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Abstract. In this paper, we study relationship between security of cryp-
tographic schemes in the random oracle model (ROM) and quantum
random oracle model (QROM). First, we introduce a notion of a proof
of quantum access to a random oracle (PoQRO), which is a protocol to
prove the capability to quantumly access a random oracle to a classical
verifier. We observe that a proof of quantumness recently proposed by
Brakerski et al. (TQC ’20) can be seen as a PoQRO. We also give a
construction of a publicly verifiable PoQRO relative to a classical oracle.
Based on them, we construct digital signature and public key encryption
schemes that are secure in the ROM but insecure in the QROM. In par-
ticular, we obtain the first examples of natural cryptographic schemes
that separate the ROM and QROM under a standard cryptographic as-
sumption.
On the other hand, we give lifting theorems from security in the ROM
to that in the QROM for certain types of cryptographic schemes and
security notions. For example, our lifting theorems are applicable to Fiat-
Shamir non-interactive arguments, Fiat-Shamir signatures, and Full-Domain-
Hash signatures etc. We also discuss applications of our lifting theorems
to quantum query complexity.

1 Introduction

The random oracle model (ROM) [BR93] is a widely used heuristic in cryptog-
raphy where a hash function is modeled as a random function that is only acces-
sible as an oracle. The ROM was used for constructing practical cryptographic
schemes including digital signatures [FS87, PS96, BR96], chosen-ciphertext at-
tack (CCA) secure public key encryption (PKE) [BR95, FOPS01, FO13], identity-
based encryption (IBE) [GPV08], etc.

In 2011, Boneh et al. [BDF+11] observed that the ROM may not be suffi-
cient when considering post-quantum security, since a quantum adversary can
quantumly evaluate hash functions on superpositions, while the ROM only gives
a classically-accessible oracle to an adversary. Considering this observation, they
proposed the quantum random oracle model (QROM), which gives an adversary
quantum access to an oracle that computes a random function.

Boneh et al. observe that many proof techniques in the ROM cannot be
directly translated into one in the QROM, even if the other building blocks of
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the system are quantum-resistant. Therefore, new proof techniques are needed
in order to justify the post-quantum security of random oracle model systems.
Fortunately, recent advances of proof techniques have clarified that most im-
portant constructions that are originally proven secure in the ROM are also
secure in the QROM. These include OAEP [TU16], Fujisaki-Okamoto transform
[TU16, JZC+18, Zha19], Fiat-Shamir transform [LZ19, DFMS19, DFM20], Full-
Domain Hash (FDH) signatures [Zha12], Gentry-Peikert-Vaikuntanathan (GPV)
IBE [Zha12, KYY18], etc.

Given this situation, it is natural to ask if there may be a general theorem
lifting any classical ROM proof into a proof in the QROM, provided that the
other building blocks of the system remain quantum resistant. There are several
known lifting theorems that ensure that certain types of security reductions in
the ROM also work in the QROM [BDF+11, Son14, ZYF+19, KS20]. However,
there is no known general lifting theorem that works regardless of form of security
proofs in the ROM.

Such a general lifting theorem certainly seems like a challenging task. Never-
theless, demonstrating a separation — that is, a scheme using quantum-resistant
building blocks that is secure in the ROM but insecure in the QROM — has
also been elusive. Intuitively, the reason is that natural problems on random
oracles (such as pre-image search, collision finding, etc) only have polynomial
gaps between classical and quantum query complexity.

We are aware of two works that consider the task of finding a separation.
First, Boneh et al. [BDF+11] gave an example of an identification protocol that
is secure in the ROM but insecure in the QROM, but is specific to a certain
non-standard timing model. Concretely, the protocol leverages the polynomial
gap in collision finding to allow an attacker with quantum oracle access to break
the system somewhat faster than any classical-access algorithm. The verifier
then rejects if the prover cannot respond to its challenges fast enough, thereby
blocking classical attacks while allowing the quantum attack to go through. This
unfortunately requires a synchronous model where the verifier keeps track of the
time between messages; such a model is non-standard.

Second, a recent work of Zhang et al. [ZYF+19] showed that quantum random
oracle is differentiable from classical random oracle, which roughly means that it
is impossible to simulate quantum queries to a random oracle using only classical
queries to the same function. Their result rules out a natural approach one may
take to give a lifting theorem, but it fails to actually give a scheme separating
classical from quantum access to a random oracle.4

In summary, there is no known classical cryptographic scheme (e.g., digital
signatures or PKE) that can be proven secure in the ROM but insecure in the
QROM. This leaves open the important question of whether or not a general
lifting theorem for cryptographic schemes is possible.

4 Subsequent to the posting of the initial version of this work online , Zhang et al.
[ZYF+19] updated their paper to add a construction of a cryptographic scheme that
separates the ROM and the QROM. See Sec. 1.3 for details.
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1.1 Our Results

We give constructions of cryptographic schemes that separate the ROM and
QROM, showing that a fully general lifting theorem is impossible. On the other
hand, we also give lifting theorems from the ROM security to the QROM security
for some constrained but still very general settings. Details are explained below:

Proof of Quantum Access to a Random Oracle. For showing separations
between the ROM and QROM, we first introduce a primitive which we call a
proof of quantum access to random oracle (PoQRO). Roughly speaking, a Po-
QRO is a protocol where a quantum prover proves his ability to quantumly
access to a random oracle to a classical verifier who is only given classical access
to the random oracle. This is closely related to the notion of a proof of quantum-
ness [BCM+18], but the difference is that a proof of quantumness only requires
soundness against completely classical adversaries whereas a PoQRO requires
soundness against quantum adversaries with classical access to a random oracle.

First, we observe that a proof of quantumness recently proposed by Brakerski
et al. [BKVV20] is actually also a PoQRO. As a result, we obtain a PoQRO
under the assumed quantum hardness of the learning with errors (LWE) problem
[Reg09] (which we call the QLWE assumption in the following). The construction
is non-interactive in the sense that after a verifier generates a pair of a public
and secret keys and publishes the public key, a prover can generate a proof
without any interaction. However, the proof is not publicly verifiable since the
verification relies on the secret key.

We also study the possibility of publicly verifiable PoQRO. We give a con-
struction of a publicly verifiable PoQRO relative to a classical oracle (which can
be queried in superposition) using the technique developed in the recent work by
Amos et al. [AGKZ20]. Similarly to [AGKZ20], we can heuristically instantiate
the protocol in the standard model by using candidate constructions of post-
quantum obfuscation [Agr19, AP20, BDGM20, WW20, GP20].

Separation of ROM and QROM. A PoQRO itself is already an example of
cryptographic task that can be done in the QROM but cannot be done in the
ROM. By embedding a PoQRO into digital signatures and PKE, we obtain the
following results:

– A digital signature scheme that is EUF-CMA secure in the ROM but com-
pletely broken by 1 signing query in the QROM, and

– A PKE scheme that is IND-CCA secure in the ROM but completely broken
by 1 decryption query in the QROM.

Both these results rely on the QLWE assumption.

Moreover, by embedding a publicly verifiable PoQRO into them, we can
show the existence of a classical oracle relative to which there exist the following
schemes:
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– A digital signature scheme that is EUF-CMA secure in the ROM but not
even EUF-NMA secure5 in the QROM, and

– A PKE scheme that is IND-CCA secure in the ROM but not even IND-CPA
secure in the QROM.

These results can be understood as an evidence that a generic lifting theorem
is unlikely to exist even for the weak security notions of EUF-NMA security of
digital signatures and IND-CPA security of PKE. Specifically, the above results
imply that there do not exist a relativizing lifting theorem for them that works
relative to any classical oracle.

Lifting Theorem for Search-Type Games. We now turn to our positive
results, giving lifting theorems for certain class of schemes and security notions.
First, we give a lifting theorem for what we call search-type games. A search-type
game is specified by a classical challenger that interacts with an adversary and
finally outputs > indicating acceptance or ⊥ indicating rejection. We say that the
adversary wins if the verifer outputs >. We say that the game is hard in the ROM
(resp. QROM) if no efficient quantum adversary with classical (resp. quantum)
access to the random oracle can win the game with non-negligible probability.
For example, the soundness of PoQROs is captured by the hardness of a search-
type game in the ROM (but not QROM!), and the EUF-CMA/NMA security of
digital signatures in the ROM (resp. QROM) is captured by the hardness of a
search-type game in the ROM (resp. QROM). We prove the following theorem:

Theorem 1 (Lifting Theorem for Search-Type Game, Informal). For
any search-type game where a challenger makes constant number of queries to
the random oracle, if the game is hard in the ROM, then that is also hard in the
QROM.

As immediate corollaries of the theorem, we obtain lifting theorems for the fol-
lowing:

– EUF-NMA security of digital signatures whose key generation and verifica-
tion algorithms make O(1) random oracle queries, and

– Soundness of (non-)interactive arguments whose (setup algorithm and) ver-
ifier make at most O(1) random oracle queries.

The latter lifting theorem is applicable to those obtained by the Fiat-Shamir
transform to constant round interactive arguments. Though it is already proven
that such arguments are sound in the QROM [LZ19, DFMS19, DFM20], we
believe that the above general corollary would be still useful for the design of
non-interactive arguments in the QROM in the future without repeating a similar
analyses to those works.

Theorem 1 also immediately implies the impossibility of PoQRO where the
verifier makesO(1) random oracle queries. We note that in our PoQRO protocols,

5 The EUF-NMA security is an unforgeability against adversaries that do not make
any signing query.
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the number of queries made by the verification algorithm is ω(log λ). We leave
it as an interesting open problem to study the (im)possibility of PoQRO with
O(log λ)-query verification.

Though the applicability of Theorem 1 is somewhat limited, to the best of
our knowledge, this is the first general lifting theorem from ROM security to
QROM security that does make any assumptions about the ROM security re-
duction.

Lifting Theorem for EUF-CMA Security of Digital Signatures. Unfor-
tunately, Theorem 1 does not give a lifting theorem for the EUF-CMA security
of digital signatures (except for a non-interesting case where the signing algo-
rithm does not make random oracle query). On the other hand, we give a lifting
theorem for the EUF-CMA security for digital signature shcmes that satisfy
additional properties.

Theorem 2 (Lifting Theorem for Digital Signatures, Informal). Sup-
pose that a digital signature scheme satisfies the following:

1. EUF-NMA secure in the ROM,
2. The key generation algorithm does not make random oracle queries and the

verification algorithm makes O(1) random oracle queries,
3. Random oracle queries made by the signing and verification algorithms reveal

the corresponding message, and
4. Signatures are simulatable without the signing key if one is allowed to non-

adaptively program the random oracle.

Then the scheme is EUF-CMA secure in the QROM.

This theorem is applicable to the FDH signatures and Fiat-Shamir signa-
tures. To the best of our knowledge, this is the first lifting theorem that is
simultaneously applicable to both of them.

Application to Quantum Query Complexity. Based on a slight variant of
a quantitative version of Theorem 1, we obtain a general theorem about query
complexity. We consider a class of oracle problems, where the adversary’s goal
is to find distinct inputs to H such that the corresponding outputs satisfy some
relation. Our theorem can be seen as upper bounding the success probability of
a q-query adversary in terms of the probability of an adversary that makes no
queries at all. Slightly more formally:

Theorem 3 (Informal). Let H : X → Y be a random oracle. For any relation
R ⊆ Yk, the probability that a q-quantum-query adversary finds pair-wise distinct
x1, ..., xk such that (H(x1), ...,H(xk)) ∈ R is at most

(2q + 1)2k Pr[∃π s.t. (yπ(1), ..., yπ(k)) ∈ R : (y1, ..., yk)
$← Yk] (1)

where π is a permutation over {1, ..., k}.
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The probability in Equation 1 is typically be very easy to analyze. Theorem 3
therefore yields very simple non-trivial query lower bounds for various problems
including (multi-)preimage search and (multi- or generalized) collision finding.
Though these bounds are already known and/or non-tight, an advantage of our
proofs is its extreme simplicity once we have Theorem 3 in hand.

1.2 Technical Overview

PoQRO from LWE. We first observe that a proof of quantumness in [BKVV20]
is also a PoQRO. Though the construction and security proof are essentially the
same as theirs, we briefly review them for the reader’s convenience. The protocol
is based on a noisy trapdoor claw-free permutation constructed from the QLWE
assumption [BCM+18, BKVV20]. In this overview, we assume that there is a
clean trapdoor claw-free permutation for simplicity. A claw-free permutation is
a function f : {0, 1} × {0, 1}n → {0, 1}n such that (1) f(0, ·) and f(1, ·) are in-
jective, (2) it is difficult for an efficient quantum adversary given f to find a claw
(x0, x1) such that f(0, x0) = f(1, x1), but (3) there is a trapdoor that enables
one to efficiently find both pre-images for any target value. Let H be a random
oracle from {0, 1}n to {0, 1}. In the PoQRO, the verifier first generates f along
with its trapdoor and only sends f to the prover as a public key. Then the prover
generates a state 1

2 (|0〉 |x0〉+ |1〉 |x1〉) along with y = f(0, x0) = f(1, x1) by using
the technique of [BCM+18]. Then it applies the random oracle H into the phase
to get 1

2 ((−1)H(x0) |0〉 |x0〉+(−1)H(x1) |1〉 |x1〉), applies the Hadamard transform,
measures both registers to obtain (m, d), and sends (y,m, d) as a proof to the
verifier. The verifier computes x0 and x1 from y by using the trapdoor and ac-
cepts if m = dT · (x0 ⊕ x1)⊕H(x0)⊕H(x1) holds. As shown in [BKVV20], the
equation is satisfied if the prover honestly run the protocol. On the other hand,
a cheating prover with classical access to H can pass the test with probability
almost 1/2 since the only way to obtain an information of H(x0)⊕H(x1) is to
query both x0 and x1; this happens with a negligible probability due to the claw-
free property. This construction only gives a constant gap between completeness
and soundness, so we amplify it to super-polynomial by ω(log λ) parallel repeti-
tions.

Publicly Verifiable PoQRO. We construct a publicly verifiable PoQRO based
on a variant of an equivocal collision-resistant hash (ECRH) [AGKZ20]. An
ECRH f : X → Y is a collision-resistant hash function with a special property
called equivocality. The equivocality enables one to generate a pair of a classical
string y ∈ Y and a quantum state |sk〉 that can be used to find x such that
f(x) = y and p(x) = b where p : X → {0, 1} is a pre-determined predicate and
b is a bit chosen after (y, |sk〉) is generated. Amos et al. [AGKZ20] constructed
an ECRH for a predicate p that returns the first bit of its input relative to a
classical oracle. Here, we observe that their construction can be extended to
support any predicate p. Specifically, we can define p as a predicate defined by
a random oracle H : X → {0, 1}. Based on such an ECRH, we can construct a
4-round publicly verifiable PoQRO as follows:
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1. The verifier generates an ECRH f and sends f to the prover.
2. The prover generates y along with the corresponding |sk〉 and sends y to the

verifier
3. The verifier randomly chooses b

$← {0, 1} and sends b to the prover.
4. The prover finds x such that f(x) = y and H(x) = b by using |sk〉 and sends
x to the verifier.

5. The verifier accepts if and only if f(x) = y and H(x) = b.

By the functionality of ECRH, the verifier accepts with overwhelming probability
if a prover with quantum access to H runs honestly. On the other hand, if a
cheating prover is given only classical access to H, then the verifier will accept
with probability almost 1/2. To see this, consider the first query the prover makes
to H on an x∗ such that f(x∗) = y. If the prover ultimately sends an x 6= x∗

to the verifier that causes the verifier to accept, x and x∗ will be a collision for
f , contradicting the collision-resistance of f . On the other hand, if x = x∗, then
H(x) = H(x∗) has only a 1/2 chance of being equal to b, regardless of whether
the query on x∗ happened before or after the prover learned b. The result is that,
no matter what the prover does, the verifier rejects with probability essentially
at least 1/2.

This protocol only achieves a constant gap between completeness and sound-
ness, but it can be amplified to super-polynomial by ω(log λ) parallel repetitions.
Moreover since the verifier’s message in the third round is just a public coin, we
can apply the Fiat-Shamir transform to the above protocol to make the protocol
non-interactive considering the generation of f as a setup.

Separations for Digital Signatures and Public Key Encryption. Given
a PoQRO, it is easy to construct digital signature and PKE schemes that are
secure in the ROM but insecure in the QROM: Suppose that we have a EUF-
CMA secure digital signature scheme in the ROM, consider a modified scheme
in which the signing algorithm returns a secret key of the scheme if the queried
message is a valid proof of the PoQRO. Clearly, this scheme is insecure in the
QROM and completely broken by 1 signing query. On the other hand, security in
the ROM is preserved since an adversary in the ROM cannot find a valid proof
of the PoQRO. A separation for IND-CCA security of PKE can be obtained by
embedding verification of PoQRO in a decryption algorithm in a similar manner.

Moreover, if the PoQRO is publicly verifiable, then we can embed the verifi-
cation of the PoQRO into verification and encryption algorithms of digital sig-
nature and PKE schemes, respectively. As a result, we obtain separations even
for EUF-NMA secure digital signatures and IND-CPA secure PKE schemes, as-
suming an equivocal collision-resistant hash function.

Lifting Theorem for Search-Type Games. Next, we give a brief overview
of proofs of our lifting theorems. A starting point of our lifting theorem is the
following classical lemma:

Lemma 1. (Informal) For any search-type cryptographic game in which a chal-
lenger makes at most k classical random oracle queries, if there exists an efficient
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adversary A that makes at most q classical random oracle queries with winning
probability ε, then there exists an efficient B that makes at most k classical ran-
dom oracle queries with winning probability at least ε/(q + 1)k.

This lemma can be proven by considering B described as follows:

1. Let H be the “real” random oracle that is given to B.

2. For each j = 1, ..., k, B randomly picks ij
$← [q + 1]. Intuitively, this is a

guess of A’s first query that is equal to the challenger’s j-th query where
ij = q + 1 is understood as a guess that “A does not make such a query”.

3. B chooses a fresh “fake” random oracle H ′ by itself.6

4. B runs A by giving A a stateful oracle O simulated as follows: B initializes
O to H ′. Whenever A makes its i-th query xi, B simulates the oracle O in
one of the following ways:

(a) If i = ij for some j ∈ [k], then B queries xi to the real random oracle H
to obtain H(xi), returns H(xi), and reprograms O to output H(xi) on
input xi.

(b) Otherwise, B just returns O(xi).

Whenever A sends some message to the challenger, B just forwards it to the
external challenger, and whenever the challenger returns some message, B
forwards it to A.

Clearly, B makes at most k classical random oracle queries and is as efficient
as A. We can see that B perfectly simulates the game for A if the guess is correct
(e.g., A’s ij-th query is its first query that is equal to the challenger’s j-th query),
which happens with probability 1/(q + 1)k. Moreover, since the events that the
guess is correct and the event that A wins are independent, we can conclude
that B’s winning probability is at least 1/(q+1)k times A’s winning probability.

Our idea is to apply a similar proof to A that may make quantum queries,
with the goal of B still only needing classical queries. Then, an obvious problem
is that B cannot forwards A’s query in Step 4a since A’s query may be quantum
whereas B only has classical access to the real random oracle H. Here, our solu-
tion is to just let B measure A’s query, query the measurement outcome to the
real random oracle H, and then reprogram O according to this value. Of course,
such a measurement can be noticed by A by a noticeable advantage. Nonethe-
less, we can rely on the techniques developed for Fiat-Shamir transform in the
QROM [DFMS19, DFM20] to prove that this decreases the winning probability
only by the factor of (2q + 1)2k. Therefore, as long as k = O(1), the reduction
works with a polynomial loss.

Application to Digital Signatures. Our lifting theorem for search-type games
(Theorem 1) immediately implies a lifting theorem for EUF-NMA security for
digital signature schemes where key generation and verification algorithms make

6 More precisely, it simulates a fresh random oracle H ′ on the fly so that this can be
done efficiently. Alternatively, it can choose H ′ from a family of q-wise independent
functions.
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constant number of random oracle queries. On the other hand, Kiltz et al.
[KLS18] showed that the EUF-NMA security in the QROM implies EUF-CMA
security in the QROM for Fiat-Shamir signatures. We generalize this result to a
broader class of digital signature schemes that satisfy conditions given in The-
orem 2. Roughly speaking, this can be proven based on the observation that if
signatures are simulatable without the signing key by programming the random
oracle, then the signing oracle is useless and thus the EUF-NMA and EUF-CMA
security are equivalent. By combining this with Theorem 1, we obtain Theorem 2.

Application to Quantum Query Complexity. As one can see from the
overview of the proof of Theorem 1, the security loss of the reduction from
QROM adversary to ROM adversary is (2q+ 1)2k. By applying a (slight variant
of) this quantitative version of Theorem 1 to a search-type game to find a pair-
wise distinct (x1, ..., xk) such that (H(x1), ...,H(xk)) ∈ R, we obtain Theorem
3.

1.3 Related Works

P versus BQP relative to a random oracle. As a related question to the
topic of this paper, Fortnow and Rogers [FR99] asked if we can separate com-
plexity classes P and BQP relative to a random oracle. Though Aaronson and
Ambainis [AA14] gave an evidence that it is difficult to separate (an average
case version of) P and BQP relative to a random oracle under a certain conjec-
ture, an unconditional proof is still open. We note that our separations between
ROM and QROM do not give any implication to the problem since we rely on
computational assumptions and consider an interactive protocol, which cannot
be captured as a decision problem.

Separation of ROM and QROM for Sampling. Aaronson [Aar10] showed
that there is a sampling problem (called Fourier Sampling) that can be solved by
1 quantum query to a random oracle but requires exponential number of classical
queries. We note that this does not give a separation of the ROM and QROM
in a cryptographic setting since a classical verifier cannot efficiently check that
the sample is taken according to the correct distribution.

Known Lifting Theorems. Though several works [BDF+11, Son14, ZYF+19,
KS20] give lifting theorems from ROM security to QROM security, they assume
certain conditions for security proofs in the ROM. On the other hand, our lifting
theorem for search-type games only requires syntactic conditions of schemes and
their security notions, and do not assume anything about security proofs in the
ROM. Our lifting theorem for digital signatures requires slightly more involved
conditions, but we believe that it is much easier to check them than to check
that a security proof in the ROM relies on a certain type of reductions.

Quantum Query Complexity. Beals et al. [BBC+01] showed that quantum
query complexity is polynomially related to classical query complexity for any
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total functions. Though this may seem closely related to our result on query
complexity, there are two significant differences. First, they consider a problem to
output a 1-bit predicate considering the oracle as an input, whereas we consider
a problem to find k inputs whose oracle values are in a certain relation. Second,
they consider the worst case complexity whereas we consider the average case
complexity. Due to the above two differences, these two results are incomparable.

Zhandry [Zha19, Theorem 3] also gave a general theorem that gives average
case quantum query lower bounds relative to a random oracle. Their theorem
gives tighter lower bounds than ours for some problems (e.g., collision finding).
On the other hand, we believe that ours is easier to apply and also more general
than theirs. For example, their theorem does not (at least directly) give mean-
ingful lower bounds for the generalized collision finding problems.

Concurrent Work. Subsequent to the posting of the initial version of this work
online , Zhang et al. [ZYF+19] updated their paper to add a construction of (an
interactive version of) PoQRO based on the QLWE assumption. Their construc-
tion is based on an ad hoc modification of Mahadev’s classical verification of
quantum computation protocol [Mah18], and completely different from ours.

2 Preliminaries

Notations. We use λ to mean the security parameter throughout the paper. For

a set X, |X| is the cardinality of X. We denote by x
$← X to mean that we take x

uniformly from X. For sets X and Y, Func(X ,Y) denotes the set of all functions
from X to Y. For a positive integer n, [n] means a set {1, ..., n}. We say that
a quantum (resp. classical) algorithm is efficient if that runs in quantum (resp.
classical) polynomial time. For a quantum or randomized classical algorithm A,

we denote y
$← A(x) to mean that A outputs y on input x, and denote y ∈ A(x)

to mean that y is in the support of A(x).

Oracles. In this paper, we consider the following three types of oracles: quantum
oracle, quantumly-accessible classical oracle, and classically-accessible classical
oracle.

A quantum oracle is an oracle that applies a unitary U on a query register. A
quantumly-accessible classical oracle is a special case of a quantum oracle where
U computes a classical function, i.e., there exists a classical function f such that
we have U |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 for any x and y in the domain and range of
f . By a standard technique, when f is a single-bit output function, we can im-
plement an oracle that applies a unitary U ′ such that U ′ |x〉 = (−1)f(x) |x〉 for
any x by a single call to an oracle that applies U as above. We call an oracle
that applies U ′ a phase oracle of f . A classically-accessible classical oracle works
similarly to a quantumly-accessible classical oracle except that it measures the
first register (the register to store x) in standard basis in each query. When we
just say that an oracle is a classical oracle, then that is quantumly-accessible
for any quantum algorithm and classically-accessible for any classical algorithm.
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For an oracle-aided quantum algorithm A and a classical function f , we often
denote by A|f〉 (resp. Af ) to mean that A is given a quantumly-accessible (resp.
classically-accessible) classical oracle that computes f .

Classical/Quantum Random Oracle Model. In the (classical) random ora-
cle model (ROM) [BR93], a random function H (of a certain domain and range)
is chosen at the beginning, and every party (including honest algorithms of a pro-
tocol whose security is analyzed and an adversary) can classically access H. In
other words, they are given a classically-accessible classical oracle that computes
H. The quantum random oracle model (QROM) [BDF+11] is defined similarly
except that the access to H can be quantum. In other words, a quantumly-
accessible classical oracle that computes H is available for the adversary.7 We
stress that the classical ROM can be considered even when we consider security
against quantum adversaries. We say that an algorithm in the QROM (resp.
ROM) is q-quantum-query (resp. q-classical-query) if it makes at most q queries
to its oracle.

By the following lemma, we can efficiently simulate a quantum random oracle
to a q-quantum-query algorithms by using 2q-wise independent hash function.8

Lemma 2 ([Zha12]). For any sets X and Y of classical strings and q-quantum-
query algorithm A, we have

Pr[A|H〉 = 1 : H
$← Func(X ,Y)] = Pr[A|H〉 = 1 : H

$← H2q]

where H2q is a family of 2q-wise independent hash functions from X to Y.

Learning with Errors. Roughly speaking, a learning with errors (LWE) [Reg09]
problem is a problem to solve a system of noisy linear equations. Regev [Reg09]
gave a quantum reduction from hardness of LWE to hardness of worst-case lat-
tice problems, and it has been conjectured that the LWE problem is hard to
solve in quantum polynomial time. We call the assumption that no quantum
polynomial time algorithm can solve the LWE problem QLWE assumption. We
omit a detailed definition and a concrete parameter choice for the LWE problem
since we use the QLWE assumption only as a building block for constructing gen-
eral primitives such as noisy trapdoor claw-free functions [BCM+18, BKVV20],
PKE [Reg09, PW08], and digital signatures [GPV08]. We refer to these works
for concrete parameter choices.

Cryptographic Primitives. We give definitions of digital signatures and PKE
and its security notions in the full version. They are mostly standard except
that we use n-EUF-CMA (resp. n-IND-CCA) security to mean security of digital
signatures (resp. PKE) against adversaries that make at most n signing (resp.
decryption) queries.

7 Since we consider the post-quantum setting where honest algorithms are classical,
the only party who may quantumly access H is the adversary.

8 Though Zhandry [Zha19] gives another method to simulate a quantum random oracle
without upper bounding the number of queries, we use a simulation by 2q-wise
independent hash functions for simplicity.
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3 Separation between ROM and QROM

In this section, we show examples of cryptographic schemes that are secure in
the ROM but insecure in the QROM.

3.1 Proof of Quantum Access to Random Oracle

First, we introduce a notion of proofs of quantum access to a random oracle
(PoQRO).

Definition 1. A (non-interactive) proof of quantum access to a random oracle
(PoQRO) consists of algorithms (PoQRO.Setup,PoQRO.Prove,PoQRO.Verify).

PoQRO.Setup(1λ): This is a classical algorithm that takes the security parameter
1λ as input and outputs a public key pk and a secret key sk.

PoQRO.Prove|H〉(pk): This is a quantum oracle-aided algorithm that takes a pub-
lic key pk as input and given a quantum access to a random oracle H, and
outputs a proof π.

PoQRO.VerifyH(sk, π): This is a classical algorithm that takes a secret key sk
and a proof π as input and given a classical access to a random oracle H,
and outputs > indicating acceptance or ⊥ indicating rejection.

We require PoQRO to satisfy the following properties.

Correctness. We have

Pr

[
PoQRO.VerifyH(sk, π) = ⊥ :

(pk, sk)
$← PoQRO.Setup(1λ),

π
$← PoQRO.Prove|H〉(pk)

]
≤ negl(λ).

Soundness. For any quantum polynomial-time adversary A that is given a clas-
sical oracle access to H, we have

Pr

[
PoQRO.VerifyH(sk, π) = > :

(pk, sk)
$← PoQRO.Setup(1λ),

π
$← AH(pk)

]
≤ negl(λ).

Definition 2 (Public Verifiability). We say that PoQRO is publicly verifiable
if we have pk = sk for any (pk, sk) in the support of PoQRO.Setup. When we
consider a publicly verifiable PoQRO, we omit sk from the output of the setup
algorithm and gives pk instead of sk to the verification algorithm for notational
simplicity.

PoQRO from QLWE. We observe that proofs of quantumness recently pro-
posed by Brakerski et al. [BKVV20] can also be seen as PoQRO. Specifically,
by just replacing “classical prover” with “quantum prover with classical access
to the random oracle”, their security proof directly works as a security proof of
PoQRO.

12



Theorem 4 (a variant of [BKVV20]). If the QLWE assumption holds, then
there exists a PoQRO.

Since the proof is essentially identical to that in [BKVV20], we give the proof in
the full version.

Publicly Verifiable PoQRO relative to Classical Oracle. Next, we give a
construction of a publicly verifiable PoQRO relative to a classical oracle based
on a variant of equivocal collision-resistant hash functions recently introduced
in [AGKZ20].

Theorem 5. There exists a publicly verifiable PoQRO relative to a quantumly-
accessible classical oracle that is independent of the random oracle.

Remark 1. One may think that we can upgrade any PoQRO to publicly verifi-
able one by just relativizing to a classical oracle in which sk is hardwired that
runs the verification algorithm. However, in such a construction, the classical
oracle depends on the random oracle, which we believe is not desirable. Espe-
cially, such a construction cannot be instantiated in the standard model even
assuming an ideal obfuscation since we do not know how to obfuscate a circuit
with random oracle gates. On the other hand, we consider a construction relative
to a classical oracle that does not depend on the random oracle, which enables
us to heuristically instantiate the construction in the standard model by using
an obfuscation.

For proving Theorem 5, we introduce a slightly stronger variant of equivocal
collision-resistant hash functions [AGKZ20].

Definition 3 (Equivocal Collision-Resistant Hash Functions for Gen-
eral Predicates). An equivocal collision-resistant hash function (ECRH) family
for general predicates with a domain X and a range Y is a tuple (ECRH.Setup,ECRH.Gen,
ECRH.Eval,ECRH.Equiv) of efficient algorithms with the following syntax:

ECRH.Setup(1λ): This is a probabilistic classical algorithm that takes the security
parameter 1λ as input and outputs a classical common reference string crs.

ECRH.Eval(crs, x): This is a deterministic classical algorithm that takes a com-
mon reference string crs and an input x ∈ X as input and outputs a hash
value y ∈ Y.

ECRH.Gen(crs): This is a quantum algorithm that takes a common reference
string crs as input, and outputs a hash value y ∈ Y and a quantum secret
key |sk〉.

ECRH.Equiv|p〉(1t, |sk〉 , b) This is a quantum algorithm that is given a quantumly-
accessible classical oracle that computes a function p : X → {0, 1} and an
“iteration parameter” 1t, a secret key |sk〉, and a bit b ∈ {0, 1} as input and
outputs x ∈ X .

13



As correctness, we require that for any p : X → {0, 1} and t ∈ N, if we have

Pr
x

$←X
[ECRH.Eval(crs, x) = y ∧ p(x) = b | ECRH.Eval(crs, x) = y] ≥ t−1,

for all crs ∈ ECRH.Setup(1λ), y ∈ Y, and b ∈ {0, 1}, then we have

Pr

ECRH.Eval(crs, x) = y
∧ p(x) = b

crs
$← ECRH.Setup(1λ),

(y, |sk〉) $← ECRH.Gen(crs),

x
$← ECRH.Equiv|p〉(1t, |sk〉 , b)

 = 1− negl(λ).

As security, we require that ECRH.Eval(crs, ·) is collision-resistant, i.e., for
any efficient quantum adversary A, we have

Pr

[
ECRH.Eval(crs, x) = ECRH.Eval(crs, x′)
∧ x 6= x′

:
crs

$← ECRH.Setup(1λ),

(x, x′)
$← A(crs)

]
= negl(λ).

The above definition is similar to that of a family of equivocal collision-
resistant hash functions in [AGKZ20], but stronger than that. The difference
is that the predicate p is specified by ECRH.Gen in the original definition (and
ECRH.Equiv is not given oracle access to p and the iteration parameter 1t since
they can be hardwired into the algorithm) whereas we require the correctness
for a general predicate p. They gave a construction of a family of equivocal
collision resistant hash functions w.r.t. a predicate p that just returns the first
bit of its input relative to a classical oracle. We observe that essentially the same
construction actually works for general predicates. Thus, we obtain the following
lemma.

Lemma 3. There exists a family of equivocal collision resistant hash functions
for general predicates with a domain {0, 1}2λ and a range {0, 1}λ relative to a
classical oracle that is independent of the random oracle. In the construction,
for any crs and y, we have∣∣x ∈ {0, 1}2λ : ECRH.Eval(crs, x) = y

∣∣ = 2λ.

A proof of the above lemma can be found in the full version.
We construct a publicly verifiable PoQRO based on ECRH for the random

oracle predicate.
Let (ECRH.Setup,ECRH.Gen,ECRH.Eval,ECRH.Equiv) be an ECRH for gen-

eral predicates as in Lemma 3. Let m = ω(log λ) be an integer. Let H :
{0, 1}2λ → {0, 1} and H ′ : {0, 1}2mλ → {0, 1}m be random oracles.9 Then
our publicly verifiable PoQRO is described as follows:

PoQRO.Setup(1λ): It generates crs
$← ECRH.Setup(1λ) and outputs pk := crs.

9 Two (quantum) random oracles can be implemented by a single (quantum) random
oracle by considering the first bit of the input as an index that specifies which random
oracle to access.
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PoQRO.Prove|H〉,|H
′〉(pk): It parses crs← pk, computes (yi, |ski〉)

$← ECRH.Gen(crs)

for all i ∈ [m], c := H ′(y1||...||ym), xi
$← ECRH.Equiv|H〉(13, |ski〉 , ci) for all

i ∈ [m] where ci denotes the i-th bit of c, and outputs π := {(xi, yi)}i∈[m].

PoQRO.VerifyH,H
′
(pk, π): It parses crs ← pk and {(xi, yi)}i∈[m] ← π and out-

puts > if and only if ECRH.Eval(crs, xi) = yi and H(xi) = ci hold for all
i ∈ [m].

Lemma 4. The above PoQRO satisfies correctness and soundness as required in
Definition 1. Moreover, the construction is relativizing, i.e., that works relative
to any oracles.

Proof. (sketch) For any crs and y, since we assume∣∣x ∈ {0, 1}2λ : ECRH.Eval(crs, x) = y
∣∣ = 2λ,

by the Chernoff bound, for an overwhelming fraction of H, we have

Pr
x

$←{0,1}2λ
[ECRH.Eval(crs, x) = y ∧ H(x) = b | ECRH.Eval(crs, x) = y] ≥ 1/3.

Therefore, the correctness of the underlying ECRH immediately implies correct-
ness of the above protocol.

Here, we only give a proof sketch for soundness. See the full version for a full
proof. Roughly speaking, soundness can be proven as follows: First, we observe
that the above protocol can be seen as a protocol obtained by applying Fiat-
Shamir transform to a 4-round protocol where c is chosen by the verifier after
receiving {yi}i∈[m] from the prover. As shown in [LZ19, DFMS19, DFM20], Fiat-
Shamir transform preserves soundness even in the quantum setting.10 Therefore,
it suffices to prove soundness of the 4-round protocol against a cheating prover
with classical access to the random oracle H. This can be argued as follows:
Let {yi}i∈[m] be the adversary’s second message. and {xi}i∈[m] be the fourth
message. Without loss of generality, we assume that the adversary queries xi for
all i ∈ [m] to the random oracle H and does not make the same query twice. By
the collision-resistance of ECRH, the only preimage of yi that is contained in
the adversary’s random oracle query list is xi for all i ∈ [m] with overwhelming
probability. Conditioned on this, the adversary can win only if H(xi) = ci holds
for all i ∈ [m], which happens with probability 2−m. Therefore, the adversary
can win with probability at most 2−m + negl(λ) = negl(λ).

Finally, we remark that the above reduction works relative to any oracles.

By combining Lemma 3 and 4, Theorem 5 follows.

10 Actually, since we only consider quantum adversaries that are only given classical
access to the random oracle, there is a simpler analysis than those in [LZ19, DFMS19,
DFM20] as shown in the full version.
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3.2 Separations for Digital Signatures

In this section, we construct digital signature schemes that are secure in the
ROM but insecure in the QROM based on PoQRO.

Lemma 5. If there exist a PoQRO and a digital signature scheme that is EUF-
CMA secure against quantum adversaries in the ROM, then there exists a digital
signature scheme that is EUF-CMA secure in the ROM but not 1-EUF-CMA
secure in the QROM.

Lemma 6. If there exist a publicly verifiable PoQRO and a digital signature
scheme that is EUF-CMA secure against quantum adversaries in the ROM, then
there exists a digital signature scheme that is EUF-CMA secure in the ROM but
not EUF-NMA secure in the QROM.

These lemmas can be easily proven by embedding a PoQRO into digital signature
schemes. See the full version for proofs.

By combining the above lemmas with Theorem 4 and 5 and the fact that
there exists a digital signature scheme that is EUF-CMA secure against quantum
adversaries in the ROM under the QLWE assumption [GPV08], we obtain the
following corollaries.

Corollary 1. If the QLWE assumption holds, then there exists a digital signa-
ture scheme that is EUF-CMA secure against quantum adversaries in the ROM
but not 1-EUF-CMA secure against quantum adversaries in the QROM.

Corollary 2. There exists a classical oracle relative to which there exists digital
signature scheme that is EUF-CMA secure against quantum adversaries in the
ROM but not EUF-NMA secure against quantum adversaries in the QROM.11

3.3 Separations for Public Key Encryption

In this section, we construct a PKE scheme schemes that are secure in the ROM
but insecure in the QROM based on PoQRO.

Lemma 7. If there exist a PoQRO and a PKE scheme that is IND-CCA secure
against quantum adversaries in the ROM, then there exists a PKE scheme that is
IND-CCA secure against quantum adversaries in the ROM but not 1-IND-CCA
secure in the QROM.

Lemma 8. If there exist a publicly verifiable PoQRO and a PKE scheme that is
IND-CCA secure against quantum adversaries in the ROM, then there exists a
PKE scheme that is IND-CCA secure against quantum adversaries in the ROM
but not IND-CPA secure in the QROM.

11 We do not need any computational assumption in this corollary since we can con-
struct a EUF-CMA secure digital signature scheme relative to a classical oracle in a
straightforward manner.
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These lemmas can be easily proven by embedding a PoQRO into PKE schemes.
See the full version for proofs.

By combining the above lemmas with Theorem 4 and 5 and the fact that
there exists an IND-CCA secure PKE scheme in the standard model (and thus
in the ROM) under the QLWE assumption [PW08], we obtain the following
corollaries.

Corollary 3. If the QLWE assumption holds, then there exists a PKE scheme
that is IND-CCA secure against quantum adversaries in the ROM but not 1-
IND-CCA secure in the QROM.

Corollary 4. There exists a classical oracle relative to which there exists a PKE
scheme that is IND-CCA secure against quantum adversaries in the ROM but
not IND-CPA secure in the QROM.12

4 Lifting Theorem

In this section, we prove a lifting theorem from ROM security to QROM secu-
rity for a certain type of security notions. Then we discuss applications of this
theorem.

4.1 Statement of Lifting Theorem

First, we define a concept of classically verifiable games. The following formal-
ization is based on the definition of falsifiable assumptions in [GW11].

Definition 4 (Classically verifiable games.). A classically verifiable game
consists of an interactive classical challenger CH that is given classical access
to a random oracle H and a constant c ∈ [0, 1). In the ROM (resp. QROM),
the challenger CH(1λ) interacts with an adversary AH(1λ) (resp. A|H〉(1λ)) and
finally outputs > indicating acceptance or ⊥ indicating rejection. If the challenger
returns >, we say that AH(1λ) (resp. A|H〉(1λ)) wins CH(1λ).

We say that a classically verifiable game is hard in the ROM (resp. QROM)
if for any efficient quantum13 adversary AH (resp. A|H〉) that is given a classical
(resp. quantum) access to the random oracle H, we have

Pr
H

[AH(1λ) wins CH(1λ)] ≤ c+ negl(λ)

(resp.Pr
H

[A|H〉(1λ) wins CH(1λ)] ≤ c+ negl(λ))

12 We do not need any computational assumption in this corollary since we can con-
struct an IND-CCA secure PKE scheme relative to a classical oracle in a straight-
forward manner.

13 Note that we consider quantum adversaries even in the classical ROM.
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where the probability is over the choice of the random oracle H, the random coins
of A and C, and the randomness in measurements by A.14

We say that a classically verifiable game is search-type if c = 0.

Remark 2. Though the above definition is based on the definition of falsifiable
assumptions in [GW11], the hardness of a classically verifiable game may not be
falsifiable since we allow the challenger to run in unbounded time.

Examples. Soundness of PoQRO can be seen as hardness of a search-type clas-
sically verifiable game in the ROM. On the other hand, completeness requires
(at least) that the game is not hard in the QROM. Therefore, the existence of
PoQRO implies 2-round search-type classically falsifiable cryptographic game
that is hard in ROM but is not hard in QROM.

EUF-CMA and EUF-NMA security of digital signatures in the ROM (resp.
QROM) require hardness of search-type classically falsifiable games in the ROM
(resp. QROM).

CPA and CCA security of PKE in the ROM (resp. QROM) require hardness
of classically falsifiable games in the ROM (resp. QROM), which are not search-
type.

Our main lifting theorem is stated as follows.

Theorem 6 (Lifting Theorem for Search-Type Games). Let C be an k-
classical-query challenger of a search-type classically verifiable game and A be a
q-quantum-query efficient adversary against the game in the QROM. Then there
exists a k-classical-query efficient adversary B against the game in the ROM
such that

Pr
H

[BH(1λ) wins CH(1λ)] ≥ 1

(2q + 1)2k
Pr
H

[A|H〉(1λ) wins CH(1λ)].

In particular, for any search-type classically verifiable game in which the
challenger makes at most O(1) queries, if the game is hard in the ROM, then
that is also hard in the QROM.

We also give a variant of the above theorem, which gives a slightly stronger
inequality assuming that C’s queries are publicly computable. Looking ahead,
this variant will be used in Sec. 4.5 where we give quantum query lower bounds.

Theorem 7 (Lifting Theorem for Public-Query Search-Type Games).
Let C and A be as in Theorem 6. Moreover, we assume that the game is public-
query, i.e., the list of C’s queries is determined by the transcript and computable

14 We only write H in the subscript of the probability since all the other randomness
are always in the probability space whenever we write a probability throughout this
section.
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in quantum polynomial-time. Then there exists a k-classical-query efficient ad-
versary B against the game in the ROM such that

Pr
H

[BH(1λ) wins CH(1λ) ∧ LB = LC ] ≥
1

(2q + 1)2k
Pr
H

[A|H〉(1λ) wins CH(1λ)].

where LB and LC are the list of random oracle queries by B and C, respectively.

4.2 Proof of Lifting Theorem

For proving Theorem 6 and 7, we introduce a lemma from [DFM20]. For stating
the lemma, we introduce some notations. Before giving formal definitions, we
give a rough explanations. For a quantumly-accessible classical oracle O, we
denote by O ← Reprogram(O, x, y) to mean that we reprogram O to output
y on input x. For a q-quantum-query algorithm A, function H : X → Y, and
y = (y1, ..., yk) ∈ Yk, we denote by Ã[H,y] to mean an algorithm that runs
A w.r.t. an oracle that computes H except that randomly chosen k queries are
measured and the oracle is reprogrammed to output yj on j-th measured query.
Formal definitions are given below:

Definition 5 (Reprogramming Oracle). Let A be a quantum algorithm with
quantumly-accessible oracle O that is initialized to be an oracle that computes
some classical function from X to Y. At some point in an execution of AO, we
say that we reprogram O to output y ∈ Y on x ∈ X if we update the oracle to
compute the function Hx,y defined by

Hx,y(x′) :=

{
y if x′ = x

H(x′) otherwise

where H is a function computed by O before the update. This updated oracle is
used in the rest of execution of A. We denote O ← Reprogram(O, x, y) to mean
the above reprogramming.

Definition 6 (Measure-and-Reprogram). Let X , Y, and Z be sets of clas-
sical strings and k be a positive integer. Let A be a q-quantum-query algorithm
that is given quantum oracle access to an oracle that computes a function from
X to Y and a (possibly quantum) input inp and outputs x ∈ X k and z ∈ Z.
For a function H : X → Y and y = (y1, ..., yk) ∈ Yk, we define a measure-and-
reprogram algorithm Ã[H,y] as follows:

Ã[H,y](inp): Given a (possibly quantum) input inp, it works as follows:
1. For each j ∈ [k], uniformly pick (ij , bj) ∈ ([q] × {0, 1}) ∪ {(⊥,⊥)} such

that there does not exist j 6= j′ such that ij = ij′ 6= ⊥.
2. Run AO(inp) where the oracle O is initialized to be a quantumly-accessible

classical oracle that computes H, and when A makes its i-th query, the
oracle is simulated as follows:
(a) If i = ij for some j ∈ [k], measure A’s query register to obtain x′j,

and do either of the following.
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i. If bj = 0, reprogram O ← Reprogram(O, x′j , yj) and answer A’s
ij-th query by using the reprogrammed oracle.

ii. If bj = 1, answer A’s ij-th query by using the oracle before the
reprogramming and then reprogram O ← Reprogram(O, x′j , yj).

(b) Otherwise, answer A’s i-th query by just using the oracle O without
any measurement or reprogramming.

3. Let (x = (x1, ..., xk), z) be A’s output.
4. For all j ∈ [k] such that ij = ⊥, set x′j := xj.
5. Output x′ := ((x′1, ..., x

′
k), z).

Then we state [DFM20, Theorem 6] with alternative notations as defined
above.

Lemma 9. (Rephrasing of [DFM20, Theorem 6]) Let X , Y, Z, and A be as in
Definition 6. Then for any inp, H : X → Y, x∗ = (x∗1, ..., x

∗
k) ∈ X k such that

x∗j 6= x∗j′ for all j 6= j′, y = (y1, ..., yk) ∈ Yk, and a relation R ⊆ X k × Yk × Z,
we have

Pr[x′ = x∗ ∧ (x′,y, z) ∈ R : (x′, z)
$← Ã[H,y](inp)]

≥ 1

(2q + 1)2k
Pr[x = x∗ ∧ (x,y, z) ∈ R : (x, z)

$← A|Hx∗,y〉(inp)].

where Ã[H,y] is the measure-and-reprogram algorithm as defined in Definition
6 and Hx∗,y is defined as

Hx∗,y(x′) :=

{
yj if ∃j ∈ [k] s.t. x′ = x∗j
H(x′) otherwise

.

We prove Theorem 6 by using Lemma 9.

Proof. (of Theorem 6.) We prove a slightly stronger claim than Theorem 6,
where we switch the order of the quantifiers of B and C. Specifically, we prove
that for any q-quantum-query efficient algorithm A, there exists an k-classical-
query efficient algorithm B such that for any k-classical-query challenger C, we
have

Pr
H

[BH(1λ) wins CH(1λ)] ≥ 1

(2q + 1)2k
Pr
H

[A|H〉(1λ) wins CH(1λ)]. (2)

For proving this claim, it suffices to prove it assuming C is deterministic since
the claim for probabilistic C immediately follows from that for deterministic C
by a simple averaging argument.15 Therefore, in the following, we assume that C
is deterministic. We also assume that C does not make the same query twice and
makes exactly k queries (by introducing dummy queries if necessary) without
loss of generality.

We construct B as follows:
15 Here, it is important that B does not depend on C due to the switching of the order

of quantifiers.
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BH(1λ): This is an algorithm that interacts with a challenger as follows:
1. Chooses a function H ′ : X → Y from a family of 2q-wise independent

hash functions.
2. For each j ∈ [k], uniformly pick (ij , bj) ∈ ([q]×{0, 1})∪{(⊥,⊥)} so that

there does not exist j 6= j′ such that ij = ij′ 6= ⊥.
3. Run AO(1λ) by forwarding all messages supposed to be sent to the chal-

lenger to the external challenger and forwarding all messages sent back
from the external challenger to A and simulating the oracle O as follows.
Initialize O to be a quantumly-accessible classical oracle that computes
H ′. When A makes its i-th query, the oracle is simulated as follows:
(a) If i = ij for some j ∈ [k], measure A’s query register to obtain x′j ,

query x′j to the random oracle H to obtain H(x′j), and do either of
the following.

i. If bj = 0, reprogram O ← Reprogram(O, x′j , H(x′j)) and answer
A’s ij-th query by using the reprogrammed oracle.

ii. If bj = 1, answerA’s ij-th query by using the oracle before the re-
programming and then reprogramO ← Reprogram(O, x′j , H(x′j)).

(b) Otherwise, answer A’s i-th query by just using the oracle O without
any measurement or reprogramming.

It is clear that B only makes k classical queries to H and is efficient if A is
efficient. We prove that B satisfies Eq. 2 for all k-classical-query challengers C.
Let X and Y be the domain and codomain of a random oracle that is used in
the game, and Z be a set consisting of all possible transcripts between A and
C. Here, a transcript means a concatenation of all messages exchanged between
A and C and does not contain query-response pairs of the oracle. We call the
concatenation of all query-response pairs for C and the transcript a C’s view. We
denote C’s view in the form of (x = (x1, ..., xk),y = (y1, ..., yk), z) ∈ X k×Yk×Z
where (xj , yj) is the j-th query-response pair for C and z is the transcript. Since
we assume that C is deterministic, a view determines if C accepts or rejects. Let
Rλ ⊆ X k×Yk×Z be a relation consisting of accepting view with respect to the
security parameter λ. More precisely, for (x = (x1, ..., xk),y = (y1, ..., yk), z) ∈
X k × Yk × Z, (x,y, z) ∈ Rλ if the following algorithm VerView returns > on
input (1λ,x,y, z).

VerView(1λ,x = (x1, ..., xk),y = (y1, ..., yk), z): Run C(1λ) by simulating all mes-
sages supposed to be sent from A and random oracle’s responses so that they
are consistent with the view (x,y, z). At some point in the simulation, if C’s
behavior is not consistent with the view (i.e., C sends a message that is not
consistent with the transcript z or its j-th query is not equal to xj), then
VerView returns ⊥. Otherwise, VerView outputs the final output of C.

We remark that VerView is deterministic as we assume C is deterministic and
thus the relation Rλ is well-defined.

For a function H : X → Y, we consider a quantum algorithm SH , in which
the function H is hardwired, that is given quantum access to an oracle that
computes another function H ′ : X → Y described as follows:
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S |H
′〉

H (1λ): Simulate an interaction between A and C by simulating oracles for
them as follows:

– A’s queries are just forwarded to the oracle |H ′〉 and responded as |H ′〉
responds.

– For C’s j-th query xj for j ∈ [k], the oracle returns H(xj).

Finally, it outputs C’s queries x := (x1, ..., xk) and the transcript z between
A and C in the above execution.

For any λ ∈ N, H,H ′ : X → Y, x∗ = (x∗1, ..., x
∗
k) ∈ X k such that x∗j 6= x∗j′ for all

j 6= j′, and y = (y1, ..., yk) ∈ Yk, by applying Lemma 9 for SH , we have

Pr[x′ = x∗ ∧ (x′,y, z) ∈ Rλ : (x′, z)
$← S̃H [H ′,y](1λ)]

≥ 1

(2q + 1)2k
Pr[x = x∗ ∧ (x,y, z) ∈ Rλ : (x, z)

$← S |H
′
x∗,y〉

H (1λ)].
(3)

where S̃H [H ′,y] is to SH as Ã[H ′,y] is to A as defined in Definition 6 and H ′x∗,y
is as defined in Lemma 9.

Especially, since the above inequality holds for any y, by setting y := H(x∗) =
(H(x∗1), ...,H(x∗k)), we have

Pr[x′ = x∗ ∧ (x′, H(x∗), z) ∈ Rλ : (x′, z)
$← S̃H [H ′, H(x∗)](1λ)]

≥ 1

(2q + 1)2k
Pr[x = x∗ ∧ (x, H(x∗), z) ∈ Rλ : (x, z)

$← S
|H′x∗,H(x∗)〉
H (1λ)].

(4)

Recall that S
|H′x∗,H(x∗)〉
H (1λ) is an algorithm that simulates an interaction be-

tween A and C where A’s oracle and C’s oracles are simulated by |H ′x∗,H(x∗)〉
and H, respectively, and outputs C’s queries x and the transcript z. Thus, con-

ditioned on that x = x∗, S
|H′x∗,H(x∗)〉
H (1λ) simulates an interaction between A

and C where both oracles of A and C compute the same function H ′x∗,H(x∗)

since we have H(x∗) = H ′x∗,H(x∗)(x
∗) by definition. Moreover, conditioned on

that x = x∗, (x, H(x∗), z) ∈ Rλ is equivalent to that A|H
′
x∗,H(x∗)〉(1λ) wins

CH
′
x∗,H(x∗)(1λ) in the execution simulated by S

|H′x∗,H(x∗)〉
H (1λ). Based on these

observations, we have

Pr[x = x∗ ∧ (x, H(x∗), z) ∈ Rλ : (x, z)
$← S
|H′x∗,H(x∗)〉
H (1λ)]

= Pr[x = x∗ ∧ A|H
′
x∗,H(x∗)〉(1λ) wins CH

′
x∗,H(x∗)(1λ)]

(5)

where x in the RHS is the list of queries made by C.
Moreover, if we uniformly choose H,H ′ : X → Y, then the distribution of

the function H ′x∗,H(x∗) is uniform over all functions from X to Y for any fixed
x∗. Therefore, by substituting Eq. 5 for the RHS of Eq. 4, taking the average
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over the random choice of H and H ′, and summing up over all x∗ ∈ X k, we have∑
x∗∈Xk

Pr
H,H′

[x′ = x∗ ∧ (x′, H(x∗), z) ∈ Rλ : (x′, z)
$← S̃H [H ′, H(x∗)](1λ)]

≥ 1

(2q + 1)2k
Pr
H

[A|H〉(1λ) wins CH(1λ)].

(6)

For proving Eq. 2 and completing the proof, what is left is to prove that the
LHS of Eq. 6 is smaller than or equal to the LHS of Eq. 2. For proving this, we
spell out how S̃H [H ′, H(x∗)] works according to the definition:

S̃H [H ′, H(x∗)](1λ): Given the security parameter 1λ as input, it works as fol-
lows:
1. For each j ∈ [k], uniformly pick (ij , bj) ∈ ([q]×{0, 1})∪{(⊥,⊥)} so that

there does not exist j 6= j′ such that ij = ij′ 6= ⊥.
2. Simulate the interaction between A and C by simulating oracles for them

as follows:
Initialize an oracle O to be a quantumly-accessible classical oracle that
computes H ′. When A makes its i-th query, the oracle is simulated as
follows:
(a) If i = ij for some j ∈ [k], measure A’s query register to obtain x′j ,

and do either of the following.
i. If bj = 0, reprogram O ← Reprogram(O, x′j , H(x∗j )) and answer
A’s ij-th query by using the reprogrammed oracle.

ii. If bj = 1, answerA’s ij-th query by using the oracle before the re-
programming and then reprogramO ← Reprogram(O, x′j , H(x∗j )).

(b) Otherwise, answer A’s i-th query by just using the oracle O without
any measurement or reprogramming.

When C makes its j-th query xj , return H(xj) as a response by the
random oracle for each j ∈ [k].
Let z be the transcript in the above simulated execution.

3. For all j ∈ [k] such that ij = ⊥, set x′j := xj .
4. Output x′ := ((x′1, ..., x

′
k), z).

One can see from the above description that an execution of the game simu-
lated by S̃H [H ′, H(x∗)](1λ) for a randomly chosen H ′ is very close to an interac-
tion between BH and CH . The only difference is that BH reprograms O to output
H(x′j) instead of H(x∗j ) on input x′j in Step 2a.16 Therefore, conditioned on that

x′ = x∗, S̃H [H ′, H(x∗)](1λ) for a randomly chosen H ′ perfectly simulates an
interaction between BH and CH . Moreover, if x′ = x∗ and (x′, H(x∗), z) ∈ Rλ,
then we must have x = x∗ where x is the list of C’s queries in the simulation
since otherwise the view (x′, H(x∗), z) is not consistent with C’s queries and
cannot pass VerfView. In this case, we have (x, H(x), z) ∈ Rλ, which means that

16 Strictly speaking, there is another difference that we consider S̃H [H ′, H(x∗)](1λ) for
a uniformly chosen H ′ whereas B chooses H ′ from a family of 2q-wise independent
hash functions. However, by Lemma 2, this does not cause any difference.
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BH wins CH in the simulated execution. Therefore, for any fixed H and x∗, we
have

Pr
H′

[x′ = x∗ ∧ (x′, H ′(x∗), z) ∈ Rλ : (x′, z)
$← S̃H [H ′, H(x∗)](1λ)]

≤Pr[x = x∗ ∧ BH(1λ) wins CH(1λ)]
(7)

where x in the RHS is the list of queries by CH .
By substituting Eq 7 for the LHS of Eq. 6, we obtain Eq. 2. This completes

the proof of Theorem 6.

Theorem 7 can be proven by a slight modification to the proof of Theorem
6.

Proof. (of Theorem 7.) We consider an algorithm B that works similarly to that
in the proof of Theorem 6 except that it does an additional step at the end:
BH(1λ): This is an algorithm that interacts with a challenger as follows:

1-3. Work similarly to B in the proof of Theorem 6.
4. After completing the interaction with C, compute the list of C’s query, and

if any query in the list has not yet been queried in the previous steps, then
query them to H.

We have Eq. 6 by exactly the same argument to that in the proof of Theorem
6 since we do not use anything about the construction of B until this point.
By the modification of B as described above, in the simulation of an interaction
between B and C by S̃H [H ′, H(x∗)](1λ), B’s query list exactly matches x′ that
appears in the description of S̃H [H ′, H(x∗)](1λ). With this observation in mind,
by a similar argument to that in the proof of Theorem 6, we can see that we
have

Pr
H′

[x′ = x∗ ∧ (x′, H ′(x∗), z) ∈ Rλ : (x′, z)
$← S̃H [H ′, H(x∗)](1λ)]

≤Pr[LB = LC = {x∗1, ..., x∗k} ∧ BH(1λ) wins CH(1λ)]
. (8)

By substituting Eq. 8 for the LHS of Eq. 6, we obtain

Pr
H

[BH(1λ) wins CH(1λ) ∧ LB = LC ] ≥
1

(2q + 1)2k
Pr
H

[A|H〉(1λ) wins CH(1λ)].

which completes the proof of Theorem 7.

4.3 Immediate Corollaries

Here, we list immediate corollaries of Theorem 6.

PoQRO. Soundness of PoQRO can be seen as hardness of a search-type classi-
cally verifiable game in the ROM. On the other hand, completeness requires (at
least) that the game is not hard in the QROM. By Theorem 6, such a separation
between ROM and QROM is impossible if the number of verifier’s query is O(1).
Therefore, we obtain the following corollary:
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Corollary 5. There does not exist PoQRO where the verification algorithm
makes a constant number of random oracle queries.

We note that a similar statement holds even for an interactive version of
PoQRO.

(Non-)Interactive Arguments. A post-quantum interactive argument for a
language L is a protocol where an efficient classical prover given a statement
x and some auxiliary information (e.g., witness in the case of L is an NP lan-
guage) and a efficient classical verifier only given x interacts and the verifier
finally returns > indicating acceptance or ⊥ indicating rejection. As correctness,
we require that the verifier returns > with overwhelming probability if both
parties run honestly. As (post-quantum) soundness, we require that any efficient
cheating prover cannot let the verifier accept on any x /∈ L with a non-negligible
probability.

Here, we consider constructions of interactive arguments based on random
oracles. Clearly, soundness requirement of interactive arguments is captured by
a search-type classically verifiable game. Therefore, by Theorem 6, we obtain
the following corollary:

Corollary 6. If an interactive argument with constant-query verifier is sound
in the ROM, then it is also sound in the QROM.

Non-interactive arguments (in the common reference string model) is defined
similarly except that a common reference string is generated by a trusted third
party and distributed to both the prover and the verifier at the beginning of the
protocol and then the protocol consists of only one-round communication, i.e.,
a prover just sends a proof to the verifier and verifies it. (Adaptive) soundness
of non-interactive arguments is defined similarly to soundness of interactive ar-
guments with the modification that the statement x /∈ L for which the cheating
prover tries to generate a forged proof can be chosen after seeing the common
reference string.

Similarly, by Theorem 6, we obtain the following corollary:17

Corollary 7. If a non-interactive argument is sound in the ROM with constant-
query verifier and constant-query common reference string generation algorithm
is sound in the ROM, then it is also sound in the QROM.

Digital Signatures. As already observed, EUF-CMA security can be seen as a
hardness of a search-type classically verifiable game. Therefore, as an immediate
corollary of Theorem 6, we obtain the following corollary.

Corollary 8. If a digital signature scheme is n-EUF-CMA secure in the ROM
for n = O(1) and the key generation, signing, and verification algorithms make
O(1) random oracle queries, then the scheme is also n-EUF-CMA secure in

17 Note that the theorem is applicable even though the soundness game for non-
interactive arguments is not falsifiable since the challenger in our definition of clas-
sically verifiable games is not computationally bounded.
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the QROM. If n = 0 (i.e., if we consider EUF-NMA security), then a similar
statement holds even if the signing algorithm makes arbitrarily many queries.

Unfortunately, we cannot extend this result to the ordinary EUF-CMA se-
curity where the number of signing query is unbounded (except for a non-
interesting case where the signing algorithm does not make a random oracle
query) since the challenger in the EUF-CMA game may make as many random
oracle queries as the adversary’s signing queries, which is not bounded by a con-
stant. In Sec. 4.4, we extend the above corollary to give a lifting theorem for
EUF-CMA security (without restricting the number of signing queries) assuming
a certain structure for the scheme.

4.4 Application to Digital Signatures

Here, we discuss implications of our lifting theorem for digital signatures.

Theorem 8. Suppose that a digital signature scheme (Sig.KeyGen,Sig.Sign,Sig.Verify)
with a message space M relative to a random oracle H : X → Y is EUF-NMA
secure against quantum adversaries in the ROM and satisfies the following prop-
erties:

1. Sig.KeyGen does not make a random oracle query and Sig.Verify makes O(1)
random oracle queries. (There is no restriction on the number of random
oracle queries by Sig.Sign.)

2. A random query made by Sig.Sign or Sig.Verify reveals the message given to
them as input. More precisely, there exists a classically efficiently computable
function XtoM : X →M such that for any H, honestly generated (vk, sigk),
m, and σ, if Sig.SignH(sk,m) or Sig.VerifyH(vk,m, σ) makes a random oracle
query x, then we have XtoM(x) = m.

3. A signature is simulatable without a signing key if we can (non-adaptively)
program the random oracle. More precisely, there exist a classically efficiently
computable function Fvk : R → Y tagged by a verification key vk and an
efficient classical algorithm S such that for any honestly generated (vk, sigk)
and m1, ...,m` for ` = poly(λ), we have{(

{H(x)}x∈X , {σi}i∈[`]
)

:
H

$← Func(X ,Y)

σi
$← Sig.SignH(sigk,mi) for all i ∈ [`]

}

≈

{(
{Fvk(H̃(x))}x∈X , {σi}i∈[`]

)
:
H̃

$← Func(X ,R)

{σi}i∈[`]
$← SH̃(vk,m)

}
.

where ≈ means that two distributions are statistically indistinguishable.

Then the scheme is EUF-CMA secure against quantum adversaries in the
QROM.

Examples. Though the requirements in the above theorem may seem quite re-
strictive, it captures at least two important constructions of digital signatures:
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FDH signatures (and its lattice-based variant by Gentry, Peikert, and Vaikun-
tanathan [GPV08]) and Fiat-Shamir signatures. See the full version for details.

Due to the lack of space, a proof of Theorem 8 is given in the full version.

4.5 Application to Quantum Query Lower Bounds

We use Theorem 7 to give a general theorem on quantum query lower bounds.
Specifically, we prove the following theorem.

Theorem 9. Let X and Y be sets, H : X → Y be a random function, k be a
positive integer, and R ⊆ Yk be a relation over Yk. Then for any q-quantum-
query algorithm A, we have

PrH [(H(x1), ...,H(xk)) ∈ R ∧ xj 6= xj′ for j 6= j′ : (x1, ..., xk)
$← A|H〉]

≤ (2q + 1)2k Pr[∃π ∈ Perm([k]) s.t. (yπ(1), ..., yπ(k)) ∈ R : (y1, ..., yk)
$← Yk]

where Perm([k]) denotes the set of all permutations over [k].

Proof. We consider a (non-interactive) public-query search-type game where an
adversary is given quantum access to a random oracle H and sends (x1, ..., xk) ∈
X k to the challenger and the challenger outputs> if and only if (H(x1), ...,H(xk)) ∈
R and (x1, ..., xk) is pair-wise distinct. The LHS of the inequality in Theorem
9 is the probability that A wins the game. By Theorem 7, there exists a k-
classical-query adversary B that wins the game while making exactly the same
queries as those made by the challenger with probability at least 1

(2q+1)2k
times

the probability that A wins. We observe that B makes exactly the same queries
as the challenger if and only if it just sends a permutation of its k queries
as the message (x1, ..., xk). In this case, B’s winning probability is at most

Pr[∃π ∈ Perm([k]) s.t. (yπ(1), ..., yπ(k)) ∈ R : (y1, ..., yk)
$← Yk] since the random

oracle values are uniformly and independently random over Y. By combining
the above, we obtain Theorem 9.

We can use Theorem 9 to give quantum query lower bounds for a variety of
problems with very simple proofs. See the full version for details.
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BDF+11. Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian
Schaffner, and Mark Zhandry. Random oracles in a quantum world. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume
7073 of LNCS, pages 41–69. Springer, Heidelberg, December 2011.
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