
Dynamic Ad Hoc Clock Synchronization

Christian Badertscher1? , Peter Gaži1, Aggelos Kiayias1,2??, Alexander
Russell1,3? ? ? , and Vassilis Zikas4†

1 IOHK – firstname.lastname@iohk.io
2 University of Edinburgh – aggelos.kiayias@ed.ac.uk

3 University of Connecticut – acr@cse.uconn.edu
4 Purdue University – vzikas@cs.purdue.edu

Abstract. Clock synchronization allows parties to establish a common
notion of global time by leveraging a weaker synchrony assumption, i.e., lo-
cal clocks with approximately the same speed. Despite intensive investiga-
tion of the problem in the fault-tolerant distributed computing literature,
existing solutions do not apply to settings where participation is unknown,
e.g., the ad hoc model of Beimel et al. [EUROCRYPT 17], or is dynami-
cally shifting over time, e.g., the fluctuating/sleepy/dynamic-availability
models of Garay et al. [CRYPTO 17], Pass and Shi [ASIACRYPT 17]
and Badertscher et al. [CCS 18].
We show how to apply and extend ideas from the blockchain literature
to devise synchronizers that work in such dynamic ad hoc settings and
tolerate corrupted minorities under the standard assumption that local
clocks advance at approximately the same speed. We discuss both the
setting of honest-majority hashing power and that of a PKI with honest
majority. Our main result is a synchronizer that is directly integrated
with a new proof-of-stake (PoS) blockchain protocol, Ouroboros Chronos,
which we construct and prove secure; to our knowledge, this is the first
PoS blockchain protocol to rely only on local clocks, while tolerating worst-
case corruption and dynamically fluctuating participation. We believe
that this result might be of independent interest.

1 Introduction

Global clock synchronization [13,24,19] allows a set of mutually distrustful parties
to approximate a global notion of “time,” in such a manner that if some party
believes that the global time is t then every party believes it to be t± ε for some
small ε > 0. This allows for an (approximately) synchronous (or partially syn-
chronous) execution of distributed protocols which has placed the study of such

? Work done while the author was at the University of Edinburgh, Scotland.
?? Research partly supported by EU Project No. 780477, PRIVILEDGE.

? ? ? This material is based upon work supported by the National Science Foundation
under Grant No. 1717432.

† Work done in part while the author was at the University of Edinburgh and while
visiting the Simons Institute for the Theory of Computing, UC Berkeley. Work
supported in part by IOHK.

https://orcid.org/0000-0002-1353-1922
https://orcid.org/0000-0002-8228-6238

synchronizers at a prominent position in theoretical computer science research. A
number of works investigated feasibility across the spectrum of security/adversary
models—from perfect to computational security and for different types of network
synchronization assumptions [13,24,19,15,14,2,33,25,28,32]. We defer a full de-
scription of the current landscape of feasibility to the full version of this work [4]
due to space constraints. The common assumption of such synchronizers is that
the (honest) parties have local (initially desynchronized) clocks which advance at
(roughly) the same speed.

Notwithstanding, existing synchronization techniques rely on accurate knowl-
edge of the total number of parties present in the system and smart counting
of received messages (or message chains). Consequently these techniques are
inapplicable in the ad hoc secure multi-party computation setting of Beimel et
al. [6], where the universe of parties is known but not all parties participate in
the protocol and the identities of those that do participate are not known to the
other parties. As discussed in [6], what makes this model challenging is the fact
that it aims for non-interactive secure computation in the private simultaneous
message (PSM) model [16,20]. Indeed, if one allows multiple rounds of interaction,
then the parties assumed to be online can try to figure out the active identities,
taking the problem’s difficulty away.

In this work we study a synchronization challenge which arises in the dynamic
variant of the ad hoc model, where not only the parties do not know who is
actually playing the protocol, but the set of active participants might change
in every round (this change is further allowed to be under adversarial control).
This is not only a natural extension of [6] but is also motivated by real-world
considerations in the blockchain setting. Indeed, the sleepy model of consensus
proposed by Pass and Shi [31]—and later generalized in the UC setting [8,9] by
Badertscher et al. [3] under the term dynamic availability—puts forth such a
dynamic ad hoc model for capturing participation fluctuation in distributed ledger
protocols. In a nutshell, these works allow for parties to (re)join the protocol at
any time and to temporarily sleep—i.e., drop out of (certain processes of) the
protocol —according to an arbitrary (or even adversarial) sleep pattern.

This dynamic ad hoc setting limits the power of existing synchronization
techniques, since the lack of agreement of participation patterns makes counting
ineffective for taking consistent decisions. The lack of such synchronization makes
any distributed cryptography primitive [1] in this dynamic ad hoc setting reliant
on a (possible imperfect) global notion of time. In fact, even the formal crypto-
graphic analyses of proof-of-work (PoW) and proof-of-stake (PoS) blockchains
have typically assumed a (partially) synchronous model with a notion of global
time. For instance, standard references for the proven security of Bitcoin [17,18,29]
implicitly use the fact that they can refer to a global round index in order to
prove the desired properties of the protocol. Indeed, the common-prefix property
is defined to require that if an honest party holds a chain at round ρ, then
the prefix of this chain—obtained by removing the k most recent blocks—will
eventually become prefix of the chain of any honest party (at some round ρ′ ≥ ρ).
The assumption was made explicit in [5] by assuming a global clock in the global

2

UC setting [9]: this permits every party to query a common clock on demand
and from that deduce the current round. A similar approach, assuming access to
a global clock, was also adopted in the constructions of PoS blockchains, such as
Sleepy Consensus [31], Snow White [11], and Ouroboros [23,12,3].

The natural question that we address in this work is the following: Is global
clock synchronization from standard assumptions possible in the dynamic ad
hoc setting? By “standard assumptions” in the above question we mean the
common assumptions underlying traditional synchronizers—that is, local (initially
desynchronized) clocks which advance at (roughly) the same speed and an honest
majority of parties.5 —along with standard cryptographic assumptions such as a
public-key infrastructure (PKI) and existentially unforgeable digital signatures.

As discussed above, counting arguments of the sort used in classical syn-
chronizers does not seem to help. Therefore, to answer this question we turn to
techniques from the cryptographic literature on blockchain ledgers, which has
already come a long way in addressing other security challenges that the dynamic
ad hoc model creates. In fact, it is not hard to verify that in a resource-restricted
scenario, such as the one created by assuming honest majority of hashing power,
the above question can be answered by relying on a simplified version of the
Bitcoin backbone protocol [17]. In particular, one can observe that the description
of the Bitcoin blockchain (without difficulty recalibration) can rely on a purely
execution-driven notion of time and explicit knowledge of current global time is
not required. In the static difficulty setting, proving security in this way follows
immediately from [17,29]. As a result, a synchronizer can be trivially inferred by
defining the clock to be the current blockchain length in each party’s local state.

The above observation is a good indication that blockchain techniques can
help answering our question, but it unfortunately does not provide a satisfying
answer, as it relies on a non-standard—from the perspective of synchronizers
and/or general multi-party computation (MPC) literature—assumption, i.e., that
the honest parties control the majority of the computing power per unit of time.
To avoid such non-standard assumptions we turn to proof of stake (PoS). Here,
an execution-driven notion of time similar to the aforementioned notion achieved
by Bitcoin without difficulty recalibration can actually be achieved by certain
PoS-based iterated-Byzantine Fault Tolerant (iBFT) ledger protocols such as
Algorand [10]. Indeed, given access to the genesis block (which can be seen as an
initial PKI) a party can use the index (sequence number) of the current block
as global time. This suggests the following as a solution to our synchronization
problem: The assumed PKI—which in the ad hoc model would include the keys
of all parties, active or not—is interpreted as a genesis block where every key
is associated with a unit of stake. Then a simplified version of the Algorand
ledger protocol is executed, i.e., without any stake shift and where the contents
of the blocks are independent messages, in particular they are not interpreted as
transactions of any kind. Whenever a party becomes active in the computation,

5 In the static ad hoc setting [6], this assumption becomes honest majority of active
parties; and in the dynamic, it would be honest majority among the parties that are
actively participating in any given round.

3

he uses the length of the blockchain as his global time. If a (2/3 + ε)-majority of
active parties is honest (for some constant ε > 0), it follows that in the above
execution of simplified-Algorand, a (2/3 + ε)-majority of the (implicit) stake
must be in honest hands and therefore security follows by the security proof of
Algorand. It is not hard to verify that the protocol yields a good synchronizer,
where, not surprisingly, the network delay lower-bounds the maximum skew of
synchronized parties’ clocks. However, the above solution works only under a
concession which severely limits the nature of the dynamic ad hoc model. We
need to demand explicit participation thresholds that are part of the protocol
logic. Stated differently, each protocol participant at any given time must be
aware of a sufficiently accurate estimate of how many parties are active at that
time. To our knowledge, such a property, which in [10] is referred to as lazy
honesty, is necessary for the security analysis of [10]. We note in passing that
such a rigid participation restriction is not necessary for the Bitcoin blockchain
or its PoS variants in the sleepy/dynamic-availability setting.

Although it does not solve our question, the above idea still points to the right
direction: Concretely, if we could use the above idea but with a PoS protocol which
does not rely on explicit participation bounds, e.g., [31,11,23,12,3], then we would
have answered our question to the affirmative. And even better, our synchronizer
would work assuming an honest majority (1/2 + ε of parties for some suitably
chosen ε), since the above protocols are secure w.r.t. such an assumption on the
stake distribution. Unfortunately, unlike Algorand, these protocols use a notion
of (approximate) global time hardwired in the protocol logic, and the protocol is
unspecified without such global knowledge of time/round. In fact, as explained
below, there does not seem to be a simple way to removing this dependence of
global time, and replace it by local clocks —even, perfectly-coordinated ones that
advance at exactly the same speed— while preserving the security guarantees.6

The reason is that in these PoS blockchains a party’s right to create a block
is always associated with a concrete round (also called “slot”), and in order to
verify that a block is created by an eligible party, that party must include a proof
explicitly referring to the slot number. This means that a new party that joins
the blockchain—or one that has been sleeping for long—cannot prune-off chains
with adversarial timestamps so that it eventually adopts the right chain. Thus
if a new party with an incorrect local time joins the protocol and sees a chain
that includes blocks which appear to be far in the future (according to her local
time), she cannot decide whether the chain is adversarial—in which case she
needs to ignore or truncate it—or her local time is far behind absolute time. It
is worth adding that these are not merely theoretical considerations: in a real
world deployment the dependency on a global clock is typically met by using a
global time synchronization service such as NTP [27] and hence the security of

6 Of course, one could include such a notion of (approximate) global time in a trusted
checkpointing assumption [11], but this defeats the purpose of decoupling the protocol
from an explicitly assumed trusted source of global time when a party (re)joins,
which is the main challenge of our work.

4

all these protocols becomes compromised if such service fails to deliver a truly
reliable clock, a possibility that cannot be excluded [26].

Note that all previous PoS protocols which can operate in a participation-
unrestricted setting [31,11,23,12,3] require an upper bound on the network delay∆
which is a necessary assumption, see [30], due to the participation uncertainty.
However, knowledge of an upper bound on ∆ does not help the parties in any
direct way to assess the actual time (e.g., by locally counting time intervals of
length ∆), as participation gaps can invalidate their local timer with respect to
the implicit global execution-driven time.

It seems we have hit a deadlock: if the protocol itself crucially relies on
global time, then how can it be used to remove global time and replace it with
loosely synchronized clocks? Unfortunately, there seems to be no way to use
these blockchain protocols (or their properties) in a black-box manner to realize
a global clock from standard assumptions. Nonetheless, as we prove here, we can
draw inspiration from these works to design new a new PoS blockchain protocol
from scratch, so that it does not rely on a global clock and can be used as a
synchronizer to obtain an approximate global clock from standard synchronizer
assumptions. Our approach to building the new blockchain extends in a highly
non-trivial manner ideas from the recent PoS literature.

Our blockchain protocol works not only for static stake, but can even accom-
modate stake transfers and new keys being generated (and potentially allocated
stake) as in existing PoS blockchains. Thus, we actually not only solve the syn-
chronizer problem in the dynamic ad hoc setting, but we provide the first full
fledged PoS blockchain in the dynamic availability setting which relies not on
global time but on the weaker and more realistic assumption of local (initially
desynchronized) clocks which advance at (roughly) the same speed. We believe
that this result might be both of independent interest for the distributed ledgers
literature as well as of practical importance. We note in passing that given our
new synchronizer, a potential alternative construction of a blockchain would be
to use it in a black-box way to first realize a global clock, and then use this within
an existing PoS blockchain. However, this would yield a highly suboptimal use of
resources as it would effectively mean running two blockchains. This works shows
that one does not need this redundancy and use our construction both as a PoS
blockchain and as means to simulate a global clock (and potentially export it to
other calling protocols) at the same time.

2 Overview of Our Techniques

At the core of our global synchronization procedure is a new PoS blockchain
ledger protocol which (1) does not rely on global clocks but merely on local
clocks with (approximately) the same speed, (2) accommodates dynamic ad hoc
participation, and (3) assigns timestamps to each block so that they can be used
by any external observer to deduce an (approximate) notion of global time/round
(see Theorem 1). We refer to this new blockchain protocol as Ouroboros Chronos,
or simply Chronos, and discuss it below. As discussed above, it would be sufficient

5

for our synchronizer’s needs to just design a blockchain that works in the static
stake setting. Nonetheless, for full generality, we design Chronos to accommodate
(and tolerate) stake-shift, which makes it the first fully-functional PoS blockchain,
yielding the same guarantees as existing ones [10,11,3], but without reliance on a
global clock or restricting dynamic participation.

First, observe that if all the parties running the blockchain protocol would be
guaranteed to be around from its beginning and throughout its lifetime (i.e., in
the static ad hoc model of [6]) then one could use an existing PoS blockchain for
honest majority, e.g., [11,3] with the convention described above to assign one
unit of stake per public key. A synchronizer could be derived from the length of
the blockchain while the security assumptions and parties never joining or leaving
the system would guarantee that parties stay synchronized. What makes the
problem challenging and excludes the above solution is, thus, the combination
of lack of a global clock with dynamic (ad hoc) participation. In the following
we focus on how to redesign the mechanism of the above PoS protocols to allow
(re)joining parties to get in sync with parties that have been around sufficiently
long and are, therefore, already in-sync with each other—we refer to these latter
parties as alert.

The central idea of our mechanism is the continuous recording of individually
submitted clock readings and the clock adjustment of the alert parties’ local
clocks based on these readings at regular recalibration points. This mechanism
is based on a VRF-based probabilistic sampling of the local clocks of all active
parties using the blockchain to consistently record this operation over the protocol
execution. As we demonstrate, this opens the opportunity for a safe (re)joining
procedure; newly joining parties will be able to “hook” themselves into the next
recalibration point and become fully alert.

In more details, here is how our new (re)joining procedure works: (Re)joining
parties, start with listening on the network for some time, collecting broadcasted
chains and following a “densest chain” chain-selection rule similar to [3]. Infor-
mally, this rule mandates that if two chains C and C′ start diverging at some
time t—according to the reported time-stamps in C and C′—then choose the
chain which is denser in a sufficiently long interval after that time. Our first key
observation is that this rule offers a useful (albeit in itself insufficient) guarantee
in our setting: the joining party will end up with some blockchain that, although
arbitrarily long, is at worst forking from a chain held by an honest and already
synchronized party by a bounded number of blocks (equal to a security parameter)
with overwhelming probability. This observation is the key to start building our
synchronization mechanism. More concretely, we prove that the above process
guarantees to eventually prune-off all chains with bad prefixes, i.e., prefixes that
do not largely coincide with the prefixes of the other already synchronized honest
parties’ chains. In fact, as we show, the parties can compute an upper bound
on the time (according to their local clocks) they need to remain in the above
self-synchronization state before they build confidence in the above guarantee,
i.e., before they know that their locally held chain is consistent with a long and
stable prefix that already-synchronized honest parties adopt.

6

The second key observation is that once a joining party has converged to such
a fresh—i.e., produced after the joining party was activated—prefix of an honest
chain, it may use the difference between its current local time and the (local)
time recorded when this chain (and other control information) was received to
adjust its local clock so that its local time is consistent with the times reported
on the prefix. The hope would be that a clever adjustment will bring this local
time sufficiently close to that of an honest and already synchronized party.

Designing and analyzing such an updating process is challenging. Indeed,
consider the following straw man attempt: The party resets its local clock so that
the time reported in, say, the last block of the prefix is the time this block was
received. Before discussing the limitations of this proposal, let us first discuss an
inherent property when dealing with clock synchronization in the setting with
∆-bounded (but adversarially controlled) delay networks. A message received by
a party might have been sent up to ∆ rounds before, hence the time that the
party will set its clock to might be up to ∆ rounds away from the clock of the
sender (at the point of update). This delay-induced imprecision is unavoidable, so
when we assess a given proposal we accept that clocks only need to be “loosely”
synchronized; specifically, clocks of honest parties might differ by a bounded
amount, where the bound is known and depends only on ∆. In fact, this relaxation
is common and believed to be necessary even in the permissioned model [24,19].7

However, the above simple solution is problematic even when there are no
delays: Although the chain that the newly joining party recovered is guaranteed to
have a prefix consistent with the already synchronized honest parties, individual
blocks might be originating from the adversary and therefore contain a time
stamp very different from the true sending time of that block. To make matters
worse, the rate of honestly generated blocks in a chain of an honest party can be
quite low as implied by the known bounds of chain quality [18,12], and thus the
time inaccuracy of any individual block can be significant.

A second attempt would be to have in every round (or at regular intervals)
every party use the credentials of all the coins it owns to broadcast a signed
timestamp, i.e., every party acts as a verifiable synchronization (or timestamping)
beacon on behalf of all the coins it owns. The joining party receives all these
broadcasted timestamps, and uses their majority to compute the value of its
clock. Still, this solution has drawbacks: The first is scalability; this is not severe,
as existing ideas can be employed such as using the protocol history as input to a
verifiable random function (VRF) to identify eligible parties (or, as in the case of
Algorand, by using Bracha-style committees [7]) to send timestamping beacons in
every synchronization round. The second, harder problem is that in order to use
the majority, the local clocks of the parties that report time need to be perfectly
synchronized so that their majority agrees. If their clocks have any small drift,
this fails. Furthermore, even with identical speed clocks, dynamic participation
allows parties to drop off and rejoin, which means that, due to the network delay

7 The model from [24] with honest clocks that report values differing by up to ∆ is
equivalent to a situation in which clocks report the right value, but parties might
receive it with a difference of up to ∆ rounds.

7

the honest parties will end up with only loosely synchronized local clocks. Using
the average instead of the majority function does not help out here either since
a single adversarial timestamp can throw off the average arbitrarily far. Hence,
taking the median of the received timestamps promises to be more stable against
extreme values. Observe that as long as synchronized honest parties’ local clocks
are not far apart, the times they report will be concentrated to a sufficiently
small time interval, and the median will fall in this interval.

The above insight brings us closer, but is still insufficient: If the adversary
can serve to, say, two different joining parties different and possibly disjoint sets
of timestamps (on behalf of eligible corrupted synchronization-beacon parties)
then he could force an opposing clock adjustment between the two that will
increase their clock drift well beyond the drift of any pair of already synchronized
parties. To resolve this issue, we need to ensure that the parties agree on the set
of eligible timestamps (whether honest or corrupted) that they use for adjusting
their local time. This is a classical consensus problem. Luckily, our synchronizer
runs in tandem with a PoS-based blockchain which solves consensus with dynamic
availability, and which can assist in reaching agreement on the synchronization-
beacon values for recalibration. And thanks to the property discussed at the
beginning of the section—namely that even joining parties (without accurate time)
will eventually be able to bootstrap a sufficiently long prefix of the blockchain—the
joining parties will agree on the set of beacons for recalibration.

Our solution follows the spirit of the above conclusion. In a nutshell, we will use
the VRF to assign timestamping-beacon parties to slots according to their state.
Parties who are synchronized and active when their assigned slot is encountered
will broadcast a timestamp and a VRF-proof of their eligibility for the current
timeslot (together, we call this a synchronization beacon). And to agree on the set
of eligible parties that will be used (including the dishonest ones) these beacons
will also be included in the blockchain by the already synchronized parties,
similarly to transactions. Any party who joins and tries to get synchronized will
gather chains and record any broadcasted beacons (and keep track of the local
time these were received). Once the party is confident it has a sufficiently long
prefix of the honest chain, it will retrospectively use this gathered information to
extract the agreed-upon set of beacons, compute a good approximation of the
clocks parties had when they broadcasted these beacons and apply a median
rule to set its local clock to at most a small distance from other honest and
synchronized parties. In order to ensure that already synchronized parties adjust
in tandem with joining parties we will have them also periodically execute the
synchronization algorithm—but of course using their local blockchain, which they
know is guaranteed to have a large common prefix with any other honest and
synchronized party. Evidently, to turn this high-level idea of our solution into a
provably secure protocol requires appropriate design choices that we present in
Section 4. Nonetheless, by a careful analysis (cf. Section 5) we can show that not
only the above construction yields a PoS blockchain that does not rely on global
time, but, also, the reported timestamps are (approximately) consistent among

8

long-term (alert) participants and can, with a suitable encoding mechanism, be
used to devise a synchronizer satisfied the guarantees of the following theorem.

Theorem 1. There is a synchronizer protocol in the dynamic ad hoc setting, so
that the following properties hold:

1. (Completeness) Any alert party in the protocol reports some time t ∈ N.
2. (Approximate synchrony) For any two alert parties p1 and p2 reporting times

t1 and t2, respectively, it holds |t1 − t2| ≤ 2∆, where ∆ is an upper bound on
the network delay.

3. (Monotonicity) If an alert party reports times t1 and then t2 at two consecutive
steps8 in its execution, then t1 ≤ t2 ≤ t1 + 2∆.

4. (Liveness) For any alert party, if time t2 is reported 2∆ local rounds after
time t1, then t1 < t2.

Note that the above theorem provides a clock that might make “jumps” (i.e.,
skip some rounds for certain parties). However, these jumps are bounded by 2∆.
Hence, it is straightforward to turn this clock into a clock that does not make
jumps (albeit slower) and where synchronized parties are within a round from
each other: Every party reports time b t

2∆c, where t is the value it sees from the
above “jumpy” clock.

3 Our Model

Basic notation. For n ∈ N we use the notation [n] to refer to the set {1, . . . , n}.
For brevity, we often write {xi}ni=1 and (xi)

n
i=1 to denote the set {x1, . . . , xn} and

the tuple (x1, . . . , xn), respectively. For a tuple (xi)
n
i=1, we denote by med((xi)

n
i=1)

the (lower) median of the tuple, i.e., med((xi)
n
i=1) , x′dn/2e, where (x′i)

n
i=1 is a

(non-decreasing) sorted permutation of (xi)
n
i=1. For a blockchain (or chain) C,

which is a sequence of blocks, we denote by Cdk the chain that is obtained by
removing the last k blocks; and by head(C) the last block of C. We write C1 � C2
if C1 is a prefix of C2.

We discuss the model and the hybrid functionalities assumed in the protocol
below. The formal descriptions are given in the full version of this work [4].

Relaxed synchrony. The synchrony assumption that parties advance at exactly
the same pace can be captured by the global-setup variant of the clock functional-
ity from [22]. This is a weaker version of the global clock used in previous analyses
of blockchains [5,3] in that it does not keep a counter representing the global
system time, but rather maintains for each party (resp. ideal functionality) an
indicator bit dP (resp. d(F,sid)) of whether or not a new round has started. Each
party’s indicator is accessible by a standard clock-get command. All indicators
are set to 0 at the beginning of each round; once any party or functionality
finishes its round it issues a clock-update command that updates his indicator

8 In this context, a step in the execution corresponds to the action(s) a party takes
during a single local round (i.e., between two “ticks” of its local clock.)

9

to 1. Once every party and functionality has updated its indicator, the clock
resets all of them to 0; this switch allows the parties to detect that the previous
round has ended and move on to the next round.

Arguably the above clock offers very strong synchronization guarantees, since
once a round switches, every party is informed about it in the next activation.
In [22] a relaxed version of this clock was introduced which allowed the adversary
to delay notifying the parties about a round switch by bounded amount of
fetch-attempts. This behavior relaxes the perfect nature of the clock, but it still
ensures that no party advances to a next round before all parties have completed
their current round.

In this work we consider parties that advance at roughly the same speed,
which means that a party might advance its round even before another party has
finished with its current round, and even multiple times, as long as its is ensured
that no honest party is left too far behind. For this purpose we introduce an even
more relaxed version of the (global-setup variant) of the clock from [22] which,
intuitively, allows a party to advance to its next round multiple times before some
honest parties have completed their current round, as long as the relative pace of
advancement for any two honest parties stays below a drift parameter ∆clock. We
note in passing that a similar guarantee was formulated in the timing model [21];
however, the solution there notified the underlying model of computation which
creates complications with the (G)UC composition theorem which would need
to be reproved. To avoid such complications, in this work we capture the above
relaxed synchrony assumption as a global functionality.9 and call it G∆clock

ImperfLClock.

Similar to the perfect clock above, the imperfect clock stores an indicator
bit dP which is used to keep track of when everyone has completed a round (not
necessarily the same round)—one can think of this indicator as corresponding to
a baseline round-switch, which is however hidden from the parties and might only
be observed by ideal functionalities. Additionally, for every party the imperfect
clock keeps an imperfect version of the indicator bit dImpP (corresponding to
switches P’s local, e.g., hardware, clock switches) which is what is exported when
the party attempts to check his clock.

This local indicator is used similarly to how synchronous protocols would use
the perfect indicator in [22]; but we allow the adversary to control when this local

indicator is updated under the restrictions that (a) dImpP cannot advance in the
middle of P’s round, (b) it cannot fall behind the baseline induced by the indicator
dP, and (c) it cannot advance ahead of the baseline by more than ∆clock. This is
achieved by the imperfect clock keeping track of the relative difference/distance
driftP between the number of local advances of each registered P from the
baseline updates; this distance is increased whenever dImpP is reset (by the
adversary) to 0 and decreased whenever the baseline indicator dP ∈ {0, 1} is

9 In [22] a functionality corresponding to the timing-model assumptions [21] was
proposed along with a reduction to the (local) clock functionality. However, both the
fact that their clock functionality is local and that their reduction uses a complete
network of (known) bounded-delay authenticated channels—which we do not assume
here—makes that result incompatible with our model and goals.

10

reset to 0; if the distance of some party from the baseline falls below 0 (i.e., the
adversary attempts to stall a party when the baseline advances10) then the local

indicator is reset to dImpP = 0 (which allows P to advance his round) and the
corresponding distance is also reset to 0.

Modeling peer-to-peer communication. We assume a diffusion network,
denoted by and we denote it by F∆net

N-MC, in which all messages sent by honest
parties are guaranteed to be fetched by protocol participants after a specific
delay ∆net. Additionally, the network guarantees that once a message has been
fetched by an honest party, this message is fetched by any other honest party
within a delay of at most ∆net, even if the sender of the message is corrupted.
We note that this network model is not substantially stronger than in previous
works [5,3], which use a network functionality providing bounded-delay message
delivery. Our model is equivalent via an unconditional reduction: echoing received
messages. In practice, this reduction of course needs to be applied prudently to
avoid saturating the network. This is exactly done by the relevant networking
protocols: e.g. in Bitcoin, when a new block is received its hash is advertised and
then propagated and validated by the network as needed. Chronos can use the
same mechanism.

Genesis block distribution and weak start agreement. Our model allows
parties’ local time-stamps to drift apart over the course of an execution; ad-
ditionally the model makes no assumption that the initialization of the initial
stakeholders is completed in the same round, i.e., honest parties might start stak-
ing at different rounds of the execution. To this aim, we weaken the functionality
FINIT adopted by [3] to allow for bounded delays when initial stakeholders receive
the genesis blocks. Namely, our F∆net

INIT functionality merely guarantees genesis
block delivery to initial stakeholder not more than ∆net rounds apart from each
other; the offsets are under adversarial control.

Further hybrids. The protocol makes use of a VRF (verifiable random function)
functionality FVRF, a KES (key-evolving signature) functionality FKES, and a
(global) random oracle functionality GRO (to model ideal hash functions).

3.1 Dynamic (Ad Hoc) Participation

To support a fine-grained dynamic participation model, we follow the approach
of [3] and categorize the parties into party types. Recall that the dynamic partici-
pation model allows to capture the security of the protocol in a realistic fashion,
by considering that some parties might be stalling their computation, some might
accidentally lose network access and hence disappear unannounced, and others
might lose track of the passage of time due to some failure. In our model, we
formally let the environment be in charge of connecting and disconnecting to
its resources. (This is done by equipping the functionalities, global setups, and

10 Note that by definition the baseline advances when all parties have completed their
current round.

11

Basic types of honest parties
Resource (Res.) Res. unavailable Res. available

random oracle GRO stalled operational
network FN-MC offline online
clock GPerfLClock time-unaware time-aware
synchronized state, local time desynchronized synchronized
KES capable of signing (w.r.t. local time) sign-capable sign-uncapable

Derived types:

alert :⇔ operational ∧ online ∧ time-aware ∧ synchronized ∧ sign-capable

active :⇔ alert ∨ adversarial ∨ time-unaware

Note: alert parties are honest, active parties also contain all adversarial parties.

Fig. 1. Party types.

the protocol with explicit registration/de-registration commands, thereby keep-
ing track of when parties are joining and adjusting their guarantees depending
based on this information.) The various basic and derived types of parties are
summarized in Figure 1.

For a given point in execution, a party is considered offline if it is not registered
with the network, otherwise it is considered online. A party is time-aware if it
is registered with the clock, otherwise we call it time-unaware. We say that a
party is operational if it is registered with the random oracle, otherwise we call
it stalled. Finally, we say that a party is sign-capable if the counter in FKES is
less or equal to its local time-stamp.

Additionally, an honest party is called synchronized if it has been continuously
connected to all its resources for a sufficiently long interval to make sure that,
roughly speaking, (i) it holds a chain that shares a common prefix with other
synchronized parties (synchronized state) and (ii) its local time does not differ
by much from other synchronized parties (synchronized time). Our protocol’s
resynchronization procedure JoinProc will guarantee the party that after executing
it for the prescribed number of rounds, it will achieve both properties (i) and (ii)
above. In addition, such a party will eventually become sign-capable in future
rounds (in case the KES is “evolved” too far into the future due to a de-
synchronized time-stamp before joining). We note that an honest party always
knows whether it is synchronized or sign-capable and (in contrast to the treatment
in [3]), it maintains its synchronization state in a local variable isSync and makes
its actions depend on it.

Based on these four basic attributes, we define alert and active parties similarly
to [3]. Alert parties are considered the core set of honest parties that have access
to all necessary resources, are synchronized and sign-capable. On the other hand,
potentially active parties (or active for short) are those (honest or corrupted)
parties that can potentially act (propose a block, send a synchronization beacon)
in its current status; in other words, we cannot guarantee their inactivity. Formally,
it includes alert parties, corrupted (i.e., adversarial) parties, and moreover any

12

party that is time-unaware (independently of the other attributes; this is because
those parties are in particular not capable of evolving their signing keys reliably
and hence it cannot be excluded that if they later get corrupted, they might
retroactively perform protocol operations in a malicious way).

The definition of a party type is extended now, namely from single points in an
execution to the natural numbers, which we refer to as logical slots in this context.
As we see in Section 4, to each logical slot, a leader election process is associated,
which every honest party will run when its local clock localTime equals sl for
the first time. The definition of party types w.r.t. logical slots is as follows: a
party P is counted as alert (resp. operational, online, time-aware, synchronized,
sign-capable) for a slot sl if the first time its local clock passes through the
(logical) slot sl, it maintains this state throughout the whole slot, otherwise
it is considered not alert (resp. stalled, offline, time-unaware, desynchronized,
sign-uncapable) for sl. It is considered corrupted (i.e., adversarial) for sl if it
was corrupted by the adversary A when its local clock satisfied localTime ≤ sl.
Finally, it is active for sl if it is either corrupted for that slot, or it is alert or
time-unaware at any point during the interval when its local clock for the first
time passes through slot sl.

4 The Blockchain Protocol

At a high level, the protocol we present is a Nakamoto-style proof-of-stake based
protocol for the so-called semi-synchronous setting; this is the same model used
for standard analyses of Bitcoin. In this model, parties have a somewhat accurate
common notion of elapsed time (rather than absolute time information) and the
network has an upper bound on the delay which is not known to the parties. At
a very high-level the protocol attempts to imitate a process which resembles a
situation in which state (including time) is continuously passed on to currently
alert stakeholders. The honest majority of active stake assumption that is explicit
in [12,3] will then ensure that the adversary cannot destroy this state by using
his ability to tune participation.

To ease into the main protocol ideas it is useful to imagine a situation in
which there is a core of parties with sufficient stake that has been around from
the onset of the blockchain. (These parties have a common, albeit somewhat
imperfect, understanding of how much time has passed since the protocol started
and can contribute this information to the synchronization procedure.) We stress
that the continuous or indefinite presence of such parties is not needed in our
final protocol which will ensure that the information that these parties would
safeguard is passed on to new parties if/when such inaugural parties go to sleep
or deregister.

Here is how such an inaugural participant (i.e., a participant who is as-
signed stake at the outset of the computation by FINIT) executes the proto-
col. With access to the provided genesis block, which reveals an initial record
S1 =

(
(P1, v

vrf
1 , vkes

1 , s1), . . . , (Pn, v
vrf
n , vkes

n , sn)
)

that associates each participant

13

Pi
11 to its chosen public keys used for verification purposes of the staking process

and its initial stake si, each party begins the so-called first epoch of the staking
procedure and sets its local clock localTime to the value 1. The party has to
execute a certain set of tasks per round. Note that two inaugural parties have
only a somewhat accurate notion of elapsed time and receiving the genesis block
might be delayed, it might very well be that a party P1 has executed three rounds,
while P2 has only executed one so far, or has not even received the genesis block.
The bounds on the clock drifts and the network delay however ensure that the
difference of the number of completed protocol rounds does not drift too far
apart.

A participant’s main task (per round) is to evaluate whether it is elected to pro-
duce a block for the current local time, which we refer to as a slot. For this, it eval-
uates a verifiable random function (VRF) on input x := η1 ‖ localTime ‖ TEST,
where η1 is a truly random seed provided by FINIT. If the returned value y is
smaller than a threshold value T ep

P , which is derived from the stake associated
with P, then the participant is called a slot leader. The threshold is computed to
yield a higher probability of slot leadership the higher the stake of the party. The
main task of the slot leader is to create a valid block for this slot that contains, as
control information (alongside the transactions), the VRF proof of slot leadership,
an additional random nonce, and the hash to the head of the chain it connects
to. Each block is signed using a key-evolving signature scheme.12 As typical in
these systems, the block is made to extend (essentially) the longest valid chain
known to the party. Due to the slightly shifted local clocks, some care has to be
taken to not disregard entirely chains that contain blocks in the logical future of
a party. However, the chain a party adopts (and computes the ledger state from)
at slot localTime shall never contain a block with a higher time-stamp.13

In addition to the above actions, or if a party is not slot leader, it must play
the lottery once more on input x′ := η1 ‖ localTime ‖ SYNC. If the party is lucky
this time and receives a return value smaller than the threshold (defined shortly),
it must emit a so-called synchronization beacon containing the VRF proof and
the current time localTime. Synchronization beacons are treated similarly to
transactions and are contained into blocks if valid. If a party has done all its
tasks, it increments localTime and waits until the round is over. Except for the
generation of synchronization beacons, which is only done in a first fraction of
an epoch, the above round procedure iterates over the entire first epoch, where
the length of an epoch is R, a parameter of the protocol. Our security proof
shows that this first epoch does result in a blockchain satisfying common prefix,

11 More precisely, Pi denotes just a bitstring in the model that formally identifies
a machine and is used to identify which keys (and hence stake) are controlled by
corrupted machines. Note that we write participant or party instead of machine.

12 The KES ensures that if a participants gets corrupted, no blocks can be created in
retrospect.

13 Some further care has to be taken in proof of stake to detect chains that try to
perform a long-range attack. We describe this in the next section in more detail when
we recall the Genesis chain-selection rule.

14

chain growth, and chain quality properties for specific parameters, as long as the
leader-election per slot is to the advantage of honest protocol participants.14

At the epoch boundary to the second epoch, two important things happen.
First the stake-distribution and the epoch randomness change: they are derived
from specific blocks contained in the guaranteed common prefix established by the
first epoch. In particular, we must ensure that at the time the stake distribution
is fixed, the epoch randomness cannot be predicted to ensure the freshness of the
slot leader election lottery for the second epoch. The second critical update at the
epoch boundary is the local time: each party performs a local-clock adjustment,
outlined in Section 4.1, which ensures that after the adjustment parties are still
close together, where “close” means within ∆ = ∆net + ∆clock (two sources of
bounded variance contribute to this: delay and drift) and that performed shifts of
the local clock remain small (which is crucial for security). The desired property
follows from the common-prefix guarantee (enabling an agreement on beacons),
the honest majority assumption (enabling small clock shifts), and the network
properties and clock properties (which ensure correlated arrival times). With some
additional considerations detailed in Section 4.1, the protocol proceeds executing
the above round tasks for the entire second epoch until the next boundary is
met. This iterated process, where one epoch bootstraps the next, is backed by
an inductive security argument, following previous works [3,12,23], that shows
how the overall security is a consequence of the first epoch achieving the desired
blockchain properties to serve as a good basis for the second, etc.

The reason to perform a local-clock adjustment is to enable the main goal of
our construction: to enable new parties to safely join the system and to determine,
just by observing the network and without any further help, an accurate and
up-to-date local-clock value and ledger state with respect to the existing honest
parties in the system, i.e., being within a ∆ interval of their clock values and
obtaining the same common-prefix, chain-quality and chain-growth guarantees.
After this, newly joining parties can start contributing to the security of the
system.

The bootstrapping procedure for newcomers is quite involved due to a combi-
nation of obstacles: First, the joining party needs to obtain a blockchain that
shares some common prefix with the common prefix established by the existing
parties. This is achieved by having the joining party listen to the network for
some rounds, and picking the “best” chain C it sees in the following sense: when
compared with any other seen valid chain C′, C contains more blocks in an
interval of slots of size s starting from the forking point of C and C′. We prove
that based on the honest-majority assumption, such a densest chain must share
a large common prefix with the chains honest parties currently hold. However, C
could still be adversarially crafted and for example be much longer than what
honest parties agreed on by extending into the future, hence a reliable ledger
state cannot yet be computed. However, it will become possible once the joining
party succeeds in bootstrapping also an accurate time-stamp in the ∆ interval

14 We note that the leader election is per logical slot and honest parties will all pass
through the same logical not at the same time, but at related times.

15

of honest participants’ timestamps, which is the second obstacle to overcome.
After the party is guaranteed to be hooked to a large prefix of the honest parties’
common-prefix, it begins recording all synchronization beacons it receives on
the network for a long enough period of time, a parameter of the system. The
length of the waiting time is set in order to ensure that, after the newly joining
party started listening to the network, the parties at least once seeded the slot-
leadership lottery with a fresh nonce that was unpredictable at the time of joining
the system. After an additional waiting time, the agreed-upon set of beacons
(with proofs referring to the fresh lottery) will be part of the common prefix and
eventually be part of what is known to the joining party. We prove that based
on this agreement on beacons found in the blockchain, the clock-adjustments
procedure by the current participants in the system can be retraced and will yield
a clock adjustment to the newly joining party’s local clock that will directly push
it into the interval of existing honest participants’ local clock. At this point, the
party runs the normal chain-selection mechanism, essentially cutting off blocks
in its logical future and obtains a reliable ledger state as well.

4.1 The Protocol with Static Ad hoc Participation

Towards a modular description of our protocol, let us first focus on how the
protocol would work in the static ad hoc setting, where all parties are alert. In
particular, we discuss what such alert parties need to do in order to accommodate
synchronzation of joining and rejoining parties. The description of what joining
and rejoining parties do—i.e., how they use the help of alert parties to get
in-sync—is the included in Section 4.2. Every alert party runs the following
round instructions. For the pseudo-code of all involved tasks (and more detailed
explanations), we refer to the full version of this work [4].

1. Fetch information from the network over which transactions, beacons, and
blocks are sent and further update the current time-stamp and epoch number.
A party locally advances its time-stamp whenever it realizes that a new (local)
round has started by a call to GImperfLClock.

2. Record the arrival times of the synchronization beacons produced by all
protocol participants. This is discussed in more detail below.

3. Process the received chains: as some chains might have been created by
parties whose time-stamps are ahead of local time, the future chains are
stored in a specific buffer for later usage (and importantly, not discarded).
Among the remaining chains, the protocol will decide whether any chain is
more preferable than the local chain using a chain-selection rule inspired
by Ouroboros Genesis [3] which we thus refer to as the Genesis rule. An
important property of the Genesis rule is that chain selection is secure without
requiring a moving checkpoint: roughly speaking, a chain C1 is preferred over
C2 if they have a large common history, except possibly the last k blocks
(where k is some parameter) and C1 is longer. If however, they fork even
before, chain C1 is preferred if it is block density is higher compared to C2 in
a carefully selected interval of size s slots after the forking point.

16

4. Run the main staking procedure to evaluate slot leadership, and potentially
create and emit a new block or synchronization beacon. Before the main
staking procedure is executed, the local state is updated including the current
stake distribution. We provide more details on some of these aspects below.

5. If the end of the round coincides with the end of an epoch, the synchronization
procedure (denoted SyncProc) is executed.

While the above only gives a broad overview of different tasks per round, we
cover some of those in more detail below.

Stake distribution and leader election. A party P is an eligible slot-leader
for a particular slot sl in an epoch ep if its VRF-output (for an input dependent
on sl) is smaller than a threshold value T ep

P . The threshold is derived from
the (local) stake distribution Sep assigned to an ep which in turn is defined by
the (local) blockchain Cloc, that is we assume an abstract mapping that assigns
to a party (identified by an encoding of its public keys) its stake derived as a
function of the transactions in Cloc, the genesis block, and the epoch the party is
currently in. As described above, the stake distribution is only updated once a
party enters a new epoch, i.e., once localTime mod R = 1. Say a party enters in
epoch ep + 1, then the distribution is defined by the state contained in the block
sequence up to and including the last block in epoch ep− 1 (or the genesis block
for the first two epochs). Furthermore, the epoch randomness for epoch ep + 1
(to refresh the lottery) is extracted from the previous randomness and the seeds
defined by the first two-thirds of the blocks in epoch ep (for the first epoch, the
randomness is defined by the genesis block). Both of these updates thus derived
based on the (supposedly) established common prefix among participants.

The relative stake of P in the stake distribution Sep is denoted as αep
p ∈ [0, 1].

The mapping φf (·) is defined as

φf (α) , 1− (1− f)α (1)

and is parametrized by a quantity f ∈ (0, 1] called the active slots coefficient [12].
Finally, the threshold T ep

p is determined as

T ep
p = 2`VRFφf (αep

p), (2)

where `VRF denotes the output length of the VRF (in bits).
Note that by (2), a party with relative stake α ∈ (0, 1] becomes a slot leader

in a particular slot with probability φf (α), independently of all other parties.
We clearly have φf (1) = f , hence f is the probability that a hypothetical party
controlling all 100% of the stake would be elected leader for a particular slot.
Furthermore, the function φ has an important property called “independent
aggregation” [12]:

1− φ

(∑
i

αi

)
=
∏
i

(1− φ(αi)) . (3)

In particular, when leadership is determined according to φf , the probability of a
stakeholder becoming a slot leader in a particular slot is independent of whether

17

this stakeholder acts as a single party in the protocol, or splits its stake among
several “virtual” parties.

The technical code of the staking procedure is not given here due to space
constraints. Briefly, it starts by two calls evaluating the VRF in two different
points, using constants NONCE and TEST to provide domain separation, and
receiving (yρ, πρ) and (y, π), respectively. The value y is used to evaluate slot
leadership: if y < T

ep
p then the party is a slot leader and continues by processing

its current transaction buffer to form a new block B. Aside of this application
data, each block contains control information. The information includes the
proof of leadership (y, π), additional VRF-output (yρ, πρ) that influences the
epoch-randomness for the next epoch, and the block signature σ produced using
FKES. Finally, an updated blockchain Cloc containing the new block B is multicast
over the network (note that in practice, the protocol would only diffuse the new
block B). A slot leader embeds a sequence of valid transactions into a block.
As in [3], we abstract block formation and transaction validity into predicates
blockifyOC and ValidTxOC. The function blockifyOC takes as input a plain sequence
of transactions and outputs a block, whereas ValidTxOC takes as input a single
transaction and the ledger state. A transaction is said to be valid with respect to
the ledger state if and only if it fulfills the predicate. The transaction validity
predicate ValidTxOC induces a natural transaction validity on blockchain-states
that we succinctly denote by the predicate isvalidstate(st) that decides that a
state is valid if it can be constructed sequentially by adding one transaction at a
time and viewing the already added transactions as part of the state.

Eligibility to emit synchronization beacons. An alert party emits so-called
synchronization beacons in the first R/6 slots of an epoch ep. To be admissible
to emit a beacon, the party evaluates the VRF again as for slot-leadership. To
obtain an independent evaluation, we use a new constant called SYNC to obtain
domain separation. If the returned value y ≤ T ep,bc

P , where in this case we can
simply use a linear scaling of the domain, i.e., we define the threshold

T ep,bc
p := 2`VRF · αep

p , (4)

then the party will create a block header and send it on the broadcast network.

Embedding synchronization beacons in blocks. Part of the staking proce-
dure is to embed synchronization beacons in the first 2R/3 slots of an epoch ep.
A synchronization beacon is embedded if the creator of the beacon was elected
to emit a beacon (according to the current stake distribution in epoch ep) in the
first R/6 slots of this epoch, and if no other beacon in the chain already specifies
the same slot and party identifiers. Like this, an alert party is assured to produce
a valid chain. Validity is decided according to a predicate whose description
appears as part of the protocol’s code in the full version [4].

Details of the synchronization process. At the end of an epoch, parties run
the synchronization procedure based on the beacons recorded in this epoch. The
entire synchronization can be logically partitioned into seven logical building

18

blocks. The first five items are definitions and necessary preparatory tasks in
order to have the synchronization procedure perform its tasks at the end of an
epoch.

1.) Synchronization slots: Once a party’s local time-stamp reaches a defined
synchronization slot for the first time, it will adjust its local time-stamp
before moving to the next slot. The protocol will specify the necessary actions
for the cases where the local time-stamp is shifted forward or backward. We
define the synchronization slots to be the slots with numbers i ·R for i ≥ 1
and hence they coincide with the end of an epoch. In a real-word execution
(which is a random experiment with discrete steps), we say that a party P
has passed its synchronization slot i ·R (e.g., at step x of the experiment) if
it has already concluded its operations in a round where P.localTime = i ·R
holds for the first time.

2.) Synchronization Beacons: In addition to the other messages, the parties
in Chronos generate synchronization messages or “beacons” as follows:
an alert party P evaluates the VRF functionality by sending the input
(EvalProve, sid, ηj ‖P.localTime ‖ SYNC) to FVRF in order to receive the re-
sponse (Evaluated, sid, y, π). The beacon message is then defined as

SB , (P.localTime,P, y, π),

where P.localTime is the current slot number party P reports and the triple
(P, yρ, π) is the usual attestation of slot leadership by party (or stakeholder) P.
In the following, let slotnum(·) be the function that returns the first element
(the reported slot number) of a beacon.

3.) Arrival times bookkeeping: Every party P maintains an array P.TimestampSB(·)
that assigns to each synchronization beacon SB a pair (n, flag) ∈ N ×
{final, temp}. Assume a beacon SB with slotnum(SB) ∈ [j ·R+1, . . . , j ·R+R/6],
j ∈ N and party P′ is fetched by party P (for the first time). If the pair
(slotnum(SB),P′) is new, the recorded arrival time is defined as follows:
• If P has already passed synchronization slot j · R but not yet passed

synchronization slot (j+1) ·R, TimestampSB(SB) is defined as the current
slot number and the value is considered final, i.e., TimestampSB(SB) ,
(P.localTime, final).
• If party P has not yet passed synchronization slot j · R (and thus the

beacon belongs logically to this party’s next epoch), TimestampSB(SB)
is defined as the current slot number P.localTime and the decision
is marked as temporary, i.e., TimestampSB(SB) , (P.localTime, temp).
This value will be adjusted once this party adjusts its local time-stamp
for the next epoch (when arriving at the next synchronization slot j ·R).

If a party has already received a beacon for the same slot and creator, it will
set the arrival time equal to the first one received among those.

4.) The synchronization interval : the interval based on which the adjustment of
the local time-stamp is computed. For a synchronization slot i · R (i ≥ 1),
its associated synchronization interval is the interval Isync(i) , [(i− 1) ·R+
1, . . . (i − 1) · R + R/6] and hence encompasses the first sixth of the epoch
that is now ending.

19

5.) Emitting Beacons and inclusion into the chain: An alert party sends out a
synchronization beacon during a synchronization interval (i.e., if the current
local time reports a slot number that falls into a synchronization interval) if
and only if the VRF evaluation (EvalProve, sid, ηj ‖P.localTime ‖ SYNC) to

FVRF returned (Evaluated, sid, y, π) with y < T
ep
P where T

ep,bc
P is the beacon

threshold in the current epoch as defined in equation 4. An alert slot leader
P′ on the other hand will include any valid synchronization beacon in its
new block as long as P′.localTime reports a slot number within the first
two-thirds of an epoch (and if the beacon has not been included yet). This
process is part of the main staking procedure and was describe in the previous
paragraph.

The remaining three steps are implemented as part of the core synchronization
procedure SyncProc.

6.) Computing the adjustment evidence: The adjustment will be computed based
on evidence from the set SPi that is defined with respect to the current
view of P in the execution: Let SPi contain all beacons SB that report a
slot number slotnum(SB) ∈ [(i − 1) · R + 1, . . . , (i − 1) · R + R/6] (of the
synchronization interval) and which are included in a block B of P.Cloc that
reports a slot number slotnum(B) ≤ (i − 1) · R + 2R/3. Based on these
beacons and their recorded arrival times, the shift will be computed. More
precisely, if a beacon SB is recorded in P.Cloc, then the arrival time used in
the computation will be based on a the valid15 beacon SB′ that reports the
same slot number and party identity as SB and which has arrived first—either
as part of some blockchain block or as a standalone message. By our choice
of parameters, parties will have assigned an arrival value to any such beacon
with overwhelming probability.

7.) Adjusting the local clock: The shift shiftPi a party P computes to adjust its
clock in synchronization slot i ·R is defined by

shiftPi , med
{

slotnum(SB)− Timestamp(SB) | SB ∈ SPi
}
.

Recall that Timestamp(SB) is shorthand for the first element of the pair
TimestampSB(SB). As we will show, this adjustment ensures that the lo-
cal time stamps of alert parties report values in a sufficiently narrow in-
terval (depending on the network delay) to provide all protocol proper-
ties we need. Furthermore, for each beacon SB with P.TimestampSB(SB) =
(a, temp) and slot number slotnum(SB) > i ·R the arrival time is adjusted by
P.TimestampSB(SB) , (a+ shiftPi , final). This ensures that eventually the ar-
rival times of all beacons that logically belong to epoch i+1 will be expressed
in terms of the newly adjusted local time-stamp computed at synchronization
slot i · R. At this point, the party is further capable of excluding invalid
beacons.

15 Evaluated using this epoch’s stake distribution.

20

8.) At the beginning of the next round the party will report a local time equal
to i ·R+ shift + 1. If shift ≥ 0, the party proceeds by emulating its actions
for shift rounds. If shift < 0, the party remains a silent observer (recording
arrival times for example) until its local time has advanced to slot i ·R+1 and
resumes normally at that round. Note that in this time, an alert party will
not revert any previously reported ledger state with overwhelming probability.
The reason is that the party will stick to Cloc during this waiting time and
only replace it by longer chains that do not fork by more than k blocks from
Cloc which is a direct consequence of the security guarantees implied by the
Genesis chain-selection rule. (An alert party reverting a previously reported
state implies a common-prefix violation.)

4.2 (Re)Joining Procedures

De-Registration and Re-Joining. If a party is alert, it can lose in several
ways its status of being alert. If a party loses access to the random oracle only,
then it will still be able to observe the protocol execution and record message
arrivals. The main issue is that such a party—when it is fully operational again—
will have to retrace what it missed. This is slightly complicated due to the
adjustments to the local clock in the course of the execution. However, the party
has all reliable information to actually retrace the actions as if it was present as
a passive observer all the time. This special procedure SimulateClockAdjustments
is given in the full version of this work [4] and it is invoked as part of the main
round tasks before performing the actions as an alert party (again).

On the other hand, if any alert party loses access to GImperfLClock or FN-MC

by the respective de-registration queries, or if it joins anew only late in the
execution, then it considers itself as de-synchronized. Parties are aware of their
synchronization status, and any party that is de-synchronized will have to run
through the main joining procedure that we call JoinProc in order to become
alert. Due to lack of space, we cannot provide the code of this procedure and
refer to [4]. Below we give an overview of this procedure.

Description of JoinProc. Introducing synchronization slots into the protocol
serves the main purpose of enabling a novel joining procedure that newly joining
(or resynchronizing) parties can execute to bootstrap an actual reliable time-
stamp and ledger state, where a reliable time-stamp is one that lies in the interval
of time stamps reported by alert parties. The joining procedure is divided into
several phases where the party gathers reliable information, identifies a good
synchronization interval and finally applies the shift(s) that will allow it to report
a local time-stamp that is sufficiently close to the alert parties in the system. The
procedure refers to a couple of parameters. Their concrete values is not necessary
to understand its dynamics.

Phase A: A joining party with all resources available invokes the main round
procedure triggering the join procedure that first resets the local variables.

Phase B: In the second activation upon a maintain-ledger command, the
party will jump to phase B and continue to do so until and including round toff .

21

During this interval, the party applies the Genesis chain selection rule maxvalid-bg
to filter its incoming chains. It will apply the chain selection rule to all valid
chains it receives. Since the party does not have reliable time, it will consider also
future chains as valid, as long as they satisfy all remaining validity predicates.
As we prove in the security analysis, at the end of this phase, the party adopts
chain C that stands in a particularly useful relation to any chain C′ an alert party
adopts. Roughly, the relation says that the point at which the two chains fork is
about k blocks behind the tip of C′. This follows from the Genesis chain selection
rule and the fact that C′ is more dense than C shortly after the fork. However,
this also means that P could still hold an extremely long chain served by the
adversary (namely, an adversarial extension of an alert party’s chain at some
point less than k blocks behind the tip into the future). On the positive side,
the stake distribution used for general validation of blocks and beacons logically
associated to the time before the fork are reliable.

Phase C: If a party arrives at local time toff + 1, it starts with phase C, the
gathering phase. The party still filters chains as before, but now processes the
arrival times of beacons from the network (or indirectly via the received chains).
This phase is parameterized by two quantities: the sum of tminSync and tstable

define the total duration of this round, where intuitively, tminSync guarantees
that enough arrival times are recorded to compute a reliable estimate of the
time-shift, and tstable ensures that the blockchain reaches agreement on which
(valid) synchronization beacons to use. After this phase, a party can reliably
judge valid arrival times.

Phase D: The party collects the valid evidence and computes the adjustment
based on the first synchronization interval I = [(i − 1)R, . . . , (i − 1)R + R/6]
identified on the blockchain that reports beacons that arrived sufficiently later
than the start of phase C (parameter tpre). Party P computes the adjustment
value that alert parties would do at synchronization slot i·R based on the recorded
beacon arrival times associated with interval I. The party P is done if its adjusted
time does not indicate that it should have passed another synchronization slot
(and otherwise, the above is repeated with adjusted arrival times of already
recorded beacons).

5 Security Analysis

We begin by setting down notation and defining the conventions we adopt for
measuring stake ratios. The following definition is adapted from [3]; the crucial
difference is that it refers to the types of parties with respect to a logical slot as
defined in Section 3.1.

Definition 1 (Classes of parties and their relative stake). Let P[sl] de-
note the set of all parties in a logical slot sl and let Ptype[sl], for any type of party
described in Figure 1 (e.g. alert, active), denote the set of all parties of the respec-
tive type in the slot sl. For a set of parties Ptype[sl], let S−(Ptype[sl]) ∈ [0, 1]
(resp. S+(Ptype[sl]) ∈ [0, 1]) denote the minimum (resp., maximum), taken over

22

the views of all alert parties, of the total relative stake of all the parties in Ptype[sl]
in the stake distribution used for sampling the slot leaders for slot sl.

Looking ahead, we remark that even though we give the general definition
above, our protocol will have the desirable property that for all party types and
all time slots, S−(Ptype[sl]) = S+(Ptype[sl]) with overwhelming probability, as
all the alert parties will agree on the distribution used for sampling slot leaders
with overwhelming probability.

Definition 2 (Alert ratio, participating ratio). For any logical slot sl dur-
ing the execution, we let: (i.) the alert stake ratio be the fraction of stake
S−(Palert[sl])/S+(Pactive[sl]); and (ii.) the (potentially) participating stake
ratio be S−(Pactive[sl]).

It is instructive to see that the potentially participating stake ratio allows
us to infer the ratio of stake belonging to parties that cannot participate in
slot sl. Intuitively speaking, we will prove the security of our protocol under the
assumption that both stake ratios from Definition 2 are sufficiently lower-bounded
(the former one by 1/2 + ε, the latter one by a constant). We remark that it is
easy to verify that in particular, such an assumption also implies the existence of
alert parties at any point in the execution.

5.1 Blockchain Security Properties

We now define the standard security properties of blockchain protocols: common
prefix, chain growth and chain quality. These will later be useful as an intermediate
step in establishing the UC-security guarantees.

Similarly to [3], we only grant these guarantees to alert parties. More impor-
tantly for this work, the definitions from [3] need to be adjusted to take into
account the fact that the local clocks of the parties are not synchronized. To this
end, we choose now to define the properties below with respect to the logical
timestamps (i.e., slot numbers) contained in blocks, and the local clocks of the
parties. Namely, we refer to logical slots below, and a party is considered to be
on the onset of slot sl (or enter slot sl) if her local clock just switched to sl.

Common Prefix (CP); with parameters k ∈ N. The chains C1, C2 possessed

by two alert parties at the onset of the slots sl1 < sl2 are such that Cdk1 � C2,

where Cdk1 denotes the chain obtained by removing the last k blocks from C1,
and � denotes the prefix relation.

Chain Growth (CG); with parameters τ ∈ (0, 1], s ∈ N. Consider a chain
C possessed by an alert party at the onset of a slot sl. Let sl1 and sl2 be
two previous slots for which sl1 + s ≤ sl2 ≤ sl, so sl2 is at least s slots
ahead of sl1. Then |C[sl1 : sl2]| ≥ τ · s. We call τ the speed coefficient.

Chain Quality (CQ); with parameters µ ∈ (0, 1] and k ∈ N. Consider any
portion of length at least k of the chain possessed by an alert party at the
onset of a slot; the ratio of blocks originating from alert parties is at least µ.
We call µ the chain quality coefficient.

23

Existential Chain Quality (∃CQ); with parameter s ∈ N. Consider a
chain C possessed by an alert party at the onset of a slot sl. Let sl1 and
sl2 be two previous slots for which sl1 + s ≤ sl2 ≤ sl. Then C[sl1 : sl2]
contains at least one alertly generated block (i.e., block generated by an alert
party).

The first 3 properties are standard, the last one is a slight variant of chain
quality fitting better our analysis. For brevity we sometimes write CP(k) (resp.,
CG(τ, s), CQ(µ, k), ∃CQ(s)) to refer to these properties.

While these definitions based on the logical time allow us to talk about the
logical structure of the forks created by the parties and reuse parts of the technical
machinery given in [23,12,3] to analyze it, providing only guarantees based on
the logical time would be unsatisfactory, as the parties running Chronos desire
persistence and liveness with respect to a more “real-time” notion (that we define
in a moment). We will address this translation from logical-time to real-time
guarantees later in Section 5.2.

For many of the security arguments it will be convenient to define a notion
of nominal time; even though inaccessible to alert parties, we will use it in the
proofs to express time-relevant properties of an execution.

Definition 3 (Nominal Time). Given an execution of Chronos, any prefix
of the execution can be mapped deterministically to an integer t, which we call
nominal time, as follows: parsing the prefix from genesis and keeping track of
the honest party set registered with the imperfect clock functionality (bootstrapped
with the set of inaugural alert parties), t is the number of times the functionality
internally switches all flags dP,P ∈ P from 1 to 0 until the final step of the
execution prefix. (In case no honest party exists in the execution t is undefined).

Nominal time is a technical definition useful for the analysis. It naturally coincides
with the idea of defining a baseline that runs at a certain speed, but where parties
have some varying (but bounded) lead ahead of the baseline. For example, if
a set of alert parties execute Chronos from the beginning, then nominal time
lower bounds the number of rounds completed by any of them. Furthermore, by
the bounded (absolute) drift enforced by G∆clock

ImperfLClock, the number of locally
completed rounds by these alert parties can each be decomposed to be t + δ
(nominal) rounds, where t is the baseline, and δ is bounded by ∆clock.

We next state a definition that will help us quantify how much parties’ (local)
timestamps deviate from the nominal time and from each other.

Definition 4 (Clock skew and Skew∆). Given an honest party P, we define
its skew in slot sl (denoted SkewP[sl]) as the difference between sl and the
nominal time t when P enters slot sl. For any ∆ ≥ 0 and a slot sl, we denote
by Skew∆[sl] the predicate that for all parties that are synchronized in slot sl,
their skew in this slot differs by at most ∆; formally

Skew∆[sl] :⇔
(
∀P1,P2 ∈ Palert[sl] :

∣∣∣SkewP1 [sl]− SkewP2 [sl]
∣∣∣ ≤ ∆) .

24

Note that in the static-registration setting (where parties do not join or leave),
all honest parties are synchronized (and hence are considered for Skew∆[sl]).

Definition 5 (Joining party). We say that an honest party P is joining the
protocol execution at time tjoin > 0 if tjoin is the nominal time at the point of the
execution where P becomes operational, time-aware and online for the first time.

5.2 Proving the Blockchain Properties

We phrase here the asymptotic version of our main result, its concrete-security
variant is proven in the full version [4].

Theorem 2. Consider an execution of the protocol Chronos in the dynamic-
availability setting and let κ denote a security parameter. Let f be the active-slot
coefficient and R the epoch length, let ∆ be the upper bound on the sum of the
maximum network delay and maximum local clock drifts, and let ∆̃ , 2∆. Let
α, β ∈ [0, 1] denote a lower bound on the alert and participating stake ratios
throughout the whole execution, respectively. Assume that for some ε ∈ (0, 1) we
have

α · (1− f)∆̃+1 ≥ (1 + ε)/2 ,

and that the maxvalid-bg parameters, k and s, satisfy

k > 192∆̃/(εβ) and R/6 ≥ s = k/(4f) ≥ 48∆̃/(εβf).

Then, all blockchain properties CP(k′),CG(τ, s′), CQ(µ, k′), ∃CQ(s′) (for con-
crete coefficients τ and µ defined in the proof) hold except with negligible probability
in κ whenever s′ and k′ as well as the chain-selection parameters k and s of
maxvalid-bg are functions in ω(log κ).

Note that the bound on s implies that the epoch length R has a lower bound
in ω(log κ) in such an asymptotic treatment.

Outline of the proof. We only give a brief overview of the proof and refer to
the full version of this work [4]. To handle the proof complexity, the proof is
divided into a sequence of logical steps:

1. A proof that the blockchain properties CP, CG, CQ, and ∃CQ hold in a static
registration setting (where parties do not join or leave) and for a single epoch.
In view of an inductive proof, this serves as the security base case.

2. Once we can rely on the blockchain properties, we can as a second step
analyze the synchronization procedure and prove that no matter what the
adversary does, the parties will always stay close together when transitioning
from one epoch, say i where the security properties hold, to the next and
that the clock-adjustments are very small. Two properties are important:

SyncProc maintains Skew∆. If (some parametrizations of) CG and CP are
not violated up to the end of epoch i, then Skew∆ is satisfied in the first
slot of epoch i+ 1.

25

Bounded shift. If the lower bound on α, some parametrization of ∃CQ, and
Skew∆ are not violated up to epoch i, then the value shift by which an
alert party updates its local clock in SyncProc right before epoch i+ 1
satisfies |shift| ≤ 2∆.

Here we only briefly comment on the proof of the first property, which
relies on two intermediate claims: The first is that all alert parties use the
same set of synchronization beacons in their execution of the procedure
SyncProc between epochs ep and ep + 1; the second is that for any fixed
beacon SB ∈ SP1

j = SP2
j (in the jth synchronization slot), the quantity

µ(Pi, SB) , SkewPi [sl] + slotnum(SB) − Pi.Timestamp(SB) will differ by at
most ∆ between any two alert parties P1 and P2.

3. By an inductive argument, if we start with a bounded-skew initial epoch
(which is guaranteed by the weak start agreement), the above two steps allow
us to conclude the security of the (multi-epoch) blockchain protocol, but
without parties joining.

4. A party joining the network acts like an observer of the network (i.e., it does
not interfere with the protocol) and becomes synchronized after extracting
enough information from the network, at which point it can start to be an
active protocol participant. This step of the security proof can hence be
conducted based on the previous analysis. Our analysis shows two properties
of the joining process of Pjoin that hold as long as the established properties
CP, CG, ∃CQ remain satisfied throughout the joining process:

(a) After Phase B, Pjoin will be holding a chain Cjoin that satisfies Cdkalert � Cjoin
with respect to any Calert held by an alert party at least ∆ time steps ago.

(b) In Phase D, Pjoin correctly identifies an epoch i∗ for which it has collected
all the beacons that alert parties had used in their execution of SyncProc
after epoch i∗, and based on these beacons mimics the synchronization
procedure so that starting with epoch i∗+ 1, Pjoin does not violate Skew∆
as it becomes alert.

5. At this point, we are ready to derive the CP, CG,CQ, and ∃CQ guarantees
for the entire protocol in a fully dynamic world, where parties join any
time, might be temporarily stalled, and disappear unannounced. This can be
argued based on a case distinction on different party types (cf. Section 3.1)
and quantify their impact on the security guarantees established above. This
concludes the proof.

From Logical-Time to Real-Time Guarantees for Chain Growth. Recall
that eventually, we are interested in a ledger that provides consistency and liveness
and they typically follow black-box from the blockchain properties above. However,
since in our protocol, parties emulate a global time themselves, we must make
related logical time advancement with the nominal time, which is especially
important for liveness. Since parties adjust their timestamps at the boundary
of every epoch, an external observer that takes nominal time as the baseline,
would conclude that parties are slightly off. To quantify the general relationship,
we introduce a concrete discount factor τTG. We state the informal lemma here,
which is proven with a concrete expression for τTG in the full version [4].

26

Lemma 1 (Nominal vs. logical time, informal). Consider an execution of
the full protocol Chronos in the dynamic-availability setting, let P be a party that is
synchronized between (and including) slots sl and sl′, let t and t′ be the nominal
times when P enters slot sl and sl′ for the first time, respectively. Denote by
δsl and δt the respective differences |sl′− sl| and |t′− t|. Then, under the same
assumptions as before, we have δsl ≥ τTG · δt for large enough δt.

It is important to point out that the τTG is close to 1 for typical parameter
choices and that the lower bound on δt does depend on ∆ and not on the security
parameter. We are ready to state chain-growth with respect to nominal time.
Again, the formal statement with concrete bounds is given in the full version [4].

Corollary 1 (Nominal time CG, informal). Consider the event that the
execution of Chronos under the assumptions as above does not violate property
CG with parameters τ ∈ (0, 1], s ∈ N. Let τCG,glob , τ · τTG. Consider a chain C
possessed by an alert party at a point in the execution where the party is at an
onset of a (local) round and where the nominal time is t. Let further t1, t2, and
δt be such that t1 + δt ≤ t2 ≤ t. Let sl1 and sl2 be the last slot numbers that P
reported in the execution when nominal time was t1 (resp. t2) Then it must hold
that |C[sl1 : sl2]| ≥ τCG,glob · δt whenever δt is sufficiently large,

6 The Synchronizer

We now explore the properties of the time-stamps that are recorded by our
blockchain protocol and how to export a clock based on them. Recall that in
the view of each party P, blocks feature extended local timestamps timeP, equal
to the pair timeP = (e, t), where t is the time-value, and e is the number of
non-monotone adjustments to t, i.e., the number of epoch switches that P has
observed (and hence the synchronization procedure was executed). The following
lemma (proven in the full version [4]) captures the properties of these timestamps.

Lemma 2 (Quality of Exported Time-Stamps). Consider an execution of
the full protocol Chronos in the dynamic-availability setting, let P be a party
and let the sequence (e1, t1), . . . , (en, tn) denote the updates that P makes to its
exported time-stamp between two arbitrary instances in the execution where in
between P is synchronized throughout. Then the timestamps satisfy the following
properties:

1. No reported time stamp ti is further than 2∆ slots apart from any other alert
party’s time value and no other alert party reports an e-value that differs
by more than 1. If another alert party reports the same e-value, then the
exported times are at most ∆ apart.

2. Any subsequence of the same epoch (e, tj), . . . , (e, tk), k > j has monotone
increasing time-stamps with increments of 1 happening whenever P locally
completes a round in the execution.

3. The only non-monotone behavior of the exported time can occur at most once
per epoch, namely at the epoch boundary (e, t)→ (e+1, t′) with t mod R = 0,
and it holds t′ ≤ t+∆ and t′ ≥ t− 2∆.

27

Having established this final piece, we can couple it with the statements above,
notably with Theorem 2—which guarantees that we have achieved a blockchain
protocol in the dynamic availability setting with all required properties—which
overall assures that we have a protocol that outputs reliable, accurate two-
dimensional time-stamps in the dynamic availability setting: any party and any
observer is able to compute a reliable time-stamp, no matter when he or she
joined or started observing the system.

Proof of Theorem 1[The synchronizer]. Theorem 1 follows as a simple
corollary of the above. In fact, we just need to map the above 2D time-stamps to
the natural numbers: an alert party, obtaining sequences of (2-dimensional) time-
stamps from the underlying protocol over the course of an execution, say E =
(e1, t1), . . . , (en, tn), simply maps this to an integer by the map τi ← maxj∈[i]{tj}.
This integer time-stamp satisfies the abstract properties 1. to 4. demanded by
Theorem 1. Clearly, the outputs are natural numbers, then by property 1. of
Lemma 2 we obtain the bound between time-stamps of 2∆, and by combining
properties 2. and 3. of Lemma 2, the third and fourth properties of Theorem 1
follow, i.e., the final sequence of time values are non-decreasing and guaranteed to
increase after a constant number of local rounds have elapsed (since the underlying
2D timestamps never roll back more than 2∆ in the second coordinate).

In the full version of this paper [4], we additionally give a UC proof of the
protocol that follows in a straightforward way from the above properties. The
protocol UC-realizes a functionality that combines a ledger with a clock. We
analyze in a modular way further settings, including optimistic network models
with known expectation and variance of delay to show that it is possible to
approximate real-time progression extremely accurately.

References

1. Marcin Andrychowicz and Stefan Dziembowski. PoW-based distributed cryptog-
raphy with no trusted setup. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 379–399. Springer,
Heidelberg, August 2015.

2. Hagit Attiya, Amir Herzberg, and Sergio Rajsbaum. Optimal clock synchronization
under different delay assumptions (preliminary version). In Jim Anderson and Sam
Toueg, editors, 12th ACM PODC, pages 109–120. ACM, August 1993.

3. Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis
Zikas. Ouroboros genesis: Composable proof-of-stake blockchains with dynamic
availability. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng
Wang, editors, ACM CCS 18, pages 913–930. ACM Press, October 2018.

4. Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis
Zikas. Ouroboros chronos: Permissionless clock synchronization via proof-of-stake.
Cryptology ePrint Archive, Report 2019/838, 2019. https://eprint.iacr.org/

2019/838.
5. Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin

as a transaction ledger: A composable treatment. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 324–356.
Springer, Heidelberg, August 2017.

28

https://eprint.iacr.org/2019/838
https://eprint.iacr.org/2019/838

6. Amos Beimel, Yuval Ishai, and Eyal Kushilevitz. Ad hoc PSM protocols: Secure
computation without coordination. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, EUROCRYPT 2017, Part III, volume 10212 of LNCS, pages
580–608. Springer, Heidelberg, April / May 2017.

7. Gabriel Bracha. An asynchronou [(n-1)/3]-resilient consensus protocol. In Robert L.
Probert, Nancy A. Lynch, and Nicola Santoro, editors, 3rd ACM PODC, pages
154–162. ACM, August 1984.

8. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

9. Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally com-
posable security with global setup. In Salil P. Vadhan, editor, TCC 2007, volume
4392 of LNCS, pages 61–85. Springer, Heidelberg, February 2007.

10. Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger.
Theor. Comput. Sci., 777:155–183, 2019.

11. Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable
consensus and applications to provably secure proof of stake. In Ian Goldberg and
Tyler Moore, editors, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18-22,
2019, Revised Selected Papers, volume 11598 of LNCS, pages 23–41. Springer, 2019.

12. Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros
praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume
10821 of LNCS, pages 66–98. Springer, Heidelberg, April / May 2018.

13. Danny Dolev, Joseph Y. Halpern, and H. Raymond Strong. On the possibility
and impossibility of achieving clock synchronization. In 16th ACM STOC, pages
504–511. ACM Press, 1984.

14. Shlomi Dolev and Jennifer L. Welch. Wait-free clock synchronization (extended
abstract). In Jim Anderson and Sam Toueg, editors, 12th ACM PODC, pages
97–108. ACM, August 1993.

15. Shlomi Dolev and Jennifer L. Welch. Self-stabilizing clock synchronization in the
presence of byzantine faults (abstract). In James H. Anderson, editor, 14th ACM
PODC, page 256. ACM, August 1995.

16. Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation
(extended abstract). In 26th ACM STOC, pages 554–563. ACM Press, May 1994.

17. Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 281–310. Springer,
Heidelberg, April 2015.

18. Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol with chains of variable difficulty. Cryptology ePrint Archive, Report
2016/1048, 2016. http://eprint.iacr.org/2016/1048.

19. Joseph Y. Halpern, Barbara Simons, H. Raymond Strong, and Danny Dolev. Fault-
tolerant clock synchronization. In Robert L. Probert, Nancy A. Lynch, and Nicola
Santoro, editors, 3rd ACM PODC, pages 89–102. ACM, August 1984.

20. Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocols with
applications. In ISTCS 1997, pages 174–184. IEEE Computer Society, 1997.

21. Yael Tauman Kalai, Yehuda Lindell, and Manoj Prabhakaran. Concurrent composi-
tion of secure protocols in the timing model. Journal of Cryptology, 20(4):431–492,
October 2007.

29

http://eprint.iacr.org/2016/1048

22. Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally
composable synchronous computation. In Amit Sahai, editor, TCC 2013, volume
7785 of LNCS, pages 477–498. Springer, Heidelberg, March 2013.

23. Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS,
pages 357–388. Springer, Heidelberg, August 2017.

24. Leslie Lamport and P. M. Melliar-Smith. Byzantine clock synchronization. In
Robert L. Probert, Nancy A. Lynch, and Nicola Santoro, editors, 3rd ACM PODC,
pages 68–74. ACM, August 1984.

25. Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Clock synchronization
with bounded global and local skew. In 49th FOCS, pages 509–518. IEEE Computer
Society Press, October 2008.

26. Aanchal Malhotra, Matthew Van Gundy, Mayank Varia, Haydn Kennedy, Jonathan
Gardner, and Sharon Goldberg. The security of ntp’s datagram protocol. In Aggelos
Kiayias, editor, FC 2017, volume 10322 of LNCS, pages 405–423. Springer, 2017.

27. David L. Mills. Computer Network Time Synchronization: The Network Time
Protocol on Earth and in Space, Second Edition. CRC Press, 2010.

28. Rafail Ostrovsky and Boaz Patt-Shamir. Optimal and efficient clock synchronization
under drifting clocks. In Brian A. Coan and Jennifer L. Welch, editors, 18th ACM
PODC, pages 3–12. ACM, May 1999.

29. Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain protocol in
asynchronous networks. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 643–673. Springer,
Heidelberg, April / May 2017.

30. Rafael Pass and Elaine Shi. Rethinking large-scale consensus. In 30th IEEE
Computer Security Foundations Symposium, CSF 2017, Santa Barbara, CA, USA,
August 21-25, 2017, pages 115–129. IEEE Computer Society, 2017.

31. Rafael Pass and Elaine Shi. The sleepy model of consensus. In Tsuyoshi Takagi
and Thomas Peyrin, editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS,
pages 380–409. Springer, Heidelberg, December 2017.

32. Barbara B. Simons, Jennifer Lundelius Welch, and Nancy A. Lynch. An overview
of clock synchronization. In Barbara B. Simons and Alfred Z. Spector, editors,
Fault-Tolerant Distributed Computing, volume 448 of LNCS. Springer, Heidelberg,
1990.

33. T. K. Srikanth and Sam Toueg. Optimal clock synchronization. In Michael A.
Malcolm and H. Raymond Strong, editors, 4th ACM PODC, pages 71–86. ACM,
August 1985.

30

	Dynamic Ad Hoc Clock Synchronization

