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Abstract. Approximate homomorphic encryption with the residue num-
ber system (RNS), called RNS-variant Cheon-Kim-Kim-Song (RNS-CKKS)
scheme [12, 13], is a fully homomorphic encryption scheme that sup-
ports arithmetic operations for real or complex number data encrypted.
Although the RNS-CKKS scheme is a fully homomorphic encryption
scheme, most of the applications with the RNS-CKKS scheme use it as
the only leveled homomorphic encryption scheme because of the lack
of the practicality of the bootstrapping operation of the RNS-CKKS
scheme. One of the crucial problems of the bootstrapping operation is its
poor precision. While other basic homomorphic operations ensure suffi-
ciently high precision for practical use, the bootstrapping operation only
supports about 20-bit fixed-point precision at best, which is not high
precision enough to be used for the reliable large-depth homomorphic
computations until now.
In this paper, we improve the message precision in the bootstrapping
operation of the RNS-CKKS scheme. Since the homomorphic modular
reduction process is one of the most important steps in determining the
precision of the bootstrapping, we focus on the homomorphic modular
reduction process. Firstly, we propose a fast algorithm of obtaining the
optimal minimax approximate polynomial of modular reduction function
and the scaled sine/cosine function over the union of the approximation
regions, called an improved multi-interval Remez algorithm. In fact, this
algorithm derives the optimal minimax approximate polynomial of any
continuous functions over any union of the finite number of intervals.
Next, we propose the composite function method using the inverse sine
function to reduce the difference between the scaling factor used in the
bootstrapping and the default scaling factor. With these methods, we
reduce the approximation error in the bootstrapping of the RNS-CKKS
scheme by 1/1176∼1/42 (5.4∼10.2-bit precision improvement) for each
parameter setting. While the bootstrapping without the composite func-
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tion method has 27.2∼30.3-bit precision at maximum, the bootstrapping
with the composite function method has 32.6∼40.5-bit precision.

Keywords: Approximate homomorphic encryption · Bootstrapping ·
Composite function approximation · Fully homomorphic encryption (FHE)
· Improved multi-interval Remez algorithm · Inverse sine function · Mini-
max approximate polynomial · RNS-variant Cheon-Kim-Kim-Song (RNS-
CKKS) scheme

1 Introduction

Fully homomorphic encryption (FHE) is the encryption scheme enabling any log-
ical operations [6, 14, 16, 19, 30] or arithmetic operations [12, 13] with encrypted
data. The FHE scheme makes it possible to preserve security in data process-
ing. However, in the traditional encryption schemes, they are not encrypted to
enable the processing of encrypted data, which causes clients to be dissuaded
from receiving services and prevents companies from developing various related
systems because of the lack of clients’ privacy. FHE solves this problem clearly
so that clients can receive many services by ensuring their privacy.

First, Gentry constructed the FHE scheme by coming up with the idea of
bootstrapping [18]. After this idea was introduced, cryptographers constructed
many FHE schemes using bootstrapping. Approximate homomorphic encryp-
tion, which is also called a Cheon-Kim-Kim-Song (CKKS) scheme [13], is one of
the promising FHE schemes, which deals with any real and complex numbers.
The CKKS scheme is particularly in the spotlight for much potential power in
many applications such as machine learning [2,3,5,7,15,23], in that data is usu-
ally represented by real numbers. Lots of research for the optimization of the
CKKS scheme have been done actively for practical use. Cheon et al. proposed
the residue number system (RNS) variant CKKS scheme (RNS-CKKS) [12] so
that the necessity of arbitrary precision library can be removed and only use the
word-size operations. The running time of the homomorphic operations in the
RNS-CKKS scheme is 10 times faster than that of the original CKKS scheme
with the single thread, and further, the RNS-CKKS scheme has an advantage in
parallel computation, which leads to much better running time performance with
the multi-core environment. Because of the fast homomorphic operations, most
homomorphic encryption libraries, including SEAL [29] and PALISADE [1], are
implemented using the RNS-CKKS scheme. Thus, we focus on the RNS-CKKS
scheme in this paper.

Since the CKKS scheme includes noises used to ensure security as the ap-
proximate error in the message, the use of the RNS-CKKS scheme requires more
sensitivity to the precision of the message than other homomorphic encryption
schemes that support accurate decryption and homomorphic evaluation. This
can be more sensitive for large-depth homomorphic operations because errors
are likely to be amplified by the operations and distort the data significantly.
Fortunately, the basic homomorphic operations in the RNS-CKKS scheme can
ensure sufficiently high precision for practical use, but this is not the case for the
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bootstrapping operation. Ironically, while the bootstrapping operation in other
homomorphic encryption schemes reduces the effect of the errors on messages
so that they do not distort messages, the bootstrapping operation in the CKKS
scheme amplifies the errors, which makes it the most major cause of data dis-
tortion among any other homomorphic operations in the RNS-CKKS scheme.
Since advanced operations with large depth may require bootstrapping operation
many times, the message precision problem in the bootstrapping operation is a
crucial obstacle to applying the RNS-CKKS scheme to advanced applications.

Although the RNS-CKKS scheme is currently one of the most potential solu-
tions to implement privacy-preserving machine learning (PPML) system [2,3,15],
the methods for the PPML studied so far have mainly been applied to simple
models such as MNIST, which has such a low depth that bootstrapping is not
required. Thus, the message precision problem in the bootstrapping operation
in the RNS-CKKS scheme did not need to be considered in the PPML model
until now. However, the advanced machine learning model currently presented
requires a large depth, and thus we should introduce the bootstrapping operation
and cannot avoid the message precision problem in the bootstrapping operation.
Of course, the fact that bootstrapping requires longer running time and larger
depth than other homomorphic operations is also pointed out as a major limita-
tion of bootstrapping. While these points may be improved by simple parameter
adjustments and using hardware optimization, the message precision problem in
bootstrapping is difficult to solve with these simple methods.

Most of the works about PPML with FHE focused on the inference process
rather than the training process because of the large running time. However,
training neural networks with encrypted data is actually more important from a
long-term perspective for solving the real security problem in machine learning,
in that the companies cannot gather sufficiently many important but sensitive
data, such as genetic or financial information so that they cannot construct the
deep learning model for them because of the privacy of the data owners. While
the inference process does not need a high precision number system, the training
process is affected sensitively by the precision of the number system. Chen et
al. [9] showed that convolutional neural networks (CNN) learning MNIST could
not converge when the model is trained using a 16-bit fixed-point number sys-
tem. When the 32-bit fixed-point number system is used to train the CNN with
MNIST, the training performance was slightly lower than the case of using the
single-precision floating-point number system, although all bits except one bit
representing the sign are used to represent the data in 32-bit fixed-point number
system, which is much better precision than the single-precision floating-point
number system, which is 23-bit precision. Although many works proposed to use
low-precision fixed-point numbers in the training procedure, they used additional
special techniques, such as stochastic rounding [20] or the dynamic fixed-point
number system [21], which cannot be supported by the RNS-CKKS scheme until
now.

While most of the deep learning systems use single-precision floating-point
numbers, the maximum precision achieved with the bootstrapping of the CKKS
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scheme in the previous papers was about only 20 bits. Considering that the
CKKS scheme only supports fixed-point arithmetic, the 20-bit precision is not
large enough to be applied wholly to the deep learning system. Thus, to apply
the RNS-CKKS scheme to deep learning systems, it is necessary to achieve a
precision sufficiently better than the 32-bit fixed-point precision, which requires
a breakthrough for the bootstrapping in the RNS-CKKS scheme concerning its
precision.

1.1 Our Contribution

In this paper, we propose two methods to improve the bootstrapping opera-
tion of the RNS-CKKS scheme. Firstly, we devise a fast algorithm, called an
improved multi-interval Remez algorithm, obtaining the optimal minimax ap-
proximate polynomial of any continuous functions over any union of the finite
number of intervals, which include the modular reduction function and the scaled
sine/cosine function over the union of the approximation regions. Although the
previous works have suggested methods to obtain polynomials that approximate
the scaled sine/cosine function well from the minimax perspective, which are
used to approximate the modular reduction function, these methods cannot ob-
tain the optimal minimax approximate polynomial.

The original multi-interval Remez algorithm is not theoretically proven to
obtain the minimax approximate polynomial, and it is only practically used for
two or three approximation regions in the finite impulse response filter design,
while we need to approximate functions over the union of tens of intervals. Fur-
thermore, it takes impractically much time if this algorithm is used without
further improvement to obtain a polynomial that can be used for the boot-
strapping. To make the multi-interval Remez algorithm practical, we modify
the multi-interval Remez algorithm as the improved multi-interval Remez al-
gorithm. Then we prove the correctness of the improved multi-interval Remez
algorithm, including the original multi-interval Remez algorithm, for the union
of any finite number of intervals. Since it can obtain the optimal minimax ap-
proximate polynomial in seconds, we can even adaptively obtain the polynomial
when we abruptly change some parameters on processing the ciphertexts so that
we have to update the approximate polynomial. All polynomial approximation
methods proposed in previous works for bootstrapping in the CKKS scheme can
be replaced with the improved multi-interval Remez algorithm, which ensures
the best quality of the approximation. It ensures to use the least degree of the
approximate polynomial for a given amount of error.

Next, we propose the composite function method to enlarge the approxima-
tion region in the homomorphic modular reduction process using the inverse sine
function. The crucial point in the bootstrapping precision is that the difference
between the modular reduction function and the sine/cosine function gives a
significant precision loss. All previous works have used methods that approxi-
mate the modular reduction function as a part of the sine/cosine functions. This
approximation has an inherent approximation error so that the limitation of the
precision occurs. Besides, to ensure that these two functions are significantly
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close to each other, the approximation region has to be reduced significantly.
They set the half-width of one interval in the approximation region as 2−10,
which is equal to the ratio of default scaling factor to the scaling factor used in
the bootstrapping. The message has to be scaled by multiplying 2−10 to make
the message into the approximation region, and it is scaled by multiplying 210 at
the end of the bootstrapping. Thus, the precision error in the computation for
bootstrapping is amplified by 210, and the 10-bit precision loss occurs. If we try
to reduce this precision loss by enlarging the approximation region, the approx-
imation error by the sine/cosine function becomes large, and thus the overall
precision becomes lower than before.

Therefore, we propose to compose the optimal approximate polynomial of
the inverse sine function to the sine/cosine function, since composing the inverse
sine function to the sine/cosine function extends the approximation region of the
modular reduction function, which makes it possible to improve the precision of
the bootstrapping. Note that the inverse sine function we use has only one inter-
val in the approximation region, and thus we can reach the small approximate er-
ror with relatively low degree polynomials. We obtain the minimax approximate
polynomials for the scaled cosine function and the inverse sine function with suf-
ficiently small minimax error by the improved multi-interval Remez algorithm.
We apply these polynomials in the homomorphic modular reduction process by
homomorphically evaluating the approximate polynomial for the scaled cosine
function, several double-angle formulas, and the approximate polynomial for the
inverse sine function. This enables us to minimize the inevitable precision loss
by approximating the modular reduction function to the sine/cosine function.

Since the previous works do not focus on the maximum precision of the
bootstrapping of the RNS-CKKS scheme, we check the maximum precision of
the bootstrapping with the previous techniques. The detailed relation with the
precision of the bootstrapping and various parameters is analyzed with SEAL

library. With the proposed methods, we reduce the approximation error in the
bootstrapping of the RNS-CKKS scheme by 1/1176∼1/42 (5.4∼10.2-bit preci-
sion improvement) for each parameter setting. While the bootstrapping without
the composite function method has 27.2∼30.3-bit precision at maximum, the
bootstrapping with the proposed composite function method has 32.6∼40.5-bit
precision, which are better precision than 32-bit fixed-point precision.

1.2 Related Works

The CKKS scheme [13] was firstly proposed without bootstrapping as a some-
what homomorphic encryption scheme supporting only the finite number of mul-
tiplications. Cheon et al. [11] firstly suggested bootstrapping operation with
the homomorphic linear transformation enabling transformation between slots
and coefficients, and approximation of homomorphic modulus reduction function
as the sine function with Taylor approximation and the double-angle formula.
Chen et al. [8] applied a modified fast Fourier transform (FFT) algorithm to
evaluate homomorphic linear transformation and used Chebyshev interpolation
and Paterson-Stockmeyer algorithm to approximate the sine function efficiently
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in terms of the running time and the depth consumption. Han et al. [22] im-
proved the homomorphic modular reduction in the bootstrapping operation.
While Chen et al. approximated the sine function in one interval, Han et al.
approximated the cosine function only in the separated approximation regions,
reducing the degree of polynomials and using simpler double-angle formula than
that of the sine function. Still, their approximate polynomial is also not optimal
in the minimax aspect.

On the other hand, the RNS-CKKS scheme was proposed. Since big integers
used to represent the ciphertexts in the CKKS scheme cannot be stored with the
basic data type, the original CKKS scheme had to resort to the arbitrary pre-
cision data type libraries, such as the number theory library (NTL). To remove
the reliance on the external libraries for performance improvement, Cheon et
al. applied the RNS system in the CKKS scheme. Most practical homomorphic
encryption libraries, such as SEAL and PALISADE, implement the RNS-CKKS
scheme. The approximate rescaling procedure, which enables using the RNS
system in the RNS-CKKS scheme, causes more approximation error in the ho-
momorphic multiplication of the RNS-CKKS scheme than in that of the original
CKKS scheme. Kim et al. [24] recently suggested the management method for
the scaling factor in the RNS-CKKS scheme. Thus the approximation error in
the homomorphic multiplication of the RNS-CKKS scheme was made the same
as that of the original CKKS scheme.

Bossuat et al. [4] optimized various performances of the bootstrapping of
the RNS-CKKS scheme. Their two main techniques are the scale-invariant poly-
nomial evaluation and the double hoisting. In the scale-invariant polynomial
evaluation, the coefficients of an approximate polynomial are slightly adjusted
by multiplication with some adjustment factor so that the messages in the out-
put ciphertext are not affected by the approximate rescaling. Also, it always
ensures optimal depth consumption by introducing additional recursive loops.
The double hoisting technique optimized the homomorphic evaluation of a linear
combination of several rotated ciphertexts from the same ciphertext with differ-
ent rotation steps. Bossuat et al.’s techniques are compatible with our techniques;
that is, their techniques and our techniques can be applied simultaneously in the
RNS-CKKS scheme.

1.3 Outline

The outline of the paper is given as follows. Section 2 deals with some prelim-
inaries for the RNS-CKKS scheme, approximation theory, and the Remez al-
gorithm. In Section 3, we propose an improved multi-interval Remez algorithm
for obtaining the optimal minimax approximate polynomial. The numerical re-
lation between the message precision and several parameters in the RNS-CKKS
scheme is dealt with in Section 4, and the upper bound of the message precision
in the bootstrapping of the RNS-CKKS scheme is also included. In Section 5, we
propose the composite function method, which makes it possible to reduce the
difference of the two scaling factors in default operations and in bootstrapping
operations, and numerically shows the improvement of the message precision
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in the proposed bootstrapping operation in the RNS-CKKS scheme. Section 6
concludes the paper.

2 Preliminary

2.1 Notation

Let round(x) be the function that outputs the integer nearest to x, and we do
not have to consider the case of tie in this paper. The Chebyshev polynomials
Tn(x) are defined by cosnθ = Tn(cos θ). The remainder of a divided by q is
denoted as [a]q. If C = {q0, q1, · · · , q`−1} is the set of positive integers coprime

each other and a ∈ ZQ where Q =
∏`−1
i=0 qi, the RNS representation of a with

regard to C is denoted by [a]C = ([a]q0 , [a]q1 , · · · , [a]q`−1
) ∈ Zq0×· · ·×Zq`−1

. The
base of logarithm in this paper is two.

2.2 CKKS Scheme and RNS-CKKS Scheme

It is known that the CKKS scheme supports several operations for encrypted
data of real numbers or complex numbers. Since it usually deals with real num-
bers, the noise that ensures the security of the CKKS scheme can be embraced
outside of the significant figures of the data, which is the crucial concept of the
CKKS scheme.

The RNS-CKKS scheme [12] uses the RNS form to represent the ciphertexts
and to perform the homomorphic operations efficiently. While the power-of-two
modulus is used in the CKKS scheme, the product of large primes is used for
ciphertext modulus in the RNS-CKKS scheme so that the RNS system can be
applied. These large primes are chosen to be similar to the scaling factor, which
is some power-of-two integer. There is a crucial difference in the rescaling oper-
ation between the CKKS scheme and the RNS-CKKS scheme. While the CKKS
scheme can rescale the ciphertext by the exact scaling factor, the RNS-CKKS
scheme has to rescale the ciphertext by one of the RNS moduli, which is not
equal to the scaling factor. Thus, the RNS-CKKS scheme allows approximation
in the rescaling procedure. The specific procedure is not needed in this paper,
and thus we omit the detailed procedures. Detailed procedures in the CKKS
scheme and the RNS-CKKS scheme are found in [13] and [12], respectively.

2.3 Kim-Papadimitriou-Polyakov (KPP) Scaling Factor
Management

Kim et al. [24] suggested a method of eliminating the large rescaling error in the
RNS-CKKS scheme. Instead of using the same power-of-two scaling factor for
each level, they used different scaling factors in different levels. If the maximum
level is L, and the ciphertext modulus for level i is denoted as qi, the scaling
factor for each level is given as follows: ∆L = qL and ∆i = ∆2

i+1/qi+1 for
i = 0, · · · , L− 1.
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If the two ciphertexts are at the same level, it does not introduce the ap-
proximate rescaling error when they are multiplied homomorphically. If the two
ciphertexts are in the different level, that is, in the levels i and j such that i > j,
the moduli qi, · · · , qj+1 in the first ciphertext are dropped, the first ciphertext is

multiplied by a constant d∆jqj+1

∆i
c, and it is rescaled by qj+1. Then we perform

the conventional homomorphic multiplication with the two ciphertexts, which
are now at the same level, together with rescaling in the RNS-CKKS scheme.
The approximate rescaling error is also not introduced in this case.

2.4 Bootstrapping for CKKS Scheme

The framework of the bootstrapping of the CKKS scheme was introduced in
[13], which is the same as the case of the RNS-CKKS scheme. The purpose
of bootstrapping is to refresh the ciphertext of level 0, whose multiplication
cannot be performed anymore, to the fresh ciphertext of level L having the same
messages. Bootstrapping is composed of the following four steps:

i) Modulus raising
ii) Homomorphic linear transformation; CoeffToSlot

iii) Homomorphic modular reduction
iv) Homomorphic linear transformation; SlotToCoeff

Modulus Raising: The starting point of bootstrapping is modulus raising,
where we simply consider the ciphertext of level 0 as an element of R2

Q, instead

of R2
q0 . Since the ciphertext of level 0 is supposed to be 〈ct, sk〉 ≈ m mod q0, we

have 〈ct, sk〉 ≈ m+q0I mod Q for some I ∈ R when we try to decrypt it. We are
assured that the absolute values of coefficients of I are rather small, for example,
usually smaller than 12, because coefficients of sk consist of small numbers [11].
The crucial part of the bootstrapping of the CKKS scheme is to make ct′ such
that 〈ct′, sk〉 ≈ m mod qL. This is divided into two parts: homomorphic linear
transform and homomorphic evaluation of modular reduction function.

Homomorphic Linear Transformation: The ciphertext ct after modulus
raising can be considered as the ciphertext encrypting m + q0I, and thus we
now have to perform modular reduction to coefficients of message polynomial
homomorphically. However, the operations we have are all for slots, not coeffi-
cients of the message polynomial. Thus, to perform some meaningful operations
on coefficients, we have to convert ct into a ciphertext that encrypts coefficients
of m + q0I as its slots. After evaluation of homomorphic modular reduction
function, we have to reversely convert this ciphertext into the other ciphertext
ct′ that encrypts the slots of the previous ciphertext as the coefficients of its
message. These two operations are called CoeffToSlot and SlotToCoeff
operations. These operations are regarded as homomorphic evaluation of encod-
ing and decoding of messages, which are a linear transformation by some variants
of Vandermonde matrix for roots of ΦM (x). This can be performed by general
homomorphic matrix multiplication [11], or FFT-like operation [8].



High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 9

Homomorphic Modular Reduction Function: After CoeffToSlot is per-
formed, we now have to perform modular reduction homomorphically on each
slot in modulus q0. This procedure is called EvalMod. This modular reduc-
tion function is not an arithmetic function and even not a continuous function.
Fortunately, by restricting the range of the messages such that m/q0 is small
enough, the approximation region can be given only near multiples of q0. This
allows us to approximate the modular reduction function more effectively. Since
the operations that the CKKS supports are arithmetic operations, most of the
works [8, 11, 22] dealing with CKKS bootstrapping approximate the modular
reduction function with some polynomials, which are sub-optimal approximate
polynomials.

The scaling factor is increased when the bootstrapping is performed because
m/q0 needs to be very small in the homomorphic modular reduction function.
In this paper, the default scaling factor means the scaling factor used in the
intended applications, and the bootstrapping scaling factor means the scaling
factor used in the bootstrapping. The bit-length difference between these two
scaling factors is usually 10.

2.5 Approximation Theory

There are many theorems for the minimax approximate polynomials of a func-
tion defined on a compact set in approximation theory. Before introducing these
theorems, we refer to a definition of the Haar condition of a set of functions that
deals with the generalized version of power bases used in polynomial approxima-
tion and its equivalent statement. It is a well-known fact that the power basis
{1, x, x2, · · · , xd} satisfies the Haar condition. Thus, if an argument deals with
the polynomials concerning a set of basis functions satisfying the Haar condition,
it naturally includes the case of polynomials.

Definition 2.1 ([10] Haar’s Condition). A set of functions {g1, g2, · · · , gn}
satisfies the Haar condition if each gi is continuous and if each determinant

D[x1, · · · , xn] =

∣∣∣∣∣∣∣
g1(x1) · · · gn(x1)

...
. . .

...
g1(xn) · · · gn(xn)

∣∣∣∣∣∣∣
for any n distinct points x1, · · · , xn is not zero.

Lemma 2.2 ([10]). A set of functions {g1, · · · , gn} satisfies the Haar condition
if and only if the zero function is the only function of the form

∑
i cigi that has

more than n− 1 roots.

We now introduce the core property of the minimax approximate polynomial
for a function on D.

Theorem 2.3 ([10] Chebyshev Alternation Theorem). Let {g1, · · · , gn}
be a set of continuous functions defined on [a, b] satisfying the Haar condition,
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and let D be a closed subset of [a, b]. A polynomial p =
∑
i cigi is the minimax

approximate polynomial on D to any given continuous function f defined on D
if and only if there are n+ 1 distinct elements x0 < · · · < xn in D such that for
the error function r = f − p restricted on D,

r(xi) = −r(xi−1) = ± sup
x∈D
|r(x)|.

This condition is also called the equioscillation condition. This means that if
we find a polynomial satisfying the equioscillation condition, this is the unique
minimax approximate polynomial. It is needless to compare with the maximum
approximation error of any polynomials.

2.6 Algorithms for Minimax Approximation

Remez Algorithm Remez algorithm [10,27, 28] is an iterative algorithm that
always returns the minimax approximate polynomial for any continuous function
on an interval of [a, b]. This algorithm strongly uses the Chebyshev alternation
theorem [10] in that its purpose is finding the polynomial satisfying equioscil-
lation condition. In fact, the Remez algorithm can be applied to obtain the
minimax approximate polynomial, whose basis function {g1, · · · , gn} satisfies
the Haar condition. The specific algorithm is shown in Algorithm 1.

Algorithm 1: Remez Algorithm [10,27,28]

Input : An input domain [a, b], a continuous function f on [a, b], an
approximation parameter δ, and a basis {g1, · · · , gn}.

Output: The minimax approximate polynomial p for f

1 Select x1, x2, · · · , xd+2 ∈ [a, b] in strictly increasing order.

2 Find the polynomial p(x) =
∑n

i=1 cigi(x) with p(xi)− f(xi) = (−1)iE for
i = 1, · · · , d+ 2 and some E by solving the system of linear equations with
variables ci’s and E.

3 Divide the interval into n+ 1 sections [zi−1, zi], i = 1, · · · , n+ 1, from zeros
z1, · · · , zn of p(x)− f(x), where xi < zi < xi+1, and boundary points
z0 = a, zn+1 = b.

4 Find the maximum (resp. minimum) points for each section when p(xi)− f(xi)
has positive (resp. negative) value. Denote these extreme points y1, · · · , yn+1.

5 εmax ← maxi |p(yi)− f(yi)|
6 εmin ← mini |p(yi)− f(yi)|
7 if (εmax − εmin)/εmin < δ then
8 return p(x)
9 else

10 Replace xi’s with yi’s and go to line 2.
11 end
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Multi-Interval Remez Algorithm Since the Remez algorithm works only
when the approximation region is one interval, we need another multi-interval
Remez algorithm that works when the approximation region is the union of
several intervals. The above Remez algorithm can be extended to the multiple
sub-intervals of an interval [17,26,28]. The multi-interval Remez algorithm is the
same as Algorithm 1, except Steps 3 and 4. For each iteration, firstly, we find
all of the local extreme points of the error function p − f whose absolute error
values are larger than the absolute error values at the current reference points.
Then, we choose n + 1 new extreme points among these points satisfying the
following two criteria:

i) The error values alternate in sign.
ii) A new set of extreme points includes the global extreme point.

These two criteria are known to ensure the convergence to the minimax polyno-
mial, even though there is no exact proof of its convergence to the best of our
knowledge. However, it is noted that there are many choices of sets of extreme
points satisfying these criteria. In the next section, we modify the multi-interval
Remez algorithm, where one of the two criteria is changed.

3 Efficient Algorithm for Optimal Minimax Approximate
Polynomial

In this section, we propose an improved multi-interval Remez algorithm for ob-
taining the optimal minimax approximate polynomial. With this proposed algo-
rithm, we can obtain the optimal minimax approximate polynomial for contin-
uous function on the union of finitely many closed intervals to apply the Remez
algorithm to the bootstrapping of the CKKS scheme. The function we are going
to approximate is the normalized modular reduction function defined in only
near finitely many integers given as

normod(x) = x− round(x), x ∈
K−1⋃

i=−(K−1)

[i− ε, i+ ε],

where K determines the number of intervals in the domain. normod function
corresponds to the modular reduction function scaled for both its domain and
range.

In addition, Han et al. [22] uses the cosine function to approximate normod(x)
to use double-angle formula for efficient homomorphic evaluation. If we use
double-angle formula ` times, we have to approximate the following cosine func-
tion

cos

(
2π

2`

(
x− 1

4

))
, x ∈

K−1⋃
i=−(K−1)

[i− ε, i+ ε].

To design an approximation algorithm that deals with the above two func-
tions, we assume the general continuous function defined on an union of finitely
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many closed intervals, which is given as

D =

t⋃
i=1

[ai, bi] ⊂ [a, b] ⊂ R,

where ai < bi < ai+1 < bi+1 for all i = 1, · · · , t− 1.
When we propose the improved multi-interval Remez algorithm to approxi-

mate a given continuous function on D with a polynomial having a degree less
than or equal to d, we have to consider two crucial points. One is to establish an
efficient criterion for choosing new d+ 2 reference points among several extreme
points. The other is to make efficient some steps in the improved multi-interval
Remez algorithm. We deal with these two issues for the improved multi-interval
Remez algorithm in Sections 3.1 and 3.3, respectively.

3.1 Improved Multi-Interval Remez Algorithm with Criteria for
Choosing Extreme Points

Assume that we apply the multi-interval Remez algorithm on D and use {g1, · · ·
, gn} satisfying Haar condition on [a, b] as the basis of polynomials. After obtain-
ing the minimax approximate polynomial regarding the set of reference points
for each iteration, we have to choose a new set of reference points for the next
iteration. However, there are many boundary points in D, and all these bound-
ary points have to be considered as extreme points of the error function. For
this reason, there are many cases of selecting n+ 1 points among these extreme
points. For bootstrapping in the CKKS scheme, there are many intervals to be
considered, and thus there are lots of candidate extreme points. Since the crite-
rion of the original multi-interval Remez algorithm cannot determine the unique
new set of reference points for each iteration, it is necessary to make how to
choose n+1 points for each iteration to reduce the number of iterations as small
as possible. Otherwise, it requires a large number of iteration for convergence
to the minimax approximate polynomial. On the other hand, if the criterion is
not designed properly, the improved multi-interval Remez algorithm may not
converge into a single polynomial in some cases.

In order to set the criterion for selecting n + 1 reference points, we need to
define a simple function for extreme points, µp,f : D → {−1, 0, 1} as follows,

µp,f (z) =


1 p(x)− f(x) is concave at z on D

−1 p(x)− f(x) is convex at z on D

0 otherwise,

where p(x) is a polynomial obtained in that iteration and f(x) is a continuous
function on D to be approximated. We abuse the notation µp,f as µ.

Assume that the number of extreme points of p(x)− f(x) on D is finite, and
the set of extreme points is denoted by B = {w1, w2, · · · , wm}. Assume that B



High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 13

is ordered in increasing order, w1 < w2 < · · · < wm, and then the values of µ at
these points are always 1 or −1. Let S be a set of functions defined as

S = {σ : [n+ 1]→ [m] | σ(i) < σ(i+ 1) for all i = 1, · · · , n},

which means all the ways of choosing n + 1 points of the m points. Clearly, S
has only the identity function if n+ 1 = m.

Then, we set three criteria for selecting n+ 1 extreme points as follows:

i) Local extreme value condition. If E is the absolute value of error at points
in the set of reference points, then we have

min
i
µ(xσ(i))(p(xσ(i))− f(xσ(i))) ≥ E.

ii) Alternating condition. µ(xσ(i)) · µ(xσ(i+1)) = −1 for i = 1, · · · , n.
iii) Maximum absolute sum condition. Among σ’s satisfying the above two con-

ditions, choose σ maximizing the following value

n+1∑
i=1

|p(xσ(i))− f(xσ(i))|.

It is noted that the local extreme value condition in i) means in particular that
the extreme points are discarded if the local maximum value of p(x) − f(x) is
negative or the local minimum of p(x)− f(x) is positive.

Note that the first two conditions are also included in the original multi-
interval Remez algorithm. The third condition, the maximum absolute sum con-
dition, is the replacement of the condition that the new set of reference points
includes the global extreme point. The numerical analysis will show that the
third condition makes the proposed improved multi-interval Remez algorithm
converge to the optimal minimax approximate polynomial fast. Although there
are some cases in which the global maximum point is not included in the new set
of reference points chosen by the maximum absolute sum condition, we prove
that the maximum absolute sum condition is enough for the improved multi-
interval Remez algorithm to converge to the minimax approximate polynomial
in the next subsection.

We propose the improved multi-interval Remez algorithm for the continuous
function on the union of finitely many closed intervals as in Algorithm 2. The
local extreme value condition is reflected in Step 3, and the alternating condition
and the maximum absolute sum condition are reflected in Step 4.

3.2 Correctness of Improved Multi-Interval Remez Algorithm

We now have to prove that the improved multi-interval Remez algorithm always
converges to the minimax approximate polynomial for a given continuous func-
tion on the union of finite intervals D. This proof is similar to the convergence
proof of the original Remez algorithm on one closed interval [10, 27], but there
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Algorithm 2: Improved multi-interval Remez algorithm

Input : An input domain D =
⋃t

i=1[ai, bi] ⊂ R, a continuous function f on
D, an approximation parameter δ, and a basis {g1, · · · , gn}

Output: The minimax approximate polynomial p for f

1 Select x1, x2, · · · , xn+1 ∈ D in strictly increasing order.

2 Find the polynomial p(x) with p(xi)− f(xi) = (−1)iE for some E.
3 Gather all extreme and boundary points such that µp,f (x)(p(x)− f(x)) ≥ |E|

into a set B.
4 Find n+ 1 extreme points y1 < y2 < · · · < yn+1 with alternating condition

and maximum absolute sum condition in B.
5 εmax ← maxi |p(yi)− f(yi)|
6 εmin ← mini |p(yi)− f(yi)|
7 if (εmax − εmin)/εmin < δ then
8 return p(x)
9 else

10 Replace xi’s with yi’s and go to line 2.
11 end

are a few more general arguments than the original proof. This convergence proof
includes the proof for both the variant of the Remez algorithm and the modified
Remez algorithm. Theorem 3.1 is the exact statement of the correctness of the
improved multi-interval Remez algorithm. We include the sketch of the proof of
Theorem 3.1. The full proof is shown in the full version of the paper [25].

Theorem 3.1. Let {g1, · · · , gn} be a set of functions satisfying the Haar con-
dition on [a, b], D be the multiple sub-intervals of [a, b], and f be a continuous
function on D. Let pk be an approximate polynomial generated in the k-th iter-
ation of the modified Remez algorithm, and p∗ be the optimal minimax approxi-
mate polynomial of f . Then, as k increases, pk converges uniformly to p∗ as in
the following inequality

‖pk − p∗‖∞ ≤ Aθk,

where A is a non-negative constant and 0 < θ < 1.

Proof. (Sketch) Let {x(0)1 , · · · , x(0)n+1} be the initial set of reference points and

{x(k)1 , · · · , x(k)n+1} be the new set of reference points chosen at the end of iteration
k. Let rk = pk−f be the error function of pk and r∗ = p∗−f be the error function
of p∗. Since pk is generated such that the absolute values of the error function

rk at the reference points x
(k−1)
i , i = 1, 2, · · · , n+ 1 are the same. For k ≥ 1, we

define
αk = min

i
|rk(x

(k−1)
i )| = max

i
|rk(x

(k−1)
i )|,

βk = ‖rk‖∞,

γk = min
i
|rk(x

(k)
i )|.
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Let β∗ = ‖r∗‖∞. Then, we can prove the following facts, which are proven
in the full version of the paper.

i) αk ≤ γk ≤ αk+1 ≤ β∗ ≤ βk for k ≥ 1.

ii) αk+1 is a weighted average of |rk(x
(k)
i )| for i = 1, · · · , n+ 1. In other words,

for all k ≥ 1 there are weights θ
(k)
i ≥ 0 such that αk+1 =

∑n+1
i=1 θ

(k)
i |rk(x

(k)
i )|

where
∑n+1
i=1 θ

(k)
i = 1.

iii) All weights for the weighted average is larger than some positive constant
throughout all iterations. In other words, there is a global constant θ′ > 0

such that θ
(k)
i ≥ θ′.

iv)
∑n+1
i=1 |rk(x

(k)
i )| ≥ βk for k ≥ 1.

For convenience, we set θ = 1− θ′. It is enough to show that βk − β∗ ≤ Cθk for
some positive constant C to prove the theorem, and it is also proven in the full
paper that this is a sufficient condition for the theorem.

From the facts i)-iv), we have

γk+1 − γk ≥ αk+1 − γk

=

n+1∑
i=1

θ
(k)
i (|rk(x

(k)
i )| − γk)

≥ (1− θ)(βk − γk) (1)

≥ (1− θ)(β∗ − γk). (2)

From (2), we have

β∗ − γk+1 = (β∗ − γk)− (γk+1 − γk)

≤ (β∗ − γk)− (1− θ)(β∗ − γk)

= θ(β∗ − γk).

Then, we obtain the following inequality for some nonnegative B as

β∗ − γk ≤ Bθk. (3)

From (1) and (3), we have

βk − β∗ ≤ βk − γk

≤ 1

1− θ
(γk+1 − γk)

≤ 1

1− θ
(β∗ − γk)

≤ 1

1− θ
Bθk

≤ Cθk.
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Remark. Note that i)-iv) in the above proof can be satisfied if we include the
global extreme point to the new set of reference points as in the original multi-
interval Remez algorithm, instead of the maximum absolute sum condition in
the improved multi-interval Remez algorithm. Thus, this proof naturally includes
the convergence proof of the original variant of the Remez algorithm.

From the sketch of the proof, we know that the convergence rate of αk de-
termines the convergence rate of the algorithm. Since αk is always lower than
β∗ and non-decreasing sequence, it is desirable to obtain αk as large as possible
for each iteration. The maximum sum condition is more effective than the global
extreme point inclusion condition; The global extreme point inclusion condition
cannot care about the reference points other than the global extreme point, but
the maximum sum condition cares for all the reference points to be large. This
can give some intuition for the effectiveness of the maximum sum condition.

3.3 Efficient Implementation of Improved Multi-Interval Remez
Algorithm

In this section, we have to consider the issues in each step of Algorithm 2 and
suggest how to implement Steps 1, 2, 3, and 4 of Algorithm 2 as follows.

Initialization: Depending on the initialization method, there can be a large
difference in the number of iterations required. Therefore, the closer the polyno-
mial produced by initializing the initial reference points to the optimal minimax
approximation polynomial, the fewer iterations are required. We use the node
setting method of Han et al. [22] to effectively set the initial reference points
in the improved multi-interval Remez algorithm. Since Han et al.’s node setting
method was for polynomial interpolation, it chooses the d+ 1 number of nodes
when we need the approximate polynomial of degree d. Instead, if we need to
obtain the optimal minimax approximate polynomial of degree d, we choose the
d+ 2 number of nodes with Han et al.’s method as if we need the approximate
polynomial of degree d+ 1, and uses them for the initial reference points.

Finding Approximate Polynomial: A naive approach is finding coefficients
of the approximate polynomial with power basis at the current reference points
for the continuous function f(x), i.e., we can obtain cj ’s in the following equation

d∑
j=0

cjx
j
i − f(xi) = (−1)iE,

where E is also an unknown variable in this system of linear equations. However,
this method suffers from the precision problem for the coefficients. It is known
that as the degree of the basis of approximate polynomial increases, the coeffi-
cients usually decrease, and we have to set higher precision for the coefficients
of the higher degree basis. Han et al. [22] use the Chebyshev basis for this coeffi-
cient precision problem since the coefficients of a polynomial with the Chebyshev
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basis usually have the almost same order. Thus, we also use the Chebyshev basis
instead of the power basis.

Obtaining Extreme Points: Since we are dealing with a tiny minimax ap-
proximation error, we have to obtain the extreme points as precisely as possible.
Otherwise, we cannot reach the extreme point for the minimax approximate
polynomial precisely, and then the minimax approximation error obtained with
this algorithm becomes large. Basically, to obtain the extreme points, we can
scan p(x)−f(x) with a small scan step and obtain the extreme points where the
increase and decrease are exchanged. A small scan step increases the accuracy of
the extreme point but causes a long scan time accordingly. To be more specific,
it takes approximately 2` proportional time to find the extreme points with the
accuracy of `-bit. Therefore, it is necessary to devise a method to obtain high
accuracy extreme points more quickly.

In order to obtain the exact point of the extreme value, we use a method
of finding the points where the increase and decrease are exchanged and then
finding the exact extreme point using a kind of binary search. Let r(x) = p(x)−
f(x) and sc be the scan step. If we can find xi,0 where µ(xi,0)r(xi,0) ≥ |E|, and
(r(xi,0) − r(xi,0 − sc))(r(xi,0 + sc) − r(xi,0)) ≤ 0, we obtain the i-th extreme
points using the following process successively ` times,

xi,k = arg max
x∈{xi,k−1−sc/2k,xi,k−1,xi,k−1+sc/2k}

|r(x)|, k = 1, 2, · · · , `,

where the i-th extreme point xi is set to be xi,`. Then, we obtain the extreme
point with O(log(sc) + `)-bit precision. Since sc needs not to be a too small
value, we can find the extreme point with arbitrary precision with linear time
to precision `. In summary, we propose that the `-bit precision of the extreme
points can be obtained by the linear time of ` instead of 2`.

This procedure for each interval in the approximation region can be per-
formed independently with each other, and thus it can be performed effectively
with several threads. Since this step is the slowest step among any other steps
in the improved multi-interval Remez algorithm, the parallel processing for this
procedure is desirable to make the whole algorithm much fast.

One can say that the Newton method is more efficient than the binary search
method in finding the extreme points because we may just find the roots of
the derivative of p(x) − f(x). However, the extreme points are very densely
distributed in our situation, and thus the Newton method may not be stably
performed. Even if we miss only one extreme point, the algorithm can act in an
undefined manner. The binary search method is fast enough and finds all of the
extreme points very robustly, and thus we use the binary search instead of the
Newton method.

Obtaining New Reference Points: When we find the new reference points
satisfying the local extreme value condition, the alternating condition, and max-
imum absolute sum condition, there is a naive approach: among local extreme
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points which satisfy the local extreme value condition, find all d+ 2 points sat-
isfying the alternating condition and choose the n + 1 points which have the
maximum absolute sum value. If we have m local extreme points, we have to
investigate

(
m
d+2

)
points, and this value is too large, making this algorithm im-

practical. Thus, we have to find a more efficient method than this naive approach.
We propose a very efficient and provable algorithm for finding the new ref-

erence points. The proposed algorithm always gives the d + 2 points satisfying
the three criteria. It can be considered as an elimination method in that we
eliminate some elements for each iteration in the proposed algorithm until we
obtain n+1 points. It is clear that as long as m > d+2, we can find at least one
element which may not be included in the new reference points. This proposed
algorithm is given in Algorithm 3. Algorithm 3 takes O(m logm) running time,
which is a quasi-linear time algorithm.

We note that there are always some points in all situations such that we can
ensure that if we choose a set of d + 2 points including these points satisfying
the alternating condition, there exists the other set of d+2 points without these
points which satisfies the alternating condition and whose absolute sum is larger.
Algorithm 3 finds these points until the number of the remaining points is d+ 2.
The correctness proof follows the above basic principle, and the full proof can
be found in the full paper [25].

To understand the last part of Algorithm 3, the example can be given that if
the extreme point x2 is removed, T = {|r(x1)|+ |r(x2)|, |r(x2)|+ |r(x3)|, |r(x3)|+
|r(x4)|, · · · } is changed to T = {|r(x1)| + |r(x3)|, |r(x3)| + |r(x4)|, · · · }. It is
assumed that whenever we remove an element in the ordered set B in Algorithm
3, the remaining points remain sorted and indices are relabeled in increasing
order. When we compare the values to remove some extreme points, there are
the cases that the compared values are equal or the smallest element is more
than one. In such cases, we randomly remove one of these elements.

3.4 Numerical Analysis with Improved Multi-Interval Remez
Algorithm

This subsection shows the numerical analysis of the improved multi-interval
Remez algorithm for its efficiency and the optimal minimax approximation error.

Maximum Sum Condition: Table 1 shows the number of iterations required
to converge to the optimal minimax approximate polynomial in the multi-interval
Remez algorithm and the improved multi-interval Remez algorithm. The initial
set of reference points is selected uniformly in each interval since we want to ob-
serve their performances in the worst case. While selecting new reference points
is not unique for each iteration in the multi-interval Remez algorithm, the im-
proved multi-interval Remez algorithm selects the new reference points uniquely
for each iteration. Thus, when we analyze the multi-interval Remez algorithm,
we randomly select the new reference points for each iteration among the possi-
ble sets of reference points that satisfy the local extreme value condition and the
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Algorithm 3: New Reference

Input : An increasing ordered set of extreme points B = {t1, t2, · · · , tm}
with m ≥ d+ 2, and the degree of the approximate polynomial d.

Output: d+ 2 points in B satisfying alternating condition and maximum
absolute sum condition.

1 i← 1
2 while ti is not the last element of B do
3 if µ(ti)µ(ti+1) = 1 then
4 Remove from B one of two points ti, ti+1 having the smaller value

among {|r(ti)|, |r(ti+1)|}.
5 else
6 i← i+ 1
7 end

8 end
9 if |B| > d+ 3 then

10 Calculate all |r(ti)|+ |r(ti+1)| for i = 1, · · · , |B| − 1 and sort and store
these values into the array T .

11 while |B| > d+ 2 do
12 if |B| = d+ 3 then
13 Remove from B one of two points t1, t|B| having less value among

{|r(t1)|, |r(t|B|)|}.
14 else if |B| = d+ 4 then
15 Insert |r(t1)|+ |r(t|B|)| into T and sort T . Remove from B the two

elements having the smallest value in T .
16 else
17 if t1 or t|B| is included in the smallest element in T then
18 Remove from B only t1 or t|B|.
19 else
20 Remove from B the two elements having the smallest element in T .
21 end
22 Remove from T all elements related to the removed extreme points,

and insert into T the sum of absolute error values of the two newly
adjacent extreme points.

23 end

24 end



20 J. Lee et al.

alternating condition and have the global extreme point. We set the approxima-
tion parameter δ in Algorithm 2 as 2−40 and repeat this simulation 100 times.
It shows that the improved multi-interval Remez algorithm is much better to
reduce the iteration number of the Remez algorithm.

Note that the number of iterations depends on the initial set of reference
points. In fact, the uniformly distributed reference points are not desirable as
an initial set of reference points because these reference points are far from the
converged reference points. In fact, the improved multi-interval Remez algorithm
with the initialization method explained in the previous subsection only needs
4∼14 iterations. The overall running time of the improved multi-interval Remez
algorithm with the method in the previous subsection is 1∼3 seconds by PC
with AMD Ryzen Threadripper 1950X 16-core CPU @ 3.40GHz.

Table 1: Comparison of iteration numbers between the improved multi-interval
Remez algorithm and the multi-interval Remez algorithm for δ = 2−40

degree
of approx.

poly.

modified
Remez algorithm

multi-interval
Remez algorithm

average
standard
deviation

max min

79 28 60.0 9.38 82 41

99 8 17.1 3.34 28 11

119 26 53.4 8.10 79 37

139 39 60.3 4.71 79 48

159 39 72.1 9.71 98 42

179 48 72.3 9.72 105 53

199 56 80.4 7.28 94 60

Minimax Error: We obtain the optimal minimax approximate polynomials
for the modular reduction function and the scaled cosine function with the
scaling number two. Fig. 1(a) shows the minimax approximation error of the
approximate polynomial of the modular reduction function derived by the im-
proved multi-interval Remez algorithm and the minimax approximation error
of the previous homomorphic modular reduction method with scaling number
zero in [22], compared to the modular reduction function. That is, let p1(x)
be the optimal minimax approximate polynomial of the normod function and
let q1(x) be the approximate polynomial obtained by Han et al.’s method with
scaling number zero when the half-width of approximation region is 2−10. Then,
maxx∈D |p1(x) − normod(x)| and maxx∈D |q1(x) − normod(x)| are compared in
Fig. 1(a). Note that while the minimax approximation error of the approximate
polynomial of the modular reduction function decreases steadily as the degree
of the approximate polynomial increases, the minimax approximation error of
the previous method does not decrease when the degree is larger than 76 be-
cause of the approximation error between the modular reduction function and
the sine/cosine function.

Fig. 1(b) shows the minimax approximation error of the composition of the
approximate polynomial of the scaled cosine function with scaling number two
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Fig. 1: Comparison of minimax approximatio error between the previous approx-
imation method and the improved multi-interval Remez algorithm.

derived by the improved multi-interval Remez algorithm and two double angle
formulas and the minimax approximation error of method in [22], compared
to the cosine function. That is, let p2(x) be the optimal minimax approximate
polynomial of cos

(
π
2 (x− 1/4)

)
and let q2(x) be the approximate polynomial

obtained by Han et al.’s method with scaling number two when the half-width
of approximation region is 2−3. If r(x) = 2x2 − 1, then maxx∈D |r ◦ r ◦ p2(x)−
sin(2πx)| and maxx∈D |r ◦ r ◦ q2(x) − sin(2πx)| are compared in Fig. 1(b). The
proposed method improves the minimax approximation error by 2.3 bits on
average, and by 5 bits at maximum for the same degree of the approximate
polynomial. This improvement leads to a reduction of 1∼2 degrees for the given
minimax approximation error.

In fact, the approximate polynomial for the modular reduction function can-
not yet be used in the bootstrapping of the RNS-CKKS scheme because of the
huge coefficients. It is a very unstable polynomial to evaluate in the RNS-CKKS
scheme in that these large coefficients amplify the approximation error in the
message. It is an interesting open problem to stably use the minimax approxi-
mate polynomial of the modular reduction function in the RNS-CKKS scheme.
Instead of using the unstable minimax approximate polynomial of the modu-
lar reduction function, we approximate the modular reduction function with a
composition of several stable polynomials in Section 5.

4 Numerical Analysis of Message Precision in
Bootstrapping with Improved Multi-Interval Remez
Algorithm in SEAL Library

Since the previous researches for the bootstrapping of the RNS-CKKS scheme
did not deal deeply with its message precision, we numerically analyze the mes-
sage precision for the bootstrapping with improved multi-interval Remez algo-
rithm of the RNS-CKKS scheme by changing several parameters: the degree d
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of the approximate polynomial of the scaled cosine function, the bit-length dif-
ference δdiff = log∆boot − log∆ between the default scaling factor and the boot-
strapping scaling factor, the bootstrapping scaling factor ∆boot, and the number
of the slots. We assume that the range of the real part and the imaginary part
of the messages to be bootstrapped is [−1, 1]. The bootstrapping precision is
measured as − log2(er + ei)/2, where er and ei are the average error of the real
part and the imaginary part of all slots, respectively.

Numerical analysis in this section is conducted in PC with Intel(R) Xeon(R)
Silver 4210 CPU @ 2.20GHz single-threaded, and the SEAL library version 3.5.9
[29] is used. The double angle formula for the cosine function is assumed to be
used twice. The improved multi-interval Remez algorithm is used to obtain the
optimal minimax approximate polynomial in all simulations, rather than polyno-
mial approximation methods in the previous papers, [8, 11, 22]. The polynomial
modulus degree is set to be 216, the secret key Hamming weight is set to be 192,
the value of K is set to be 25, and the maximum modulus for the ciphertext is
set to be 21553, which satisfies the 128-bit security as in [4]. The CoeffToSlot
and SlotToCoeff procedures in [8] with two level consumption are used in all
simulations. The scaling factor management method and the delayed rescaling
method in [24] is applied, and the depth consumption of the polynomial evalua-
tion is optimized by Bossuat et al.’s evaluation method [4]. The input messages
are sampled by the uniform distribution over the bootstrapping range.

Degree of Approximate Polynomial: Table 2 shows the message precision of
the bootstrapping with the improved multi-interval Remez algorithm when the
degree of the approximate polynomial for the scaled cosine function is changed.
The value of log δdiff is 12, log∆boot is 60, and the number of the slots is 28 in
this simulation. The approximation error means the minimax error of the ap-
proximate polynomial for the scaled cosine function, and the bootstrapping error
means the average error for each slot when the bootstrapping is performed with
the library. When the scaling factor is changed from the bootstrapping scaling
factor to the default scaling factor, the message and its error are multiplied by
δdiff . We show both the bootstrapping error before changing the scaling factor
and that after changing the scaling factor. Although the approximation error
continues to decrease as the degree of the approximate polynomial increases,
the bootstrapping error does not decrease below a certain value. This bound
is caused by either the difference between the modular reduction function and
the cosine function or the rescaling error, depending on the situation. Thus, we
cannot raise the message precision infinitely by using a high degree approximate
polynomial. The actual lower bound of the bootstrapping error before changing
the scaling factor is denoted by emin in this section, and then the lower bound
of the bootstrapping error after changing the scaling factor is eminδdiff .

Value of δdiff : The bit length difference between the default scaling factor ∆
and the bootstrapping scaling factor ∆boot, which will be denoted as δdiff =
log∆boot − log∆, is closely related to the message precision. The value of δdiff is
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Table 2: Message precision of the bootstrapping with the improved multi-interval
Remez algorithm for various degrees of the approximate polynomials

degree
of approx.

poly.

approximation error
by the optimal minimax

polynomial

bootstrapping error message
precision

(bits)
before changing
scaling factor

emin

after changing
scaling factor

eminδdiff

60 1.77× 10−11 2.83× 10−10 1.16× 10−6 19.7

62 5.26× 10−13 8.50× 10−12 3.48× 10−8 24.8

64 3.07× 10−14 6.17× 10−13 2.53× 10−9 28.6

66 1.56× 10−15 3.76× 10−13 1.54× 10−9 29.2

68 6.59× 10−17 3.76× 10−13 1.54× 10−9 29.2

usually chosen as 10 bits to lower the difference between the modular reduction
function and the sine/cosine function since the half-width of each interval in the
approximation region is 2−δdiff .

It causes loss to the message precision of the bootstrapping. In the bootstrap-
ping procedure, we need to divide the message by 2δdiff so that it can be included
in the approximation region and multiply 2δdiff at the end of the bootstrapping.
If the precision error until multiplying 2δdiff is e, the final error becomes 2δdiffe. e
cannot be reduced below a certain error value because of the rescaling error dealt
with in the previous subsection. If we denote this lower bound as eb = 2−δb , the
message precision will be δb − δdiff .

Because δdiff has a significant effect on both the message precision of the
bootstrapping and the message precision of the intended operation in the appli-
cation, it is desirable to reduce the δdiff to prevent this precision loss. However,
the difference between the sine/cosine function and the modular reduction func-
tion is somewhat dominant, and this difference becomes more dominant as δdiff

increases.
Table 3 shows the maximum message precision of the bootstrapping with

improved multi-interval Remez algorithm for various δdiff . The degree of the
approximate polynomials for each case is set to be large enough to reach the
minimum approximate error emin, and the scaling factor and the number of slots
are fixed to be 60 and 28, respectively.

The bootstrapping error after changing the scaling factor is eminδdiff . As δdiff

decreases, emin increases rapidly so that the eminδdiff grows. This is because the
difference between the modular reduction function and the cosine function be-
comes larger when the approximation region is enlarged. We can naively expect
that the bootstrapping error can be decreased infinitely when log δdiff is increased,
because |ε−sin ε| = O(ε3). However, if the δdiff is larger than 16, the value of emin

does not decrease, and thus eminδdiff increases. This lower bound of emin is caused
by the rescaling error and the homomorphic linear transform in the bootstrap-
ping. This bound of emin is related to the bootstrapping scaling factor ∆boot and
the number of slots, which will be dealt with in the following paragraphs.

Note that we do not need to use the scaling factor ∆boot/δdiff after boot-
strapping. If we use a scaling factor 2−`∆boot/δdiff , the bootstrapping error is
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amplified by `-bit and the range of the message becomes [−2`, 2`]. Indeed, there
are many cases that large range of the message is more important than low boot-
strapping error, and thus users can control the scaling factor after bootstrapping
concerning the range and the bootstrapping error they want to use.

Table 3: Message precision of the bootstrapping with the improved multi-interval
Remez algorithm for various values of log δdiff

log δdiff
bootstrapping error message

precision
(bits)

before changing
scaling factor

emin

after changing
scaling factor

eminδdiff

3 2.55× 10−5 2.04× 10−4 12.3

7 7.45× 10−9 9.53× 10−7 20.0

10 1.32× 10−11 1.35× 10−8 26.1

11 1.64× 10−12 3.36× 10−9 28.1

12 3.76× 10−13 1.54× 10−9 29.2

13 2.88× 10−13 2.36× 10−9 28.7

14 2.77× 10−13 4.54× 10−9 27.7

Bootstrapping Scaling Factor: Table 4 shows the maximum message pre-
cision for various bootstrapping scaling factors when the number of slots is 28.
The degree of the approximate polynomial and the value of δdiff are set to reach
the lower bound of emin for each bootstrapping scaling factor and to minimize
the value of eminδdiff , which determines the actual message precision of the boot-
strapping. The second column in Table 4 shows the lower bound of emin, the third
column shows the value of δdiff which minimizes eminδdiff , and the last column
shows the maximum message precision with the corresponding bootstrapping
scaling factor.

The maximum message precision of the bootstrapping in the RNS-CKKS
scheme decreases as the bootstrapping scaling factor decreases. This means that
we have to use as large a bootstrapping scaling factor as possible when we need
precise bootstrapping. Since the bootstrapping scaling factor is related to the
multiplicative depth, this gives the trade-off between the depth and the precision.

Note that the bit-length of scaling factors can be different for each level, and
thus we do not need to use the same scaling factor throughout the bootstrapping.
This fact is used in Bossuat et al.’s work [4].

Number of Slots: Table 5 shows the maximum message precision for various
numbers of slots when the bootstrapping scaling factor is 60, the maximum
scaling factor. The degree of the approximate polynomials and δdiff are set to
the same as Table 4. The error analysis in [11] shows that the approximation
error in SlotToCoeff step is amplified more as we use more slots. The result
of Table 5 corresponds to this error analysis. This gives the trade-off between
the number of slots and the message precision. Note that all precision is less
than 32-bit precision. We will improve these precision results in the next section
by using the composite function method with the inverse sine function.
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Table 4: Maximum message precision of the bootstrapping with the improved
multi-interval Remez algorithm for various bootstrapping scaling fac-
tors

log∆boot log δdiff
bootstrapping error message

precision
(bits)

before changing
scaling factor

emin

after changing
scaling factor

eminδdiff

50 9 3.30× 10−10 1.69× 10−7 22.5

54 10 2.21× 10−11 2.27× 10−8 25.4

57 11 2.88× 10−12 5.90× 10−9 27.3

60 12 3.71× 10−13 1.52× 10−9 29.3

Note that log δdiff is not high when the number of slots is large, although
this log δdiff value does not ensure the high precision as the difference between
the modular reduction function and the sine/cosine function is rather high. This
phenomenon is because the coefficients of the message polynomial is very small
when the number of slots is large as discussed in [4]. Thus, the approximation
region for the cosine function can be generally much less than 1/δdiff .

Table 5: Maximum message precision of the bootstrapping with improved multi-
interval Remez algorithm for various numbers of slots

logn
degree

of approx.
poly.

log δdiff
bootstrapping error message

precision
(bits)

remaining
modulus

running
time (s)before changing

scaling factor
emin

after changing
scaling factor

eminδdiff

5 67 14 4.52× 10−14 7.42× 10−10 30.3 653 91.9

8 66 12 3.71× 10−13 1.52× 10−9 29.3 653 133.6

10 66 11 1.34× 10−12 2.75× 10−9 28.4 653 189.3

12 66 9 8.46× 10−12 4.33× 10−9 27.8 653 287.0

14 66 8 2.46× 10−11 6.31× 10−9 27.2 653 461.0

5 Improvement of Message Precision by Composite
Function Approximation of Modular Reduction
Function

At first glance, it seems to be the best method to use the optimal minimax
approximate polynomials for the modular reduction function. However, we can
see that some of the coefficients of the optimal minimax approximate polynomials
with regard to the Chebyshev basis are so large that the amplified approximate
errors by these coefficients totally distort the messages in the ciphertext. On
the other hand, the optimal minimax approximate polynomial coefficients of the
scaled sine/cosine functions with more than one scale number are small enough
not to distort the messages. Thus, the approximation of the modular reduction
function by the sine/cosine function is essential for the correctness of the RNS-
CKKS scheme.

When we adhere to the approximation by the scaled sine/cosine function,
the difference of the modular reduction function and the sine/cosine function is
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a crucial obstacle, which is mentioned as an important open problem in Han et
al.’s paper [22]. This difference is sharply increased as the approximation region
of the modular reduction function becomes longer, and this prevents us from
reducing δdiff .

5.1 Composite Function Approximation of Modular Reduction
Function by Inverse Sine Function

We propose a simple and novel method for solving this problem, which is called
the composite function approximation method. In short, we compose the optimal
minimax approximate polynomial of the sine/cosine function and the approxi-
mate polynomial of the inverse sine function. It is easy to check that if we have
two functions f and g for 0 < ε < 1

4 as

f :

∞⋃
k=−∞

[2π(k − ε), 2π(k + ε)]→ [− sin 2πε, sin 2πε], f(x) = sinx

g : [− sin 2πε, sin 2πε]→ [−2πε, 2πε], g(x) = arcsinx,

then the following equation holds as

x− 2π · round
( x

2π

)
= (g ◦ f)(x), x ∈

∞⋃
k=−∞

[2π(k − ε), 2π(k + ε)].

If we substitute t = x
2π , then we have

normod(t) =
1

2π
(g ◦ f)(2πt), t ∈

∞⋃
k=−∞

[k − ε, k + ε]. (4)

If we approximate both f and g with the optimal minimax approximate
polynomials derived by the improved multi-interval Remez algorithm, we can
approximate the modular reduction function with any small approximate error
by the composition of f and g. Note that g(x) can be approximated very well
with some approximate polynomials of a small degree since the domain of g(x)
is only one interval. Indeed, the cosine approximation with double-angle formula
in [22] can be regarded as the special case of the proposed composite function
approximation, in that they approximate g(x) with x, that is, the identity func-
tion. Note that the cosine function in [22] is merely a parallel shift of the sine
function. Thus, it is said that they approximate the sine function instead of the
cosine function.

The sine function f was evaluated by composing the scaled cosine function
and several double-angle formulas in [22]. If the number of the used double-angle
formula is `, then the functions h1, h2, and h3 are defined as

h1(x) = cos

(
2π

2`

(
x− 1

4

))
, h2(x) = 2x2 − 1, h3(x) =

1

2π
arcsin(x).
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Then, the normod function, which is equivalent to the modular reduction func-
tion, can be represented as

normod(x) = h3 ◦ h`2 ◦ h1(x).

Thus, if h̃1 is the optimal minimax approximate polynomial of h1 and h̃3 is
that of h3, we can approximate normod function by the composition of several
polynoimals as

normod(x) ≈ h̃3 ◦ h`2 ◦ h̃1(x).

With this method, we can approximate the modular reduction function by
the composition of several polynomials at arbitrary precision. This enables us to
reduce δdiff to 3 and reach the message precision of δb − δdiff , which is the best
precision mentioned in the previous section. The next section shows that we can
indeed reach this high precision in the SEAL library.

5.2 Simulation Result with SEAL Library

This subsection demonstrates that the composite function method can improve
the message precision in the RNS-CKKS scheme. The simulation environment
is the same as the simulation in Section 4.

Table 6 shows that the value of emin with the composite function method
does not change. The degrees of approximate polynomials of the scaled cosine
function and inverse sine function are set to minimize emin, and these degrees are
shown in Table 6. In contrast to the result in Table 3, all of the values of emin in
Table 6 are almost the same as the minimum value of emin in Table 3 regardless
of δdiff . Since emin is fixed with the minimum value, the bootstrapping precision,
which is determined by eminδdiff , is increased as δdiff decreases.

Table 6: Maximum message precision of the bootstrapping with improved multi-
interval Remez algorithm and composite function method for various
δdiff

log δdiff
bootstrapping error message

precision
(bits)

before changing
scaling factor

emin

after changing
scaling factor

eminδdiff

3 2.93× 10−13 2.34× 10−12 38.6

7 2.90× 10−13 3.71× 10−11 34.6

10 2.85× 10−13 2.92× 10−10 31.7

11 3.21× 10−13 6.58× 10−10 30.5

12 2.88× 10−13 1.18× 10−9 29.7

Table 7 shows the maximum precision of the bootstrapping with the improved
multi-interval Remez algorithm and composite function method for various slots.
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The δdiff value and log∆diff value are set to be 3 and 60, respectively. The max-
imum message precision is increased by 5.4-10.2 bits and becomes 32.6-40.5 bit
precision. All of the message precision is larger than the 32-bit precision. Thus,
we make the bootstrapping of the RNS-CKKS scheme more reliable enough to
be used in practical applications.

The half-width of the approximation region has to be 2−δdiff when the range of
real and imaginary part of the messages is assumed to be the same as that of the
coefficients of the message polynomial. However, when we sample the messages
from the uniform distribution over the range, the coefficients are significantly
reduced so that we may reduce the approximation region as discussed in [4]. ε
denotes the half-width of each approximation region we set for each number of
slots, and this value is numerically set to have no effect on the bootstrapping. If
one wants to be conservative on the distribution of the message and the range
of the coefficients, they may set ε to be 2−δdiff .

Table 7: Maximum message precision of the bootstrapping with composite func-
tion method for various number of slots

logn log 1/ε
deg. of

app. poly.
of cos.

deg. of
app. poly.

of inv.
sine

bootstrapping error message
preci-
sion

(bits)

rema-
ining

modu-
lus

run-
ning
time
(s)

before changing
scaling factor

emin

after changing
scaling factor

eminδdiff

5 4 71 15 7.93× 10−14 6.34× 10−13 40.5 473 94.7

8 6 70 9 2.93× 10−13 2.34× 10−12 38.6 473 133.2

10 9 69 7 1.14× 10−12 9.13× 10−12 36.7 533 188.9

12 10 69 5 4.84× 10−12 3.87× 10−11 34.5 533 273.9

14 10 68 5 1.97× 10−11 1.53× 10−10 32.6 533 451.5

Although we add the inverse sine approximation procedure, the overall run-
ning time of the bootstrapping is similar or reduced. Note that the more depth
level left in a ciphertext, the more time homomorphic evaluation takes. Since
we consume more depth level in the inverse sine approximation procedure, the
ciphertexts in the SlotToCoeff procedure have less remaining depth level.
Thus, the running time of the SlotToCoeff procedure in the new bootstrap-
ping is less than that in the original one. The remaining modulus bit length is
reduced because of the additional depth consumption of the inverse sine approx-
imation procedure. This additional depth consumption can be seen as a trade-off
for the high precision.

6 Conclusion

We proposed the algorithm for obtaining the optimal minimax approximate poly-
nomial for any continuous function on the union of the finite set, including the
scaled cosine function on separate approximation regions. Then we analyzed the
message precision of the bootstrapping with the improved multi-interval Remez
algorithm in RNS-CKKS, and its maximum message precision is measured in
the SEAL library. We proposed the composite function method with inverse sine
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function to improve the message precision of the bootstrapping significantly,
and thus the improved message precision bootstrapping has the precision higher
than the precision of the 32-bit fixed-point number system, even when lots of
slots are used. Thus, the large-depth operations in advanced applications, such
as training a convolutional neural network for encrypted data, are needed to be
implemented by the RNS-CKKS scheme with the improved message precision
bootstrapping.

Acknowledgement We thank Jean-Philippe Bossuat for his help with optimiz-
ing the approximation for the inverse sine function by observing the distribution
of the message polynomial coefficients.
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