, pages 805–816. ACM Press, May 2012.

16. Benny Applebaum, Andrej Bogdanov, and Alon Rosen. A dichotomy for local
small-bias generators. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS,
pages 600–617. Springer, Heidelberg, March 2012.

17. Benny Applebaum and Shachar Lovett. Algebraic attacks against random local
functions and their countermeasures. In Daniel Wichs and Yishay Mansour, edi-
tors, 48th ACM STOC, pages 1087–1100. ACM Press, June 2016.

18. Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors.
In Luca Aceto, Monika Henzinger, and Jiri Sgall, editors, ICALP 2011, Part I,
volume 6755 of LNCS, pages 403–415. Springer, Heidelberg, July 2011.

19. Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-
zeroizing obfuscation: New mathematical tools, and the case of evasive circuits. In
Advances in Cryptology - EUROCRYPT, pages 764–791, 2016.

20. Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain Gay.
Practical functional encryption for quadratic functions with applications to predi-
cate encryption. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part I, volume 10401 of LNCS, pages 67–98. Springer, Heidelberg, August 2017.

21. Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai.
Protecting obfuscation against algebraic attacks. In Phong Q. Nguyen and Elisa-
beth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 221–238.
Springer, Heidelberg, May 2014.

22. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In

Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer,
Heidelberg, August 2001.

23. James Bartusek, Yuval Ishai, Aayush Jain, Fermi Ma, Amit Sahai, and Mark
Zhandry. Affine determinant programs: A framework for obfuscation and witness
encryption. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer
Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA,
volume 151 of LIPIcs, pages 82:1–82:39. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020.

24. Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From cryp-
tomania to obfustopia through secret-key functional encryption. In Martin Hirt
and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages
391–418. Springer, Heidelberg, October / November 2016.

25. Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of
finding a Nash equilibrium. In Venkatesan Guruswami, editor, 56th FOCS, pages
1480–1498. IEEE Computer Society Press, October 2015.

26. Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. In Venkatesan Guruswami, editor, 56th FOCS, pages 171–
190. IEEE Computer Society Press, October 2015.

27. Andrej Bogdanov and Youming Qiao. On the security of goldreich’s one-way func-
tion. Comput. Complex., 21(1):83–127, 2012.

28. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil
pairing. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–
229. Springer, Heidelberg, August 2001.

29. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions
and challenges. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages
253–273. Springer, Heidelberg, March 2011.

30. Zvika Brakerski, Nico Dottling, Sanjam Garg, and Guilio Malavolta. Candidate io
from homomorphic encryption schemes. In EUROCRYPT, 2020.

31. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homo-
morphic encryption without bootstrapping. In Innovations in Theoretical Com-
puter Science 2012, Cambridge, MA, USA, January 8-10, 2012, pages 309–325,
2012.

32. Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all cir-
cuits via generic graded encoding. In TCC, pages 1–25, 2014.

33. Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In Phillip Rogaway, editor,
CRYPTO 2011, volume 6841 of LNCS, pages 505–524. Springer, Heidelberg, Au-
gust 2011.

34. Christina Brzuska, Pooya Farshim, and Arno Mittelbach. Indistinguishability ob-
fuscation and UCEs: The case of computationally unpredictable sources. In Juan A.
Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 188–205. Springer, Heidelberg, August 2014.

35. Johannes A. Buchmann, Florian Göpfert, Rachel Player, and Thomas Wunderer.
On the hardness of LWE with binary error: Revisiting the hybrid lattice-reduction
and meet-in-the-middle attack. In David Pointcheval, Abderrahmane Nitaj, and
Tajjeeddine Rachidi, editors, AFRICACRYPT 16, volume 9646 of LNCS, pages
24–43. Springer, Heidelberg, April 2016.

36. Sun Caho, Mehdi Tibouchi, and Masayuki Abe. Sample-time trade-off for the
arora-ge attack on binary lwe. Symposium on Cryptography and Information The-
ory, 2019.

37. Mehdi Tibouchi Chao Sun and Masayuki Abe. Revisiting the hardness of binary
error lwe. Cryptology ePrint Archive, Report 2020/666, 2020. https://eprint.

iacr.org/2020/666.
38. Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permutation

branching programs: Proofs, attacks, and candidates. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS,
pages 577–607. Springer, Heidelberg, August 2018.

39. Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel
Wichs. Watermarking cryptographic capabilities. In STOC, 2016.

40. Geoffroy Couteau, Aurélien Dupin, Pierrick Méaux, Mélissa Rossi, and Yann
Rotella. On the concrete security of Goldreich’s pseudorandom generator. In
Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II, vol-
ume 11273 of LNCS, pages 96–124. Springer, Heidelberg, December 2018.

41. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, October
2013.

42. Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan,
and Mark Zhandry. Secure obfuscation in a weak multilinear map model. In Martin
Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS,
pages 241–268. Springer, Heidelberg, October / November 2016.

43. Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the crypto-
graphic hardness of finding a nash equilibrium. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 579–604.
Springer, Heidelberg, August 2016.

44. Romain Gay. A new paradigm for public-key functional encryption for degree-2
polynomials. In PKC 2020, Part I, LNCS, pages 95–120. Springer, Heidelberg,
2020.

45. Romain Gay, Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability ob-
fuscation from simple-to-state hard problems: New assumptions, new techniques,
and simplification. IACR Cryptol. ePrint Arch., 2020:764, 2020.

46. Craig Gentry, Charanjit S. Jutla, and Daniel Kane. Obfuscation using tensor
products. Electronic Colloquium on Computational Complexity (ECCC), 25:149,
2018.

47. Craig Gentry, Allison B. Lewko, Amit Sahai, and Brent Waters. Indistinguisha-
bility obfuscation from the multilinear subgroup elimination assumption. IACR
Cryptology ePrint Archive, 2014:309, 2014.

48. Oded Goldreich. Candidate one-way functions based on expander graphs. Elec-
tronic Colloquium on Computational Complexity (ECCC), 7(90), 2000.

49. Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz,
Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input func-
tional encryption. In Phong Q. Nguyen and Elisabeth Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, pages 578–602. Springer, Heidelberg, May
2014.

50. Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryp-
tion. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM
STOC, pages 555–564. ACM Press, June 2013.

51. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs.
In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 39–56.
Springer, Heidelberg, August 2008.

52. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryp-
tion with bounded collusions via multi-party computation. In Advances in Cryp-
tology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2012. Proceedings, pages 162–179, 2012.

53. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryp-
tion with bounded collusions via multi-party computation. In Reihaneh Safavi-
Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages
162–179. Springer, Heidelberg, August 2012.

54. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryp-
tion for circuits from LWE. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 503–523. Springer,
Heidelberg, August 2015.

55. Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, Brent Waters, and
Mark Zhandry. How to generate and use universal samplers. In Jung Hee Cheon
and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS,
pages 715–744. Springer, Heidelberg, December 2016.

56. Susan Hohenberger, Amit Sahai, and Brent Waters. Full domain hash from (lev-
eled) multilinear maps and identity-based aggregate signatures. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages
494–512. Springer, Heidelberg, August 2013.

57. Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hardness
of constant-degree expanding polynomials overa R to build iO. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS,
pages 251–281. Springer, Heidelberg, May 2019.

58. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from
well-founded assumptions. Cryptology ePrint Archive, Report 2020/1003, 2020.
https://eprint.iacr.org/2020/1003.

59. Antoine Joux. A one round protocol for tripartite diffie-hellman. In Wieb Bosma,
editor, Algorithmic Number Theory, 4th International Symposium, ANTS-IV, Lei-
den, The Netherlands, July 2-7, 2000, Proceedings, volume 1838 of Lecture Notes
in Computer Science, pages 385–394. Springer, 2000.

60. Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability
obfuscation for turing machines with unbounded memory. In STOC, 2015.

61. Pravesh K. Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of
squares lower bounds for refuting any CSP. In Hamed Hatami, Pierre McKenzie,
and Valerie King, editors, 49th ACM STOC, pages 132–145. ACM Press, June
2017.

62. Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding
schemes. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part I, volume 9665 of LNCS, pages 28–57. Springer, Heidelberg, May 2016.

63. Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and
locality-5 PRGs. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part I, volume 10401 of LNCS, pages 599–629. Springer, Heidelberg, August 2017.

64. Huijia Lin and Christian Matt. Pseudo flawed-smudging generators and their
application to indistinguishability obfuscation. IACR Cryptology ePrint Archive,
2018:646, 2018.

65. Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear
maps and block-wise local PRGs. In Jonathan Katz and Hovav Shacham, edi-
tors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 630–660. Springer,
Heidelberg, August 2017.

66. Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-
like assumptions on constant-degree graded encodings. In Irit Dinur, editor, 57th
FOCS, pages 11–20. IEEE Computer Society Press, October 2016.

67. Alex Lombardi and Vinod Vaikuntanathan. Minimizing the complexity of goldre-
ich’s pseudorandom generator. IACR Cryptology ePrint Archive, 2017:277, 2017.

68. Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small pa-
rameters. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I,
volume 8042 of LNCS, pages 21–39. Springer, Heidelberg, August 2013.

69. Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased generators in
NC0. In 44th FOCS, pages 136–145. IEEE Computer Society Press, October 2003.

70. Ryan O’Donnell and David Witmer. Goldreich’s PRG: evidence for near-optimal
polynomial stretch. In IEEE 29th Conference on Computational Complexity, CCC
2014, Vancouver, BC, Canada, June 11-13, 2014, pages 1–12. IEEE Computer
Society, 2014.

71. Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology
ePrint Archive, 2010:556, 2010.

72. Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 500–517. Springer,
Heidelberg, August 2014.

73. Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. In STOC, pages 84–93, 2005.

74. Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption
with public keys. In Proceedings of the 17th ACM conference on Computer and
communications security, pages 463–472. ACM, 2010.

75. Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption
with public keys. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov,
editors, ACM CCS 2010, pages 463–472. ACM Press, October 2010.

76. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deni-
able encryption, and more. In David B. Shmoys, editor, STOC, pages 475–484.
ACM, 2014.

77. Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473.
Springer, Heidelberg, May 2005.

