
Leakage Resilient Value Comparison With
Application to Message Authentication

Christoph Dobraunig1,2 and Bart Mennink3

1 Lamarr Security Research, Graz, Austria
2 Graz University of Technology, Graz, Austria

3 Radboud University, Nijmegen, The Netherlands
christoph.dobraunig@lamarr.at

b.mennink@cs.ru.nl

Abstract. Side-channel attacks are a threat to secrets stored on a de-
vice, especially if an adversary has physical access to the device. As an
effect of this, countermeasures against such attacks for cryptographic
algorithms are a well-researched topic. In this work, we deviate from
the study of cryptographic algorithms and instead focus on the side-
channel protection of a much more basic operation, the comparison of a
known attacker-controlled value with a secret one. Comparisons sensitive
to side-channel leakage occur in tag comparisons during the verification
of message authentication codes (MACs) or authenticated encryption,
but are typically omitted in security analyses. Besides, also comparisons
performed as part of fault countermeasures might be sensitive to side-
channel attacks. In this work, we present a formal analysis on comparing
values in a leakage resilient manner by utilizing cryptographic building
blocks that are typically part of an implementation anyway. Our results
indicate that there is no need to invest additional resources into imple-
menting a protected comparison operation itself if a sufficiently protected
implementation of a public cryptographic permutation, or a (tweakable)
block cipher, is already available. We complement our contribution by
applying our findings to the SuKS message authentication code used by
lightweight authenticated encryption scheme ISAP, and to the classical
Hash-then-PRF construction.

Keywords: leakage resilience · value comparison · tag verification

1 Introduction

Side-channel attacks have been introduced to the public in the late 1990s [38,
39]. Especially differential power analysis (DPA) [39] turned out to be a very
potent threat to implementations of cryptographic algorithms. A practical and
sound countermeasure against differential power analysis is masking [12,28], and
hence, a lot of research has been conducted in this direction bringing forward a
myriad of different masking schemes [13,14,30,35,46,47,51,55]. Since the cost of
masking is tied to the cryptographic primitive it protects, many newly designed

cryptographic primitives take protection against DPA into account and have
been designed to reduce the cost of masking [3, 10,15,17,21,27,29,31,52].

Later, a research direction called leakage resilient cryptography [7,22–26,32,
50, 54] emerged. In principle, leakage resilient cryptography leads to modes of
operation that take side-channel attacks into account and, thus, ease the invest-
ment on side-channel countermeasures on the primitive level (e.g., the protection
of the public cryptographic permutation or block cipher). For instance, research
in this direction lead to modes of operation that protect against (higher-order)
DPA without the need of applying (higher-order) masking [19, 20, 43, 44], or re-
strict the use of masking to a fraction of the building blocks [5,8,33,49]. However,
it is worth noting that leakage resilient modes can only solve part of the problem.
Thus, the protection of primitives against potent and skillful attackers that can
perform simple power analysis or template attacks is still crucial [37]. Neverthe-
less, leakage resilient schemes have been implemented on micro-controllers and
practical evaluation shows that protection against side-channel attacks can be
efficiently achieved in practice against a set of realistic adversaries [56].

An operation that is part of many cryptographic schemes, but also part of
some fault countermeasures, is the comparison of two values for equality. In cases
where this comparison is made between a value that an attacker should not know
with a known and potentially chosen value, side-channel countermeasures for this
comparison have to be in place.

Alternatively, one can perform the comparison using a cryptographic prim-
itive. During the last years, many authenticated encryption schemes have been
proposed that use a “perfectly” protected (tweakable) block cipher as the last
step before the tag output [5,7,8,33]. The advertised advantage of these schemes
is that in the case of verification, the inverse of the “perfectly” protected (tweak-
able) block cipher can be applied to the candidate tag T . Then, the comparison
of equality does not have to be done on the tag T directly but rather on an inter-
mediate value. Therefore, the correct value of the tag T ? is never computed and
cannot leak via side-channel attacks. Hence, the comparison operation itself does
not need any protection against side-channel attacks. An alternative avenue is to
use a public cryptographic permutation as, e.g., suggested in the ISAP v2.0 [19]
specification. This approach was believed to have comparable advantages, with
the added benefit that no key material needs to be protected.

Although various articles on this very topic appeared recently, culminating at
a CRYPTO 2020 article [6], these works typically see the leakage resilient value
comparison as integral part of a scheme or abstract the actual leakage resilience
of the final value comparison and assume that it is “sufficiently leakage resilient
secure.” A formal qualitative and quantitative analysis of leakage resilient value
comparison as a general method suitable for a wide range of applications is,
despite its practical relevance, lacking.

1.1 Formal View on Leakage Resilient Value Comparison

In this paper, we present a formal leakage resilience study of comparing a secret
value with a value chosen by an attacker, as would, e.g., typically happen during

2

verification of a tag. By considering the problem in isolation, it allows for a
neater model and cleaner bound, that compose properly with broader schemes
like authenticated encryption schemes or fault countermeasures.

In detail, the formal model considers a set of µ secretly computed target
values T1, . . . , Tµ, and an adversary that can guess values T ? for which value
comparison succeeds. To resolve the fact that unprotected implementations of
this comparison allow for DPA to recover any of the Tj ’s [6], we will incorporate a
value processing function and consider comparison of processed values. This value
processing function takes as additional input a salt Sj , tied to the target value
Tj , and is based on a cryptographic primitive. The adversary wins the security
game if it ever makes value comparison succeed, where it may be aided with side-
channel leakage coming from the value processing and value comparison. This
model captures the non-adaptive bounded leakage of the cryptographic functions
and the leakage of the value comparison, a non-adaptive leakage model, and
works in the standard model and ideal model dependent on the cryptographic
function in use. It is described in Section 3.

1.2 Two Practical Solutions

In Sections 4 and 5, we present two concrete solutions that tackle the protec-
tion of value comparison. The first construction, PVP (“permutation-based value
processing”) of Section 4, processes the tag T and user input T ? along with a
salt S using a cryptographic permutation to obtain an intermediate value U
and U?, upon which comparison is evaluated. The cryptographic permutation
can be a public permutation like Keccak-f [10] or a block cipher instantiated
with a secret key like AESK [18]. The construction with a public permutation is
inspired by the informal proposal of the designers of ISAP v2.0 [19] to perform
secure comparison. However, for PVP also the instantiation with a secret permu-
tation is relevant, noting that this variant is naturally of use in implementations
of schemes based on block ciphers that have an implementation of a heavily
protected block cipher anyway, such as [1, 36, 40–42]. The scheme achieves very
strong leakage resilience under the model defined in Section 3.

The second construction, TPVP (“tweakable permutation-based value pro-
cessing”) of Section 5, resembles much of PVP but is instantiated with a crypto-
graphic tweakable permutation, which could in turn be a tweakable block cipher
instantiated with a secret key like SKINNYK [2]. The construction is particu-
larly inspired by the idea to use a strongly protected tweakable block cipher for
value comparison, as suggested by Berti et al. [8]. This construction, although
different in nature from PVP, achieves comparable security.

These results are under the assumption that all target values T1, . . . , Tµ come
with a unique and distinct salt S1, . . . , Sµ. In Section 6 we discuss how the results
on PVP and TPVP extend if one takes random salts or no salts at all.

3

1.3 Application to Message Authentication

A particularly interesting application is message authentication and authenti-
cated encryption, after all the cradle of the problem that we tackle. In Section 7
we take a close look at how to apply the results from Sections 4 and 5 to message
authentication.

The first construction that we present is StP (“SuKS then PVP”), a con-
struction built as composition of the SuKS (“suffix keyed sponge”) message au-
thentication code [9, 20, 23] and the PVP value comparison function. In this
construction, the SuKS function outputs a tag, and one also takes a salt from
the internal computation of SuKS, and these values are fed to PVP for value
comparison. We demonstrate that, in fact, leakage resilience of StP follows from
the leakage resilient PRF security of SuKS and the leakage resilient value com-
parison security of PVP, provided that the two individual constructions are built
on independent cryptographic primitives. In other words, the functions compose
nicely and cheaply.

The second construction that we present is HaFuFu (“hash function func-
tion”), a hash-then-PRF message authentication code that uses the same PRF
for value comparison. As the message authentication code and the value com-
parison function use the same cryptographic primitive, black-box composition
is not an option. Instead, we prove direct security of HaFuFu, while still reusing
many aspects of the security analysis of the schemes from Sections 4 and 5.

1.4 Comparison of Proposed Solutions

Our solutions fall into two categories depending on whether or not the used
(tweakable) permutation is public or secret. In the case of public primitives, real-
world instances would typically be based on public cryptographic permutations
like Keccak-f [10], whereas for secret (tweakable) primitives, one would typically
resort to (tweakable) block ciphers like AES [18] or SKINNY [2].

The most significant difference between using a public cryptographic per-
mutation versus a (tweakable) block cipher is that the latter uses a secret key.
Hence, this key has to be protected against a side-channel adversary that can
freely choose inputs to this (tweakable) block cipher. As typical in this scenario,
we assume that the block cipher is then perfectly protected [5,7,8,33], meaning
that the secret key cannot be extracted using a side-channel attack.

In contrast, basing the value comparison on public cryptographic permuta-
tions does not require to protect an additional secret value in addition to the
candidate tag T . Hence, we do not require the assumption that the public cryp-
tographic permutation is perfectly protected.

2 Preliminaries

Throughout the entire work, the parameters k,m, n, c, r, s, t, u, p, q, ε, µ, λ, λ′ are
natural numbers. We denote by {0, 1}n the set of n-bit strings. By func(m,n) we

4

define the set of all functions from {0, 1}m to {0, 1}n, by perm(n) ⊆ func(n, n)
the set of permutations on {0, 1}n, and by perm(k, n) the set of families of 2k

permutations on {0, 1}n. We will write func(∗, n) for the set of all functions from
{0, 1}∗ to {0, 1}n.

For a finite set S, S
$←− S denotes the uniformly random drawing of an

element S from S. We will sometimes abuse the notation a bit for infinite sets,
as long as uniformly random sampling is possible. An example set is the family
of functions func(∗, n), for which uniformly random sampling can be simulated
by lazy sampling (for each new input to the function, a random string of length

n bits is generated). We denote by S
AC←− S the drawing of an element S from S

according to such a distribution that Pr (S = s) ≤ 2ε/|S| for any s ∈ S. Here,
ε is some fixed constant which is typically required to be � log2(|S|). Slightly

abusing notation, we denote by (S1, . . . , Sµ)
AC←− (S)µ the independent drawing

of µ values S1, . . . , Sµ such that Pr (Sj = s) ≤ 2ε/|S| for all j = 1, . . . , µ.

For a string S ∈ {0, 1}n, if m ≤ n, we denote by leftm(S) (resp., rightm(S))
the m leftmost (resp., rightmost) bits of S. For a predicate A, JAK equals 1 if A
is true and 0 otherwise.

2.1 Multicollision Limit Function

We will use the notion of a multicollision limit function of Daemen et al. [16].
Consider the experiment of throwing q balls uniformly at random in 2m bins,
and let µ denote the maximum number of balls in a single bin. We define the
multicollision limit function mlfqm,n as the smallest x ∈ N that satisfies

Pr (µ > x) ≤ x

2n
.

Daemen et al. [16] demonstrated that this function is of the following order of
magnitude:

mlfqm,n .

(m+ n)/ log2

(
2m

q

)
, for q . 2m ,

(m+ n) · q
2m

, for q & 2m .

In addition, if the balls are not thrown uniformly at random, but rather according
to a distribution D that prescribes that the probability P that the i-th ball ends
up in a certain bin satisfies

2n − (i− 1)

2m+n − (i− 1)
≤ P ≤ 2n

2m+n − (i− 1)
, (1)

the corresponding multicollision function, defined as mlfD,qm,n, satisfies mlfD,qm,n ≤
mlf2qm,n [16, Lemma 6].

5

2.2 Block Ciphers and Tweakable Block Ciphers

A block cipher E : {0, 1}k × {0, 1}n → {0, 1}n is a family of n-bit permutations
indexed by a key K ∈ {0, 1}k. Its security is typically measured by the PRP-
advantage. In detail, an adversary is given query access to either EK for random

and secret key K
$←− {0, 1}k, or to a random permutation P

$←− perm(n), and its
goal is to distinguish both worlds:

Advprp
E (A) =

∣∣∣Pr
(
K

$←− {0, 1}k : AEK = 1
)
−Pr

(
P

$←− perm(n) : AP = 1
)∣∣∣ .

Denoting by Advprp
E (q, τ) the maximum advantage over any adversary making

q construction queries and operating in time τ , the block cipher E is called
PRP-secure if Advprp

E (q, τ) is small.
A tweakable block cipher TE : {0, 1}k×{0, 1}r×{0, 1}n → {0, 1}n is a family

of n-bit permutations indexed by a key K ∈ {0, 1}k and a tweak R ∈ {0, 1}r. Its
security is typically measured by the TPRP-advantage. In detail, an adversary is

given query access to either TEK for random and secret key K
$←− {0, 1}k, or to

a family of random permutations TP
$←− perm(r, n), and its goal is to distinguish

both worlds:

Advtprp
TE (A) =∣∣∣Pr
(
K

$←− {0, 1}k : ATEK = 1
)
−Pr

(
TP

$←− perm(r, n) : ATP = 1
)∣∣∣ .

Denoting by Advtprp
TE (q, τ) the maximum advantage over any adversary making

q construction queries and operating in time τ , the block cipher TE is called
TPRP-secure if Advtprp

TE (q, τ) is small.

3 Security Model for Value Comparison

We will present a security model for leakage resilient value comparison. To do so,
we first describe how, perhaps pedantically, value comparison in the black-box
model can be modeled (Section 3.1). Then, we explain how value comparison in
a leaky model can be described in Section 3.2. The model of leakage resilient
value comparison is then given in Section 3.3.

3.1 Value Comparison in Black-Box Model

In a black-box setting, value comparison is trivial. If a tag T ? ∈ {0, 1}t must
be tested against a target value T ∈ {0, 1}t, one simply performs a comparison,
and outputs 1 if and only if the values are correct. We can capture this by the
following, trivial, value comparison function VC : {0, 1}t × {0, 1}t → {0, 1}:

VC(T, T ?) =
r
T

?
= T ?

z
. (2)

6

For the pure sake of understanding the model of leakage resilient value com-
parison in Section 3.3, it makes sense to formally define value comparison security
in the black-box model. The model is entirely trivial, but we write it in a slightly
more complex way to suit further discussion. This is done by considering an ad-
versary A that engages in the following game. Prior to the game, a list of µ target

values T = (T1, . . . , Tµ)
$←− ({0, 1}t)µ is randomly generated. The adversary has

query access to a value comparison oracle

OT : (j, T ?) 7→
r
Tj

?
= T ?

z
.

It wins if OT ever outputs 1:

Adv
vc[µ]
O (A) = Pr

(
T

$←− ({0, 1}t)µ : AOT wins
)
. (3)

For completeness, we can define by Adv
vc[µ]
O (q) the maximum advantage over

any adversary making q queries. To confirm that the model is entirely trivial:
if A has q guessing attempts, its success probability is at most q/2t. However,
as mentioned, it makes sense to describe this model as starter for the model of
leakage resilient value comparison in Section 3.3.

3.2 Value Comparison in Leaky Model

In a leaky setting, plain value comparison as in Section 3.1 is risky: performing
the comparison may potentially leak data [6]. In detail, an adversary can re-
peatedly perform verification attempts against a single target value Tj , and each
verification attempt might leak a certain number of bits of information about
Tj . In addition, leakage obtained in a verification attempt against one target
value Tj might be useful for a later verification against another target value Tj′ .
Besides securing (masking) the comparison itself, another method proposed to
counter such side-channel attacks is to pre-process tags with a cryptographic
value processing function, and compare the processed tags. This value processing
function is, in turn, based on a cryptographic function.

Let Π ∈ perm(r, n) be a cryptographic primitive. A value processing function
is a function VPΠ : {0, 1}s × {0, 1}t → {0, 1}u that gets as input a salt S, value
T , and processes it using cryptographic primitive Π to obtain a value U . Now,
the basic idea is to not perform value comparison on (T, T ?) directly (as in (2)),
but rather on the subtags:

VC(VPΠ(S, T),VPΠ(S, T ?)) =
r

VPΠ(S, T)
?
= VPΠ(S, T ?)

z
. (4)

Remark 1. Looking ahead, for r = 0, the cryptographic primitive Π might be
a public permutation that can in practice then be instantiated with a strong
permutation like Keccak-f [10], or it could be a secret permutation that could
for instance be instantiated with AESK [18] for a secret key. The difference is
subtle. In the former case, an adversary knows the permutation and can make

7

queries to it. In the latter case, the adversary cannot make primitive evaluations,
but this instantiation comes at the cost of the PRP-security of AES. In addition,
the implementation of AESK must then be strongly protected to prevent the key
from leaking. We will elaborate on this in Sections 4.2 and 4.3.

Likewise, if r > 0, the cryptographic primitive Π might be a public tweak-
able permutation (like keyless SKINNY) or a secret tweakable permutation that
could for instance be instantiated with SKINNY [2]. Also here, the same dif-
ferences between the two cases surface. We will elaborate on these two cases in
Sections 5.2 and 5.3.

Remark 2. Although our focus is on value processing functions instantiated with
a (public or secret) family of permutations, the definition and later security
models readily extend to instantiations with a different type of primitive, such
as an arbitrary function F ∈ func(r, n).

3.3 Security Model for Leakage Resilient Value Comparison

A straightforward generalization of the security model of Section 3.1 would be to

consider a random Π
$←− perm(r, n), a list of µ distinct salts S = (S1, . . . , Sµ) ⊆

{0, 1}s and a list of µ target values T = (T1, . . . , Tµ)
AC←− ({0, 1}t)µ, where we

recall that each of the µ values Tj has min-entropy of at least t− ε. This allows
us to model the information an attacker might get via side-channels during the
generation of the values Tj outside of our observation that just focuses on the
value comparison and the leakage occurring there. Furthermore, we consider an
adversary that has query access to a value comparison oracle

OVP,Π
S,T : (j, T ?) 7→

r
VPΠ(Sj , Tj)

?
= VPΠ(Sj , T

?)
z
. (5)

The adversary can learn the salts S. It a priori has bi-directional access to Π (if
Π is a secret permutation, the number of queries to Π is bounded to 0, below).

However, it is not as simple as that: we will consider value comparison se-
curity in case of leakage resilience. We will restrict our focus to non-adaptive
L-resilience of Dodis and Pietrzak [24], where the adversary receives leakage un-
der any leakage L ∈ L of the scheme under investigation. In our case, leakage
of secret data can occur in two occasions: evaluation of Π within the two eval-
uations of VPΠ, and the value comparison. Therefore, L consists of a Cartesian
product of two leakage sets.

Let LΠ = {LΠ : {0, 1}r×{0, 1}n×{0, 1}n → {0, 1}λ} be a fixed set of leakage
functions on the primitive Π within the value processing function VP, and let
LC = {LC : {0, 1}u×{0, 1}u → {0, 1}λ′} be a fixed set of leakage functions on the
value comparison function VC. All functions are independent of Π, i.e., they do
not internally evaluate Π or Π−1. Write L = LΠ × LC. For any leakage function

L = (LΠ, LC) ∈ L, define by
[
OVP,Π

S,T

]
L

an evaluation of OVP,Π
S,T of (5) that not only

8

returns the response of this function, but also leaks the following values:

LΠ (X,Y) ∈ {0, 1}λ
(
∀ Π-evaluation (X,Y) in VPΠ(Sj , Tj)

)
,

LΠ (X,Y) ∈ {0, 1}λ
(
∀ Π-evaluation (X,Y) in VPΠ(Sj , T

?)
)
,

LC

(
VPΠ(Sj , Tj),VPΠ(Sj , T

?)
)
∈ {0, 1}λ

′
.

The security model of Section 3.2 now extends as suggested in the beginning
of this section, but with A having access to the leaky variant of OVP,Π

S,T . In detail,
consider an adversary A that, for any given tuple of leakage functions L =
(LΠ, LC) ∈ L and any tuple of µ distinct salts S ⊆ {0, 1}s, has query access to[
OVP,Π

S,T

]
L

and bi-directional access to Π (bounded to 0 queries if Π is a secret

permutation). The adversary wins if
[
OVP,Π

S,T

]
L

ever outputs 1:

Adv
lr-vc[µ]

OVP (A) = max
L=(LΠ,LC)∈L

max
S⊆{0,1}s

Pr
(

Π
$←− perm(r, n) , T

AC←− ({0, 1}t)µ : A[OVP,Π
S,T]

L
,Π±(S) wins

)
. (6)

For completeness, we can define by Adv
lr-vc[µ]

OVP (q, p) the maximum advantage

over any adversary making q queries to
[
OVP,Π

S,T

]
L

and p bi-directional queries

to Π±. In the bigger picture, q refers to the number of verification queries an
adversary can make. In case the primitive Π is a secretly keyed primitive, one
restricts to p = 0.

4 Value Comparison Based on Permutation

Let P ∈ perm(n) be a permutation (for now, we will not yet limit ourselves
to secret or public permutation). Assume that log2(µ) ≤ s and s + t, u ≤ n.
Define the following, arguably most straightforward, permutation-based value
processing function PVPP : {0, 1}s × {0, 1}t → {0, 1}u:

PVPP(S, T) = leftu(P(S ‖ T ‖ 0n−s−t)) . (7)

Value verification then follows as in (4), using above value processing function
PVP (see also Figure 1):

PVC(PVPP(S, T),PVPP(S, T ?)) =
r

PVPP(S, T)
?
= PVPP(S, T ?)

z
. (8)

A general security bound of value comparison using PVP is given in Sec-
tion 4.1. Note that we did not put any stringent condition on s, t, u, and n yet:
all we need is that s + t, u ≤ n. Depending on whether P is a secret or public
permutation, an additional condition is needed. Both cases are rather different
in nature, in practical appearance, and in the security level that they achieve.
We elaborate on the case of secret permutation in Section 4.2, and on the case
of public permutation in Section 4.3.

9

P

s u

n−s−t n−u

S

0

t
T

U
?
= U?

V
P

s

n−s−t

t

u

n−u

S

0

T ?

V ?

Fig. 1: Depiction of leakage resilient value comparison using permutation.

4.1 Leakage Resilience of Value Comparison With PVP

We derive a general bound on the leakage resilience of value comparison using
PVP,

OPVP,P
S,T : (j, T ?) 7→

r
PVPP(Sj , Tj)

?
= PVPP(Sj , T

?)
z
, (9)

in the security definition of (6) against any adversary making q construction
queries and p primitive queries. We note that the bound is meaningless for certain
choices of n, s, t, u, q, p: in particular, if p > 0 (i.e., if we consider instantiation
using a public permutation), one requires t, u � n. The bound is nevertheless
derived in full generality, and will only be interpreted for the specific cases in
Sections 4.2 and 4.3.

Theorem 1. Assume that log2(µ) ≤ s and s + t, u ≤ n. For any adversary A
with construction complexity q and primitive complexity p,

Adv
lr-vc[µ]

OPVP (A) ≤ 2(q + p)

2min{t−ε−λ,u} − (µ+ q + p)

+
2mlf2µu,n−up

2n−max{t,u+λ} − (µ+ q + p)
+

mlf2µu,n−u
2n−u

.

Proof. Let L = (LP, LC) ∈ L be any two leakage functions and let S ⊆ {0, 1}s be

a list of q distinct salts. Let P
$←− perm(n) be a random permutation, and let T

AC←−
({0, 1}t)µ be a list of µ target values Tj , where each Tj has at least a min-entropy
of at least t− ε. For any j ∈ {1, . . . , µ}, define P(Sj‖Tj‖0n−s−t) = Uj‖Vj , where

Uj ∈ {0, 1}u and Vj ∈ {0, 1}n−u. By definition, we have Uj = PVPP(Sj , Tj).

Consider any adversary A that can make q queries (j, T ?) to OPVP,P
S,T of (9), and

p direct queries to P±. For each of the q construction queries, A also learns the
following values:

LP

(
Sj‖Tj‖0n−s−t, Uj‖Vj

)
∈ {0, 1}λ ,

LP

(
Sj‖T ?‖0n−s−t,P(Sj‖T ?‖0n−s−t)

)
∈ {0, 1}λ ,

LC

(
Uj ,PVPP(Sj , T

?)
)
∈ {0, 1}λ

′
.

Note that, as LP and LC are fixed, predetermined, functions, the adversary learns
at most λ bits of leakage on Tj , λ bits of leakage on Vj , and λ+qλ′ bits of leakage
on Uj , for any j ∈ {1, . . . , µ}.

10

The adversary wins if any of its q construction queries returns 1. However,
the probability for this to occur depends on “lucky” primitive queries. In detail,
if the adversary happens to make a primitive query of the form

(Sj ‖ ∗t ‖ 0n−s−t , Uj ‖ ∗n−u) ,

for any j ∈ {1, . . . , µ}, it can use this to make the construction oracle output 1
with probability 1. Therefore, we also say that the adversary wins if any of its p
primitive queries is of above form. Finally, it turns out that the adversary might
have a significantly increased success probability if there exists a multicollision
in {U1, . . . , Uµ}. We will also count that as a win for the adversary.

More detailed, write m = mlf2µu,n−u for brevity. We denote by bad the event
that there exist m + 1 distinct indices j1, . . . , jm+1 ∈ {1, . . . , µ} such that Uj1 =
· · · = Ujm+1 . In addition, for i ∈ {1, . . . , q+ p}, we denote by wini the event that
the i-th query is

– a construction query (j, T ?) that satisfies PVPP(Sj , T
?) = Uj , or

– a primitive query (X,Y) that satisfies lefts(X) = Sj , rightn−s−t(X) =
0n−s−t, and leftu(Y) = Uj for some j ∈ {1, . . . , µ}.

Write win =
∨q+p
i=1 wini. Our goal is to bound

Pr (win) ≤ Pr (win ∧ ¬bad) + Pr (bad)

= Pr

(
q+p∨
i=1

wini ∧ ¬bad

)
+ Pr (bad)

≤
q+p∑
i=1

Pr (wini ∧ ¬win1..i−1 ∧ ¬bad) + Pr (bad) , (10)

where win1..0 = false by definition.

Bound on Pr (wini ∧ ¬win1..i−1 ∧ ¬bad). Consider any i ∈ {1, . . . , q + p}, and
consider the i-th query. We will make a distinction between a construction query,
forward primitive query, and inverse primitive query.

– Construction query. Consider any construction query (j, T ?) to OPVP,P
S,T . If

there were an earlier primitive query of the form Sj‖T ?‖0n−s−t, then by
¬win1..i−1 its outcome is not of the form Uj‖∗n−u, and the oracle will not
output 1. Therefore, we can assume that this query has not been made
directly to P yet.
The oracle outputs 1 if:
• T ? = Tj . As the values Tj are randomly generated with a min-entropy

of at least t − ε, and as the adversary has so far learned at most λ bits
of leakage on Tj , this condition is set with probability at most 1/2t−ε−λ;
• T ? 6= Tj but PVPP(Sj , T

?) = Uj . As there was no earlier evaluation of
P(Sj‖T ?‖0n−s−t), the result will be randomly drawn from a set of size at
least 2n− (µ+ i−1) ≥ 2n− (µ+q+p) values, and at most 2n−u of these
satisfy PVPP(Sj , T

?) = Uj . Thus, the condition is set with probability
at most 2n−u/(2n − (µ+ q + p)).

11

Adding both cases, we get

Pr (wini ∧ ¬win1..i−1 ∧ i-th query to construction) ≤
2

2min{t−ε−λ,u} − (µ+ q + p)
; (11)

– Forward primitive query. Consider any forward primitive query (X,Y) to P.
Without loss of generality, X = Sj‖T ?‖0n−s−t for some j ∈ {1, . . . , µ} and
T ? ∈ {0, 1}t (otherwise, the query cannot set wini). Note that the value j is
unique as S is assumed to contain no collisions. We can also assume that
neither this query has been made to P yet, nor (j, T ?) has been queried to
the construction oracle before.
Now, the forward primitive query sets wini if T ? = Tj or if Y = Uj‖∗n−u,
and the analysis is identical to that of construction queries. We thus obtain

Pr (wini ∧ ¬win1..i−1 ∧ i-th query to forward primitive) ≤
2

2min{t−ε−λ,u} − (µ+ q + p)
; (12)

– Inverse primitive query. Consider any inverse primitive query (X,Y) to P.
We can assume that this query has not been made to P yet. At the point
of making this primitive query, the adversary has learned at most λ + qλ′

bits of information about all Uj ’s. We will be more generous, and assume
w.l.o.g. that any inverse query is of the form Uj‖V ? for some j ∈ {1, . . . , µ}
and V ? ∈ {0, 1}n−u. Note that the value j might not be unique as there
might be collisions in {U1, . . . , Uµ}. However, due to ¬bad, the largest size

of a multicollision is at most mlf2µu,n−u. Therefore, there are at most mlf2µu,n−u
possible values j.
The inverse primitive query sets wini if for any of these possible values j:
• V ? = Vj . As the adversary has so far learned at most λ bits of leakage

on Vj , this condition is set with probability at most 1/2n−u−λ;
• V ? 6= Vj but X = Sj‖T ?‖0n−s−t for some T ?. As there was no earlier

evaluation of P−1(Uj‖V ?), the result will be randomly drawn from a set
of size at least 2n − (µ + i − 1) ≥ 2n − (µ + q + p) values, and at most
2t of these satisfy lefts(X) = Sj and rightn−s−t(X) = 0n−s−t. Thus, the
condition is set with probability at most 2t/(2n − (µ+ q + p)).

Adding both cases, and summing over all ≤ mlf2µu,n−u possible value j, we
get

Pr (wini ∧ ¬win1..i−1 ∧ i-th query to inverse primitive) ≤
2mlf2µu,n−u

2n−max{t,u+λ} − (µ+ q + p)
. (13)

Bound on Pr (bad). The values Uj are all uniformly randomly drawn from a set
of size 2n − (j − 1) values, and they are truncated to take any value from a set

12

of 2u elements. The event is thus a balls-and-bins experiment in the notation
of Section 2.1 with µ balls randomly thrown into 2u bins, in such a way that
any of the bins contains more than mlf2µu,n−u balls. The distribution satisfies the
condition of (1). Therefore, we obtain that

Pr (bad) ≤
mlf2µu,n−u

2n−u
. (14)

Conclusion. The adversary makes q construction queries, each of which succeeds
with probability at most (11), and p primitive queries, each of which succeeds
with probability the maximum of (12) and (13). For simplicity, we do not max-
imize, but rather take the sum. Finally, we have to add (14). We thus obtain
from (10) that

Adv
lr-vc[µ]

OPVP (A) ≤ 2(q + p)

2min{t−ε−λ,u} − (µ+ q + p)

+
2mlf2µu,n−up

2n−max{t,u+λ} − (µ+ q + p)
+

mlf2µu,n−u
2n−u

.

The reasoning holds for any adversary making q construction queries and p
primitive queries, and this completes the proof. ut

4.2 PVP with Secret Permutation

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher. If E is PRP-secure (see
Section 2.2), one can instantiate the secret permutation P in the value processing
function PVPP using the block cipher with a secret key, and de facto consider

EVPEK (S, T) = leftu(EK(S ‖ T ‖ 0n−s−t)) . (15)

A value comparison via an inverse block cipher call is part of the constructions
proposed in [8].

The security bound of Theorem 1 carries over to EVP, with the following
four changes:

– The term Advprp
E (q, τ) is added (where q is exactly the number of queries

described in Theorem 1 and τ is an additional time complexity measure on
A);

– The function EK must be strongly protected, so that the function leaks no
information about its inputs and outputs;

– The number of primitive queries is bounded to p = 0;
– As the number of primitive queries is bounded to p = 0, the auxiliary bad

event bad has become obsolete, and hence the term mlf2µu,n−u/2
n−u disap-

pears.

More formally, we obtain the following corollary. Notably, the sole term with
2n−max{t,u} in the denominator disappeared, and we do not need to put any
condition on n−max{t, u}.

13

Corollary 1 (Value Comparison Using Block Cipher). Assume that
log2(µ) ≤ s and s + t, u ≤ n. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block
cipher that is perfectly protected. For any adversary A with construction com-
plexity q and operating in time τ ,

Adv
lr-vc[µ]

OEVP (A) ≤ 2q

2min{t−ε−λ,u} − (µ+ q)
+ Advprp

E (q, τ) .

4.3 PVP with Public Permutation

Assuming that P is a public permutation, the permutation-based value processing
function PVP of (7) is similar to the one proposed by the designers of NIST
Lightweight Cryptography candidate ISAP [19]. In this case, the adversary can
evaluate the public primitive, or in terms of Theorem 1: p > 0. This also means
that, for the last term of this theorem to be small, we require t, u � n. We
obtain the following corollary:

Corollary 2 (Value Comparison Using Permutation). Assume that
log2(µ) ≤ s ≤ n − t and t, u � n. Let P ∈ perm(n) be a permutation that
is assumed to be perfectly random. For any adversary A with construction com-
plexity q and primitive complexity p,

Adv
lr-vc[µ]

OPVP (A) ≤ 2(q + p)

2min{t−ε−λ,u} − (µ+ q + p)

+
2mlf2µu,n−up

2n−max{t,u+λ} − (µ+ q + p)
+

mlf2µu,n−u
2n−u

.

5 Value Comparison Based on Tweakable Permutation

Let TP ∈ perm(r, n) be a cryptographic family of permutations (for now, we
will not yet limit ourselves to families of secret or public permutations). Assume
that s ≤ r and t, u ≤ n. Define the following tweakable permutation-based value
processing function TPVPTP : {0, 1}s × {0, 1}t → {0, 1}u:

TPVPTP(S, T) = leftu(TP(S ‖ 0r−s, T ‖ 0n−t)) . (16)

Tag verification then follows as in (4), using above value processing function
TPVP (see also Figure 2):

TPVC(TPVPTP(S, T),TPVPTP(S, T ?)) =
r

TPVPTP(S, T)
?
= TPVPTP(S, T ?)

z
.

(17)

As before, we did not put any stringent condition on r, s, t, u, and n yet:
all we need is that s ≤ r and t, u ≤ n. Depending on whether TP is a family
of secret or public permutations, an additional condition is needed. A general
security bound of value comparison using TPVP is given in Section 5.1. We
elaborate on the case of families of secret permutations in Section 5.2, and on
the case of families of public permutations in Section 5.3.

14

TP

u

n−t n−u
0

t
T U

?
= U?

V
TP

n−t

tu

n−u
0

T ?

V ?

r

S‖0r−s
r

S‖0r−s

Fig. 2: Leakage resilient value comparison using a tweakable permutation.

5.1 Leakage Resilience of Value Comparison With TPVP

We derive a general bound on the leakage resilience of value comparison using
TPVP,

OTPVP,TP
S,T : (j, T ?) 7→

r
TPVPTP(Sj , Tj)

?
= TPVPTP(Sj , T

?)
z
, (18)

in the security definition of (6) against any adversary making q construction
queries and p primitive queries. We note that the bound is meaningless for certain
choices of n, r, s, t, u, q, p: in particular, if p > 0 (i.e., if we consider instantiation
using a public permutation), one requires t, u � n. The bound is nevertheless
derived in full generality, and will only be interpreted for the specific cases in
Sections 5.2 and 5.3.

Theorem 2. Assume that log2(µ) ≤ s ≤ r and t, u ≤ n. For any adversary A
with construction complexity q and primitive complexity p,

Adv
lr-vc[µ]

OTPVP (A) ≤ 2(q + p)

2min{t−ε−λ,u} − (µ+ q + p)
+

2p

2n−max{t,u+λ} − (µ+ q + p)
.

The proof is a direct simplification of the proof of Theorem 1. Most importantly,
as the salt Sj is processed by TP as tweak input in both forward and inverse
primitive queries, the adversary restricts itself to a unique choice of j (as salts are
assumed not to collide) and hence there is no need to bother about multicollisions
in {U1, . . . , Uµ}. This means that event bad, as well as its analysis, drops out.
A second change is in the analysis of the probability that an inverse primitive
queries sets wini: now we need that either “V ? = Vj” or “V ? 6= Vj but X =
T ?‖0n−t”. The resulting bound is identical to the one before, with the term
mlf2µu,n−u removed. A formal proof is included in the full version of the paper.

5.2 TPVP with Secret Tweakable Permutation

Let TE : {0, 1}k × {0, 1}r × {0, 1}n → {0, 1}n be a tweakable block cipher. If
TE is TPRP-secure (see Section 2.2), one can instantiate the secret tweakable

15

permutation TP in the value processing function TPVPTP using the block cipher
with a secret key, and de facto consider

TEVPTEK (S, T) = leftu(TEK(S ‖ 0r−s, T ‖ 0n−t)) . (19)

A variant of this using tweakable block ciphers is, in fact, proposed in NIST
Lightweight Cryptography candidate Spook [5].

Identical to the analysis in Section 4.2, the security bound of Theorem 2
carries over to TEVP, with the following three changes:

– The term Advtprp
TE (q, τ) is added (where q is exactly the number of queries

described in Theorem 2 and τ is an additional time complexity measure on
A);

– The function TEK must be strongly protected, so that the function leaks no
information about its inputs and outputs;

– The number of primitive queries is bounded to p = 0.

More formally, we obtain the following corollary, in analogy with Corollary 1.

Corollary 3 (Value Comparison Using Tweakable Block Cipher). As-
sume that log2(µ) ≤ s ≤ r and t, u ≤ n. Let E : {0, 1}k × {0, 1}r × {0, 1}n →
{0, 1}n be a tweakable block cipher that is perfectly protected. For any adversary
A with construction complexity q and operating in time τ ,

Adv
lr-vc[µ]

OTEVP (A) ≤ 2q

2min{t−ε−λ,u} − (µ+ q)
+ Advtprp

TE (q, τ) .

5.3 TPVP with Public Tweakable Permutation

If one takes a block cipher E : {0, 1}r × {0, 1}n → {0, 1}n (see Section 4.2 for
the definition) that does not only satisfy that its PRP-security is strong, but
that does not even have any inherent weaknesses and that can be modeled as
an ideal cipher, one can use this block cipher as tweakable permutation in the
TPVP construction. Just like in Section 4.3, the adversary can evaluate the public
primitive, or in terms of Theorem 2: p > 0. This also means that, for the last
term of this theorem to be small, we require t, u � n. We obtain the following
corollary:

Corollary 4 (Value Comparison Using Tweakable Permutation). As-
sume that log2(µ) ≤ s ≤ r and t, u � n. Let TP ∈ perm(r, n) be a family of
permutations that is assumed to be perfectly random. For any adversary A with
construction complexity q and primitive complexity p,

Adv
lr-vc[µ]

OTPVP (A) ≤ 2(q + p)

2min{t−ε−λ,u} − (µ+ q + p)
+

2p

2n−max{t,u+λ} − (µ+ q + p)
.

16

6 Freedom of Salts

In the security model of Section 3.3, the salts S ∈ ({0, 1}s)µ are unique and

paired to the values in T
AC←− ({0, 1}t)µ. This might require state and/or another

technique to obtain these salts. Nevertheless, it appears that this condition can
be released at almost no efficiency or security cost. In this section, we consider
various cases and inspect how the bounds of Theorem 1 and 2 deteriorate. First,
in Section 6.1 we consider the case of randomly generated salts. Then, in Sec-
tion 6.2, we discuss how the bounds change if the salts are omitted. Finally, we
briefly elaborate on the theoretical benefit of not disclosing salts to the adversary
in Section 6.3.

6.1 Random Salts

One can simply take uniformly random S
$←− ({0, 1}s)µ. This will induce an

additional term to the proof of Theorem 1. In detail, for the probability that the
i-th query is a forward primitive query and sets wini, we rely on the uniqueness
of the values Sj . (In fact, closer inspection shows that it suffices to rely on
uniqueness of the values Sj‖Tj , but the distribution of the Tj ’s might be a
bit odd and might not fit the modeling of multicollisions as per Section 2.1.)
This means that we need to expand the bad event bad to cover multicollisions

in S
$←− ({0, 1}s)µ, leading to an additional term mlfµs,t/2

t. Subsequently the
multiplication of p in the numerator of the first term of the bound of Theorem 1
by mlfµs,t. Here, when defining the multicollision event, we had some freedom to
choose the value of the denominator, which we set to t to match the denominator
in the first term of the bound. In total, the complete bound becomes:

2(q + mlfµs,tp)

2min{t−ε−λ,u} − (µ+ q + p)
+

2mlf2µu,n−up

2n−max{t,u+λ} − (µ+ q + p)
+

mlf2µu,n−u
2n−u

+
mlfµs,t

2t
.

(20)

We remark that the changes are obsolete if we consider a secret primitive, in
which case p = 0, and also the two last terms of above equation disappear (see
also the explanation before Corollary 1).

For the bound of TPVP, there was no bad event bad in the first place.
However, we must consider multicollisions in {S1‖T1, . . . , Sµ‖Tµ} as well as
in {S1‖U1, . . . , Sµ‖Uµ}. As before, subtleties arise in the distribution of the
Tj ’s as well as in the Uj ’s, and we will restrict our focus to multicollisions in

S
$←− ({0, 1}s)µ. This can be bound by mlfµs,t/2

t. The expanded bound becomes

2(q + mlfµs,tp)

2min{t−ε−λ,u} − (µ+ q + p)
+

2mlfµs,tp

2n−max{t,u+λ} − (µ+ q + p)
+

mlfµs,t
2t

.

6.2 Omission of Salt

In practice, it might not be that straightforward to pair salts with tags. However,
an option that is always available is to just use the same salt for every tag.

17

Compared to the random selection of salts in Section 6.1, we do not have a
strong bound on the largest multicollision on S. Instead, in the worst case we
have a single µ-collision. Hence, in contrast to Section 6.1, we do not need to
introduce an additional term mlfµs,t/2

t, since we cannot have more than a single
µ-collision on µ-values. Akin to (20), the complete bound for the PVP scenario
becomes:

2(q + µp)

2min{t−ε−λ,u} − (µ+ q + p)
+

2mlf2µu,n−up

2n−max{t,u+λ} − (µ+ q + p)
+

mlf2µu,n−u
2n−u

.

Since using a tweakable permutation with a single tweak/salt gives a single
permutation scenario we omit to spell out the TPVP case.

Furthermore, we note that the term 2µp
2min{t−λ,u}−(µ+q+p) that introduces a

birthday-like trade-off in the bound between number of tags µ and primitive
calls p stems from the ability of a side-channel adversary to recover all µ possible
Uj ’s. In absence of a side-channel adversary, the bound in the black-box model
omits this term. In particular, for fixed S and no leakage, we would allow the
adversary access to a oracle similar to (9):

OPVP,P
T : (j, T ?) 7→

r
PVPP(Tj)

?
= PVPP(T ?)

z
,

and the adversary wins if OPVP,P
T ever outputs 1:

Adv
pvc[µ]

OPVP,P
T

(A) = Pr
(

P
$←− perm(n) , T

$←− ({0, 1}t)µ : AO
PVP,P
T ,P± wins

)
.

For completeness, we can define by Adv
pvc[µ]

OPVP,P
T

(q, p) the maximum advantage over

any adversary making q queries to OPVP,P
T and p bi-directional queries to P±.

Proposition 1 (Saltless Value Comparison using Permutation in the
Black-Box Model). Assume that t, u� n. Let P ∈ perm(n) be a permutation
that is assumed to be perfectly random. For any adversary A with construction
complexity q and primitive complexity p,

Adv
pvc[µ]

OPVP,P
T

(A) ≤ 2q

2min{t,u} − q
.

Proof. Since we work in the black-box model, the only thing an adversary learns
from a failed verification query is that Tj 6= T . What an adversary learns from
a successful verification query does not matter, since the adversary has won
anyway. As a consequence, an adversary cannot detect matches of forward prim-
itive queries (∗t‖0n−t, U?‖∗n−u) with U? = Uj only if it already won. The same
counts for inverse primitive queries, hence the adversary does not profit from
calls to P.

The possibilities for an adversary to win on a single query to the construction
is to either guess the tag Tj correctly, or to be lucky that an incorrect guess still

18

leads to the same U . Summing over q construction queries and considering that
all Uj ’s are computed via a perfectly random permutation, we hence get:

Adv
pvc[µ]

OPVP,P
T

(A) ≤ 2q

2min{t,u} − q
.

The reasoning holds for any adversary making q construction queries and p
primitive queries, and this completes the proof. ut

6.3 Note on Disclosing Salts

We remark that the security model of Section 3.3 prescribes that A actually
obtains the salts. In practice, it might often be more practical to not disclose
them. This will, clearly, only improve security.

7 Application to Message Authentication

Our leakage resilient solutions have many applications. We already mentioned
some in Section 1. In this section, we will consider the application of our so-
lutions to message authentication. In Section 7.2, we consider a composition of
SuKS with PVP, dubbed StP. The composition is very powerful against leakage
resilience, even though it requires that the building blocks (SuKS and PVP) are
built from independent cryptographic permutations. The result has immediate
application to the ISAP authenticated encryption scheme [19, 20], that is cur-
rently in submission to the NIST Lightweight Cryptography competition. This
function uses SuKS for message authentication.

In Section 7.3, we go one step further, and stretch the analysis to a MAC con-
struction whose cryptographic primitive is related to that in value verification.
In detail, we present HaFuFu, a hash-then-PRF message authentication code
that uses the same PRF for value comparison, and prove that this construction
is a leakage resilient MAC function. The result can be relevant for many other
submissions to the NIST Lightweight Cryptography competition [48], given the
prevalence of the hash-then-PRF construction.

Both results are derived in a model for leakage resilient message authen-
tication plus value verification, that is described in Section 7.1. It is a slight
extension of the model of Section 3.3.

7.1 Security Model for Leakage Resilient MAC Plus Value
Comparison

We will describe the security model for leakage resilient message authentication
with integrated value comparison in generality, so as it is applicable to both StP
and HaFuFu.

Let Π ∈ prims be a cryptographic primitive or a set of cryptographic primi-
tives, taken from a set of primitives prims from which uniform sampling is possi-
ble. A message authentication code MACΠ : {0, 1}k × {0, 1}∗ → {0, 1}t takes as

19

input a key K and an arbitrarily-long message M , and uses the cryptographic
primitive Π to generate a tag T . Associated to MACΠ is a verification function
VFYΠ : {0, 1}k × {0, 1}∗ × {0, 1}t → {0, 1} that gets as input a key K, a mes-
sage M , and a tag T ?, and it outputs 1 if the tag belongs to the message and
0 otherwise. Whereas typical verification function do plain value comparison of
MACΠ

K(M) with T ?, in our case verification will include leakage resilient value
comparison. Before proceeding, we remark that the key input to MACΠ may be
optional: sometimes, Π is a secretly keyed primitive (like a secret permutation)
and the key would be implicit.

As before, we consider non-adaptive L-resilience [24], where the adversary
receives leakage under any leakage L ∈ L of the scheme under investigation. Any
cryptographic evaluation of secret material may leak information, and a proper
definition of L depends on the scheme and primitive under consideration. For
StP and HaFuFu, the set will thus be formalized as soon as we go on to prove
leakage resilience (in Sections 7.2.3 and 7.3.2, respectively). For any leakage

function L ∈ L, define by
[
MACΠ

K

]
L

an evaluation of MACΠ
K of (25) that not only

returns the response of this function, but also leaks secret material in consistency
with the evaluation of L (details for the two specific schemes will follow in the

corresponding sections). The function
[
VFYΠ

K

]
L

is defined analogously.

Leakage resilience of the MAC function now extends from the conventional
definition of unforgeability, but now with the adversary A having access to the
leaky oracles. In detail, let L ∈ L be any tuple of leakage functions. Consider

an adversary A that has query access to
[
MACΠ

K

]
L

and
[
VFYΠ

K

]
L
. It wins if[

VFYΠ
K

]
L

ever outputs 1 on input of a message/tag tuple that was not the result

of an earlier query to
[
MACΠ

K

]
L
:

Advlr-mac
MAC (A) = max

L∈L
Pr
(
K

$←− {0, 1}k , Π
$←− prims : A[MACΠ

K]
L
,[VFYΠ

K]
L wins

)
.

(21)

For completeness, we can define by Advlr-mac
MAC (q, v) the maximum advantage over

any adversary making q authentication queries to
[
MACΠ

K

]
L

and v verification

queries to
[
VFYΠ

K

]
L
.

7.2 StP: SuKS-then-PVP

7.2.1 Description of SuKS. Assume that c + r = n and k, s, t ≤ n. Let
P ∈ perm(n) be a cryptographic permutation and G : {0, 1}k ×{0, 1}s → {0, 1}s
be a keyed function. The suffix keyed sponge SuKS : {0, 1}k × {0, 1}∗ → {0, 1}t,
formalized by Dobraunig and Mennink [23], is depicted in Figure 3.

20

P

r

M1

c
0

M`

r

c

. . .

. . .

P

K

s

n−s

G
s

k

P

Q R W

P′

s u

n−s−t n−u

S

0

t
T

U
?
= U?

V
P′

s

n−s−t

t

u

n−u

S

0

T ?

V ?

s s

t

n−t

︸ ︷︷ ︸
SuKS

︸ ︷︷ ︸
PVP

Fig. 3: The SuKS-then-PVP construction StP. The message M is first injectively
padded into r-bit blocks M1 . . .M`.

Dobraunig and Mennink [23] proved that if P is a random permutation, G has
good uniformity and universality,4 then SuKS behaves like a random function.
In addition, if G is strongly protected and any evaluation of P only leaks λ bits
of data non-adaptively, SuKS still behaves like a random function.

The security model under consideration is PRF-security under non-adaptive
leakage (as in Section 3.3). Let LP = {LP : {0, 1}n × {0, 1}n → {0, 1}λ} be a
fixed set of leakage functions on the primitive P, and let LG = {LG : {0, 1}k ×
{0, 1}s × {0, 1}s → {0, 1}λ′} be a fixed set of leakage functions on the function
G. All functions are independent of P, i.e., they do not internally evaluate P or
P−1. Write L = LP × LG. For any leakage function L = (LP, LG) ∈ L, define

by
[
SuKSP

K

]
L

an evaluation of SuKSP
K of Figure 3 that not only returns the

response of this function, but also leaks the values LG(K, lefts(Q), lefts(R)) and
LP(R,W) (see Figure 3 for the values Q, R, and W). Then, non-adaptive leakage
resilient pseudorandom function (LR-PRF) security is defined as the maximum
advantage of any distinguisher to distinguish the following two worlds:

Advlr-prf
SuKS (A) =

∣∣∣Pr
(
K

$←− {0, 1}k , P
$←− perm(n) : A[SuKSP

K]
L
,SuKSP

K ,P = 1
)
−

Pr
(
K

$←− {0, 1}k , P
$←− perm(n) , F

$←− func(∗, t) : A[SuKSP
K]

L
,F,P = 1

)∣∣∣ .
Under this model, Dobraunig and Mennink proved the following result.

Proposition 2 (Leakage Resilience of SuKS [23, Theorem 3]). Assume
that c+ r = n and k, s, t ≤ n. Consider the SuKS construction of Figure 3 based

on random permutation P
$←− perm(n) and a function G : {0, 1}k × {0, 1}s →

{0, 1}s. Assume that G is strongly protected 2−δ-uniform and 2−ε-universal. For
any adversary A with construction complexity q ≥ 2 and primitive complexity

4 Uniformity means that the probability (over the drawing of K) that any fixed input
X maps to any fixed output Y is at most 2−δ. Universality means that the probability
(over the drawing of K) that any fixed distinct inputs X,X ′ map to the same value
is at most 2−ε.

21

p ≤ 2n−1,

Advlr-prf
SuKS (A) ≤ 2p2

2c
+

mlf
2(p−q)
s,n−s

2n−s
+

mlf
2(p−q)
n−s,s · p

2min{δ,ε}−mlf
2(p−q)
s,n−s λ

+
mlf2qt,n−t · p

2n−t−λ
.

One term that is important in this bound is
mlf

2(p−q)
s,n−s
2n−s . In the proof of SuKS,

the authors upper bound the maximum size of a multicollision on lefts(Q) by

mlf
2(p−q)
s,n−s . The fact that this bounding is already performed in the proof of SuKS

itself will become useful when we consider composition of SuKS with PVP.

7.2.2 Description of StP. Let P,P′ ∈ perm(n), and let MACP,P′ : {0, 1}k ×
{0, 1}∗ → {0, 1}t be the SuKS message authentication code:

MACP,P′

K (M) = SuKSP(K,M) = T . (22)

Verification VFYP,P′ : {0, 1}k×{0, 1}∗×{0, 1}t → {0, 1} now incorporates PVPP′ .
It takes S = lefts(Q) from the computation of SuKSP(K,M) (see Figure 3) as
salt, and is defined as follows:

VFYP,P′

K (M,T ?) =
r

leftu(P(S ‖ MACP,P′

K (M) ‖ 0n−s−t))
?
= leftu(P(S ‖ T ? ‖ 0n−s−t))

z
, (23)

where S = lefts(Q) is a function of M as specified in Figure 3.

7.2.3 Leakage Resilience of StP. We will prove security of StP, provided

that P,P′
$←− perm(n) are two random permutations.

In StP, leakage occurs on evaluations of P, G, P′, and in the value comparison.
Let LP = {LP : {0, 1}n × {0, 1}n → {0, 1}λ} be a fixed set of leakage functions
on the primitive P, and let LG = {LG : {0, 1}k × {0, 1}s × {0, 1}s → {0, 1}λ′}
be a fixed set of leakage functions on the function G. Let LP′ = {LP′ : {0, 1}n ×
{0, 1}n → {0, 1}λ} be a fixed set of leakage functions on the value processing
function P′, and let LC = {LC : {0, 1}u × {0, 1}u → {0, 1}λ′} be a fixed set of
leakage functions on the value comparison within VFY. All functions are inde-
pendent of P and P′. Write L = LP × LG × LP′ × LC. For any leakage function

L = (LP, LG, LP′ , LC) ∈ L, define by
[
MACP,P′

K

]
L

an evaluation of MACP,P′

K of (22)

that not only returns the response of this function, but also leaks the following
values:

LG(K, lefts(Q), lefts(R)) ∈ {0, 1}λ ,
LP(R,W) ∈ {0, 1}λ ,

where K,Q,R, and W are values related to the computation of MACP,P′

K (K,M),

as outlined in Figure 3. Similarly, define by
[
VFYP,P′

K

]
L

an evaluation of VFYP,P′

K

22

of (23) that not only returns the response of this function, but also leaks the
following values:

LG(K, lefts(Q), lefts(R)) ∈ {0, 1}λ ,
LP(R,W) ∈ {0, 1}λ ,

LP′
(
S‖T‖0n−s−t, U‖V

)
∈ {0, 1}λ ,

LP′
(
S‖T ?‖0n−s−t, U?‖V ?

)
∈ {0, 1}λ ,

LC (U,U?) ∈ {0, 1}λ
′
,

where K,Q,R,W, S, T, U, U?, V , and V ? are values related to the computation
of VFYP,P

K (M,T ?) as outlined in Figure 3.

We can now prove leakage resilience of StP in the security model of Sec-
tion 7.1.

Theorem 3. Assume that k, s+t, u ≤ n. Consider the StP construction based on

two random permutations P,P′
$←− perm(n) and a function G : {0, 1}k×{0, 1}s →

{0, 1}s. Assume that G is strongly protected 2−δ-uniform and 2−ε-universal. For
any adversary A with construction query q and verification complexity v, with
q + v ≥ 2, and primitive complexity p ≤ 2n−1,

Advlr-mac
StP (A) ≤ 2p2

2c
+

mlf
2(p−q)
s,n−s

2n−s
+

mlf
2(p−q)
n−s,s · p

2min{δ,ε}−mlf
2(p−q)
s,n−s λ

+
mlf

2(q+v)
t,n−t · p

2n−t−λ

+
2(v + mlf

2(p−q)
s,n−s p)

2min{t−2λ,u} − (2v + p)
+

2mlf2vu,n−up

2n−max{t,u+λ} − (2v + p)
+

mlf2vu,n−u
2n−u

.

Proof. Let L = (LP, LG, LP′ , LC) ∈ L be any four leakage functions, let K
$←−

{0, 1}k and P,P′
$←− perm(n). Consider any adversary A that aims to mount a

forgery against StPP,P′

K . It can make q construction queries, v verification queries,
and p primitive queries to both P and P′.

It is important to note that the functions SuKSP
K and PVPP′ are indepen-

dent primitives. In addition, SuKSP
K is a pseudorandom function under leakage.

Concretely, up to the bound of Proposition 2, each new evaluation of SuKSP
K

outputs a T that has min-entropy at least t − λ and is independent of earlier
evaluations of the construction, and associated with this value T is a value S
that is not secret but that has the property that if the construction is evaluated

q times, the maximum size of a multicollision is mlf
2(p−q)
s,n−s .

In fact, within StP, SuKSP
K gets evaluated up to q times for different inputs

and at most v additional times in new verification queries. Say that the number
of unique messages under which A queries SuKSP

K is q′. Then, we can replace

SuKSP
K by generating a list of random elements T = (T1, . . . , Tq′)

AC←− ({0, 1}t)q′

with ε = λ, and an arbitrary randomly generated list S = (S1, . . . , Sq′) of which

each element occurs at most mlf
2(p−q′)
s,n−s ≤ mlf

2(p−q)
s,n−s . This replacement comes at

23

the cost of

2p2

2c
+

mlf
2(p−q′)
s,n−s

2n−s
+

mlf
2(p−q′)
n−s,s · p

2min{δ,ε}−mlf
2(p−q′)
s,n−s λ

+
mlf2q

′

t,n−t · p
2n−t−λ

≤ 2p2

2c
+

mlf
2(p−q)
s,n−s

2n−s
+

mlf
2(p−q)
n−s,s · p

2min{δ,ε}−mlf
2(p−q)
s,n−s λ

+
mlf

2(q+v)
t,n−t · p

2n−t−λ
. (24)

Having made this replacement, one can then see that, as evaluations of
SuKSP

K are independent for different messages, only the elements in T and S
that are considered in the evaluation of PVPP are useful. Therefore, the game of
mounting a forgery against the resulting construction is equivalent to the game

of mounting an attack against the value comparison function PVPP′ in the model
of Section 3.3, where µ = v.

In summary, we have obtained that

Advlr-mac
StP (A) ≤ (24) + Adv

lr-vc[v]

OPVP (A) ,

for some adversary A′ with construction complexity v and primitive complexity

p, that operates in the game with salts that may repeat up to mlf
2(p−q)
s,n−s times.

We can take the bound of Theorem 1 with the p in the numerator of the first

term multiplied by mlf
2(p−q)
s,n−s (or, alternatively, take (20) with mlfvs,t replaced by

mlf
2(p−q)
s,n−s and with the last term dropped as it is already accounted for in the

bound of SuKSP
K), for µ = v, ε = λ, and q = v. ut

7.3 HaFuFu: MAC Plus Value Comparison With Same Primitive

7.3.1 Description of HaFuFu. We will describe the HaFuFu message au-
thentication with dependent value comparison. Given the non-triviality of the
problem, we consider a simpler scenario compared to the results of Section 4
and 5, namely one based on a random function (cf., Remark 2). In addition,
for simplicity we assume that s+ t = n (the analysis easily extends to the case
of s + t ≤ n) and t = u. Let H ∈ func(∗, n) be a cryptographic hash function,
and F ∈ func(n, t) a (secret) cryptographic function. As F is a secret primi-
tive, there is no key involved. Define the following message authentication code
MACH,F : {0, 1}∗ → {0, 1}t:

MACH,F(M) = F(H(M)) = T . (25)

The corresponding verification function VFYH,F : {0, 1}∗ × {0, 1}t → {0, 1} is
defined as follows:

VFYH,F(M,T ?) =
r

F(lefts(H(M))‖MACH,F(M))
?
= F(lefts(H(M))‖T ?)

z
, (26)

The function is depicted in Figure 4. The picture also includes definitions of
intermediate values R,S, T, U , and U?, that we will use when analyzing MAC
and VFY. Note that the name HaFuFu is derived from the verification oracle,
that operates in a Hash-then-Function-then-Function mode.

24

M H F
T

F F
s+t

t

∗
t t

lefts

S
s

U
?
= U? t t

T ?
S

s

s

R

Fig. 4: HaFuFu algorithms MAC and VFY of (25) and (26), respectively. H is a
cryptographic hash function and F a secret random permutation.

7.3.2 Leakage Resilience of HaFuFu. We will prove security of HaFuFu,

provided that H
$←− func(∗, n) is a random oracle, and F

$←− func(n, t) a secret
random function. In practice, one might consider instantiating H with any good
cryptographic hash function, and F by a strongly protected PRF, which can in
turn be built from a (tweakable) block cipher with n-bit block size, followed by
truncation [4, 11,34,45,53].

In HaFuFu, leakage occurs on evaluations of F and in the value comparison.
Let LF = {LF : {0, 1}n×{0, 1}t → {0, 1}λ} be a fixed set of leakage functions on
the value processing function F, and let LC = {LC : {0, 1}t × {0, 1}t → {0, 1}λ′}
be a fixed set of leakage functions on the value comparison within VFY. All
functions are independent of F itself, i.e., they do not internally evaluate F. Write

L = LF×LC. For any leakage function L = (LF, LC) ∈ L, define by
[
MACH,F

]
L

an

evaluation of MACH,F of (25) that not only returns the response of this function,
but also leaks the following value:

LF (R, T) ∈ {0, 1}λ ,

where R and T are values related to the computation of MACH,F(M), as outlined

in Figure 4. Similarly, define by
[
VFYH,F

]
L

an evaluation of VFYH,F of (26) that

not only returns the response of this function, but also leaks the following values:

LF (R, T) ∈ {0, 1}λ ,
LF (S‖T,U) ∈ {0, 1}λ ,

LF (S‖T ?, U?) ∈ {0, 1}λ ,

LC (U,U?) ∈ {0, 1}λ
′
,

where R,S, T, U , and U? are values related to the computation of VFYH,F(M,T ?)
as outlined in Figure 4.

We can now prove leakage resilience of HaFuFu in the security model of
Section 7.1.

Theorem 4. Assume that s + t = n. Consider the HaFuFu construction based
on a random oracle H

$←− func(∗, n) and a secret random function F
$←− func(n, t).

For any adversary A with construction query q and verification complexity v,

Advlr-mac
HaFuFu(A) ≤ 2q

2t−2λ
+

2
(
q+v
2

)
2n

.

25

Proof. Let L = (LF, LC) ∈ L be any two leakage functions, let H
$←− func(∗, n) be

a random oracle and F
$←− func(n, t) a random function. Consider any adversary

A that aims to mount a forgery against HaFuFuH,F. It can make q construction
queries and v verification queries. For each verification query VFYH,F(M,T ?), A
learns the following values:

LF (R, T) ∈ {0, 1}λ ,
LF (S‖T,U) ∈ {0, 1}λ ,

LF (S‖T ?, U?) ∈ {0, 1}λ ,

LC (U,U?) ∈ {0, 1}λ
′
.

Here, R,S, T, U , and U? are as described in Figure 4. Under the assumption that
outputs of H never collide, we can observe that these are the only functions that
leak information about R, T , and U for this message M . In other words, under
this assumption, leakages for different messages are independent. As LF and LC

are fixed, predetermined, functions, they adversary learns at most 2λ bits of
leakage on T and at most λ+ vλ′ bits of leakage on U , for any message M .

The adversary wins if any of its q construction queries returns 1. However, as
suggested above, we have to argue based on the non-existence of collisions in the
output of H, labeled R. In fact, it turns out that the adversary also has a gain
if there are collisions in the values S‖U . Therefore, we will count both types of
collisions as a win for the adversary.

More detailed, we denote by bad the event that there exist two queries to
MACH,F and VFYH,F that satisfy R = R′ or S‖U = S′‖U ′. For i ∈ {1, . . . , v},
we denote by wini the event that the i-th verification query succeeds. Write
win =

∨v
i=1 wini. Our goal is to bound

Pr (win) ≤ Pr (win ∧ ¬bad) + Pr (bad)

= Pr

(
v∨
i=1

wini ∧ ¬bad

)
+ Pr (bad)

≤
v∑
i=1

Pr (wini ∧ ¬win1..i−1 ∧ ¬bad) + Pr (bad) , (27)

where win1..0 = false by definition.

Bound on Pr (wini ∧ ¬win1..i−1 ∧ ¬bad). Consider any i ∈ {1, . . . , v}, and con-
sider the i-th query (M,T ?). By ¬bad, message M defines a unique R, so the
construction query is independent of all other construction queries that were not
made for the message M . The oracle outputs 1 if:

– T ? = T . As the adversary has so far learned at most 2λ bits of leakage on
T , this condition is set with probability at most 1/2t−2λ;

– T ? 6= T but F(S‖T ?) = U . Clearly, if there were an earlier message M ′ for
which S′ = S and T ′ = T ?, the equation F(S‖T ?) = U would contradict

26

with the assumption that there is no collision S‖U = S′‖U ′. Therefore,
necessarily, there was no earlier evaluation of F(S‖T ?), and the result will
be randomly drawn from a set of size at least 2t values. Thus, the condition
is set with probability at most 1/2t.

Adding both cases, we get

Pr (wini ∧ ¬win1..i−1) ≤ 2

2t−2λ
. (28)

Bound on Pr (bad). The hash function is invoked a total number of q+ v times,
and any pair of invocations has colliding R = R′ with probability 1/2n and
colliding S‖U = S′‖U ′ with probability s+ t. As we assumed that s+ t = n, we
obtain that

Pr (bad) ≤
2
(
q+v
2

)
2n

. (29)

Conclusion. The adversary makes q construction queries, each of which succeeds
with probability at most (28). Next, we have to add (29). We thus obtain from
(27) that

Advlr-mac
HaFuFu(A) ≤ 2q

2t−2λ
+

2
(
q+v
2

)
2n

.

The reasoning holds for any adversary making q construction queries and v
verification queries, and this completes the proof. ut

8 Conclusion

In this paper, we examined leakage resilient value comparison via cryptographic
building blocks. In short, we showed that is possible to perform value comparison
via cryptographic building blocks in a sound and leakage resilient way without
the need to protect the comparison operation at all. Hence, there is no strict need
in putting resources into the additional protection of the comparison operation.
Instead, implementers could choose an area/speed trade-off by just saving the
area needed to implement a protected verification operation in exchange for two
additional primitive executions during verification.

The probability that an adversary guesses the right value in q attempts for
just a plain tag comparison in the black box setting is q/2t. When comparing
this with the security bounds we get for value comparison via cryptographic
functions, we see that doing the comparison cryptographic functions give the
adversary a slightly bigger advantage in succeeding. The main reason for this is
that U and U? can have the same value although T and T ? might differ. We
consider this advantage to be negligible in most practical cases and value the
benefits in resistance against side-channel attacks more. However, in case this
additional advantage over a plain comparison is a concern, it is possible to lessen
it by increasing the size of U and U?.

27

Acknowledgements. This work has been supported in part by the Austrian
Science Fund (FWF): J 4277-N38, and the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No 681402).

References

1. Andreeva, E., Bogdanov, A., Datta, N., Luykx, A., Mennink, B., Nandi, M., Tis-
chhauser, E., Yasuda, K.: COLM v1. CAESAR, second choice for defense in depth
(2016)

2. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: CRYPTO. LNCS, vol. 9815, pp. 123–153. Springer (2016)

3. Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: CRAFT: lightweight tweak-
able block cipher with efficient protection against DFA attacks. IACR Trans. Sym-
metric Cryptol. 2019(1), 5–45 (2019)

4. Bellare, M., Impagliazzo, R.: A tool for obtaining tighter security analyses of pseu-
dorandom function based constructions, with applications to prp to prf conversion.
Cryptology ePrint Archive, Report 1999/024 (1999)

5. Bellizia, D., Berti, F., Bronchain, O., Cassiers, G., Duval, S., Guo, C., Leander,
G., Leurent, G., Levi, I., Momin, C., Pereira, O., Peters, T., Standaert, F.X.,
Udvarhelyi, B., Wiemer, F.: Spook: Sponge-based leakage-resistant authenticated
encryption with a masked tweakable block cipher. IACR Trans. Symmetric Cryptol.
2020, 295–349 (Jun 2020)

6. Bellizia, D., Bronchain, O., Cassiers, G., Grosso, V., Guo, C., Momin, C., Pereira,
O., Peters, T., Standaert, F.X.: Mode-level vs. implementation-level physical secu-
rity in symmetric cryptography - A practical guide through the leakage-resistance
jungle. In: CRYPTO. LNCS, vol. 12170, pp. 369–400. Springer (2020)

7. Berti, F., Guo, C., Pereira, O., Peters, T., Standaert, F.X.: Tedt, a leakage-
resist AEAD mode for high physical security applications. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2020(1), 256–320 (2020)

8. Berti, F., Pereira, O., Peters, T., Standaert, F.X.: On leakage-resilient authen-
ticated encryption with decryption leakages. IACR Trans. Symmetric Cryptol.
2017(3), 271–293 (2017)

9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponge func-
tions (January 2011)

10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference.
Submission to NIST (Round 3) (2011)

11. Bhattacharya, S., Nandi, M.: A note on the chi-square method: A tool for proving
cryptographic security. Cryptogr. Commun. 10(5), 935–957 (2018)

12. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: CRYPTO. LNCS, vol. 1666, pp. 398–412. Springer
(1999)

13. Daemen, J.: Changing of the guards: A simple and efficient method for achieving
uniformity in threshold sharing. In: CHES. LNCS, vol. 10529, pp. 137–153. Springer
(2017)

14. Daemen, J., Dobraunig, C., Eichlseder, M., Groß, H., Mendel, F., Primas, R.: Pro-
tecting against statistical ineffective fault attacks. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2020(3), 508–543 (2020)

28

15. Daemen, J., Hoffert, S., Van Assche, G., Van Keer, R.: The design of xoodoo and
xoofff. IACR Trans. Symmetric Cryptol. 2018(4), 1–38 (2018)

16. Daemen, J., Mennink, B., Van Assche, G.: Full-state keyed duplex with built-in
multi-user support. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT. LNCS, vol.
10625, pp. 606–637. Springer (2017)

17. Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: The NOEKEON block cipher
(2000), nessie Proposal

18. Daemen, J., Rijmen, V.: The Design of Rijndael - The Advanced Encryption Stan-
dard (AES). Information Security and Cryptography, Springer (2002)

19. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Mennink, B., Primas, R.,
Unterluggauer, T.: Isap v2.0. IACR Trans. Symmetric Cryptol. 2020(S1), 390–416
(2020)

20. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP
- towards side-channel secure authenticated encryption. IACR Trans. Symmetric
Cryptol. 2017(1), 80–105 (2017)

21. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submission
to NIST Lightweight Cryptography (2019)

22. Dobraunig, C., Mennink, B.: Leakage resilience of the duplex construction. In:
ASIACRYPT. LNCS, vol. 11923, pp. 225–255. Springer (2019)

23. Dobraunig, C., Mennink, B.: Security of the suffix keyed sponge. IACR Trans.
Symmetric Cryptol. 2019(4), 223–248 (2019)

24. Dodis, Y., Pietrzak, K.: Leakage-resilient pseudorandom functions and side-channel
attacks on feistel networks. In: CRYPTO. LNCS, vol. 6223, pp. 21–40. Springer
(2010)

25. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS. pp. 293–
302. IEEE Computer Society (2008)

26. Faust, S., Pietrzak, K., Schipper, J.: Practical leakage-resilient symmetric cryptog-
raphy. In: CHES. LNCS, vol. 7428, pp. 213–232. Springer (2012)

27. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.X.: Block ciphers that
are easier to mask: How far can we go? In: CHES. LNCS, vol. 8086, pp. 383–399.
Springer (2013)

28. Goubin, L., Patarin, J.: DES and differential power analysis (the “duplication”
method). In: CHES. LNCS, vol. 1717, pp. 158–172. Springer (1999)

29. Goudarzi, D., Jean, J., Kölbl, S., Peyrin, T., Rivain, M., Sasaki, Y., Sim, S.M.:
Pyjamask: Block cipher and authenticated encryption with highly efficient masked
implementation. IACR Trans. Symmetric Cryptol. 2020(S1), 31–59 (Jun 2020)

30. Groß, H., Mangard, S.: Reconciling d+1 masking in hardware and software. In:
CHES. LNCS, vol. 10529, pp. 115–136. Springer (2017)

31. Grosso, V., Leurent, G., Standaert, F.X., Varici, K.: Ls-designs: Bitslice encryption
for efficient masked software implementations. In: FSE. LNCS, vol. 8540, pp. 18–37.
Springer (2014)

32. Guo, C., Pereira, O., Peters, T., Standaert, F.X.: Towards low-energy leakage-
resistant authenticated encryption from the duplex sponge construction. IACR
Trans. Symmetric Cryptol. 2020(1), 6–42 (2020)

33. Guo, C., Standaert, F.X., Wang, W., Yu, Y.: Efficient side-channel secure message
authentication with better bounds. IACR Trans. Symmetric Cryptol. 2019(4), 23–
53 (2019)

34. Hall, C., Wagner, D.A., Kelsey, J., Schneier, B.: Building prfs from prps. In:
CRYPTO. LNCS, vol. 1462, pp. 370–389. Springer (1998)

35. Ishai, Y., Sahai, A., Wagner, D.A.: Private circuits: Securing hardware against
probing attacks. In: CRYPTO. LNCS, vol. 2729, pp. 463–481. Springer (2003)

29

36. Jean, J., Nikolić, I., Peyrin, T., Seurin, Y.: Deoxys v1.41. CAESAR, first choice
for defense in depth (2016)

37. Kannwischer, M.J., Pessl, P., Primas, R.: Single-trace attacks on keccak. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2020(3), 243–268 (2020)

38. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In: CRYPTO. LNCS, vol. 1109, pp. 104–113. Springer (1996)

39. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: CRYPTO. LNCS,
vol. 1666, pp. 388–397. Springer (1999)

40. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: FSE. LNCS, vol. 6733, pp. 306–327. Springer (2011)

41. Krovetz, T., Rogaway, P.: The OCB authenticated-encryption algorithm. RFC
7253, 1–19 (2014)

42. McGrew, D.A., Viega, J.: The security and performance of the galois/counter mode
(GCM) of operation. In: INDOCRYPT. LNCS, vol. 3348, pp. 343–355. Springer
(2004)

43. Medwed, M., Standaert, F.X., Joux, A.: Towards super-exponential side-channel
security with efficient leakage-resilient prfs. In: CHES. LNCS, vol. 7428, pp. 193–
212. Springer (2012)

44. Medwed, M., Standaert, F.X., Nikov, V., Feldhofer, M.: Unknown-input attacks
in the parallel setting: Improving the security of the CHES 2012 leakage-resilient
PRF. In: ASIACRYPT. LNCS, vol. 10031, pp. 602–623 (2016)

45. Mennink, B.: Linking Stam’s bounds with generalized truncation. In: CT-RSA.
LNCS, vol. 11405, pp. 313–329. Springer (2019)

46. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: ICICS. LNCS, vol. 4307, pp. 529–545. Springer
(2006)

47. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptology 24(2), 292–321 (2011)

48. NIST: Lightweight Cryptography (February 2019)
49. Pereira, O., Standaert, F.X., Vivek, S.: Leakage-resilient authentication and en-

cryption from symmetric cryptographic primitives. In: ACM CCS. pp. 96–108.
ACM (2015)

50. Pietrzak, K.: A leakage-resilient mode of operation. In: EUROCRYPT. LNCS, vol.
5479, pp. 462–482. Springer (2009)

51. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: CHES.
LNCS, vol. 6225, pp. 413–427. Springer (2010)

52. Simon, T., Batina, L., Daemen, J., Grosso, V., Massolino, P.M.C., Papagiannopou-
los, K., Regazzoni, F., Samwel, N.: Friet: An authenticated encryption scheme
with built-in fault detection. In: EUROCRYPT. LNCS, vol. 12105, pp. 581–611.
Springer (2020)

53. Stam, A.J.: Distance between sampling with and without replacement. Statistica
Neerlandica 32(2), 81–91 (1978)

54. Standaert, F.X., Pereira, O., Yu, Y.: Leakage-resilient symmetric cryptography
under empirically verifiable assumptions. In: CRYPTO. LNCS, vol. 8042, pp. 335–
352. Springer (2013)

55. Trichina, E.: Combinational logic design for AES subbyte transformation on
masked data. Cryptology ePrint Archive, Report 2003/236 (2003)

56. Unterstein, F., Schink, M., Schamberger, T., Tebelmann, L., Ilg, M., Heyszl, J.:
Retrofitting leakage resilient authenticated encryption to microcontrollers. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2020(4), 365–388 (2020)

30

	Leakage Resilient Value Comparison With Application to Message Authentication
	Introduction
	Formal View on Leakage Resilient Value Comparison
	Two Practical Solutions
	Application to Message Authentication
	Comparison of Proposed Solutions

	Preliminaries
	Multicollision Limit Function
	Block Ciphers and Tweakable Block Ciphers

	Security Model for Value Comparison
	Value Comparison in Black-Box Model
	Value Comparison in Leaky Model
	Security Model for Leakage Resilient Value Comparison

	Value Comparison Based on Permutation
	Leakage Resilience of Value Comparison With PVP
	PVP with Secret Permutation
	PVP with Public Permutation

	Value Comparison Based on Tweakable Permutation
	Leakage Resilience of Value Comparison With TPVP
	TPVP with Secret Tweakable Permutation
	TPVP with Public Tweakable Permutation

	Freedom of Salts
	Random Salts
	Omission of Salt
	Note on Disclosing Salts

	Application to Message Authentication
	Security Model for Leakage Resilient MAC Plus Value Comparison
	StP: SuKS-then-PVP
	HaFuFu: MAC Plus Value Comparison With Same Primitive

	Conclusion

