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Abstract. Structured encryption (STE) schemes encrypt data struc-
tures in such a way that they can be privately queried. Special cases of
STE include searchable symmetric encryption (SSE) and graph encryp-
tion. Like all sub-linear encrypted search solutions, STE leaks informa-
tion about queries against persistent adversaries. To address this, a line
of work on leakage suppression was recently initiated that focuses on
techniques to mitigate the leakage of STE schemes.
A notable example is the query equality suppression framework (Kamara
et al. CRYPTO’18 ) which transforms dynamic STE schemes that leak
the query equality into new schemes that do not. Unfortunately, this
framework can only produce static schemes and it was left as an open
problem to design a solution that could yield dynamic constructions.
In this work, we propose a dynamic query equality suppression frame-
work that transforms volume-hiding semi-dynamic or mutable STE schemes
that leak the query equality into new fully-dynamic constructions that
do not. We then use our framework to design three new fully-dynamic
STE schemes that are “almost” and fully zero-leakage which, under natu-
ral assumptions on the data and query distributions, are asymptotically
more efficient than using black-box ORAM simulation. These are the
first constructions of their kind.

1 Introduction
The problem of encrypted search has received a lot of attention over the years
from both the research community and industry. The ability to efficiently search
and query encrypted data has the potential to change how we store and process
data and help increase the wide-scale deployment of end-to-end encryption. A
key requirement for any practical encrypted search solution is handling search
queries in sub-linear time. Sub-linear encrypted search can be achieved based
on several cryptographic primitives, including property-preserving encryption
(PPE), structured encryption (STE) and oblivious RAM (ORAM). Each of these
primitives have been heavily investigated and are known to achieve different
tradeoffs between efficiency, expressiveness and security/leakage.

Leakage. All sub-linear encrypted search primitives leak information which
has motivated the study of leakage attacks to investigate the real-world security
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of these primitives. In 2015, Naveed, Kamara and Wright [34] described data-
recovery attacks in the snapshot setting against schemes that leak data equality
and order. In 2012, Islam, Kuzu and Kantarcioglu [23] described a query-recovery
attack against schemes that leak query co-occurrences (i.e., whether two key-
words appear in the same document). The IKK attack was subsequently shown
not to work in the standard adversarial model [10] but followup work described
attacks in stronger adversarial models where the adversary is assumed to either
know or choose a fraction of the client’s data [10,6]. The known-data attacks
of [10] exploit co-occurrence leakage and require a large fraction of known data
whereas the attacks of [6] require a smaller fraction of known-data and exploit
response length leakage; making them applicable to ORAM-based solutions as
well. The chosen-data attacks of [46] exploit the response identity (i.e., iden-
tifiers of the files that contain the keyword) whereas the recent attacks of [6]
only exploit response lengths; again, making them applicable to ORAM-based
solutions. Several works have also described leakage attacks on the profiles of
known oblivious and encrypted range schemes [30,32,21,22]. In [2], it is shown
that highly-efficient STE schemes with zero-leakage queries can be achieved in
the snapshot model.

Leakage suppression. Recently, Kamara, Moataz and Ohrimenko initiated
the study of leakage suppression [27], which are methods to diminish and erad-
icate the leakage of STE schemes. There are two kinds of leakage suppression
techniques: compilers and data transformations. Compilers take an STE scheme
and transform it into a new scheme with similar efficiency but with an improved
leakage profile. An example is the cache-based compiler (CBC) of [27] which is
a generalization of the seminal Square Root ORAM construction of Goldreich
and Ostrovsky [19]. The CBC takes any rebuildable STE scheme that leaks the
query equality and possibly some other pattern patt, and transforms it into a new
scheme that leaks only the non-repeating sub-pattern of patt. The non-repeating
sub-pattern of a leakage pattern is the leakage it produces when queried only on
non-repeating query sequences.

Data transformations change plaintext data structures in such a way that
leakage is less harmful. The simplest example of a data transformation is padding,
which mitigates response length leakage, but more sophisticated approaches in-
clude the clustering-based techniques of Bost and Fouque [8] and the transfor-
mation that underlies the PBS construction [27], both of which mitigate volume
leakage. Recently, Kamara and Moataz also introduced computationally-secure
transformations (as opposed to the previously mentioned approaches which are
information-theoretic) to mitigate volume leakage [26].

Dynamic leakage suppression. The main advantage of suppression compil-
ers over transformations is that they can be applied to large classes of schemes.
For example, the CBC can be applied to any rebuildable STE scheme and, fur-
thermore, [27] shows that any semi-dynamic STE scheme can be made rebuild-
able. An STE scheme is semi-dynamic if it supports additions but not deletions,
and it is fully-dynamic if it supports both. The main limitation of the techniques
from [27] is that they only produce static schemes even if the base construction is
dynamic. While static STE schemes have several applications, dynamic schemes
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allow the encrypted data structure to adapt to changing data, which is more
useful from a practical standpoint.

1.1 Our Contributions

In this work, we address the main problem left open by [27] which is to de-
sign a dynamic leakage suppression framework for the query equality. As we
will see, solving this open problem results in three new low- and zero-leakage
dynamic constructions that, under natural conditions on the data and queries,
are asymptotically more efficient than black-box ORAM simulation.

Dynamic compilers. The suppression framework of [27], which includes the
CBC and the rebuild compiler (RBC), can be used to compile any semi-dynamic
STE scheme that leaks the query equality into a new scheme that does not. But,
as discussed, this framework can only produce static schemes; i.e., it does not
preserve the (semi-)dynamism of the base scheme. In this work, we propose
dynamic variants of the CBC and RBC that suppress the query equality while
preserving the dynamism of the base scheme.

Designing such compilers is challenging for several reasons. For example, con-
sider that if the base scheme leaks the response length as well as the operation
identity pattern (i.e., whether an operation is a query or an update), the adver-
sary can learn the query equality as follows. Suppose that the largest response
length observed is n and that it occurs at some time t. Furthermore, suppose
that at time t+ 1 an update operation occurs and that at some time t′ > t+ 1
another query occurs with response larger than n. For some datasets and query
distributions, it would be reasonable for the adversary to infer that the two
queries are for the same value which, effectively, is the query equality. Unfortu-
nately, all currently-known fully-dynamic STE schemes leak both the response
length and the operation identity patterns.

Our approach, therefore, is to start with schemes that do not leak the re-
sponse length like PBS [27] and AVLH [26]. The challenge in using these schemes,
however, is that they are not dynamic but only semi-dynamic or mutable (i.e.,
they only support edit operations). To address this, our compiler is designed to
work with these limited forms of dynamism but this requires overcoming a set
of additional technical challenges like “upgrading” the base scheme’s dynamism
from semi-dynamic or mutable to fully-dynamic without leaking any additional
information.

New constructions. We apply our compilers to three base multi-map en-
cryption schemes to construct dynamic zero- and almost zero-leakage multi-map
encryption schemes. Our first construction results from applying our compilers
to the PBS construction of [27]. This results in a dynamic variant of the AZL
scheme [27] which, given a sequence of operations (op1, . . . , opt), reveals nothing
on operations (op1, . . . , opt−1) and then reveals the sum of the operations’ re-
sponse lengths on operation opt. Similarly, our second construction results from
applying our compilers to a variant of PBS and is a dynamic variant of the FZL
scheme of [27]. This scheme has zero-leakage queries but only achieves probabilis-
tic correctness. Our third construction, which results from applying our compil-
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ers to the AVLH construction of [26], also has ZL queries but achieves perfect
correctness. We show that all three schemes are asymptotically more efficient
than state-of-the-art black-box ORAM simulation under natural assumptions.

2 Related Work
Structured encryption Structured encryption was introduced by Chase and
Kamara in [14] as a generalization of searchable symmetric encryption (SSE)
[41,15]. Several aspects of STE and SSE have been studied including dynamism
[29,28,11,35], expressiveness [12,37,17,24,25], locality and I/O-efficiency [13,3,11,16,4],
security [42,7,18,9,2] and cryptanalysis [23,10,30,46,32,6].

Leakage suppression. Leakage suppression was first proposed by Kamara,
Moataz and Ohrimenko [27] who generalized and adapted the techniques from
Goldreich and Ostrovsky’s seminal Square-Root ORAM to STE. Recently, Ka-
mara and Moataz showed, for the first time, how to design volume-hiding STE
schemes [26] without making use of padding. In follow up work, Patel, Persiano,
Yeo and Yung [39] proposed new volume-hiding constructions that achieve better
query and storage efficiency.

Oblivious RAM. Oblivious RAM was first proposed by Goldreich and Ostro-
vsky [19]. Several aspects of ORAM have been studied and improved in the last
twenty years including its communication complexity, the number of rounds and
client and server storage [36,45,20,31,40,43,18,38]. Another line of work initiated
by Wang et al. [44] considers the design of oblivious data structures, without
making use of general-purpose ORAM techniques. These constructions are typ-
ically more efficient than using general-purpose ORAM but are usually static or
require setting an upper bound the structure at setup time.

3 Preliminaries and Notation
Notation. We denote the security parameter as k, and all algorithms run in
time polynomial in k. The set of all binary strings of length n is denoted as
{0, 1}n, and the set of all finite binary strings as {0, 1}∗. [n] is the set of integers
{1, . . . , n}, and 2[n] is the corresponding power set. We write x← χ to represent

an element x being sampled from a distribution χ, and x
$← X to represent an

element x being sampled uniformly at random from a set X. The output x of an
algorithm A is denoted by x ← A. Given a sequence v of n elements, we refer
to its ith element as vi or v[i]. If S is a set then #S refers to its cardinality. If s
is a string then |s|2 refers to its bit length.

Sorting networks. A sorting network is a circuit of comparison-and-swap
gates. A sorting network for n elements takes as input a collection of n elements
(a1, . . . , an) and outputs them in increasing order. Each gate g in an n-element
network SNn specifies two input locations i, j ∈ [n] and, given ai and aj , re-
turns the pair (ai, aj) if i < j and (aj , ai) otherwise. Sorting networks can be
instantiated with the asymptotically-optimal Ajtai-Komlos-Szemeredi network
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[1] which has size O(n log n) or Batcher’s more practical network [5] with size
O(n log2 n) but with small constants.

The word RAM. Our model of computation is the word RAM. In this model,
we assume memory holds an infinite number of w-bit words and that arithmetic,
logic, read and write operations can all be done in O(1) time. We denote by
|x|w the word-length of an item x; that is, |x|w = |x|2/w. Here, we assume that
w = Ω(log k).

Abstract data types. An abstract data type specifies the functionality of a
data structure. It is a collection of data objects together with a set of operations
defined on those objects. Examples include sets, dictionaries (also known as key-
value stores or associative arrays) and graphs. The operations associated with
an abstract data type fall into one of two categories: query operations, which
return information about the objects; and update operations, which modify the
objects. If the abstract data type supports only query operations it is static,
otherwise it is dynamic. We model a dynamic data type T as a collection of
four spaces: the object space D = {Dk}k∈N, the query space Q = {Qk}k∈N, the
response space R = {Rk}k∈N and the update space U = {Uk}k∈N. We also define
the query map qu : D×Q→ R and the update map up : D×U→ D to represent
operations associated with the dynamic data type. We refer to the query and
update spaces of a data type as the operation space O = Q∪U. When specifying
a data type T we will often just describe its maps (qu, up) from which the object,
query, response and update spaces can be deduced. The spaces are ensembles of
finite sets of finite strings indexed by the security parameter. We assume that R
includes a special element ⊥ and that D includes an empty object d0 such that
for all q ∈ Q, qu(d0, q) = ⊥.

Data structures. A type-T data structure is a representation of data objects
in D in some computational model (as mentioned, here it is the word RAM).
Typically, the representation is optimized to support qu as efficiently as possible;
that is, such that there exists an efficient algorithm Query that computes the
function qu. For data types that support multiple queries, the representation is
often optimized to efficiently support as many queries as possible. As a concrete
example, the dictionary type can be represented using various data structures
depending on which queries one wants to support efficiently. Hash tables support
Get and Put in expected O(1) time whereas balanced binary search trees support
both operations in worst-case O(log n) time.

Definition 1 (Structuring scheme). Let T = (qu : D×Q→ R, up : D×U→
D) be a dynamic type. A type-T structuring scheme SS = (Setup,Query,Update)
is composed of three polynomial-time algorithms that work as follows:

– DS← Setup(d): is a possibly probabilistic algorithm that takes as input a data
object d ∈ D and outputs a data structure DS. Note that d can be represented
in any arbitrary manner as long as its bit length is polynomial in k. Unlike
DS, its representation does not need to be optimized for any particular query.

– r ← Query(DS, q): is an algorithm that takes as input a data structure DS
and a query q ∈ Q and outputs a response r ∈ R.
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– DS← Update(DS, u): is a possibly probabilistic algorithm that takes as input
a data structure DS and an update u ∈ U and outputs a new data structure
DS.

Here, we allow Setup and Update to be probabilistic but not Query. This
captures most data structures but the definition can be extended to include
structuring schemes with probabilistic query algorithms. We say that a data
structure DS instantiates a data object d ∈ D if for all q ∈ Q, Query(DS, q) =
qu(d, q). We denote this by DS ≡ d. We denote the set of queries supported by
a structure DS as QDS; that is,

QDS
def
=

{
q ∈ Q : Query(DS, q) 6= ⊥

}
.

Similarly, the set of responses supported by a structure DS is denoted RDS.

Definition 2 (Correctness). Let T = (qu : D × Q → R, up : D × U → D)
be a dynamic type. A type-T structuring scheme SS = (Setup,Query,Update) is
perfectly correct if it satisfies the following properties:

1. (static correctness) for all d ∈ D,

Pr [DS ≡ d : DS← Setup(d) ] = 1,

where the probability is over the coins of Setup.

2. (dynamic correctness) for all d ∈ D and u ∈ U, for all DS ≡ d,

Pr [Update(DS, u) ≡ up(d, u) ] = 1,

where the probability is over the coins of Update.

Note that the second condition guarantees the correctness of an updated
structure whether the original structure was generated by a setup operation
or a previous update operation. Weaker notions of correctness (e.g., for data
structures like Bloom filters) can be derived from Definition 2.

Basic data structures. We use structures for several basic data types in-
cluding arrays, dictionaries and multi-maps which we recall here. An array RAM
of capacity n stores n items at locations 1 through n and supports read and
write operations. We write v := RAM[i] to denote reading the item at location
i and RAM[i] := v the operation of storing an item at location i. A dictionary
structure DX of capacity n holds a collection of n label/value pairs {(`i, vi)}i≤n
and supports get and put operations. We write vi := DX[`i] to denote getting
the value associated with label `i and DX[`i] := vi to denote the operation of
associating the value vi in DX with label `i. A multi-map structure MM with
capacity n is a collection of n label/tuple pairs {(`i,vi)i}i≤n that supports get
and put operations. Similarly to dictionaries, we write vi := MM[`i] to denote
getting the tuple associated with label `i and MM[`i] := vi to denote operation
of associating the tuple vi to label `i. Multi-maps are the abstract data type
instantiated by an inverted index. In the encrypted search literature multi-maps
are sometimes referred to as indexes, databases or tuple-sets (T-sets).
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Data structure logs. Given a structure DS that instantiates an object d, we
will be interested in the sequence of update operations needed to create a new
structure DS′ that also instantiates d. We refer to this as the query log of DS and
assume the existence of an efficient algorithm Log that takes as input DS and
outputs a tuple (u1, . . . , un) such that adding u1, . . . , un to an empty structure
results in some DS′ ≡ d.

Extensions. An important property we will need from a data structure is that
it be extendable [27] in the sense that, given a structure DS one can create another
structure DS 6= DS that is functionally equivalent to DS but that also supports
a number of dummy queries. We say that a structure is efficiently extendable if
there exist a query set Q ⊃ Q and a ppt algorithm ExtT that takes as input a
structure DS of type T and a capacity λ ≥ 1 and returns a new structure DS also
of type T 1 such that: (1) DS ≡ d; and (2) for all q ∈ Q\Q, Query(DS, q) = ⊥.We
say that DS is an extension of DS and that DS is a sub-structure of DS.

Cryptographic protocols. We denote by (outA, outB) ← ΠA,B(X,Y ) the
execution of a two-party protocol Π between parties A and B, where X and Y
are the inputs provided by A and B, respectively; and outA and outB are the
outputs returned to A and B, respectively.

3.1 Structured Encryption

We recall the syntax definition of STE.

Definition 3 (Structured encryption [14]). An interactive structured en-
cryption scheme Σ = (Setup,Operate) consists of an algorithm and a two-party
protocol that work as follows:

– (K, st,EDS)← Setup(1k, λ,DS): is a probabilistic polynomial-time algorithm
that takes as input a security parameter 1k, a query capacity λ ≥ 1 and a
type-T structure DS. It outputs a secret key K, a state st and an encrypted
structure EDS. If DS ≡ d0, it outputs an empty EDS.

–
(
(st′, r),EDS′

)
← OperateC,S

(
(K, st, op),EDS

)
: is a two-party protocol exe-

cuted between a client and a server where the client inputs a secret key K,
a state st and an operation op and the server inputs an encrypted structure
EDS. The client receives as output a (possibly) updated state st′ and a re-
sponse r ∈ R ∪ ⊥ while the server receives a (possibly updated) encrypted
structure EDS′.

If Σ also has a Rebuild protocol as defined below, we say that it is rebuildable,

–
((
st′,K ′

)
,EDS′

)
← RebuildC,S ((K, st) ,EDS): is a two-party protocol exe-

cuted between the client and server where the client inputs a secret key K
and a state st. The server inputs an encrypted data structure EDS. The client
receives an updated state st′ and a new key K ′ as output while the server
receives a new structure EDS′.

1 We consider that the inclusion of dummy queries in a query space does not impact
the type of a structure.
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Operations. Note that an STE schemes usually supports more than a single
operation and the syntax above can be used (or extended) to capture this in one
of two ways. The first is to notice that the Operate protocol can take as input
an operation op that describes one of a set of operations and its operands. For
example, if ΣDS = (Setup,Operate) supports both query and add operations,
then op can have the form op = (qry, q) to denote a query operation for q
or op = (add, a) to denote an add operation for a. The Operate protocol can
then operate on EDS accordingly and output ((st, r),EDS′), where r 6= ⊥ and
EDS′ = EDS in the case of a query, and where r = ⊥ and EDS′ 6= EDS in the
case of an add. For notational convenience we will usually omit the flags qry
or add and just write op = q or op = a to denote that it is a query or and
add. This formulation is particularly convenient when working with schemes
that hide which operation is being executed, as will be the case with our main
constructions. Another approach is to include the different operations explicitly
in ΣDS’s syntax. For example, if it supports queries and adds, then we would
write ΣDS = (Setup,Query,Add), where Query is a special case of Operate that
(usually) outputs a response r 6= ⊥ and an EDS′ = EDS and Add is a special case
that (usually) outputs r = ⊥ and EDS′ 6= EDS. This formulation is particularly
convenient when working with schemes that reveal which operation is being
executed, as will be the case with the constructions we use as building blocks.

Dynamism. We consider several kinds of dynamic STE schemes. The first are
fully-dynamic schemes which support add and delete operations. We usually refer
to such schemes simply as dynamic. Add operations insert a query/response pair
(q, r) into the data structure whereas delete operations remove query/response
pairs (q, r) associated with a given query q. If a scheme only handles add opera-
tions we say it is semi-dynamic. Finally, we consider mutable schemes which are
schemes that support an edit operation which takes as input a query/response
pair (q, r′) and changes a pre-existing pair (q, r) to (q, r′). If a scheme is either
semi-dynamic or mutable we say that it is weakly dynamic.

Security. We recall the notion of adaptive semantic security for STE.

Definition 4 (Security [15,14]). Let Σ = (Setup,OperateC,S,RebuildC,S) be
a structured encryption scheme and consider the following probabilistic experi-
ments where C is a stateful challenger, A is a stateful adversary, S is a stateful
simulator, Λ = (pattS, pattO, pattR) is a leakage profile, λ ≥ 1 and z ∈ {0, 1}∗:
RealΣ,C,A(k): given z and λ the adversary A outputs a structure DS and re-

ceives EDS from the challenger, where (K, st,EDS) ← Setup(1k, λ,DS). A
then adaptively chooses a polynomial-size sequence of operations (op1, . . . opm).
For all 1 ≤ i ≤ m the challenger and adversary do the following:

1. if opi is a query or an update, they execute OperateC,A
((
K, st, opi

)
,EDS

)
;

2. if opi is a rebuild, they execute RebuildC,A
((
K, st

)
,EDS

)
.

Finally, A outputs a bit b that is output by the experiment.

IdealΣ,A,S(k): given z and λ the adversary A outputs a structure DS of type T.
Given pattS(DS), the simulator returns an encrypted structure EDS to A. A
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then adaptively chooses a polynomial-size sequence of operations (op1, . . . , opm).
For all 1 ≤ i ≤ m, the challenger, simulator and adversary do the following:

1. if opi is either a query or an update, S is given pattO(DS, op1, . . . , opi)
and it executes OperateS,A with A;

2. if opi is a rebuild, S is given pattR(DS) and it executes RebuildS,A with
A;

Finally, A outputs a bit b that is output by the experiment.

We say that Σ is Λ-secure if there exists a ppt simulator S such that for all
ppt adversaries A, for all λ ≥ 1 and all z ∈ {0, 1}∗,

|Pr [ RealΣ,A(k) = 1 ]− Pr [ IdealΣ,A,S(k) = 1 ]| ≤ negl(k).

Note that security of non-rebuildable schemes can be recovered by not allowing
rebuild operations.

Leakage. We extend the leakage patterns defined in [27] to the dynamic set-
ting. In particular [27] defined leakage patterns as functions of queries on a static
data type. We will have to extend the definitions to account for general oper-
ations (queries or updates) on a dynamic data type. Let T = (qu : D × Q →
R, up : D × U → D) be a dynamic data type. We assume that updates can be
written as query/response pairs, i.e., U = Q× R. Given a data structure d and
a sequence of t operations op1, . . . , opt, we denote by dt the structure that re-
sults from applying the given sequence of operations to d. Consider the following
leakage patterns,

– the operation identity pattern is the function family oid = {oidk,t}k,t∈N with
oidk,t : Dk ×Otk → {0, 1}t such that oidk,t(d, op1, . . . , opt) = m, where m is
a binary t-dimensional vector such that m[i] = 0 if opi ∈ Q and m[i] = 1 if
opi ∈ U;

– the update query equality pattern is the function family uqeq = {uqeqk,t}k,t∈N
with uqeqk,t : Dk × Utk → {0, 1}t×t such that uqeqk,t(d, u1, . . . , ut) = M ,
where M is a binary t × t matrix such that for updates ui = (qi, ri) and
uj = (qj , rj), M [i, j] = 1 if qi = qj and M [i, j] = 0 otherwise;

– the operation total response length pattern is the function family otrlen =
{otrlenk}k∈N with otrlenk : Dk ×Otk → N such that otrlenk(d, op1, . . . , opt) =∑
q∈Qk |qu(dt, q)|w and dt is d after t operations.;

– the operation data size pattern is the function family odsize = {odsizek}k∈N
with odsizek : Dk ×Otk → N such that odsizek(d, op1, . . . , opt) = |dt|w;

– the operation log size pattern is the function family olsize = {olsizek}k∈N
with olsizek : Dk × Otk → N such that olsizek(d, op1, . . . , opt) = #Log(DS)
where DS is an instantiation of dt such that DS ≡ dt;

– the operation max log length pattern is the function family omllen = {omllenk}k∈N
with omllenk : Dk×Otk → N such that omllenk(d, op1, . . . , opt) = maxop∈Log(dt) |op|w.

Note that in the static setting, i.e., when O = Q, the leakage patterns otrlen, odsize,
olsize, omllen are equivalent to the patterns trlen, dsize, lsize,mllen originally de-
fined in [27].
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Leakage sub-patterns. We recall the notion of leakage sub-patterns intro-
duced in [27]. Given a leakage pattern patt, it can be decomposed into sub-
patterns capturing its behavior on restricted classes of query sequences. In par-
ticular, we can decompose a leakage pattern into repeating and non-repeating
sub-patterns. The non-repeating sub-pattern is pattern that results from evalu-
ating patt on non-repeating query sequences (i.e., where all queries are unique).

Definition 5 (Non-repeating sub-patterns). Let T = (qu : D×Q→ R, up :
D × U → D) be a dynamic data type and patt : D × Qt → X be a query leakage
pattern. The non-repeating sub-pattern of patt is the function uniq such that

patt(DS, q1, . . . , qt) =

{
uniq(DS, q1, . . . , qt) if qi 6= qj for all i, j ∈ [t],

other(DS, q1, . . . , qt) otherwise.

Safe extensions. We recall and extend the notion of safe extension from [27]
to support updates.

Definition 6 (Safe extensions). Let Λ = (pattS, pattQ, pattU, pattR) be a leak-
age profile. We say that an extension Ext is Λ-safe if for all k ∈ N, for all d ∈ Dk,
for all DS ≡ d, for all λ ≥ 1, for all DS output by Ext(DS, λ), for all t ∈ N, for
all op = (op1, . . . , opt) ∈ Otk,

– pattS(DS) ≤ pattS(DS);

– pattQ(DS, q1, . . . , qp) ≤ pattQ(DS, q1, . . . , qp), where (q1, . . . , qp) is the sub-
sequence of queries in op;

– pattU(DS, u1, . . . , uw) ≤ pattU(DS, u1, . . . , uw), where (u1, . . . , uw) is the sub-
sequence of updates in op;

– pattR(DS) ≤ pattR(DS),

where patt1 ≤ patt2 means that patt1 can be simulated from patt2.

4 Our Dynamic Suppression Framework
In this section, we present a dynamic variant of the query equality suppres-
sion framework proposed by [27]. Our framework transforms non-rebuildable
weakly-dynamic STE schemes that leak the query equality into fully-dynamic
STE schemes that do not. Recall that the static framework relies on two com-
pilers: (1) a rebuild compiler (RBC) which transforms a semi-dynamic and non-
rebuildable scheme into a static and rebuildable one; and (2) the cache-based
compiler (CBC) which transforms a static and rebuildable scheme that leaks the
query equality into a static scheme that does not.

Challenges. One of the challenges in designing a dynamic variant of the CBC
is handling subtle correlations between various leakage patterns. For example,
suppose the base STE scheme leaks the response length and the operation iden-
tity patterns and consider a sequence of operations (op1, . . . , op4) such that
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op1 = q1, op2 = q2, op3 = u3 and op4 = q4. Now, given the operation iden-
tities and the response lengths, suppose the adversary observes that: q1 has the
largest response length `1; that q3 is an update operation; and that q4 has re-
sponse length `1 + 1. From this, it can reasonably infer that q1 might be equal
to q4 which is a “probabilistic” variant of the query equality. It is therefore not
enough to suppress the exact query equality but also the patterns that can reveal
partial information about it.

To address this, our compiler will have to suppress the response length and
the operation identity in addition to the query equality. One can trivially sup-
press the former by padding responses to the maximum length but this induces
a large storage cost; especially when the response lengths are skewed. A better
approach would be to start with base schemes that are volume-hiding in the
sense that they hide the response lengths (without naive padding). Unfortu-
nately, all volume-hiding constructions we are aware of [26,39] are only weakly
dynamic. Our goal, therefore, will be to design a compiler that suppresses the
query equality, the operation identity and the response length while upgrading
the base scheme from being weakly-dynamic to fully-dynamic.

Another important challenge we must overcome is making the base scheme
rebuildable. [27] already showed how to make semi-dynamic schemes rebuildable
but, in our setting, we also need to handle mutable constructions which do not
support add operations but only edits. To summarize, our compiler has to handle
the following challenges:

– (weak dynamism) it must transform a weakly-dynamic (i.e., either semi-
dynamic or mutable) scheme to a fully-dynamic one;

– (operation identity) it must suppress the operation identity; that is, queries
and updates should look identical.

– (rebuild) it must make the base scheme rebuildable even if it is only weakly
dynamic.

Overview of the dynamic CBC. The dynamic CBC is similar to the static
CBC of [27] with the exception of a few steps to handle adds and edits. Let
ΣDS = (Setup,Query,Add) be a semi-dynamic STE scheme and let ΣDX =
(Setup,Get,Put) be a semi-dynamic and zero-leakage dictionary encryption scheme.
The compiler produces a new scheme ΣDDS = (Setup,Operate) that works as fol-
lows. Given a structure DS and a capacity λ ≥ 1, its setup algorithm outputs
a structure EDDS = (EDS,EDX), where EDS is the encryption of a λ-extension
of DS and EDX is an encryption of a dictionary with capacity λ. Operations on
EDDS are handled as follows:

– (queries) to make a query q, the client first executes a get on EDX for q. If
this returns ⊥ (i.e., q has never been issued before) the client queries EDS
for q and receives a response r. The client then does a put on EDX to add
the query/response pair (q, r). If, on the other hand, the get on the cache
returned a response r 6= ⊥, the client queries EDS for an unused dummy
value and puts the query/response pair (q, r) in EDX;
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– (adds) to add a query/response pair (q, r), the client executes a get on EDX
for an arbitrary query and ignores the response. It then queries EDS for an
unused dummy and puts (q, r) in EDX;

– (edits) to edit the response of an existing query q (e.g., by either adding to
it, deleting from it or changing it), the client first executes a get on EDX
for q. If this returns ⊥, the client queries EDS for q and receives a response
r. It then edits r, which results in a new response r′, and puts (q, r′) in
EDX. If, on the other hand, the get on the cache returned a response r 6= ⊥,
the client queries EDS for an unused dummy, edits r and puts the edited
query/response pair (q, r′) in EDX.

Note that for every operation, the dynamic CBC executes a get on EDX, then
a query on EDS and, finally, a put on EDX. Furthermore, EDS is never queried
for a query q more than once. Intuitively, the first property will guarantee that
the scheme suppresses the operation identity while the second will guarantee
that it suppresses the query equality.

Every operation executed on EDDS consumes a (unique) dummy item from
EDS. And since it holds λ dummies, it needs to be rebuilt after λ operations so
that it can continue to be used. We now describe how this rebuild is achieved.

Overview of the dynamic RBC. We have two main goals when rebuilding

EDDS = (EDS,EDX). The first is to build a new EDS structure EDS′ that holds

the λ dummies. The second is to make sure that EDS′ holds the most up-to-date
responses for all the queries. Note that the second goal is non-trivial because of
the way adds and edits are handled. In particular, the most up-to-date response
for a query q can be either in EDS or in EDX depending on whether it has been
added, edited or never modified. More precisely, we have hat after λ operations, if
a query/response pair (q, r) is in the cache then r is the most up-to-date response
for q. On the other hand, if a pair (q, r) is not in the cache then the the main
structure EDS holds the most up-to-date response for q. In the following, we
refer to a query/response pair (q, r) as valid if r is the most up-to-date response
for q and as invalid if it is not. Our rebuild protocol must then extract the valid

query/response pairs from EDX and EDS and add them to EDS′ with a minimal
amount of leakage. 2

The protocol consists of five phases: (1) initialization, where an array RAM is
initialized at the server; (2) extract-and-tag, where all the query/response pairs
are retrieved from EDS and EDX, tagged according to their validity and stored
in an encrypted array at the server; (3) sort-and-shuffle, where the encrypted
array is (obliviously) sorted to partition the invalid and valid query/response
pairs so that the former can be deleted and the latter are randomly shuffled;
(4) update, where the valid query/response pairs in the array are added to a

new EDS′ structure; and (5) cache setup, where a new cache structure EDX′ is
created. More precisely, it works as follows:

1. (initialization): the server initializes an array RAM.

2 Note that invalid query/response pairs in EDS result from the pair existing in EDS
from setup (i.e., not being added) but being edited during the last λ operations.
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2. (extract-and-tag) the client sequentially retrieves all the query/response pairs
(q, r) in EDS and EDX. For all (q, r) in EDX, it adds an encryption of (q, r, f)
to RAM, where f is a random non-zero k-bit value we refer to as a validity
tag. If there are less than λ entries in EDX, it queries it on arbitrary values
until it reaches λ queries and for each of these arbitrary queries it adds
an encryption of (⊥,⊥, 0) to RAM. For all query/response pairs (q, r) in
EDS, it adds an encryption of (q, r, f) to RAM, where f is set to 0 if q was
present in EDX and f is set to a random non-zero k-bit value otherwise.
For each dummy in EDS, the client adds an encryption of (⊥,⊥, f) to RAM,
where f is a random non-zero k-bit value. Throughout this phase, the client
also keeps count of the number of entries with 0 tags. Notice that the valid
query/response pairs and the dummies are all tagged with random non-zero
validity tags whereas the invalid pairs and the entries that result from the
“arbitrary” queries on EDX are tagged with 0.

3. (sort-and-shuffle) the client obliviously sorts RAM according to the validity
tags. Since the valid pairs and the dummies have random non-zero tags
and the rest have 0 tags, this step will randomly shuffle the valid pairs and
dummies and store the rest at the start of the array. The client then asks
the server to delete the first t entries, where t is the number of entries with
0 tags. At this point, the array only holds valid query/response pairs.

4. (update) the client creates a new structure EDS′ by retrieving the query/response

pairs in RAM and adding them to EDS′. How exactly this is done depends
on the kind of dynamism ΣDS supports:

– (semi-dynamic) if it is semi-dynamic, the client initializes an empty
structure DS0 and encrypts it with ΣDS before storing it at the server.

This new encrypted structure is EDS′. The client sequentially retrieves

the query/response pairs (q, r) from RAM and adds them to EDS′.

– (mutable) if ΣDS is mutable we can only use edit operations. The client

then sets up “placeholder” structure D̃S that it will encrypt and edit
until it holds the necessary data. Note that for this to work, the place-
holder must be large enough to hold the latest version of DS (i.e., the
structure DS after the λ operations) and it must be “safe” in the sense
that encrypting and editing the placeholder must not leak more than
operating on the original structure.

5. (cache setup) the client generates an empty dictionary with capacity λ and
encrypts it with ΣDX and sets it to be EDX′.

Finally, the protocol outputs a rebuilt structure EDDS′ = (EDS′,EDX′).

4.1 Security

We now analyze the security of our dynamic suppression framework. We present
two theorems whose proofs are in the full version of this work. Theorem 1 ana-
lyzes the case when ΣDS is semi-dynamic and Theorem 2 analyzes the case where
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ΣDS is mutable. For Theorem 1, we assume ΣDS has leakage profile

ΛDS = (LS,LQ,LA) =
(
pattdsS , (qeq

ds, pattdsQ ), pattdsA
)
,

and ΣDX has profile

ΛDX = (LS,LG,LP) =
(
pattdxS ,⊥,⊥

)
.

Theorem 1 (Semi-dynamic). If ΣDS is ΛDS-secure, if Ext is (pattdsS , uniq, patt
ds
A )-

safe, and if ΣDX is ΛDX-secure, then ΣDDS is ΛDDS-secure, where

ΛDDS = (LS,LO,LR) =
((
pattdsS , patt

dx
S

)
, uniq,

(
pattdxS , patt1, patt2, patt3

))
and patt1, patt2 and patt3 are defined as,

– patt1(DS) =
(
pattdsS (DS0), lsize, olsize, omllen

)
– patt2(DS) =

(
pattdsQ (DS, q)

)
q∈QDS

– patt3(DS) =
(
pattdsA (DS0, a)

)
a∈Log(DSλ)

,

where uniq is the non-repeating sub-pattern of pattdsQ , DS0 ≡ d0 and DSλ is the
updated DS after λ ≥ 1 operations.

Before we state our Theorem for mutable schemes, recall that the rebuild
protocol needs to setup a placeholder structure that can be edited to realize
the new data object. This placeholder must be setup and edited with minimal
leakage. We do this with the notion of a safe placeholder which we define below.

Definition 7 (Safe placeholder). A placeholder structure D̃S is (pattS, pattQ, pattE)-
safe for a structure DS if, for all queries q1, . . . , qt, for all edits e1, . . . , et,

– pattS(D̃S) ≤ pattS(DS),

– pattQ(D̃S, q1, . . . , qt) ≤ pattQ(DS, q1, . . . , qt),

– pattE(D̃S, e1, . . . , et) ≤ pattA(DS, e1, . . . , et).

We assume that there exists an efficient algorithm GenPlaceholder that takes
as input some state information and generates a safe placeholder. We now state
Theorem 2 whose proof is deferred to the full version of this work. Here, we
assume ΣDS has leakage profile

ΛDS = (LS,LQ,LE) =
(
pattdsS , (qeq

ds, pattdsQ ), pattdsE
)
,

and ΣDX has the same profile as above.

Theorem 2 (Mutable). If ΣDS is ΛDS-secure, if Ext is (pattdsS , uniq, patt
ds
E )-

safe, if D̃S is an (pattdsS , patt
ds
Q , patt

ds
E )-safe placeholder for DSλ, and if ΣDX is

ΛDX-secure, then ΣDDS is ΛDDS-secure, where

ΛDDS = (LS,LO,LR) =
((
pattdsS , patt

dx
S

)
, uniq,

(
pattdxS , patt1, patt2, patt3

))
and patt1, patt2 and patt3 are defined as,
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– patt1(DS) =
(
pattdsS (DSλ), lsize, olsize, omllen

)
– patt2(DS) =

(
pattdsQ (DS, q)

)
q∈QDS

– patt3(DSλ) = (pattE(DSλ, e))e∈Log(DSλ)
,

where uniq is the non-repeating sub-pattern of pattdsQ , and DSλ is the updated DS
after λ ≥ 1 operations.

4.2 Efficiency of the Dynamic Cache-Based Compiler

We now analyze the efficiency of the schemes produced by our suppression frame-
work and compare it to using black-box ORAM simulation.

Operation complexity. The efficiency of ΣDDS clearly depends on the effi-
ciency of its building blocks ΣDS and ΣDX. Recall that for every operation op on
EDDS, the client executes: one get operation on EDX, one query operation on
EDS and one put operation on EDX. This leads to an operation complexity of

timeddsO = timedsQ + timedxG + timedxP ,

where timedsQ is the query complexity of ΣDS, and timedxG and timedxP are the get
and put complexities of ΣDX.

Rebuild complexity. Recall that the Rebuild protocol of ΣDDS executes: (1)
λ gets on EDX; (2) #QDS queries on EDS; (3) an oblivious sort on an array of
size #QDS + 2 ·λ; and (4) #QDSλ adds or edits on EDS. The complexity of steps
(1) and (2) is

λ · timedxG + #QDS · timedsQ .

The complexity of steps (3) and (4) depend on the sorting network used and the
storage at the client. Using Batcher’s bitonic sort [5] with O(1) client storage [27],
steps (3) and (4) have complexity

O

(
#QDSλ · max

r∈RDSλ

|r|w · log2 #QDSλ + #QDSλ ·max
u∈U

timedsU (|u|)
)
, (1)

where timedsU (|u|) is either the add or the edit complexity of ΣDS, QDSλ is the
query space of DSλ, and RDSλ is the corresponding response space for the queries
q ∈ QDSλ . Note that if maxu∈U timedsU (|u|) = O

(
log2 #QDSλ

)
, then Equation (1)

above is

O

(
#QDSλ · max

r∈RDSλ

|r|w · log2 #QDSλ

)
.

Adding steps (1) through (4) we have

timeddsR = λ ·timedxG +#QDS ·timedsQ +O

(
#QDSλ · max

r∈RDSλ

|r|w · log2 #QDSλ

)
. (2)
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Operations & rebuild. It follows from the above that the time timedsλO+R to
execute λ operations and to rebuild the structure is

timeddsλO+R = λ · timeddsO + timeddsR

= λ ·
(
timedsQ + 2 · timedxG + timedxP

)
+ #QDS · timedsQ

+O

(
#QDSλ · max

r∈RDSλ

|r|w · log2 #QDSλ

)
. (3)

The complexity above depends in part on the efficiency of the scheme ΣDX

used for the underlying cache. Several constructions can be used including the
“standard” cache, square-root ORAM or the more efficient tree-based ORAM
[43]. In the following, we analyze the complexity of ΣDDS based on different
instantiations of ΣDX.

Using the standard cache. The standard (zero-leakage) cache is an array of
size λ that stores encryptions of label/value pairs (`, v) where the labels all have
the same size and where the values are padded to the maximum value length.
To execute a get for a label `, the client retrieves the entire encrypted array,
decrypts it and keeps the value associated with `. To insert or edit a label/value
pair, the client retrieves the entire encrypted array, decrypts it, inserts the new
pair or modifies an existing pair, re-encrypts the array and sends it back to he
server. It follows that the get and put complexities of the standard cache are

timedxG = timedxP = O

(
λ · max

r∈RDSλ

|r|w
)
,

Combining this with Equation (3), we have

timeddsλO+R = (λ+ #QDS) · timedsQ +O

(
λ2 · max

r∈RDSλ

|r|w)

)
+O

(
#QDSλ · max

r∈RDSλ

|r|w · log2 #QDSλ

)
.

Using a tree-based cache. The scheme ΣDX can also be instantiated with a
tree-based ORAM like Path ORAM [43] which has get and put complexity

timedxG = timedxP = O

(
max
r∈RDSλ

|r|w · log2 λ

)
,

where λ is the number of entries stored in the ORAM. Combining this with
Equation 3, we have

timeddsλO+R = (λ+ #QDS) · timedsQ +O

(
λ · max

r∈RDSλ

|r|w · log2 λ

)
+O

(
#QDSλ · max

r∈RDSλ

|r|w · log2 #QDSλ

)
. (4)
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Comparison to black-box ORAM simulation. With the exception of the
construction of [33], ORAM does not traditionally support re-sizing. So to com-
pare our constructions with black-box ORAM simulation based on state-of-the-
art ORAMs (e.g., Path ORAM [43]) 3 we have to assume that the ORAM is
initialized with some upper-bound on the size. We use an “upper-bound” data
structure which we denote DS∗. More precisely, to setup the ORAM simulation
for a structure DS, the ORAM is initialized to hold DS∗ so that DS can expand
to fill the allocated space. The ORAM simulation of one operation on DS using
a tree-based ORAM then has complexity,

timetreeO = Bds
Q ·O

(
log2 |DS∗|2

B

)
· B
w
,

where Bds
Q is the number of blocks that need to be read to answer a query, B is

the block size of the ORAM and w is the word length (in bits). Since the ORAM
does not have to be rebuilt, timetreeλO+R is the same as the time complexity of λ
operations. Setting B = maxr∈RDS∗ |r|2 as an upper limit on possible response
length, we have,

timetreeλO = λ ·Bds
Q ·O

(
log2 |DS∗|2

maxr∈RDS∗ |r|2

)
· max
r∈RDS∗

|r|w. (5)

To compare the efficiency of our schemes with black-box ORAM simulation, we
examine Equation (4). Assuming that λ = O(#QDS),4 and timedsQ = O(log #QDS)
we have that #QDSλ ≤ #QDS + λ = O(#QDS). Combining the first two terms
in Equation (4) we get,

timeddsλO+R = O(#QDS · log #QDS) +O

(
λ · max

r∈RDSλ

|r|w · log2 λ

)
+O

(
#QDS · max

r∈RDSλ

|r|w · log2 #QDS

)
. (6)

From Equation (6), we observe that timeddsλO+R is asymptotically dominated by

O

(
#QDS · max

r∈RDSλ

|r|w · log2 #QDS

)
.

Comparing Equations (5) and (6), we have the following proposition.

Proposition 1. If λ = O(#QDS), #QDS = O(#QDS∗) and Bds
Q = ω(1), then

timeddsλO+R = o
(
timetreeλO

)
.

3 Note that some ORAM constructions can achieve better asymptotic query complex-
ity [38] but we use Path ORAM for its simplicity and real-world practicality.

4 This is a conservative assumption on λ. In practice, the selection of λ is crucial to
the efficiency of the scheme. The question of selecting the optimal λ for efficiency is
interesting and can be further explored.
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For structures with constant-time queries, Bds
Q = 1 so our approach improves

asymptotically over ORAM simulation whenever

max
r∈RDSλ

|r|w = o

(
max
r∈RDS∗

|r|w
)
.

For a concrete efficiency comparison we refer the reader to Section 5.3.

5 Concrete Instantiations
In this section we show how to apply our framework to two concrete schemes:
the piggyback scheme PBS from [27] which is a semi-dynamic construction and

the advanced volume-hiding scheme AVLHd from [26] which is mutable. The
leakage profiles of the resulting schemes is minimal and only reveal information
pertaining to the total size of the structure.

5.1 Our PBS-Based Constructions

PBS is a non-rebuildable semi-dynamic STE scheme. It is parameterized with
a batch size α and supports query and add operations. PBS queries and adds
in batches in the sense that when executing a query q1 it only retrieves a fixed
number of batches from q1’ s response and retrieves the next set of batches only
when a new query q2 occurs. In the meantime, q2 is inserted into a queue until
enough queries are made for the client to retrieve q1’s entire response. Adds
are handled similarly. When a sequence of queries or adds is complete, all the
remaining batches in the queue are retrieved or pushed.

PBS has two variants. The first is a perfectly correct variant which incurs
some small amount of query leakage; namely, for sequences of non-repeating
queries, it leaks the number of batches required to process the sequence; and for
sequences with repeating queries, it reveals the query equality and the response
lengths. The second variant achieves only probabilistic correctness but the non-
repeating sub-pattern of its query leakage is ⊥. The application of our framework
to the first variant results in a dynamic variant of the AZL construction from
[27] whereas applying it to the second variant results in a dynamic variant of
the FZL construction from [27].

Leakage profile of PBS. The leakage profile of the perfectly correct variant
of PBS is

ΛPBS = (LS,LQ,LA) = (tbrlen, rqeq, alen),

where tbrlen, rqeq and alen are defined as follows. The total batched response
length

tbrlenk,α(DS) = trlen(DS) +
∑
q∈QDS

α−
(
|qu(DS, q)|w mod α

)
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reveals the number of batches needed to store the responses in the structure.
The repeated query equality pattern

rqeqk,m(DS, q1, . . . , qt) =


⊥ if m < t and qi 6= qj for all i, j ∈ [t],

γm if m = t and qi 6= qj for all i, j ∈ [t],

qeq× rlen(DS, q1, . . . , qt) otherwise,

where

γm
def
=

( ∑
i∈[m]

|qu(DS, qi)|w + α−
(
|qu(DS, qi)|w mod α

))
· α−1 − (m− 1).

Note that the non-repeating sub-pattern of rqeq is uniq where

uniqk,m(DS, q1, . . . , qt) =

{
⊥ if m < t and qi 6= qj for all i, j ∈ [t],

γm if m = t and qi 6= qj for all i, j ∈ [t].

The add length pattern

alenk,m(DS, u1, . . . , ut) =

{
⊥ if m < t,

γm if m = t,

reveals nothing until the last add of the sequence, and then reveals the number
of batches required to finish the add sequence.

When PBS is modified to support only probabilistic correctness for queries,
the non-repeating sub-pattern of its query leakage is ⊥. The leakage profile of the
probabilistic variant of PBS is therefore (Lpbs

S ,Lpbs
Q ,Lpbs

U ) = (tbrlen, pattQ, alen)
where

pattQ(DS, q1, . . . , qt) =

{
⊥ if qi 6= qj for all i, j ∈ [t],

qeq× rlen(DS, q1, . . . , qt) otherwise.

Safe extension for PBS. Let (q̃1, · · · , q̃λ) be dummy queries. For all 1 ≤ i ≤
λ, compute DS← Add(DS, (q̃i,0)), where |0|w = maxr∈RDS

|r|w.

Theorem 3. If λ and α are publicly-known parameters and if all queries in QDS

have the same bit length, the extension scheme described above is (tbrlen, uniq, alen)-
safe.

Dynamic AZL. Let dynamic AZL be the perfectly-correct fully-dynamic re-
buildable scheme that results from applying our framework to the perfectly-
correct variant of PBS. Its security is stated in the following Theorem whose
proof is in the full version.

Theorem 4. If ΣDX is ΛDX-secure where ΛDX = (LS,LG,LP) = (mllen,⊥,⊥),
then dynamic AZL is ΛAZL-secure where

ΛAZL = (LS,LO,LR)

=
(
(tbrlen,mllen) , uniq′, (lsize, tbrlen, olsize, omllen, otbrlen)

)
19



where otbrlen(DS, op1, . . . , opλ) = tbrlenk,α(DSλ) and

uniq′k,m(DS, op1, . . . , opt) = uniqk,m(DS, q1, . . . , qt),

where opi is either a query qi or an update ui = (qi, ri).

Efficiency of dynamic AZL. It follows from Equation (4) that the complexity
of dynamic AZL when ΣDX is initialized with a tree-based ORAM is

timeazlλO+R = (λ+ #QDS) · timepbsQ +O

(
λ · max

r∈RDSλ

|r|w · log2 λ

)
+O

(
#QDS · max

r∈RDSλ
|r|w
· log2 #QDSλ

)
,

where timepbsQ is the query complexity of PBS which is equal to the query com-
plexity of is underlying multi-map encryption scheme. The storage complexity
of dynamic AZL is the sum of the storage required for the cache and the storage
required for the PBS structure. This results in storage complexity

O

(
λ · (α+ max

a∈Log(DSλ)
|a|w) + #QDS · (α+ max

r∈RDS

|r|w)

)
.

Dynamic FZL. Dynamic FZL is the probabilistically-correct fully-dynamic
scheme that results from applying our framework to the probabilistically-correct
variant of PBS. Its security is analyzed in the following Theorem whose proof is
in the full version of this work.

Theorem 5. If ΣDX is ΛDX where ΛDX = (LS,LG,LP) = (mllen,⊥,⊥), then
dynamic FZL is ΛFZL-secure where

ΛFZL = (LS,LO,LR) = ((tbrlen,mllen) ,⊥, (lsize, olsize, omllen, otbrlen)) .

Efficiency of dynamic FZL. The efficiency of dynamic FZL is the same as
that of dynamic AZL.

5.2 Our AVLH-Based Construction

We now apply our framework to the mutable variant of the advanced volume-
hiding multi-map encryption scheme AVLHd from [26]. Note that here we do not
consider the variant that exploits concentrated components for storage improve-
ments.

Overview of AVLH. At a high level, the scheme uses n bins to store a multi-
map of size N , where N is the sum over all labels of the labels’ tuple lengths.
The scheme uses a random bipartite graph to map labels to bins. More precisely,
each label ` is mapped at random to t out of n bins, where t is the maximum
tuple length. The elements of the tuple corresponding to a label ` are placed
in each bin mapped to `. If there are more bins mapped than the length of the
tuple, some bins are left empty. The bins are then padded to the size of the
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maximum bin, encrypted and stored on the server. To query for a label `, the
client retrieves all the bins mapped to `. The scheme hides the tuple lengths,
i.e., the response length rlen. It also supports restricted edits in the sense that
one can edit/change the values in a tuple but not add values to it. The leakage

profile of AVLHd is

ΛAVLH = (LS,LQ,LE) = (trlen, qeq, (oid, uqeq)).

Extension. Let (q̃1, · · · , q̃λ) be dummy queries and (r̃1, · · · , r̃λ) be the cor-
responding dummy responses such that |r̃i| = 1. For all i ∈ [λ], compute
MM ← Add(MM, (q̃i, r̃i)). We state the security of this extension in the The-
orem below whose proof is deferred to the full version.

Theorem 6. If λ is a publicly-known parameter and that all queries in the query
space QDS have the same bit length, the above extension scheme is (trlen,⊥,
(oid, uqeq))-safe.

Safe placeholder. Since AVLHd is mutable we define a safe placeholder multi-

map M̃M. Note that the placeholder must have the following properties:

1. M̃M must have enough space to hold the tuples of all the labels ` ∈ LMMλ
5;

2. the setup, query and edit leakages on M̃M must be at most the setup, query
and edit leakages on MM.

The placeholder structure is created as follows during rebuilds. During the
extract-and-tag phase, the client learns which labels are valid and their tuple
lengths. During the update phase it creates, for every valid label ` a dummy

tuple t of the same length and inserts (`, t) in M̃M.We state the security of the
placeholder in the Theorem below, whose proof is deferred to the full version.

Theorem 7. The placeholder above is (trlen, qeq, (oid, uqeq))-safe.

Zero-leakage advanced volume-hiding. Let ZAVLH be the dynamic re-
buildable multi-map encryption scheme that results from applying our frame-
work to AVLHd with the above placeholder structure and a dictionary encryption
scheme ΣDX with leakage profile ΛDX = (Ldx

S ,Ldx
G ,Ldx

P ) = (mllen,⊥,⊥). Theo-
rem 8 below, whose proof is in the full version of this work, states the security
of ZAVLH.

Theorem 8. If ΣDX is ΛDX-secure, then ZAVLH is ΛZAVLH-secure where

ΛZAVLH = (LS,LO,LR) = ((trlen,mllen) ,⊥, (lsize, olsize, omllen, otrlen)) .

Efficiency of ZAVLH. We now analyze the efficiency of our dynamic cache-
based compiler with a tree-based cache and the AVLHd scheme. The query com-
plexity for ZAVLH is

timezavlhQ = O(t ·N/n)

5 For any multi-map data structure MM, the query space QDS is the label space LMM.
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If t = O(1) and n = O(N/ logN) where t is the maximum tuple length and n is
the number of bins, the query complexity is O(logN) for zero-leakage operations.
From Equation (4) we have,

timezavlhλO+R = O (#LMM · logN) +O

(
λ · max

r∈RMMλ

|r|w · log2 λ

)
(7)

+O

(
#LMM · max

r∈RMMλ

|r|w · log2 #LMMλ

)
(8)

5.3 Concrete Comparisons

In Section 4.2, we showed that our framework can asymptotically outperform
black-box ORAM simulation under natural assumptions on the data and queries.
In this section, we are interested in gaining a better understanding of the practi-
cal gains in different settings. Specifically, we compare the concrete efficiency of
our ZAVLH scheme to an oblivious multi-map constructed via black-box ORAM
simulation and to a standard dynamic encrypted multi-map called Πdyn

bas [11].
Since the latter has optimal storage and query complexities, this comparison
highlights the cost of leakage suppression.

Parameters and notation. For our comparison, we consider a multi-map
MM with t labels and N =

∑
`∈LMM

#MM[`] total values and maximum tuple
length l. After λ Add operations on MM, the resulting multi-map is denoted
MMλ. We denote the number of labels in MMλ as tλ and the total values in
MMλ as Nλ. The maximum tuple size in MMλ is denoted by lλ. All PRF keys
and outputs are of length k = 256 bits, all values in the multi-maps are 64 bits
and N is set to 216.

Parameters for ZAVLH. The number of bins in AVLH are chosen such that
each bin contains (logN)/2 values on average. The tree-based cache used in
the dynamic CBC is instantiated with Path ORAM with λ leaf nodes; one for
each tuple in the cache. Each block is initialized to hold one tuple and therefore
(l+ λ) values at most. Each node/bucket in the binary tree holds Z = 5 blocks.
The position map maps every label to a leaf node in the ORAM and has size
λ(k + log λ). The stash stores at most log λ blocks and therefore log λ(l + λ)
values. A query to the cache reads and writes a path of log λ buckets in the tree.
The multi-map MM stores t+λ labels and N+λ total values. We summarize the
cost of ZAVLH in Table 2 breaking it down into the cost to execute λ operations
(OPS) and the costs of the different rebuild phases: extract-and-tag (E&T),
sort-and-shuffle (S&S) and update (UP).

Black-box ORAM simulation. To manage the dynamic multi-map MM
with Path ORAM, we initialize an upper-bound structure MM∗ with t∗ labels
and N∗ values.6 Specifically, we use upper-bound structures that are 25, 50, 150,
and 1000 times larger than the multi-map’s original size (Table 1). The maxi-
mum length of a tuple in MM∗ is l∗. The Path ORAM that manages MM∗ has t∗

6 This is due to Path ORAM’s inability to resize.
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Parameters Setting 1 Setting 2 Setting 3 Setting 4

General:
length of PRF output (bits) 256 256 256 256
length of MM value (bits) 64 64 64 64
cache size (λ) 64 64 64 64

MM:
max. tuple length (l) 512 512 512 512
total # of labels (t) 256 256 256 256
total # of values (N) 216 216 216 216

total # of AVLH bins (n) 8192 8192 8192 8192

Updated MMλ:
max. tuple length (lλ) 512 512 512 512
total # of labels (tλ) 256 256 256 256
total # of values (Nλ) 65600 65600 65600 65600
total # of AVLH bins (nλ) 8199 8199 8199 8199

Upper-bound MM∗:
factor of growth 25 50 150 1000
max. tuple length (l∗) 1.28 ×104 2.56 ×104 7.68 ×104 51.2 ×104

total # of labels (t∗) 0.64 ×104 1.28 ×104 3.84 ×104 25.6 ×104

total # of values (N∗) 163.84 ×104 327.68 ×104 983.04 ×104 6553.6 ×104

Table 1. Parameters for the efficiency comparison of dynamic CBC, black-box ORAM
simulation, and Πdyn

bas , given a multi-map MM and a sequence of λ add operations.

Efficiency
Measure

ZAVLH
(OPS)

ZAVLH
(E&T)

ZAVLH
(S&S)

ZAVLH
(UP)

ZAVLH
(Total)

Path ORAM

EMM(∗)
Std EMM

(Πdyn
bas )

0.401 0.084 - 0.401 0.486 4.78 0.066
Client State 10.058

(Mbits) 32.539
244.137

29.704 14.352 - 29.71 44.062 52424.704 20.992
Server Storage 209707.008

(Mbits) 1887412.224
83885916.16

166.739 211.042 1181.008 268.294 1827.084 1995.534 10.485
Communication 4306.721

(Mbits) 14421.059
113419.012

Leakage l, N t tλ lλ, Nλ
l, N, t

lλ, Nλ, tλ
l∗, t∗ vol, qeq

Table 2. Concrete efficiency comparison. The efficiency numbers shown for ORAM
correspond to each of the 4 settings for the ORAM upper-bound data structure.

leaf nodes, one for each label in MM∗. Each block is initialized to hold l∗ values
and each node/bucket in the binary tree holds Z = 5 blocks. This ORAM has
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a position map of size t∗(q + log t∗) and a stash that holds at most log t∗ blocks
at any given time.

Comparison. Table 2 shows the costs in Mbits for each of the 4 settings for
ZAVLH, black-box ORAM simulation, and Πdyn

bas . We can see that ZAVLH out-
performs black-box ORAM simulation in both space and communication for our
chosen parameters. In particular, the storage cost of ZAVLH is 3 to 7 orders
of magnitude smaller than black-box ORAM simulation and only a factor of 2
larger than Πdyn

bas . We also observe that the communication cost of ZAVLH is up
to 60 times smaller than black-box ORAM simulation, but 180 times larger than
Πdyn

bas which is optimal but incurs more leakage.
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