
LogStack: Stacked Garbling
with O(b log b) Computation

David Heath and Vladimir Kolesnikov

Georgia Institute of Technology, Atlanta, GA, USA
{heath.davidanthony,kolesnikov}@gatech.edu

Abstract. Secure two party computation (2PC) of arbitrary programs
can be efficiently achieved using garbled circuits (GC). Until recently,
it was widely believed that a GC proportional to the entire program,
including parts of the program that are entirely discarded due to con-
ditional branching, must be transmitted over a network. Recent work
shows that this belief is false, and that communication proportional only
to the longest program execution path suffices (Heath and Kolesnikov,
CRYPTO 20, [HK20a]). Although this recent work reduces needed com-
munication, it increases computation. For a conditional with b branches,
the players use O(b2) computation (traditional GC uses only O(b)).

Our scheme LogStack reduces stacked garbling computation from O(b2)
to O(b log b) with no increase in communication over [HK20a]. The cause
of [HK20a]’s increased computation is the oblivious collection of garbage
labels that emerge during the evaluation of inactive branches. Garbage
is collected by a multiplexer that is costly to generate. At a high level,
we redesign stacking and garbage collection to avoid quadratic scaling.

Our construction is also more space efficient: [HK20a] algorithms require
O(b) space, while ours use only O(log b) space. This space efficiency al-
lows even modest setups to handle large numbers of branches.

[HK20a] assumes a random oracle (RO). We track the source of this need,
formalize a simple and natural added assumption on the base garbling
scheme, and remove reliance on RO: LogStack is secure in the standard
model. Nevertheless, LogStack can be instantiated with typical GC tricks
based on non-standard assumptions, such as free XOR and half-gates,
and hence can be implemented with high efficiency.

We implemented LogStack (in the RO model, based on half-gates gar-
bling) and report performance. In terms of wall-clock time and for fewer
than 16 branches, our performance is comparable to [HK20a]’s; for larger
branching factors, our approach clearly outperforms [HK20a]. For exam-
ple, given 1024 branches, our approach is 31× faster.

Keywords: 2PC, Garbled Circuits, Conditional Branching, Stacked Garbling

1 Introduction

Secure two party computation (2PC) of programs representable as Boolean cir-
cuits can be efficiently achieved using garbled circuits (GC). However, circuit-
based MPC in general is problematic because conditional control flow does not

have an efficient circuit representation: in the cleartext program, only the taken
execution is computed whereas in the circuit all branches must be computed.

Until recently, it was assumed that the players must not only compute all
branches, but also transmit a string of material (i.e., the garbled circuit itself)
proportional to the entire circuit. Since communication is the GC bottleneck,
transmitting this large string was problematic for programs with conditionals.

Stacked Garbling [HK20a], which we interchangeably call Stacked Garbled
Circuit (SGC), shows that expensive branching-based communication is un-
necessary: the players need only send enough material for the single longest
branch. This single piece of stacked material can be re-used across all condi-
tional branches, substantially reducing communication. Unfortunately, this im-
provement comes with one important downside: SGC requires the players to
compute more than they would have without stacking. In particular, for a con-
ditional with b branches, the [HK20a] GC generator must evaluate under encryp-
tion each branch b − 1 times and hence must pay O(b2) total computation. In
contrast, standard garbling uses computation linear in the number of branches.

In this work, we present a new SGC construction that incurs only O(b log b)
computation for both players while retaining the important communication im-
provement of [HK20a]. The construction also features improved space complex-
ity: while [HK20a] requires the generator to store O(b) intermediate garblings,
both Eval and Gen in our construction use only O(log b) space. Finally, the con-
struction features low constants and hence opens the door to using SGC even in
the presence of high branching factors without prohibitive computation.

1.1 A Case for High Branching Factor

Branching is ubiquitous in programming, and our work significantly improves the
secure evaluation of programs with branching. Moreover, the efficient support of
high branching factor is more important than it may first appear.

Efficient branching enables optimized handling of arbitrary control flow, in-
cluding repeated and/or nested loops. Specifically, we can repeatedly refactor
the source program until the program is a single loop whose body conditionally
dispatches over straightline fragments of the original program.1 However, these
types of refactorings often lead to conditionals with high branching factor.

As an example, consider a program P consisting of a loop L1 followed by
a loop L2. Assume the total number of loop iterations T of P is known, as is
usual in MPC. For security, we must protect the number of iterations T1 of L1

and T2 of L2. Implementing such a program with standard Yao GC requires us
to execute loop L1 T times and then to execute L2 T times. SGC can simply
execute Stack(L1, L2) T times, a circuit with a significantly smaller garbling.
This observation corresponds to the following refactoring:

while(e0){s0}; while(e1){s1} −→ while(e0 ∨ e1){ if(e0){s0} else {s1} }
1 As a brief argument that this is possible, consider that a CPU has this structure: in

this case the ‘straightline fragments’ are the instruction types handled by the CPU.

2

where si are nested programs and ei are predicates on program variables.2 The
right hand side is friendlier to SGC, since it substitutes a loop by a conditional.
Now, consider that s0 and s1 might themselves have conditionals that can be
flattened into a single conditional with all branches. By repeatedly applying such
refactorings, even modest programs can have conditionals with high branching
factors. High-performance branching, enabled by our approach, allows the effi-
cient and secure evaluation of such programs.

In this work, we do not further explore program refactorings as an optimiza-
tion. However, we firmly believe that SGC is an essential tool that will enable
research into this direction, including CPU emulation-based MPC. As argued
above, performance in the presence of high branching factor is essential.

1.2 [HK20a] and its O(b2) computation

Our approach is similar to that of [HK20a]: we also stack material to decrease
communication. The key difference is our reduced computation. It is thus in-
structive to review [HK20a], focusing on the source of its quadratic scaling.

The key idea of SGC is that the circuit generator Gen garbles, starting from
seeds, each branch Ci. He then stacks these b garbled circuits, yielding only a
single piece of material proportional to the longest branch: M =

⊕
i Ĉi.3 Because

garblings are expanded from short seeds, the seeds are compact representations
of the garblings. Although it would be insecure for the evaluator Eval to receive
all seeds from Gen, [HK20a] show that it is secure for her to receive seeds cor-
responding to the inactive branches. Let α be the id of the active branch. Eval
can reconstruct from seeds the garbling of each inactive branch, use XOR to
unstack the material Ĉα, and evaluate Cα normally. Of course, what is described
so far is not secure: the above procedure implies that Eval knows α, which she
does not in general know and which she should not learn.

Thus, [HK20a] supplies to Eval a ‘bad’ seed for the active branch: i.e., she
receives a seed that is different yet indistinguishable from the seed used by
Gen. From here, Eval simply guesses which branch is taken (she in fact tries
all b branches) and evaluates this guessed branch with the appropriately recon-
structed material. For security, each guess is unverifiable by Eval. Still, when
she guesses right, she indeed evaluates the taken branch and computes valid GC
output labels. When she guesses wrong, she evaluates the branch with so-called
garbage material (material that is a random-looking string, not an encryption
of circuit truth tables), and computes garbage output labels (i.e., labels that are
not the encryption of 0 or 1, but are random-looking strings). To proceed past
the exit of the conditional and continue evaluation, it is necessary to ‘collect’
these garbage labels by obliviously discarding them in favor of the valid labels.4

2 To be pedantic, this specific refactoring is not always valid: s1 might mutate variables
used in e0. Still, similar, yet more notationally complex, refactorings are always legal.

3 Note, [HK20a], as do we in this work, pad each GC material Ĉi with uniform bits
before stacking. This ensures all Ĉi are of the same length.

4 Of course, the final output labels of the conditional are fresh, such that they cannot
be cross-referenced with those obtained in branch evaluation.

3

[HK20a] collect garbage without interaction using a garbled gadget called a
multiplexer. The multiplexer can be non-interactively constructed by Gen, but
only if he knows all possible garbage labels. Once this is satisfied, it is easy for Gen
to produce a gadget (e.g., appropriate garbled translation tables) that eliminates
garbage and propagates the active branch’s output labels.

Gen’s Uncertainty. It is possible for Gen to acquire all garbage labels.
[HK20a] achieve this by having Gen emulate the actions of Eval on all inactive
branches. To see how this can be done, consider Gen’s knowledge and uncertainty
about the garbled evaluation. There are three sources of Gen’s uncertainty:

– The input values to each inactive branch. This is the largest source of un-
certainty (the number of possibilities are exponential in the number of input
wires), but the easiest to handle. [HK20a] introduce a simple trick: they add
an additional garbled gadget, the demultiplexer, that ‘zeros out’ the wires
into the inactive branches. This fully resolves this source of uncertainty.

– The index of the active branch, which we denote by truth.
– Eval’s guess of the value of truth, which we denote by guess.

In total, there are b2 (truth, guess) combinations. Crucially, each of these
combinations leads to Eval evaluating a unique combination of a circuit and
material. Hence, there are b2 possible sets of labels (b(b − 1) garbage sets of
labels and b valid sets of labels) that the evaluator can compute.

To acquire all possible garbage labels such that he can build the garbage
collecting multiplexer, the [HK20a] generator assumes an all-zero inputs for each
inactive branch and emulates “in his head” Eval’s evaluation of all possible
(truth,guess) combinations. This requires that Gen evaluate b(b − 1) times on
garbage material. This is the source of the O(b2) computation.

1.3 Top-level Intuition for O(b log b) Stacked Garbling

Our main contribution is the reduction of SGC computation from O(b2) to
O(b log b). To this end, we redesign stacking/unstacking to reduce Gen’s uncer-
tainty. By doing so, we reduce the computation needed to implement garbage
collection. In this section we provide our highest-level intuition for the construc-
tion. Section 2.1 continues in greater detail.

Recall from Section 1.2 the sources of Gen’s uncertainty, which result in b2

evaluations inside Gen’s emulation of Eval: there are b possible values for both
variables truth and guess (truth ∈ {0, b − 1}, guess ∈ {0, b − 1}). For each
fixed pair (truth, guess), Gen has a fully deterministic view of Eval’s garbled
evaluation, and hence a deterministic view of the garbage she computes. Gen
uses the garbage labels to construct the garbage collecting multiplexer.

Our main idea is to consolidate the processing of many such (truth, guess)
pairs by ensuring that Eval’s execution is the same across these (truth, guess)
pairs. This would further reduce Gen’s uncertainty and save computation.

Here is how we approach this. Wlog, let b = 2k for some k ∈ N and consider
a balanced binary tree with the b branches at the leaves. For each leaf `, define

4

the sibling subtree at level i (or i-th sibling subtree) to be the subtree rooted in
a sibling of the i-th node on the path to ` from the tree root. Thus, each branch
has log b sibling subtrees. We call the root of a sibling subtree of a leaf ` a sibling
root of `. Note, the log b sibling subtrees of a leaf ` cover all leaves except for `.
For example, consider Figure 1. There, node C3 has sibling roots N2,N0,1,N4,7.

We reduce the number of possible (truth, guess) combinations by changing
the semantics of truth. truth will not denote the active branch. Instead truth

will now be defined with respect to a given guess guess. In particular, truth will
denote the sibling subtree of guess that contains the active branch (truth = 0
denotes a correct guess). For a fixed guess, there are log b + 1 choices for this
truth. If Gen and Eval can efficiently process each of these b log b (truth, guess)
combinations (they can!), we achieve the improved O(b log b) computation.

1.4 Our Contributions

[HK20a] shows that GC players need not send a GC proportional to the entire
circuit. Instead, communication proportional to only the longest program exe-
cution path suffices. However, their improved communication comes at a cost:
for a conditional with b branches, the players use O(b2) computation.

This is a usually a worthwhile trade-off: GC generation is usually much faster
than network transmission (cf. our discussion in Section 1.5). However, as the
branching factor grows, computation can quickly become the bottleneck due to
quadratic scaling. Thus, as we argue in Section 1.1, a more computationally
efficient technique opens exciting possibilities for rich classes of problems.

This work presents LogStack, an improvement to SGC that features improved
computation without compromising communication. Our contributions include:

– Improved time complexity. For b branches, LogStack reduces time complexity
from O(b2) to O(b log b).

– Improved space complexity. For b branches, our algorithms require O(log b)
space, an improvement from [HK20a]’s O(b) requirement.

– High concrete performance. In total, the players together garble or evaluate
the b branches a total of 7

2b log b+ 2b times. These concrete results translate
to implementation performance: for fewer than 16 branches, our wall-clock
runtime is similar to that of [HK20a]. At higher branching factors, we clearly
outperform prior work (see Section 7).

– A formalization in the [BHR12] framework (as modified by [HK20a]) proved
secure under standard assumptions. [HK20a] proved SGC secure by assuming
a random oracle. We prove security assuming only a pseudorandom function.

1.5 When to use LogStack: a high-level costs consideration

We now informally discuss a broad question of practical importance:

“If my program has complex control flow, how can I most efficiently
implement it for 2PC?”

5

To make the question more precise, we assume that ‘most efficiently’ means
‘optimized for shortest total wall-clock time’. Since (1) GC is often the most prac-
tical approach to 2PC, (2) the GC bottleneck is communication, (3) ‘complex
control flow’ implies conditional behavior, and (4) SGC improves communica-
tion for programs with conditional behavior, SGC plays an important role in
answering this question. Of course, the cryptographic technique is not the only
variable in the optimization space. Program transformations, such as described
in Section 1.1, also play a crucial role. These variables are related: some program
transformations may lead to a blowup in the number of branches. While SGC al-
leviates the communication overhead of this blowup, the players still incur b log b
computational overhead. So choosing which program transformations to apply
depends also on the performance characteristics of the cryptographic scheme.

Despite the fact that the optimization space for total wall-clock time is com-
plex, we firmly believe the following claim: using LogStack over standard GC will
almost always improve performance. The rest of this section argues this claim.

Computation vs communication. To discuss how to best apply LogStack, we
establish approximate relative costs of GC computation and communication.

Based on our experiments, a commodity laptop running a single core can
generate GC material at about 3× the network bandwidth of a 1 Gbps channel.
However, while 1Gbps is a typical speed in the LAN setting, WAN speeds are
much lower, e.g. 100Mbps. Other network speeds (bluetooth, cellular) are lower
still. Even on a LAN and even in a data center, typically we should not assume
that our MPC application is allowed to consume the entire channel bandwidth.
Rather, we should aim to use as small a fraction of the bandwidth as possible.
Based on this discussion, and erring on the conservative side, we choose 100Mbps
as “typical” available bandwidth.

Computation is a much more available resource. Today, commodity laptops
have four physical cores. Higher-end computing devices, such as desktop CPUs
and GPUs have higher numbers of cores and/or per-core processing power, re-
sulting in yet higher GC computation-to-transmission ratio. Precomputation, if
available, can also be seen as a way to increase the available compute resource.
SGC, even when using our more sophisticated algorithms, is highly parallelizable.
It is easy to engage many cores to achieve proportional performance improve-
ment. Based on this discussion, and erring on the conservative side, we choose 2
physical cores as a lower end of “typical” available computational power.

Given a typical setting with 2 cores and a 100Mbps channel, we arrive at an
approximation that GC computation is ≈ 60× faster than GC transmission.

Assumption: fixed target circuit. To gain a foothold on answering our broad
question, we start by ruling out program transformations and consider only
cryptographic protocols. Thus, we consider a fixed baseline circuit against which
we measure SGC and LogStack performance. That is, our baseline is a circuit
C with conditionals, to which we apply garbling scheme directly, and to which
we do not apply any program transformations. We may compare 2PC based on
LogStack with Yao GC, both instantiated with half-gates [ZRE15].

6

Rule of thumb: Always apply LogStack. Assuming our approximated speed ratio
of GC generation/transmission, and with a few caveats described next, using
LogStack for branching will always improve over standard GC.

This is easy to see. Gen and Eval together run a more computationally de-
manding process, garbling and evaluating branches exactly 7

2b log b + 2b total
times (5

2b log b+ b garblings and b log b+ b evaluations). Consider a conditional
with b branches. Classic GC will transmit b branches. During this time, Gen and
Eval could have instead performed 60b branch garbling/evaluations. LogStack
garbles/evaluates 7

2b log b branches. Thus, the point where computation crosses
over to become the bottleneck is obtained by solving 7

2b log b > 60b, the solution
to which is b ' 217 = 131072 branches. Of course, this is a “rule-of-thumb”
estimate and is based on the conservative assumptions discussed above.

If instead a full 1Gbps channel is available (i.e. 10× of our network resource
assumption), to arrive at the same cross over point, we would need ten times
more cores than our computational resource assumption. That equates to 20
cores; such power is available on mainstream servers.

We conclude that applying LogStack improves wall clock time for nearly all
reasonable baseline circuits and settings.

Limits on circuit transformations imposed by computational costs. Above, we
established that LogStack is almost always better than standard GC for cir-
cuits with branching. It is harder to provide heuristics or even rough suggestions
regarding which circuit transformations (cf. in Section 1.1) to apply, and how
aggressively they should be applied in conjunction with LogStack secure evalu-
ation. We emphasize that our computational improvement opens a much wider
optimization space than what was possible with the prior scheme [HK20a]. We
leave detailed investigation into this direction as exciting future work.

2 Technical Overview of Our Approach

We now informally present our construction with sufficient detail to introduce
the most interesting technical challenges and solutions.

2.1 O(b log b) Stacked Garbling

Our main contribution is the reduction of SGC computation from O(b2) to
O(b log b). Our constants are also low: altogether Gen issues 3

2b log b + b calls
to Gb and b logb calls to Ev. Eval issues b log b calls to Gb and b calls to Ev.

We continue the discussion from Section 1.3 in more detail. Our main task
is the garbage collection of output labels of incorrectly guessed (truth, guess)
combinations where guess is Eval’s guess of the active branch, and truth defines
the active branch w.r.t. guess. Wlog, let b be a power of 2 to simplify notation.
Consider a binary tree where the leaves are the b branches C0, ..., Cb−1. The tree
provides an infrastructure to group branches and to unify processing.

7

C0 C2 C3 C4 C5 C6 C7

N0 N1 N2 N3 N4 N5 N6 N7

N0,1 N2,3 N4,5 N6,7

N0,3 N4,7

N0,7

C1

Fig. 1. Suppose there are eight branches C0 through C7, and suppose Eval guesses that
C0 is the taken branch. If the taken branch is in the subtree C4 through C7, Eval will
generate the same garbage material for the entire subtree, regardless of which branch
is actually taken. By extension, C0 can only be evaluated against log 8 = 3 garbage
material strings: one for each sibling subtree (sibling subtrees are bracketed). Hence C0
has only three possible sets of garbage output labels.

Fix one of b choices for guess. In contrast with [HK20a], which then considers
b choices for truth independently from guess, we define truth in relation to
guess, and consider fewer truth options. Namely, we let truth denote the sibling
subtree of guess that contains the active branch (cf. notation Section 1.3). Given
a fixed incorrect guess, there are only log b choices for truth.5 While we have
redefined truth, the active branch ID α continues to point to the single active
branch. Our garbled gadgets compute functions of α.

For concreteness, consider the illustrative example of an 8-leaf tree in Figure 1
where guess = 0. The discussion and arguments pertaining to this special case
generalize to arbitrary b and guess.

Consider the four scenarios where one of the branches C4−C7 is active. These
four scenarios each correspond to truth = 1: C4 − C7 all belong to the level-1
sibling subtree of C0. We ensure that Eval’s unstacking and evaluation in each
of these four cases is identical, and hence she evaluates the same garbage output
labels in these four cases. More generally, we achieve identical processing for all
leaves of each sibling subtree. Let α denote the index of the active branch. That
is, α is a log b-bit integer that points to the active branch.

Actions and gadgets of Gen. In the context of the example in Figure 1, Gen
garbles branches C0, ..., C7 as follows. Recall, the active branch ID α is available
to Gen in the form of garbled labels. Gen chooses a random seed for the root of the
tree (denoted s0,7 for the 8-leaf tree in Figure 1), and uses it to pseudorandomly

5 We focus on garbage collection and consider only incorrect guesses; managing output
labels of the correctly guessed branches is straightforward and cheap.

8

– Inputs: the active branch id α and the number of branches b.
– Outputs: a sequence of evaluator seeds that form a binary tree:

es0,b−1, es0, b−1
2
, es b−1

2
+1,b−1

, . . . , es0, es1, . . . esb−1

such that for each node N :

esN =

{
sN , if N is a sibling root of α

s′N , otherwise

where s′N is a uniform string indistinguishable from sN .

Fig. 2. The SortingHat functionality. SortingHat is responsible for conveying only
the sibling root seeds of α to Eval. For every other node, Eval obtains a different, but
indistinguishable, seed that, when garbled, generates garbage material. SortingHat is
easily implemented as a garbled circuit gadget (i.e., built from garbled rows).

derive seeds for each node of the tree. This is done in the standard manner, e.g.,
the immediate children of a seed s are the PRF evaluations on inputs 0 and 1
with the key s. Gen uses each leaf seed si to garble the corresponding branch Ci
and stacks all garbled branches M =

⊕
i Ĉi. This material M is the large string

that Gen ultimately sends across the network to Eval. We note two facts about
M and about the active branch α.

1. Correctness: if Eval obtains the log b seeds of the sibling roots of α, then
she can regarble all circuits Ĉi 6=α, unstack by XORing with M , and obtain

Ĉα, allowing her to correctly evaluate Cα.
2. Security: Eval must not obtain any correct seed corresponding to any an-

cestor of α. If she did, she would learn (by garbling) the encoding of wire
labels which would allow her to decrypt all intermediate wire values in Cα.
Instead, Eval will obtain ‘garbage’ seeds indistinguishable yet distinct from
the correct seeds generated by Gen.

To facilitate garbled evaluation of the conditional and meet the requirements
of these two facts, in addition to M , Gen generates and sends to Eval a small (lin-
ear in the number of branches with small constants) garbled gadget that we call
SortingHat.6 SortingHat aids Eval in her reconstruction of branch material.
SortingHat takes as input labels corresponding to α and produces candidate
seeds for each node in the tree. For each node N , SortingHat constructs a
correct seed sN if and only if N is a sibling root of the leaf α (see Figure 2).
SortingHat can be implemented as a collection of garbled rows. Importantly,
since this is a fixed gadget, when evaluated on a node N that is not a sibling
root of α, Eval will obtain a fixed seed that is predictable to Gen.

6 In J.K. Rowling’s Harry Potter universe, the ‘sorting hat’ is a magical object that
assigns new students to different school houses based on personality. Our SortingHat
‘sorts’ nodes of trees into two categories based on α: those that are ‘good’ (i.e., sibling
roots of α) and those that are ‘bad’.

9

For example in Figure 1, if the active branch is α = 4, then applying
SortingHat to nodes N0,3,N6,7,N5 reconstructs the correct seeds s0,3, s6,7, s5.
Applying SortingHat to other nodes constructs fixed garbage seeds. If instead
α = 3, then SortingHat reconstructs the correct seeds s4,7, s0,1, s2. Critically,
the garbage seeds reconstructed in both cases, e.g. for node N4,5, are the same.

Actions of Eval. It is now intuitive how Eval proceed with unstacking. She
applies SortingHat and obtains a tree of random-looking seeds; of 2b seeds, only
log b seeds just off the path to α (corresponding to α’s sibling roots) are correct.
Eval guesses guess; assuming guess, she uses only the sibling seeds of guess to
derive all b−1 leaf seeds not equal to guess. She then garbles the b−1 branches
Ci and unstacks the corresponding GCs Ĉi.

If guess = α, Eval derives the intended leaf seeds si 6=α, unstacks the intended

garbled circuits Ĉi 6=α, and obtains the correct GC Ĉα. Consider the case where
Eval guesses wrong. Eval simply unstacks wrong branches garbled with the
wrong seeds. Since Eval never receives any additional valid seeds, there is no
security loss. We next see that the number of different garbage labels we must
collect is small, and further that they can be collected efficiently.

O(b log b) computational cost accounting. Let Gb and Ev be procedures
that respectively garble/evaluate a GC. Consider how many such calls are made
by Eval. Consider branch Ci. It is garbled log b times, once with a seed (ulti-
mately) derived from each seed on the path to the root. Thus, the total number
of calls by Eval to Gb is b log b and to Ev is exactly b.

To construct the garbage collecting multiplexer, Gen must obtain all possible
garbage labels. We demonstrate that the total cost to the generator is O(b log b)
calls to both Gb and Ev. First, consider only Gb and consider the number of ways
Eval can garble a specific circuit Ci. Clearly, this is exactly log b+ 1.

Now, consider Gen’s number of calls to Ev. Recall that our goal was to ensure
that Eval constructs the same garbage output labels for a branch Ci in each
scenario where α is in some fixed sibling subtree of Ci. The logic of SortingHat
ensures that Eval obtains the same sibling root seeds in each of these scenarios,
and therefore she constructs the same garblings. Hence, since there are log b
sibling subtrees of Ci, Ci has only log b possible garbage output labels. Thus,
in order to emulate Eval in all settings and obtain all possible garbage output
labels, Gen must garble and evaluate each branch log b times.

2.2 Technical difference between our and [HK20a] binary braching

A careful reader familiar with [HK20a] may notice that they present two ver-
sions of stacked garbling. The first handles high branching factors by recursively
nesting conditionals. Nested conditionals can be viewed as a binary tree. This
first approach is then discarded in favor of a second, more efficient vector ap-
proach. Our work advocates binary branching and yet substantially improves
over [HK20a]’s vectorized approach. Why is our binary branching better?

10

The problem with [HK20a]’s recursive construction is that Eval recursively
garbles the garbage-collecting multiplexer for nested sub-conditionals. Doing so
leads to a recursive emulation whereby Eval emulates herself (and hence Gen

emulates himself as well). This recursion leads to quadratic cost for both players.
The way out is to treat the multiplexer separately, and to opt not to stack it. If
multiplexers are not stacked, then Eval need not garble them, and hence Eval

need never emulate herself. On top of this, we reduce the number of ways that
individual branches can be garbled via our SortingHat.

A note on nested branches. Nested branches with complex sequencing of
instructions emerge naturally in many programs. Our approach operates directly
over vectors of circuits and treats them as binary trees. This may at first seem
like a disadvantage, since at the time the first nested branching decision is made,
it may not yet be possible to make all branching decisions. There are two natural
ways LogStack can be used in such contexts:

1. Although we advocate for vectorized branching, LogStack does support nested
evaluation. Although nesting is secure and correct, we do not necessarily rec-
ommend it. Using LogStack in this recursive manner yields quadratic com-
putation overhead.

2. Refactorings can be applied to ensure branches are vectorized. For example,
consider the following refactoring:

if (e0) { s0; if (e1) { s1 } else { s2 } } else { s3; s4 } −→
if (e0) { s0 } else { s3 }; switch(e0 + e0e1) { s4 } | { s2 } | { s1 }

Where si are programs, ei are predicates on program variables, and where
s0, s3 do not modify variables in e0. This refactoring has replaced a nested
conditional by a sequence of two ‘vectorized’ conditionals, and hence made
the approach amenable to our efficient algorithms.

2.3 Memory Efficiency of LogStack

The [HK20a] approach forces Gen to store many intermediate garblings: for con-
ditionals with b branches he requires O(b) space. In contrast, LogStack has low
space requirements: its algorithms run in O(log b) space. We briefly discuss why
[HK20a] requires linear space and how our approach improves this.

In the [HK20a] approach, Eval obtains b−1 good seeds for all but the active
branch and a bad seed for the active branch. When Eval then makes a particular
guess, she attempts to uncover the material for guess by XORing the stacked
material (sent by Gen) with b−1 reconstructed materials; she ‘unstacks’ her b−1
materials corresponding to all branches that are not equal to guess. Recall that
Gen emulates Eval for all combinations of (truth, guess) where truth 6= guess

to compute garbage outputs. The most intuitive way to proceed, and the strategy
[HK20a] uses, is for Gen to once and for all garble all circuits using the ‘good’
seeds and garble all circuits using the ‘bad’ seeds, and to store all materials in

11

two large vectors. Let Mi be the good material for a branch Ci and let M ′i be
the bad material. Now let j = truth and k = guess. To emulate all possible
bad evaluations, Gen evaluates Ck using the material Mk ⊕Mj ⊕M ′j : i.e., he
emulates Eval when correctly unstacking all material except Mk (which she will
not attempt to unstack because she wishes to evaluate Ck) and Mj (which she
attempts to unstack, but fails and instead adds M ′j). Because Gen considers all
j, k combinations, it is not clear how Gen can compute all values Mk ⊕Mj ⊕M ′j
without either (1) storing intermediate garblings in O(b) space or (2) repeatedly
garbling each branch at great cost. [HK20a] opts for the former.

In contrast, because of LogStack’s binary tree structure, we can eagerly stack
material together as it is constructed to save space. E.g., consider again the
example in Figure 4 where Eval guesses that C0 is active. Recall, she garbles the
entire right subtree starting from the seed for node N4,7, and Gen emulates this
same behavior with the bad seed. For both players, the material corresponding
to individual circuits, say M4 corresponding to C4, is not interesting or useful.
Only the stacked material M4 ⊕ .. ⊕ M7 is useful for guessing C0 (and more
generally for guessing all circuits in the subtree N0,3). Thus, instead of storing
all material separately, the players both XOR material for subtrees together as
soon as it is available. This trick is the basis for our low space requirement.

There is one caveat to this trick: the ‘good’ garbling of each branch Ci is
useful throughout Gen’s emulation of Eval. Hence, the straightforward procedure
would be for Gen to once and for all compute the good garblings of each branch
and store them in a vector, consuming O(b) space. This is viable, and indeed has
lower runtime constants than presented elsewhere in this work: Gen would invoke
Gb only b log b+ b times. We instead trade in some concrete time complexity in
favor of dramatically improved space complexity. Gen garbles the branches using
good seeds an extra 1

2b log b times, and hence calls Gb a total of 3
2b log b+b times.

These extra calls to Gb allow Gen to avoid storing a large vector of materials,
and our algorithms run in O(log b) space.

2.4 Stacked Garbling with and without Random Oracles

[HK20a] (and we) focus only on branching and leave the handling of low level
gates to another underlying garbling scheme, Base. [HK20a] assumes nothing
about Base except that it satisfies the standard [BHR12] properties, as well as
their stackability property. However, they do not preclude Base’s labels from
being related to each other, which presents a security problem: Base’s labels are
used to garble rows, but if the labels are related they cannot be securely used
as PRF keys. [HK20a] handles the possible use of related keys by using a RO.

We introduce a stronger requirement on Base, which we call strong stack-
ability. Informally, we additionally require that all output labels of Base are
uniformly random. This is sufficient to prove security in the standard model.

Of course, RO-based security theorems and proofs also work, and our gadgets
could be slightly optimized in a natural manner under this assumption.

12

3 Related Work

GC is the most popular and often the fastest approach to secure two-party com-
putation. Until recently, it was believed that it is necessary to transmit the entire
GC during 2PC, even for inactive conditional branches. Recent breakthrough
work [HK20a] showed that this folklore belief is false, and that it suffices to only
transmit GC material proportional to the longest execution path.

We focus our comparison with prior work on [HK20a], and then review other
related work, such as universal circuits and earlier stacked garbling work.

Comparison with [HK20a]. As discussed in Section 1.1, programs with condi-
tionals with high branching factor may be a result of program transformations
aimed at optimizing GC/SGC performance. While the protocol of [HK20a] is
concretely efficient, its quadratic computational cost presents a limitation even
in settings with relatively modest branching factor b. This significantly limits
the scope of program transformations which will be effective for SGC.

Our work achives total computational cost proportional to 3.5b log b, and
effectively removes the computational overhead of the SGC technique as a con-
straining consideration7, as discussed in Section 1.5.

Memory management is a significant performance factor in GC in general,
and in particular in [HK20a] garbling. Retrieving an already-garbled material
from RAM may take similar or longer time than regarbling from scratch while op-
erating in cache. In addition to significantly improving computation (i.e. number
of calls to Gb and Ev), our approach offers improved memory utilization (see Sec-
tions 1.4 and 2.3). [HK20a] requires that a linear number of garbled circuits be
kept in RAM. For larger circuits this can become a problem. For example, the
garbling of a 1M AND-gate circuit occupies 32MB in RAM. If a machine can
dedicate 2GB to garbling, a maximum of 64 branches of this size can be handled.
This ignores additional constant space costs, which are not necessarily low. In
contrast, we use only O(log b) space, and hence can fit the garblings of large
numbers of branches into memory. In our experiments, we ran our implemen-
tation on a circuit with 8192 SHA-256 branches, a circuit that altogether holds
> 385M AND-gates. Our peak memory usage was at around 100MB ([HK20a]
would require more than 12GB of space to run this experiment).

In sum, as discussed at length in Sections 1.5, 2.3 and 7, we essentially
eliminate the concern of increased computation due to Stacked Garbling for
typical settings and open the door to the possibility of applying a large class of
efficiency-improving program transformations on the evaluated program.

Universal circuits. An alternate technique for handling conditional branching
is to implement a universal circuit [Val76], which can represent any conditional
branch. We discuss universal circuits [LMS16,KS16,GKS17,ZYZL19,AGKS20,KKW17]

7 We stress that branches must still be garbled, and extreme program transformations,
such as stacking all possible program control flows, may be impractical computa-
tionally due to the exponential number of branches.

13

in more detail in the full version of this paper. In short, SGC is a more practical
approach to conditional branching in most scenarios.

Other related work. Kolesnikov [Kol18] was the first to separate the GC material
from circuit topology. This separation was used to improve GC branching given
that the GC generator Gen knows the active branch. Subsequently, [HK20b]
considered a complementary setting where the GC evaluator Eval knows the
active branch, and used it to construct efficient ZK proofs for circuits with
branching. Our work follows the line of work initiated by [Kol18,HK20b]; it is
for general 2PC and is constant-round.

As discussed in [HK20a], interaction, such as via the output selection protocol
of [Kol18], can be used to collect garbage efficiently (computation linear in b).
However, a communication round is added for each conditional branch. In many
scenarios, non-interactive 2PC (such as what we achieve) is preferred.

Designing efficient garbling schemes under standard assumptions (i.e. using
only PRFs) is a valuable research direction. [GLNP15] impressively implement
garbled table generation and evaluation with speed similar to that of fixed-
key AES. [GLNP15] cannot use the Free XOR technique [KS08], which requires
circularity assumptions [CKKZ12], but nevertheless implement XOR Gates with
only one garbled row and AND gates with two rows.

4 Notation and Assumptions

Notation. Our notation is mostly consistent with the notation of [HK20a].

– Our garbling scheme is called LogStack. We sometimes refer to it by the
abbreviation LS, especially when referring to its algorithms.

– ‘Gen’ is the circuit generator. We refer to Gen as he, him, his, etc.
– ‘Eval’ is the circuit evaluator. We refer to Eval as she, her, hers, etc.
– ‘C’ is a circuit. inpSize(C) and outSize(C) respectively compute the number

of input/output wires to C.
– x | y denotes the concatenation of strings x and y.
– Following SGC terminology introduced by [Kol18], M refers to GC material.

Informally, material is just a collection of garbled tables, i.e. the garbling
data which, in conjunction with circuit topology and input labels, is used to
compute output labels.

– We use m to denote the size of material, i.e. m = |M |.
– Variables that represent vectors are denoted in bold, e.g. x. We index vectors

using bracket notation: x[0] accesses the 0th index of x.
– We extensively use binary trees. Suppose t is such a tree. We use subscript

notation ti to denote the ith leaf of t. We use pairs of indexes to denote
internal nodes of the tree. I.e., ti,j is the root of the subtree containing the
leaves ti..tj . ti,i (i.e. the node containing only i) and ti both refer to the leaf:
ti,i = ti. It is sometimes convenient to refer to a (sub)tree index abstractly.
For this, we write Ni,j or, when clear from context, simply write N .

14

– We write a←$ S to denote that a is drawn uniformly from the set S.
–

c
= denotes computational indistinguishability.

– κ denotes the computational security parameter and can be understood as
the length of PRF keys (e.g. 128).

We evaluate GCs with input labels that are generated independently of the
GC material and do not match the GC. We call such labels garbage labels. During
GC evaluation, garbage labels propagate to the output wires and must eventually
be obliviously dropped in favor of valid labels. We call the process of canceling
out output garbage labels garbage collection.

Assumptions. LogStack is secure in the standard model. However, higher effi-
ciency of both the underlying scheme Base and of our garbled gadgets can be
achieved under the RO assumption. Our implementation uses half-gates as Base,
and relies on a random oracle (RO).

5 The LogStack Garbling Scheme

In this section, we formalize our construction, LogStack. Throughout this section,
consider a conditional circuit with b branches. For simplicity, we ignore the
number input and output wires.

We adopt the above simplification because branching factor is the most in-
teresting aspect of LogStack. We emphasize that ignoring inputs/outputs does
not hide high costs. While we scale with the product of the number of inputs and
b (and respectively the product of number of outputs and b), the constants are
low (see Section 7 for evidence). Thus, inputs/outputs are of secondary concern
to the circuit size, which is often far larger than the number of inputs/outputs.

Consider garbled circuits Ĉi corresponding to each branch Ci. Let m be
the size of the largest such garbling: m = maxi |Ĉi|. Given branching factor
b, LogStack features:

– O(m) communication complexity.
– O(mb log b) time complexity.
– O(m log b) space complexity.

LogStack is formalized as a garbling scheme [BHR12]. Garbling schemes ab-
stract the details of GC such that protocols can be written generically. That is,
LogStack is a modular collection of algorithms, not a protocol. Our formaliza-
tion specifically uses the modified garbling scheme framework of [HK20a], which
separates the topology of circuits (i.e., the concrete circuit description) from cir-
cuit material (i.e., the collections of encryptions needed to securely evaluate the
circuit), an important modification for SGC.

A garbling scheme is a tuple of five algorithms:

(ev,Ev,Gb,En,De)

15

– ev specifies circuit semantics. For typical approaches that consider only low-
level gates, ev is often left implicit since its implementation is generally un-
derstood. We explicate ev to formalize conventions of conditional evaluation.

– Ev specifies how Eval securely evaluates the GC.
– Gb specifies how Gen garbles the GC.
– En and De specify the translation of cleartext values to/from GC labels. That

is, En specifies how player inputs translate to input labels and De specifies
how outputs labels translate to cleartext outputs.

Correct garbling schemes ensure that the garbled functions Gb, En, Ev, and De
achieve the semantics specified by ev.

Before we present our garbling scheme LogStack, we introduce the formal
syntax of the circuits it manipulates. Because our focus is conditional branching,
we assume an underlying garbling scheme Base. Base is responsible for handling
the collections of low level gates (typically AND and XOR gates) that we refer
to as netlists. In our implementation, we instantiate Base with the efficient half-
gates scheme of [ZRE15]. We do not specify the syntax of netlists, and entirely
leave their handling to Base. Our circuit syntax is defined inductively: Let C0, C1
be two arbitrary circuits and C be a a vector of arbitrary circuits. The space of
circuits is defined as follows:

C ::= Netlist(·) | Cond(C) | Seq(C0, C1)

That is, a circuit is either (1) a netlist, (2) a conditional dispatch over a
vector of circuits (our focus), or (3) a sequence of two circuits. Sequences of
circuits are necessary to allow arbitrary control flow.

With our syntax established, we are ready to present our algorithms.

Construction 1 (LogStack). LogStack is the tuple of algorithms:

(LS.ev, LS.Ev, LS.Gb, LS.En, LS.De)

Definitions for each algorithm are listed in Figure 3.

We discuss correctness and security of Construction 1 in Section 6. Due to
lack of space, proofs of these properties are in the full version of this paper.

In terms of efficiency, LogStack satisfies the following property:

Theorem 1. Let Base be a garbling scheme satisfying the following property:

– Let C be an arbitrary netlist and let s be the size of material generated by
invoking Base.Gb on C. Let both Base.Ev and Base.Gb, invoked on C, run in
O(s) time and O(s) space.

Then Construction 1 instantiated with Base satisfies the following property.

– Let C be a vector of b arbitrary netlists. Let m be the maximum size of the
garblings constructed by calling Base.Gb on each of these b netlists. Then
both LS.Ev and LS.Gb, invoked on Cond(C), run in O(mb log b) time and
O(m log b) space.

16

LS.ev(C,x) :

. What are the circuit semantics?

switch C :

case Netlist(·) : return Base.ev(C,x)

case Seq(C0, C1) : return LS.ev(C1, LS.ev(C0,x))

case Cond(C) :

. split branch index from input

α | x′ ← x

. Run the active branch.

return LS.ev(C[α],x′)

LS.Ev(C,M,X) :

. How does Eval evaluate the GC?

switch(C) :

case Netlist(·) : return Base.Ev(C,M,X)

case Seq(C0, C1) :

M0 |Mtr |M1 ←M

return LS.Ev(C1,M1, trans.Ev(LS.Ev(C0,M0,X),Mtr)

case Cond(C) : return EvCond(C,M,X)

LS.En(e,x) :

. How do inputs map to labels?

. This works for all projective schemes:

X ← λ

for i ∈ 0..inpSize(C)−1 :

(X0, X1)← e[i]

if x[i] = 0 : { X[i]← X0 } else : { X[i]← X1 }
return X

LS.Gb(1κ, C, S)

. How does Gen garble the GC?

. S is an explicit seed.

switch C :

case Netlist(·) :

return Base.Gb(1κ, C, S)

case Seq(C0, C1) :

. Derive seeds for two circuits.

S0 ← FS(0)

S1 ← FS(1)

(M0, e0, d0)← LS.Gb(1κ, C0, S0)

(M1, e1, d1)← LS.Gb(1κ, C1, S1)

. Labels out of C0 must be translated

. to labels into C1.

Mtr ← trans.Gb(d0, e1)

M ←M0 |Mtr |M1

return (M, e0, d1)

case Cond(C) : return GbCond(C, S)

LS.De(d,Y) :

. How do labels map to outputs?

. This works for all projective schemes:

y ← λ

for i ∈ 0..outSize(C)−1 :

(Y 0, Y 1)← d[i]

if Y [i] = Y 0 : y[i]← 0

else if Y [i] = Y 1 : y[i]← 1

else : ABORT

return y

Fig. 3. Our garbling scheme LogStack. The included algorithms are typical except for
the handling of conditionals. Ev and Gb delegate the core of our approach: EvCond

(Figure 5) and GbCond (Figure 6).

17

Standard garbling schemes, e.g. the half-gates scheme [ZRE15], achieve the
efficiency required by Theorem 1, since they simply handle each gate individually.

Lemmas that support Theorem 1 are formally stated and proved in the full
version of this paper.

Proofs of these lemmas follow from inspecting our recursive algorithms and
(1) counting the number of calls to the underlying scheme’s algorithms and (2)
counting the number of garblings kept in scope.

We now draw attention to two key details of algorithms in Figure 3: (1) LS.Ev
delegates to a subprocedure EvCond and (2) LS.Gb delegates to a subprocedure
GbCond. All details of conditionals are handled by these two subprocedures. Aside
from these delegations, the algorithms in Figure 3 are relatively unsurprising: the
algorithms closely match [HK20a]’s construction and essentially provide infras-
tructure needed to host our contribution. We briefly discuss the most relevant
details of these algorithms before returning to an extended discussion of EvCond
and GbCond (c.f. Section 5.1):

– Projectivity. LogStack is a projective garbling scheme [BHR12]. Projectiv-
ity requires that the input encoding string e and output decoding string d
have a specific format: they must both be a vector of pairs of labels such that
the left element of each pair is a label encoding logical 0 and the right element
of each pair is a label encoding 1. Thus, LS.En and LS.De are straightforward
mappings between cleartext values and encoding/decoding strings.

– Sequences and Translation. In a sequence of two circuits, all output
wires of the first circuit are passed as the inputs to the second. Because
these two circuits are garbled starting from different seeds, the output labels
from C0 will not match the required input encoding of C1. We thus imple-
ment a translation component (trans.Ev and trans.Gb) that implements via
garbled rows a straightforward translation from one encoding to another.
Our scheme securely implements the translator, and all other gadgets, us-
ing a PRF ([HK20a] used an RO). This simplification is possible because of
the stronger property, strong stackability, that we require of the underlying
garbling scheme (see Section 6).

5.1 Algorithms for Handling of Conditionals

With the remaining formalization out of the way, we focus on conditional branch-
ing. Our goal is to formalize EvCond and GbCond, the key sub-procedures invoked
by LS.Ev and LS.Gb respectively. Our presentation is a formalization of discus-
sion in Section 2; the following explores the technical aspects of our construction,
but the reader should refer to Section 2 for unifying high level intuition.

Demultiplexer and Multiplexer. Before we discuss handling the body of
conditionals, we briefly discuss entering and leaving a conditional. That is, we
describe the demultiplexer (entry) and multiplexer (exit) components.

The demultiplexer is responsible for (1) forwarding the conditional’s inputs
to the active branch Cα and (2) forwarding specially prepared garbage inputs to

18

each branch Ci 6=α. The demultiplexer computes the following function for each
wire input x to each branch Ci with respect to the active index α:

demux(x, i, α) =

{
x, if i = α

⊥, otherwise

where ⊥ is a specially designated constant value. In the GC, the label corre-
sponding to ⊥ is independent yet indistinguishable from the corresponding 0
and 1 labels: independence is crucial for security. The demultiplexer is easily im-
plemented by garbled rows. The number of required rows is proportional to the
number of branches and the conditional’s number of inputs. EvCond and GbCond

make use of demux.Ev and demux.Gb, procedures which implement the above
function via GC. Although we do not, for simplicity, formally describe these, we
emphasize that they are a straightforward implementation of garbled rows.

The multiplexer is central to our approach. It non-interactively eliminates
garbage outputs from inactive branches. Despite its central role, if Gen knows the
garbage outputs from each branch, the multiplexer’s implementation is simple.
Specifically, suppose each branch Ci has an output xi that should propagate if
that branch is active. The multiplexer computes the following function:

mux(x0, ..., xb−1, α) = xα

Given that (1) each value xi 6=α is a fixed constant ⊥, at least with respect to a
given α (a property that we carefully arrange via the demultiplexer), and (2) Gen
knows the value of each of these fixed constants (the central point of our work),
then the above mux function is easily implemented as a collection of garbled
rows. The number of required rows is proportional to the number of branches
and the number of the conditional’s outputs. EvCond and GbCond make use of
mux.Ev and mux.Gb, procedures which implement the above function via GC.
As with the demultiplexer, we do not formalize these procedures in detail, but
their implementation is a straightforward handling of garbled rows.

Garbling Subtrees. Recall, we organize the b branches into a binary tree.
For each internal node of the tree, both EvCond and GbCond perform a common
task: they garble all branches in the entire subtree rooted at that node and
stack together all material. These subtrees are garbled according to seeds given
by the SortingHat, formally defined in Figure 2. Like the demultiplexer and
multiplexer, the GC implementation of SortingHat is a straightforward handling
of garbled rows: we assume procedures SortingHat.Ev and SortingHat.Gb which
implement this handling.

We next define a procedure, GbSubtreeFromSeed (Figure 4), which performs
the basic task of garbling and stacking an entire subtree. GbSubtreeFromSeed
recursively descends through the subtree starting from its root, uses a PRF to
derive child seeds from the parent seed, and at the leaves garbles the branches.
As the recursion propagates back up the tree, the procedure stacks the branch
materials together (and concatenates input/output encodings). The recursion

19

GbSubtreeFromSeed(C, i, j, seed) :

if i = j : . Base case of 1 branch.

return Gb(C[i], seed)

else :

. Expand child seeds using PRF.

seedL ← Fseed(0)

seedR ← Fseed(1)

. Recursively garble both child trees and stack material.

k ← halfway(i, j)

ML, eL, dL ← GbSubtreeFromSeed(C, i, k, seedL)

MR, eR, dR ← GbSubtreeFromSeed(C, k + 1, j, seedR)

return (ML ⊕MR, eL | eR, dL | dR)

halfway(i, j) :

. Simple helper for splitting range of branches (approximately) in half.

return i+

⌊
j − i

2

⌋
Fig. 4. The helper algorithm GbSubtreeFromSeed starts from a single seed at the root
of a subtreeNi,j , derives all seeds in the subtree, garbles all branches in the subtree, and
stacks (using XOR) all resultant material. The procedure also returns the input/output
encodings for all branches.

tracks two integers i and j, denoting the range of branches Ci..Cj that are to
be stacked together. EvCond and GbCond use a similar strategy, and all three
algorithms maintain an invariant that i, j refers to a valid node Ni,j in the
binary tree over the b branches. EvCond and GbCond invoke GbSubtreeFromSeed

at every node. This entails that both procedures garble each branch Ci more than
once, but with different seeds. As discussed in Section 2, this repeated garbling
is key to reducing the total number of garbage outputs that Eval can compute.

Evaluating Conditionals. We now formalize the procedure EvCond by which
Eval handles a vector of conditionals (Figure 5). The core of EvCond is delegated
to a recursive subprocedure EvCond′. EvCond′ carefully manages material and
uses the garblings of sibling subtrees to evaluate each branch while limiting the
possible number of garbage outputs. EvCond′ is a formalization of the high level
procedure described in Section 2: Eval recursively descends through the tree,
constructing and unstacking garblings of subtrees in the general case. When she
finally reaches the leaf nodes, she simply evaluates. In the base case i = α,
she will have correctly unstacked all material except Mα (because she has good
seeds for the sibling roots of α), and hence evaluates correctly. All other cases
i 6= α will lead to garbage outputs that Gen must also compute. Other than

20

EvCond(C,M,X) :

b← |C|
. Parse the active branch index from the rest of the input.

α | X ′ ← X

. Parse material for gadgets and body of conditional.

MSortingHat |Mdem |Mcond |Mmux ←M

. Run SortingHat to compute all of Eval’s seeds.

es← SortingHat.Ev(α,MSortingHat)

. Run the demultiplexer to compute input for each branch Ci.
Xcond ← demux.Ev(α,X,Mdem)

. We define a recursive subprocedure that evaluates Ci − Cj using material M .

EvCond
′(i, j,Mi,j) :

if i = j :

. Base case: compute output by evaluating the branch normally.

. This base case corresponds to guess = i.

. Accumulate output labels into the vector Y cond (for later garbage collection).

Y cond[i]← Ev(Ci,M,Xcond[i])

else :

k ← halfway(i, j)

. Garble the right subtree using the available seed,

. unstack, and recursively evaluate the left subtree.

Mk+1,j , ·, · ← GbSubtreeFromSeed(C, k + 1, j, esk+1,j)

EvCond
′(i, k,Mi,j ⊕Mk+1,j)

. Symmetrically evaluate the right subtree.

Mi,k, ·, · ← GbSubtreeFromSeed(C, i, k, esi,k)

EvCond
′(k + 1, j,Mi,j ⊕Mi,k)

. Start recursive process from the top of the tree.

EvCond
′(0, b− 1,Mcond)

. Eliminate garbage and propagate Y α via the multiplexer.

return mux.Ev(α,Y cond,Mmux)

Fig. 5. Eval’s procedure, EvCond, for evaluating a conditional with b branches. EvCond
evaluates each branch; b− 1 evaluations result in garbage outputs and one (the evalu-
ation of Cα) results in valid outputs. The multiplexer collects garbage and propagates
output from Cα. EvCond involves b log b calls to Gb (via GbSubtreeFromSeed), and each
branch evaluation is done with respect to the garbling of that branch’s sibling subtrees.

21

GbCond(C, S) :

b← |C|
. Recursively derive all ‘good’ seeds for the entire tree.

s← DeriveSeedTree(S, b)

. Sample input/output encodings for the conditional.

e← GenProjection(S, inpSize(Cond(C)))

d← GenProjection(S, outSize(Cond(C)))

. Parse encoding into encoding of α and encoding of rest of input.

eα | e′ ← e

. Garble SortingHat based on the encoding of α.

. This outputs material as well as the tree of all ‘bad’ seeds s′.

MSortingHat, s
′ ← SortingHat.Gb(eα, s)

. Construct the stacked material and input encodings for each branch.

Mcond, econd, dcond ← GbSubtreeFromSeed(C, 0, b− 1, s0,b−1)

. The demux conditionally translates the input encoding e′

. to one of the branch encodings in econd based on eα.

Mdem, Λin ← demux.Gb(eα, e
′, econd)

. Compute all possible garbage outputs.

Λout ← ComputeGarbage(C,Mcond, Λin, s, s
′)

. The demultiplexer collects garbage outputs.

Mmux ← mux.Gb(eα, d, dcond, Λout)

return (MSortingHat |Mdem |Mcond |Mmux, e, d)

Fig. 6. The algorithm for garbling a conditional vector. Given b branches, GbCond

returns (1) the stacked material, (2) the input encoding string, (3) all b output decoding
strings, and (4) all b log b possible garbage output label vectors.

the delegation to EvCond′, EvCond simply invokes SortingHat.Ev to obtain her
seeds, invokes demux.Ev to propagate valid inputs to Cα, and, after evaluating
all branches, invokes mux.Ev to collect garbage outputs from all Ci6=α.

Garbling Conditionals. Finally, we formalize Gen’s procedure for handling
vectors of conditional branches, GbCond (Figure 6).

1. GbCond recursively derives a binary tree of good seeds via DeriveSeedTree.
This call uses a PRF to recursively derive seeds in the standard manner.

2. GbCond invokes GenProjection to select uniform input/output encodings e
and d: e and d are vectors of pairs of labels that are the valid input/output
labels for the overall conditional. Our use of GenProjection is straightfor-
ward and similar to that of [HK20a].

3. GbCond uses SortingHat.Gb to garble the SortingHat functionality of Fig-
ure 2. As input, GbCond provides the tree of good seeds s and the encoding

22

ComputeGarbage(C,M,Λin, s, s
′) :

. We first define a recursive subprocedure.

ComputeGarbage
′(i, j,Mi,j ,M

′) :

. Compute all possible garbage outputs from branches Ci − Cj .

. M ′ is a vector of the bad garblings of all sibling roots of the current node.

if i = j :

. Base case: loop over all possible garbage material

. and accumulate garbage outputs into Λout.

acc←Mi,i

for k ∈ 0..|M ′| − 1 :

. Emulate all possible bad evaluations of Ci.
acc← acc⊕M ′[k]

Λout[i][k]← Ev(C[i], acc, Λin[k])

else :

k ← halfway(i, j)

. Compute the good material for both subtrees.

Mi,k, ·, · ← GbSubtreeFromSeed(C, i, k, si,k)

Mk+1,j ←Mi,j ⊕Mi,k

. Compute the bad material for both subtrees.

M ′i,k, ·, · ← GbSubtreeFromSeed(C, i, k, s′i,k)

M ′k+1,j , ·, · ← GbSubtreeFromSeed(C, k + 1, j, s′k+1,j)

. Recursively compute all garbage outputs.

ComputeGarbage
′(i, k, (Mk+1,j ⊕M ′k+1,j) |M ′)

ComputeGarbage
′(k + 1, j, (Mi,k ⊕M ′i,k) |M ′)

b← |C|
. Start the recursive process using the top level material M

. and using the empty vector of bad sibling material.

ComputeGarbage
′(0, b− 1,M, [])

return Λout

Fig. 7. ComputeGarbage allows Gen to compute the possible garbage output labels from
evaluation of inactive branches. Specifically, the algorithm takes as arguments (1) the
vector of conditional branches C, (2) the ‘good’ material for the conditional M , (3)
the garbage input labels Λin, (4) the tree of ‘good’ seeds (i.e. the seeds used by Gen

to generate M) s, and (5) the tree of ‘bad’ seeds s′. The algorithm outputs Λout, the
vector (length b) of vectors (each length log b) of output labels from each branch.

23

of the active branch id eα. As output, Gen receives the tree of all bad seeds.
GbCond needs these bad seeds, in addition to the good seeds he already
knows, to emulate Eval making a bad guess.

4. GbCond uses GbSubtreeFromSeed to derive stacked material Mcond from the
root seed. Mcond is the material that Gen ultimately sends to Eval.

5. GbCond calls demux.Gb to compute the demultiplexer garbled rows. This
call also returns Λin, the collection of garbage input labels for each branch:
essential information that allows Gen to emulate Eval.

With this accomplished, GbCond’s remaining task is to encrypt the garbage-
collecting multiplexer. However, it is not clear how this can be achieved unless
Gen knows all garbage outputs that Eval might compute. Thus, GbCond first
invokes ComputeGarbage (Figure 7), a procedure which emulates all of Eval’s
bad guesses.

ComputeGarbage delegates to the recursive subprocedure ComputeGarbage′.
This recursive procedure walks down the tree, maintaining two key variables:
(1) Mi,j holds the correct material for the current subtree Ni,j and (2) M ′

holds a vector of bad materials of the incorrectly garbled sibling roots of Ni,j .
In the general case, these variables are simply appropriately updated via calls to
GbSubtreeFromSeed. Thus, in the base case, the garbage materials for all sibling
roots of the considered leaf are available. Additionally, all garbage inputs into
each branch are available in the vector Λin. So, at the leaves we can compute
all garbage outputs for each branch by calling Ev on the proper combinations of
garbage material and labels. We store all garbage outputs into the global vector
Λout, which is returned by the overall procedure, and then ultimately used by
GbCond to call mux.Gb.

6 LogStack Correctness/Security

We discuss LogStack’s correctness and security properties. We formalize our
theorems in the [BHR12] framework (as modified by [HK20a]), which requires a
candidate garbling scheme to be correct, oblivious, private, and authentic.

In addition, [HK20a] introduced a new property, stackability, which formal-
izes the class of garbling schemes whose garblings can be securely stacked; hence
stackable schemes are candidate underlying schemes. In this work, we strengthen
the definition of stackability. This strengthening, which we call strong stacka-
bility, allows us to prove security under standard assumptions (an improvement
over [HK20a], which required a random oracle assumption). Strong stackability
is strictly stronger than stackability: all strongly stackable schemes are stackable,
and all lemmas that hold for stackable schemes hold also for strongly stackable
schemes. A key application of this second fact is that all stackable schemes are
trivially oblivious, so all strongly stackable schemes are oblivious. We prove se-
curity given a strongly stackable, correct, authentic, private underlying scheme.

[HK20a] showed that several standard garbling schemes are stackable, in-
cluding the state-of-the-art half-gates technique [ZRE15]. We later argue that
such schemes either are strongly stackable without modification or can be easily

24

adjusted. Hence, our implementation can assume an RO and use half-gates as
its underlying scheme to achieve high performance.

LogStack is itself strongly stackable, giving flexibility in usage: while by design
LogStack handles vectors of conditional branches, we also support arbitrarily
nested conditional control flow without modifying the source program. We note
that this nested usage does not give O(b log b) computation, and so vectorized
branches should favored where possible.

Due to a lack of space, we postpone most proofs to the full version of this
paper.

6.1 Correctness

Definition 1 (Correctness). A garbling scheme is correct if for all circuits
C, all input strings x of length inpSize(C), and all pseudorandom seeds S:

De(d,Ev(C,M,En(e,x))) = ev(C,x)

where (M, e, d) = Gb(1κ, C, S)

A correct scheme implements the semantics specified by ev. Proof of the
following is formalized in the full version of this paper.

Theorem 2. If Base is correct, then LogStack is correct.

6.2 Security

The following definition is derived from the corresponding definition of [HK20a];
we discuss its motivation (support for PRF-based garbling gadgets) and technical
differences with [HK20a] immediately after we present it formally below.

Definition 2 (Strong Stackability). A scheme is strongly stackable if:

1. For all circuits C and all inputs x,

(C,M,En(e,x))
c
= (C,M ′,X ′)

where S is uniformly drawn, (M, e, ·) = Gb(1κ, C, S), X ′ ←$ {0, 1}|X|, and
M ′ ←$ {0, 1}|M |.

2. The scheme is projective [BHR12].
3. There exists an efficient deterministic procedure colorPart that maps strings

to {0, 1} such that for all C and all projective label pairs A0, A1 ∈ d:

colorPart(A0) 6= colorPart(A1)

where S is uniformly drawn and (·, ·, d)← Gb(1κ, C S).
4. There exists an efficient deterministic procedure keyPart that maps strings

to {0, 1}κ such that for all C and all projective label pairs A0, A1 ∈ d:

keyPart(A0) | keyPart(A1)
c
= {0, 1}2κ

where S is uniformly drawn and (·, ·, d)← Gb(1κ, C S).

25

The above definition is given by [HK20a], with the exception of point 4.
Informally, stackability ensures (a) that circuit garblings ‘look random’ and (b)
that our scheme can manipulate labels generated by the underlying scheme.
Since strong stackability simply adds point 4, the following lemma is immediate:

Lemma 1. Every strongly stackable scheme is stackable.

We briefly explain the role of colorPart and keyPart. As with [HK20a], we
use the output labels of the underlying scheme as keys in subsequent garbled
gadgets. The keyPart procedure allows us to extract a suitable PRF key from
each label. At the same time, we make use of the classic point-and-permute trick
to reduce the number of PRF calls needed to evaluate garbled gadgets: we use
the colorPart as the bit that instructs which garbled row to decrypt. Note that
because we essentially ‘split’ each output label into a key and a color, we ‘lose’
bits of the underlying scheme’s labels when we invoke keyPart. We stress that
this is not an issue: the required key length for the next PRF application can be
restored as we require keyPart output to be κ bits long. All point-and-permute
schemes have a similar approach.

The added requirement (point 4) allows us to relax our security assumptions
in comparison to [HK20a]. For each projective output pairA0, A1, we require that
keyPart(A0) and keyPart(A1) are unrelated. This is achieved by requiring that the
concatenation of these two strings is indistinguishable from a random string of
the same length. This allows us to circumvent a problem: the [HK20a] definition
allowed labels in the underlying scheme to be arbitrarily related. More precisely,
while point 1 requires that any particular set of labels seen by Eval look random,
it does not require that all labels together look random. This was problematic,
because the output labels of the underlying scheme were used to implement
garbled tables, so the two possibly related labels were both used as PRF keys.
Using related keys is outside the scope of the standard PRF security definition.
Thus, [HK20a] were forced to assume the existence of a random oracle to ensure
possible relationships in the output decoding string did not compromise security.
By adding point 4, we ensure that the entire decoding string ‘looks random’,
so all labels must be independent. This added requirement on the underlying
scheme allows us to push our proofs through in the standard model.

Many standard schemes are compatible with strong stackability: if the scheme
is stackable and has randomly chosen output labels, it trivially satisfies our
definition. Free XOR based schemes [KS08] use pairs of labels separated by a
fixed constant ∆, and so are not a priori strongly stackable. However, it is easy to
adjust such schemes such that the final output gates return independent labels.
As a final note, while our scheme is secure in the standard model, we of course
adopt any additional security assumptions from the chosen underlying scheme:
e.g., instantiating LogStack with the efficient Half Gates scheme [ZRE15] requires
us to assume the existence of a circular correlation robust hash function.

We prove the following in the full version of this paper. The proof utilizes
properties of Base and of a PRF to show that LogStack’s garblings ‘looks ran-
dom’.

26

Theorem 3. If Base is strongly stackable, then LogStack is strongly stackable.

Definition 3 (Obliviousness). A garbling scheme is oblivious if there ex-
ists a simulator Sobv such that for any circuit C and all inputs x of length
inpSize(C), the following are indistinguishable:

(C,M,X)
c
= Sobv(1κ, C)

where S is uniform, (M, e, ·) = Gb(1κ, C, S) and X = En(e,x).

Obliviousness ensures that the garbled circuit with input labels can be sim-
ulated, and hence reveals no extra information to Eval. [HK20a] proved that
every stackable scheme is trivially oblivious: drawing a random string of the
correct length is a suitable simulator. This fact, combined with Lemma 1 and
Theorem 3 implies two immediate facts:

Lemma 2. Every strongly stackable scheme is oblivious.

Theorem 4. If Base is strongly stackable, then LogStack is oblivious.

Definition 4 (Authenticity). A garbling scheme is authentic if for all cir-
cuits C, all inputs x of length inpSize(C), and all poly-time adversaries A the
following probability is negligible in κ:

Pr (Y ′ 6= Ev(C,M,X) ∧ De(d,Y ′) 6= ⊥)

where S is uniform, (M, e, d) = Gb(1κ, C, S), X = En(e,x), and Y ′ = A(C,M,X)

Authenticity ensures that an adversary cannot compute GC output labels
except by running the scheme as intended.

We prove the following in the full version of this paper. The proof utilizes
properties of Base and of a PRF to show that an adversary cannot compute GC
output labels except by running LogStack.

Theorem 5. If Base is authentic, then LogStack is authentic.

Definition 5 (Privacy). A garbling scheme is private if there exists a simu-
lator Sprv such that for any circuit C and all inputs x of length inpSize(C), the
following are computationally indistinguishable:

(M,X, d)
c
= Sprv(1κ, C,y),

where S is uniform, (M, e, d) = Gb(1κ, C, S), X = En(e,x), and y = ev(C,x).

Privacy ensures that Eval, who is given access to (M,X, d), learns nothing
except what can be learned from the output y. I.e., Gen’s input is protected.

We prove the following in the full version of this paper. The proof utilizes
properties of Base and of a PRF to show that Eval’s view can be simulated.

Theorem 6. If Base is private, authentic, and strongly stackable, then LogStack
is private.

27

0

2

4

6

8

10

1 8 15 22 29 36 43 50 57 64

W
al

l C
lo

ck
 T

im
e

(s
)

Branching Factor

100Mbps Bandwidth

LogStack Stack Naïve

0

2

4

6

8

1 8 15 22 29 36 43 50 57 64

W
al

l C
lo

ck
 T

im
e

(s
)

Branching Factor

300Mbps Bandwidth

LogStack Stack Naïve

0

2

4

6

8

1 8 15 22 29 36 43 50 57 64

W
al

l C
lo

ck
 T

im
e

(s
)

Branching Factor

1Gbps Bandwidth

LogStack Stack Naïve

0.125
0.5

2
8

32
128
512

2048

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

W
al

l C
lo

ck
 T

im
e

(s
)

Branching Factor

100 Mbps Bandwidth

LogStack Stack

0

4

8

12

16

20

1 8 15 22 29 36 43 50 57 64

Co
m

m
un

ic
at

io
n

(M
B)

Branching Factor

Communication

LogStack Stack Naïve

0

200

400

600

800

1 8 15 22 29 36 43 50 57 64

M
ax

im
um

 R
es

id
en

t S
et

 (M
B)

Branching Factor

Memory Utilization

LogStack Stack

Fig. 8. Experimental evaluation of LogStack as compared to [HK20a]’s Stack and to
basic half-gates [ZRE15] (‘näıve’ branching). We compare in terms of wall-clock time
on different simulated network bandwidths (top). We performed an extended wall-
clock time comparison to Stack (bottom left). Both LogStack and Stack greatly outper-
form basic half-gates in terms of total bandwidth consumption (bottom center), and
LogStack greatly outperforms Stack in terms of memory consumption (bottom right).

7 Instantiation and Experimental Evaluation

We implemented LS in ∼ 1500 lines of C++ and used it to instantiate a semihon-
est 2PC protocol. We instantiated Base using the half-gates [ZRE15], allowing
high concrete performance. Our implementation thus relies on non-standard as-
sumptions. We use computational security parameter κ = 127; the 128th bit is
reserved for point and permute. Our implementation spawns additional threads
to make use of inherent parallelism available in GbCond and EvCond.

Our experiments were each performed on a MacBook Pro laptop with an
Intel Dual-Core i5 3.1 GHz processor and 8GB of RAM.

We compared our implementation to basic half-gates [ZRE15] and to the
Stack SGC of [HK20a]. Figure 8 plots the results of our experiments.

We consider end-to-end wall-clock time, bandwidth consumption, and mem-
ory utilization. All branches implement the SHA-256 netlist, which has 47726
AND gates, 179584 XOR gates, and 70666 NOT gates. A GC for each branch has
size 1.45 MB. It is, of course, unrealistic that a conditional would have the same
circuit in each branch. However, we choose this benchmark because SHA-256
has become somewhat of a community standard and because our goal is only to
analyze performance. We ensure our implementation does not cheat: it cannot
recognize that branches are the same and hence cannot shortcut the evaluation.

Bandwidth consumption is the easiest metric to analyze. The communica-
tion chart in Figure 8 plots communication as a function of branching factor. As
expected, Stack’s and LogStack’s communication remains almost constant, while

28

half-gates’ grows linearly and immediately dominates. LogStack is slightly leaner
than Stack because of low-level improvements to LogStack’s demultiplexer. This
small improvement should not be counted as a significant advantage over Stack.

Memory utilization was measured as a function of branching factor. We
compare our scheme to Stack (half-gates memory utilization is constant, since
garblings can be streamed across the network and immediately discarded). Our
chart shows Stack’s linear and LogStack’s logarithmic space consumption. In
settings with many branches, improved space consumption is essential. For ex-
ample, we ran LogStack on a circuit with 8192 SHA-256 branches, a circuit that
has > 385M AND gates. Our peak memory usage was ∼ 100MB, while [HK20a]
would require more than 12GB of space to run this experiment.

Wall-clock time to complete an end-to-end 2PC protocol is our most com-
prehensive metric. We plot three charts for 1 to 64 branches (on networks with
100, 300, and 1000 Mbps bandwidth) comparing each of the three approaches.
We also explored more extreme branching factors, running conditionals with
branching factors at every power of 2 from 20 to 213 in the 100Mbps setting.

In the 1Gbps network setting, as expected, näıve half-gates leads. As dis-
cussed in Section 1.5, two cores (our laptop) indeed cannot keep up with the
available network capacity. However, doubling the number of cores would already
put us ahead of näıve, and any further computation boost would correspondingly
improve our advantage. We are about 3× faster than Stack.

In the 300Mbps network setting, we outperform näıve. Because we range over
the same number of branches, we are the same factor ≈ 3× faster than Stack.

The more typical 100Mbps setting shows the advantage of SGC. Both Stack
and LogStack handily beat näıve.

Finally, we experimented with large branching factors. LogStack scales well;
we ran up to 8192 branches as it was sufficient to show a trend. Due to its
logarithmic memory utilization, LogStack would run on a practically arbitrary
number of branches. In contrast, Stack exhibited limited scaling. We ran up to
1024 branches with Stack, enough to show a trend, and after which our experi-
ments started to take too long. LogStack ran 2PC for a 1024-branch conditional
in ∼ 67s, while Stack took ∼ 2050s, ∼ 31× slower than LogStack.

Acknowledgements This work was supported in part by NSF award #1909769,
by a Facebook research award, and by Georgia Tech’s IISP cybersecurity seed
funding (CSF) award.

References

[AGKS20] Masaud Y. Alhassan, Daniel Günther, Ágnes Kiss, and Thomas Schneider.
Efficient and scalable universal circuits. Journal of Cryptology, 33(3):1216–
1271, July 2020.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of gar-
bled circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors,
ACM CCS 2012, pages 784–796. ACM Press, October 2012.

29

[CKKZ12] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng
Zhou. On the security of the “free-XOR” technique. In Ronald Cramer,
editor, TCC 2012, volume 7194 of LNCS, pages 39–53. Springer, Heidel-
berg, March 2012.

[GKS17] Daniel Günther, Ágnes Kiss, and Thomas Schneider. More efficient universal
circuit constructions. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASI-
ACRYPT 2017, Part II, volume 10625 of LNCS, pages 443–470. Springer,
Heidelberg, December 2017.

[GLNP15] Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling
of circuits under standard assumptions. In Indrajit Ray, Ninghui Li, and
Christopher Kruegel, editors, ACM CCS 2015, pages 567–578. ACM Press,
October 2015.

[HK20a] David Heath and Vladimir Kolesnikov. Stacked garbling - garbled circuit
proportional to longest execution path. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages
763–792. Springer, Heidelberg, August 2020.

[HK20b] David Heath and Vladimir Kolesnikov. Stacked garbling for disjunctive
zero-knowledge proofs. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part III, volume 12107 of LNCS, pages 569–598. Springer,
Heidelberg, May 2020.

[KKW17] W. Sean Kennedy, Vladimir Kolesnikov, and Gordon T. Wilfong. Overlaying
conditional circuit clauses for secure computation. In Tsuyoshi Takagi and
Thomas Peyrin, editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS,
pages 499–528. Springer, Heidelberg, December 2017.

[Kol18] Vladimir Kolesnikov. Free IF: How to omit inactive branches and implement
S-universal garbled circuit (almost) for free. In Thomas Peyrin and Steven
Galbraith, editors, ASIACRYPT 2018, Part III, volume 11274 of LNCS,
pages 34–58. Springer, Heidelberg, December 2018.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled cir-
cuit: Free XOR gates and applications. In Luca Aceto, Ivan Damg̊ard,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of LNCS, pages
486–498. Springer, Heidelberg, July 2008.

[KS16] Ágnes Kiss and Thomas Schneider. Valiant’s universal circuit is practical.
In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part I, volume 9665 of LNCS, pages 699–728. Springer, Heidelberg, May
2016.

[LMS16] Helger Lipmaa, Payman Mohassel, and Saeed Sadeghian. Valiant’s universal
circuit: Improvements, implementation, and applications. Cryptology ePrint
Archive, Report 2016/017, 2016. http://eprint.iacr.org/2016/017.

[Val76] Leslie G. Valiant. Universal circuits (preliminary report). In STOC, pages
196–203, New York, NY, USA, 1976. ACM Press.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole
- reducing data transfer in garbled circuits using half gates. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume
9057 of LNCS, pages 220–250. Springer, Heidelberg, April 2015.

[ZYZL19] Shuoyao Zhao, Yu Yu, Jiang Zhang, and Hanlin Liu. Valiant’s universal
circuits revisited: An overall improvement and a lower bound. In Steven D.
Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part I, volume
11921 of LNCS, pages 401–425. Springer, Heidelberg, December 2019.

30

