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Abstract. We show that the most common flavors of noisy leakage can
be simulated in the information-theoretic setting using a single query of
bounded leakage, up to a small statistical simulation error and a slight
loss in the leakage parameter. The latter holds true in particular for one
of the most used noisy-leakage models, where the noisiness is measured
using the conditional average min-entropy (Naor and Segev, CRYPTO’09
and SICOMP’12).
Our reductions between noisy and bounded leakage are achieved in two
steps. First, we put forward a new leakage model (dubbed the dense
leakage model) and prove that dense leakage can be simulated in the
information-theoretic setting using a single query of bounded leakage,
up to small statistical distance. Second, we show that the most common
noisy-leakage models fall within the class of dense leakage, with good
parameters. Third, we prove lower bounds on the amount of bounded
leakage required for simulation with sub-constant error, showing that
our reductions are nearly optimal. In particular, our results imply that
useful general simulation of noisy leakage based on statistical distance
and mutual information is impossible. We also provide a complete picture
of the relationships between different noisy-leakage models.
Our result finds applications to leakage-resilient cryptography, where
we are often able to lift security in the presence of bounded leakage to
security in the presence of noisy leakage, both in the information-theoretic
and in the computational setting. Additionally, we show how to use lower
bounds in communication complexity to prove that bounded-collusion
protocols (Kumar, Meka, and Sahai, FOCS’19) for certain functions do
not only require long transcripts, but also necessarily need to reveal
enough information about the inputs.



1 Introduction

1.1 Background

The security analysis of cryptographic primitives typically relies on the assumption
that the underlying secrets (including, e.g., secret keys and internal randomness)
are uniformly random to the eyes of the attacker. In reality, however, this
assumption may simply be false due to the presence of so-called side-channel
attacks [36, 37, 4], where an adversary can obtain partial information (also known
as leakage) on the secret state of an implementation of a cryptographic scheme,
by exploiting physical phenomena.

Leakage-resilient cryptography [34, 43, 28] aims at bridging this gap by
allowing the adversary to launch leakage attacks in theoretical models too. The
last decade has seen an impressive amount of work in this area, thanks to which
we now dispose of a large number of leakage-resilient cryptographic primitives in
different leakage models. We refer the reader to the recent survey by Kalai and
Reyzin [35] for an overview of these results.

From an abstract viewpoint, we can think of the leakage on a random variable
X (corresponding, say, to the secret key of an encryption scheme) as a correlated
random variable Z = f(X) for some leakage function f that can be chosen by the
adversary. Depending on the restriction7 we put on f , we obtain different leakage
models. The first such restriction, introduced for the first time by Dziembowski
and Pietrzak [28], is to simply assume that the length ` ∈ N of the leakage
Z is small enough. This yields the so-called Bounded Leakage Model. Thanks
to its simplicity and versatility, this model has been used to construct many
cryptographic primitives that remain secure in the presence of bounded leakage.

A considerable limitation of the Bounded Leakage Model is the fact that, in
real-world side-channel attacks, the leakage obtained by the attacker is rarely
bounded in length. For instance, the power trace on a physical implementation
of AES typically consists of several Megabytes of information, which is much
larger than the length of the secret key.

This motivates a more general notion of noisy leakage, where there is no
upper bound on the length of Z but instead we assume the leakage is somewhat
noisy, in the sense that it does not reveal too much information about X. It turns
out that the level of noisiness of the leakage can be measured in several ways,
each yielding a different leakage model. The first such model, proposed for the
first time by Naor and Segev [44] in the setting of leakage-resilient public-key
encryption, assumes that the uncertainty of X given Z drops at most by some
parameter ` ∈ R>0. The latter can be formalized by means of conditional8 average
min-entropy [22], i.e. by requiring that H̃∞(X|Z) ≥ H∞(X) − `. In this work,
we will refer to this model as the Min-Entropy-Noisy (ME-Noisy) Leakage Model.
Dodis, Haralambiev, López-Alt, and Wichs [20] considered a similar model, which
7 Clearly, there must be some restriction as otherwise f(X) = X and there is no hope
for security.

8 Intuitively, the conditional average min-entropy of a random variable X given Z
measures how hard it is to predict X given Z on average (by an unbounded predictor).
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we refer to as the Uniform-Noisy (U-Noisy) Leakage Model, where the condition
about the min-entropy drop is defined w.r.t. the uniform distribution U (rather
than on X which may not9 be uniform).

Another variant of noisy leakage was pioneered by Prouff and Rivain [47]
(building on previous work by Chari, Jutla, Rao, and Rohatgi [16]), who suggested
to measure the noisiness of the leakage by bounding the Euclidean norm between
the joint distribution PXZ and the product distribution PX ⊗ PZ with some
parameter η ∈ (0, 1). Follow-up works by Duc, Dziembowski, and Faust [24] and
by Prest, Goudarzi, Martinelli, and Passelègue [46] replaced the Euclidean norm,
respectively, with the statistical distance and the mutual information, yielding
what we refer to as the SD-Noisy Leakage and the MI-Noisy Leakage Models.
More precisely,10 Duc, Dziembowski, and Faust considered a strict subset of
SD-noisy leakage—hereafter dubbed DDF-noisy leakage—for the special case
where X = (X1, . . . , Xn), for some fixed parameter n ∈ N, and the function
f has a type f = (f1, . . . , fn) such that ∆(PXi ⊗ PZi , PXiZi) ≤ η for each Xi

and Zi = fi(Xi). All of these works studied noisy leakage in the setting of
leakage-resilient circuit compilers (see §1.4).

The different flavors of noisy leakage discussed above capture either a more
general class of leakage functions than bounded leakage (as in the case of ME-noisy
and U-noisy leakage), or an orthogonal class of leakage functions (as in the case
of SD-noisy and MI-noisy leakage). On the other hand, it is usually easiest (and
most common) to prove security of a cryptographic primitive against bounded
leakage, whereas extending the analysis to other types of noisy leakage requires
non-trivial specialized proofs for each primitive. Motivated by this situation,
we consider the following question: Can we reduce noisy-leakage resilience to
bounded-leakage resilience in a general way?

1.2 Our Results

In this work, we answer the above question to the positive in the information-
theoretic setting. In a nutshell, we achieve this by proving that a novel and very
general leakage model, which we refer to as the Dense Leakage Model and that
encompasses all the aforementioned noisy-leakage models, can be simulated almost
for free (albeit possibly inefficiently) using a single query of bounded leakage. Our
result allows us to show in a streamlined way that many cryptographic primitives
which have only been proved to be resilient against bounded leakage are also
secure against noisy leakage, with only a small loss in parameters. Importantly,
the latter does not only hold for cryptographic schemes with information-theoretic
security, but also for ones with computational security only. We elaborate on our
contributions in more details in the paragraphs below, and refer the reader to
§1.3 for a more technical overview.
9 For instance, in the setting of public-key encryption [44], the random variable X
corresponds to the distribution of the secret key SK given the public key PK , which
may not be uniform.

10 The work by Prest, Goudarzi, Martinelli, and Passelègue considered a similar restric-
tion for MI-noisy leakage.
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Simulating dense leakage with bounded leakage. As the starting point for our
work, in §3, we introduce a meaningful simulation paradigm between leakage
models. Informally, given some random variable X and two families of leakage
functions F and G on X, we say F is ε-simulatable from G if for every f ∈ F we
can simulate (X, f(X)) to within statistical distance ε using a single query of
the form g(X) for some g ∈ G.

Taking into account the above simulation paradigm, the question we tackle
is whether we can have simulation theorems stating that different noisy-leakage
families F are ε-simulatable from the the family G of `-bounded leakage (for
some small ε). We prove such a simulation theorem for a new leakage model that
we call dense leakage.

In order to define the Dense Leakage Model, we begin with the concept of
δ-density: Given two distributions P and P ′ over a discrete set X , we say P is
δ-dense in P ′ if P (x) ≤ P ′(x)

δ for all x ∈ X . In particular, δ-density implies that
P (x) = 0 whenever P ′(x) = 0, and thus this concept is connected to the notion
of absolute continuity of one measure with respect to another. Given this notion,
it is simple to describe the Dense Leakage Model. If Z = f(X) denotes some
leakage from X, then Z is (p, γ, δ)-dense leakage from X if, with probability 1−p
over the choice of X = x, we have PZ|X=x(z) ≤ PZ(z)

δ with probability 1 − γ
over the choice of Z = z. Intuitively, Z being a dense leakage of X essentially
corresponds to the distributions PZ|X=x being “approximately” dense in the
marginal distribution PZ for most choices of x ∈ X .

Our first result is a simulation theorem for dense leakage with respect to
bounded leakage, which we state in simplified form below.

Theorem 1 (Informal) For any random variable X, and every parameter ε ∈
(0, 1), the family of (p, γ, δ)-dense leakage functions on X is (ε+ ε1/4δ + γ + p)-
simulatable from the family of `-bounded leakage functions on X, so long as

` ≥ log(1/δ) + log log(1/ε) + 2 log
(

1
1− γ

)
+ 2.

On the power of dense leakage. Second, we show that dense leakage captures
all of the noisy-leakage models considered above. In particular, we obtain the
following informal result.

Theorem 2 (Informal) The families of ME-noisy, U-noisy, and DDF-noisy
leakages fall within the family of dense leakage with good11 parameters.

By combining Theorem 1 and Theorem 2, we obtain non-trivial simulation theo-
rems for the families of ME-noisy, U-noisy, and DDF-noisy leakage from bounded
leakage, with small simulation error and small bounded leakage parameter. It is
worth mentioning that, for the specific case of ME-noisy leakage, Theorem 2 only
holds for distributions X that are almost flat. As we shall prove, this restriction is
11 In particular, small enough in order to be combined with Theorem 1 yielding inter-

esting applications.
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Min-Entropy-Noisy Leakage

Uniform-Noisy Leakage
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SD-Noisy Leakage

Fig. 1. Containment of the different leakage models considered in this paper. Our main
result is that a single query of bounded leakage is enough to simulate dense leakage to
within small statistical distance.

nearly optimal in the sense that there exist “non-flat” distributions X for which
we cannot simulate ME-noisy leakage on X from bounded leakage on X with
good parameters, even when the drop in min-entropy is minimal.

Fundamental limitations of SD-noisy and MI-noisy leakages. Turning to the
families of SD-noisy and MI-noisy leakage, one can show that they fall within the
family of dense leakage too. However, the parameters we obtain in this case are
not good enough to be combined with Theorem 1 in order to yield interesting
applications. In fact, we prove that the families of η-SD-noisy and η-MI-noisy
leakage are trivially simulatable with statistical error roughly η even from the
degenerate family of 0-bounded leakage. Unfortunately, this is inherent for the
general form of SD-noisy and MI-noisy leakage we consider: we prove that no
simulator can achieve simulation error significantly smaller than η even when
leaking almost all of the input. In contrast, Duc, Dziembowski, and Faust [23, 24]
gave a non-trivial12 simulation theorem for the family of DDF-noisy leakage
(which is a strict subset of SD-noisy leakage) from a special type of bounded
leakage called threshold probing leakage. Consistently, Theorem 2 establishes that
DDF-noisy leakage is dense leakage with good parameters which in combination
with Theorem 1 gives an alternative (non-trivial) simulation theorem for DDF-
noisy leakage from bounded leakage. While this result is not new, we believe it
showcases the generality of our techniques.

A complete picture, and near-optimality of our simulation theorems. We also
provide a complete picture of inclusions and separations between the different
12 In particular, with negligible simulation error and small bounded leakage parameter

even for constant η.
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leakage models, as depicted in Figure 1. Some of these relationships were already
known (e.g., the fact that the family of U-noisy leakage is a strict subset of the
family of ME-noisy leakage), and some are new (e.g., the separations between the
family of SD-noisy leakage and the families of ME-noisy and MI-noisy leakage).

Moreover, we prove a series of results showing that the amount of bounded
leakage we use in our simulation theorems is nearly optimal with respect to the
desired simulation error.

Applications in brief. Next, we explore applications of our results to leakage-
resilient cryptography. Intuitively, the reason why the simulation paradigm is
useful is that it may allow us to reduce leakage resilience of a cryptographic scheme
against F to leakage resilience against G. In particular, when G is taken to be the
family of bounded-leakage functions, we obtain that many primitives which were
already known to be secure against bounded leakage are also secure against dense
(and thus noisy) leakage. Examples include forward-secure storage [26], leakage-
resilient one-way functions and public-key encryption [5], cylinder-intersection
extractors [38], symmetric non-interactive key exchange [40], leakage-resilient
secret sharing [9, 48, 1, 38, 41] and two-party computation [32].

1.3 Technical Overview

Due to space constraints, most proofs have been deferred to the full version of
this paper [13].

Simulation via rejection sampling. We begin by giving an overview of the approach
we use to simulate dense leakage from bounded leakage. As discussed before,
our goal is to show that, for a random variable X and some associated dense
leakage function f (where f may be randomized), there is a (possibly inefficient)
simulator that makes at most one black-box query g(X) for some `-bounded
leakage function g : X → {0, 1}` and outputs Z̃ such that

(X, f(X)) ≈ε (X, Z̃), (1)

where ≈ε denotes statistical distance at most ε. For simplicity, we focus here
on the setting where f is “exactly” δ-dense leakage from X, meaning that, if
Z = f(X), we have PZ|X=x(z) ≤ PZ(z)

δ for all x and z. This setting is already
appropriate to showcase our main ideas.

The key observation that enables the design of our simulator, as we formalize
in §2, is that if a distribution P is δ-dense in P ′, then it is possible to sample P̃
satisfying P̃ ≈ε P with access only to s = log(1/ε)

δ independent and identically
distributed (i.i.d.) samples from P ′, say z1, z2, . . . , zs, and knowledge of the
distribution P , via rejection sampling: For i = 1, 2, . . . , s, either output zi with
probability δP (zi)/P ′(zi) ≤ 1, or move to i+ 1 otherwise (if i = s+ 1, abort).

This suggests the following simulator for f exploiting δ-density: The sim-
ulator generates s i.i.d. samples z = (z1, z2, . . . , zs) from PZ . Then, it queries
the bounded-leakage oracle with the randomized function gz which, with full
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knowledge of x, performs rejection sampling of PZ|X=x from PZ using z. If
rejection sampling outputs zi, then gz(x) = i, and if rejection sampling aborts
we may set gz(x) = ⊥. In particular, gz has 1 + s possible outputs, and so it is
`-bounded-leakage from X with ` = log(1 + s) ≤ log(1/δ) + log log(1/ε) + 1. The
behavior of the simulator is now clear: Since it knows z, it can simply output
Z̃ = zi (or Z̃ = ⊥ if rejection sampling aborted). The discussion above guarantees
that the output of the simulator is ε-close in statistical distance to f(x), which
yields Eq. (1).

As previously discussed, in the actual proof (which appears in §4.1) we must
deal with an approximate variant of δ-density. However, we show that the above
approach still works in the setting of approximate density at the price of some
additional small terms in the simulation error and in the bounded leakage length.

Noisy leakage is dense leakage. As an example of how we manage to frame many
types of noisy leakage as dense leakage with good parameters, we discuss how
this can be accomplished for ME-noisy leakage assuming X satisfies a property
we call α-semi-flatness. The full proof appears in §4.2. The property states that
X satisfies PX(x) ≤ 2α ·PX(x′) for all x, x′ ∈ supp(X), and, as we shall see, it is
usually satisfied in applications with small α (or even α = 0, which corresponds to
a flat distribution). We stress that for the case of U-noisy, DDF-noisy, SD-noisy,
and MI-noisy leakages, no assumption is required on X to place these types of
leakage inside the set of dense leakages. More details can be found in §4.3 and
§4.4.

Consider some α-semi-flat X and leakage function f such that Z = f(X)
satisfies

H∞(X|Z = z) ≥ H∞(X)− ` (2)

for some ` > 0 and all z. Note that this is a special case of ME-noisy leakage, but
it suffices to present the main ideas of our approach. Our goal is to show that f is
(0, 0, δ)-dense leakage of X for an appropriate parameter δ, meaning that we wish
to prove that PZ|X=x(z) ≤ PZ(z)

δ for all x and z. Observe that, by Eq. (2), we have
PX|Z=z(x) ≤ 2` maxx′ PX(x′) ≤ 2`+αPX(x) for all x and z, where the rightmost
inequality makes use of the fact that X is α-semi-flat. Rewriting the inequality
above using Bayes’ theorem yields PZ|X=x(z) ≤ 2`+αPZ(z), meaning that f is
(p = 0, γ = 0, δ = 2−`−α)-dense leakage of X. By Theorem 1, we then have that
f(X) can be simulated with statistical error 2ε using `′ = `+α+ log log(1/ε) + 2
bits of bounded leakage from X. This statement allows for significant flexibility
in the choice of parameters. For example, setting ε = 2−λ for some security
parameter λ yields negligible simulation error from ` + α + log(λ) + 2 bits of
bounded leakage. Since α is usually very small in applications (often we have
α = 0), in practice we can achieve negligible simulation error using `+log(λ)+O(1)
bits of bounded leakage, i.e., by paying only an extra log(λ)+O(1) bits of leakage.
Extending the argument above to general ME-noisy leakage from X requires the
addition of small error terms p and γ, but setting parameters similarly to the
above still allows us to simulate general `-ME-noisy leakage from X using only,
say, `+O(log2(λ)) bits of bounded leakage from X.
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Trivial simulation of SD-noisy and MI-noisy leakages. Consider the trivial
simulator that given the function f simply samples X̃ according to the distribution
of X and then outputs Z̃ = f(X̃). Assuming f belongs to the family of η-SD-
noisy leakage, the above gives a simulation theorem for SD-noisy leakage with
simulation error η (and without requiring any leakage from X). By Pinsker
inequality, the above also implies a simulation theorem for η-MI-noisy leakage
with simulation error

√
2η (again without leaking anything from X).

Unfortunately, it turns out that one cannot do much better than the trivial
simulator (even when using large bounded leakage) for our general definition of
SD-noisy leakage. More specifically, there exists some X such that any simulator
for a function f that is η-SD-noisy leakage for X must incur a simulation error
of at least η/2 even when leaking all but one bit from X. In the case of MI-noisy
leakage, we prove a similar result: There exists an X such that any simulator
must have simulation error at least η

2n when simulating η-MI-noisy leakage from
X, even when leaking all but one bit of X. Notably, this means that negligible
simulation error is impossible to achieve when η is non-negligible, and thus one
cannot do significantly better than the trivial simulator for MI-noisy leakage
either.

It is instructive to compare the above trivial simulation theorem for SD-
noisy leakage with the result by Duc, Dziembowski, and Faust [24], who gave
a non-trivial simulation theorem for DDF-noisy leakage from a special case of
bounded leakage known as threshold probing leakage. Notice that by the triangle
inequality, the trivial simulation theorem for η-SD-noisy leakage implies a trivial
simulation theorem for η-DDF-noisy leakage with large simulation error n · η,
which in particular becomes uninteresting as soon as η is non-negligible.

Nevertheless, in [13], we show that the family of η-DDF-noisy leakage falls
within the family of U-noisy (and thus dense) leakage with good parameters,
which in turn gives a non-trivial simulation theorem for η-DDF-noisy leakage
from `-bounded leakage with negligible simulation error and for small bounded
leakage parameter `, even when η ∈ (0, 1) is constant.

Separations between leakage families, and tradeoffs between simulation error and
bounded leakage parameter. We complement our positive results in several ways.
First, we present missing separations between the different types of leakages we
consider in [13], leading to a complete picture of their relationships (as depicted
in Figure 1). Second, we study the minimum amount of bounded leakage required
to simulate different types of noisy leakage with a given simulation error, and
show that our simulation theorems are close to optimal. For example, in the case
of ME-noisy leakage, for a large range of ` and α we show that ` + α − O(1)
bits of bounded leakage are required to simulate `-ME-noisy leakage from some
α semi-flat X. In contrast, as discussed above, our simulation theorem states that
approximately `+ α bits of bounded leakage are sufficient to achieve negligible
simulation error.

To showcase our approach towards obtaining tradeoffs between simulation
error and the bounded leakage parameter, we discuss here one particularly
insightful implication of a more general theorem we obtain, which states that
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enforcing α-semi-flatness of X is necessary to obtain a non-trivial simulation
theorem for ME-noisy leakage with sub-constant simulation error. More precisely,
there exists X with support in {0, 1}n with an associated 0-noisy leakage function
f (meaning that H̃∞(X|f(X)) = H∞(X)) with the property that simulating
Z = f(X) with simulation error less than 1/4 requires one `′-bounded-leakage
query for `′ ≥ n−2. In other words, to achieve small simulation error without semi-
flatness, we must leak almost all of the input X. The statement above is proved
as follows. Consider X ∈ {0, 1}n satisfying PX(0n) = 1/2 and PX(x) = 1

2(2n−1)
for x 6= 0n. Moreover, set Z = f(X) for a leakage function f such that f(0n)
is uniformly distributed over {0, 1}n \ {0n} and f(x) = x with probability 1 for
x 6= 0n. Routine calculations show that H∞(X) = 1 and H∞(X|Z = z) = 1
for all z, meaning that H̃∞(X|Z = z) = 1 = H∞(X), as desired. Finally, every
simulator for (X,Z) above with access to one query of `′-bounded-leakage for
`′ ≤ n − 2 must have simulation error 1/4 because, conditioned on X 6= 0n
(which holds with probability 1/2), we have f(X) = X and X uniform over
{0, 1}n \ {0n}. Therefore, under this conditioning, we can only correctly guess
f(X) with probability at most 1/2 from any one (n− 2)-bounded-leakage query
of X.

Sample Application: leakage-resilient secret sharing. We now explain how to use
our result in order to lift bounded-leakage resilience to noisy-leakage resilience
(almost) for free in cryptographic applications. In fact, in the information-theoretic
setting, the latter is an almost immediate consequence of our result.

For the purpose of this overview, let us focus on the concrete setting of
secret sharing schemes with local leakage resilience [9]. Briefly, a t-out-of-n secret
sharing scheme allows to share a message y into n shares (x1, . . . , xn) in such a
way that y can be efficiently recovered using any subset of t shares. Local leakage
resilience intuitively says that no unbounded attacker obtaining in full all of
the shares xU within an unauthorized subset U ⊂ [n] of size u < t, and further
leaking at most ` bits of information zi from each of the shares xi independently,
should be able to tell apart a secret sharing of message y0 from a secret sharing
of message y1. Benhamouda, Degwekar, Ishai and Rabin [9] recently proved
that both Shamir secret sharing and additive secret sharing satisfy local leakage
resilience for certain ranges of parameters.

Thanks to Theorem 1, in §5.1, we show that any secret sharing scheme
meeting the above property continues to be secure even if the attacker obtains
dense (rather than bounded) leakage on each of the shares xi independently. The
proof of this fact is simple. We move to a mental experiment in which leakages
(z1, . . . , zn) corresponding to dense-leakage functions (f1, . . . , fn) are replaced
by (z̃1, . . . , z̃n) obtained as follows: For each i ∈ [n], first run the simulator
guaranteed by Theorem 1 in order to obtain an `′-bounded leakage function
f ′i and compute z′i = f ′i(xi); then, run the simulator upon input z′i in order to
obtain a simulated leakage z̃i.

By a hybrid argument, the above experiment is statistically close to the
original experiment. Furthermore, we can reduce a successful attacker in the
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mental experiment to an attacker breaking local bounded-leakage resilience. The
proofs follows. Finally, thanks to Theorem 2, we can use the abstraction of dense
leakage in order to obtain security also in the presence of ME-noisy and U-noisy
leakage as well. Note that in the case of ME-noisy leakage, for the second step to
work, we need that the distribution Xi of each share outside U given the shares
xU is almost flat, which is the case for Shamir and additive secret sharing.

Applications in the computational setting. The above proof technique can be
essentially applied to any cryptographic primitive with bounded leakage resilience
in the information-theoretic setting. Further examples include, e.g., forward-secure
storage [26], leakage-resilient storage [19], leakage-resilient non-malleable codes [2],
non-malleable secret sharing [38, 14] and algebraic manipulation detection codes [6,
42, 3]. (We work out the details for some of these primitives in [13].) However,
we cannot apply the same trick in the computational setting or when in the
proof of security we need to define an efficient simulator (e.g., for leakage-
resilient non-interactive zero knowledge [7] and leakage-resilient multi party
computation [9, 32]), as the simulation of dense leakage with bounded leakage
guaranteed by Theorem 1 may not be efficient.

Nevertheless, we show that our results are still useful for lifting bounded-
leakage to noisy-leakage resilience in the computational setting too. In particular,
in [13], we exemplify how to do that for the concrete construction of leakage-
resilient one-way functions in the floppy model proposed by Agrawal, Dodis,
Vaikuntananthan, and Wichs [5], and in the setting of multi-party computation.

We give an overview of the former application, and refer to [13] for the latter.
Let G be a cyclic group with generator g and prime order q, and define gi = gτi

for each i ∈ [n]. Upon input a vector x = (x1, . . . , xn), the one-way function
outputs y =

∏n
i=1 g

xi
i ; moreover, there is a refreshing procedure that given y

and τ = (τ1, . . . , τn) can generate a fresh pre-image x′ of y by simply letting
x′ = x+ σ for randomly chosen σ orthogonal to τ . Here, one should think of
τ as a sort of master secret key to be stored in some secure hardware (i.e., the
floppy). Agrawal, Dodis, Vaikuntananthan, and Wichs proved that, under the
discrete logarithm assumption in G, no efficient attacker can successfully invert
y even when given `-bounded leakage on x, so long as ` ≈ (n − 3) log(q) and
assuming that after each leakage query the value x is refreshed using the floppy.
The proof of this fact follows in two steps. First, we move to a mental experiment
where each of the leakage queries is answered using a random (n−2)-dimensional
subspace S ⊆ ker(τ ). By the subspace hiding lemma [12], this experiment is
statistically close to the original experiment. Thus, we can use Theorem 1 and
Theorem 2 to show that the above still holds in the case of ME-noisy and U-
noisy leakage.13 Second, one finally reduces a successful attacker in the mental
experiment to an efficient breaker for the discrete logarithm problem; in this last
step, however, the reduction can trivially answer leakage queries by using S, and
thus it does not matter whether the leakage is bounded or noisy. We believe the
13 The former requires the distribution of x given y and (G, g, g1, . . . , gn, q) to be almost

flat which is easily seen to be the case.
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above blueprint can be applied to analyze other cryptographic primitives whose
leakage resilience is derived through the subspace hiding lemma; we mention a
few natural candidates in [13].

Bounded-collusion protocols. Finally, motivated by additional applications to
leakage-resilient cryptography and by exploring new lower bounds in communi-
cation complexity [49], in §5.2, we investigate the setting of bounded-collusion
protocols (BCPs) as proposed by Kumar, Meka, and Sahai [38]. Here, a set of
n parties each holding an input xi wishes to evaluate a Boolean function φ of
their inputs by means of an interactive protocol π. At the j-th round, a subset
of k parties (where k < n is called the collusion bound) is selected, and appends
to the protocol transcript τ an arbitrary (possibly unbounded) function fj of
their joint inputs. The goal is to minimize the size ` of the transcript, which
leads to what we call an `-bounded communication k-bounded collusion protocol
(BC-BCP). BC-BCPs interpolate nicely between the well-studied number-in-hand
(NIH) [45] (which corresponds to k = 1) and number-on-forehead (NOF) [15]
(which corresponds to k = n− 1) models.

We put forward two natural generalizations of BC-BCPs, dubbed dense (resp.
noisy) communication k-bounded collusion protocols (DC-BCPs, resp. NC-BCP),
in which there is no restriction on the length of the final transcript τ but the
round functions are either dense or U-noisy leakage functions. It is easy to see
that any BC-BCP is also a NC-BCP as well as a DC-BCP. By Theorem 1 and
Theorem 2, we are able to show that the converse is also true: namely, we can
simulate14 the transcript τ of any DC-BCP or NC-BCP π using the transcript
τ ′ of a related BC-BCP π′ up to a small statistical distance. Protocol π′ roughly
runs π and uses the simulation paradigm in order to translate the functions
used within π into functions to be used within π′. The proof requires a hybrid
argument, and thus the final simulation error grows linearly with the number of
rounds of the underlying BC-BCP.

The above fact has two consequences. The first consequence is that we can
translate communication complexity lower bounds for BC-BCPs into lower bounds
on the noisiness of NC-BCPs. A communication complexity lower bound for a
Boolean function φ says that any BC-BCP computing φ with good probability
must have long transcripts (i.e., large `). Concrete examples of such functions φ
include those based on the generalized inner product and on quadratic residues in
the NOF model with logarithmic (in the input length) number of parties [18, 8],
and more recently a new function (based on the Bourgain extractor [11]) for
more general values of k and even for super-logarithmic number of parties [39].
Note that the above lower bounds do not necessarily say how much information
a transcript must reveal about the inputs. Thanks to our results, we can show
that any NC-BCP (i.e., where there is no upper bound on the transcript length)

14 The reason for not considering NC-BCPs where the round functions are ME-noisy
(instead of U-noisy) leakage functions is that simulating ME-noisy leakage with
bounded leakage inherently requires semi-flatness, but we cannot ensure this condition
is maintained throughout the entire execution of a leakage protocol.
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computing the above functions with good probability must also in some sense
reveal enough information about the inputs. However, for technical reasons, the
latter holds true only so long as the number of rounds is not too large. We refer
the reader to §5.2 for further details.

The second consequence is that we can lift the security of cryptographic
primitives whose leakage resilience is modeled as a BC-BCP (which intuitively
corresponds to security against adaptive bounded joint leakage) to the more gen-
eral setting where leakage resilience is modeled as a NC-BCP or DC-BCP (which
intuitively corresponds to security against adaptive noisy joint leakage). Examples
include secret sharing with security against adaptive joint leakage [38, 17, 39]
(see §5.2), extractors for cylinder-intersection sources [38, 40, 17, 39] (see [13]),
and leakage-resilient non-interactive key exchange [40] (see [13]). Interestingly,
the security of these applications in the bounded-leakage setting has been derived
exploiting communication complexity lower bounds for BC-BCPs. We can instead
directly lift security to the dense and U-noisy leakage setting in a fully black-box
way, and thus without re-doing the analysis.

1.4 Related Work

Naor and Segev [44] conjectured that ME-noisy leakage may be compressed to
small leakage in the information-theoretic setting. In this light, our results prove
this conjecture to be false for arbitrary distributions and establish the exact
conditions under which the above statement holds true not only in the case of
ME-noisy leakage, but also for U-noisy leakage.

Most relevant to our work is the line of research on leakage-resilient circuit
compilers (see, e.g., [34, 29, 30]), where the equivalence of different leakage models
has also been explored. For instance, the beautiful work by Duc, Dziembowski,
and Faust [23, 24] shows that DDF-noisy leakage on masking schemes used to
protect the internal values within a cryptographic circuit can be simulated by
probing a limited number of wires (which can be thought of as bounded leakage
in the circuit setting). The notion of DDF-noisy leakage was studied further, both
experimentally and theoretically, by Duc, Faust, and Standaert [25]. Follow-up
work by Dziembowski, Faust, and Skórski [27] and by Prest, Goudarzi, Martinelli,
and Passelègue [46] further improved the parameters of such a reduction and
extended it to other noisy-leakage models as well. The difference between the
above results and our work is that we prove simulation theorems between very
abstract and general leakage models, which ultimately allows us to obtain a broad
range of applications which goes beyond the setting of leakage-resilient circuits.
In a complementary direction, Fuller and Hamlin [31] studied the relationship
between different types of computational leakage.

Harsha, Ishai, Kilian, Nissim, and Venkatesh [33] investigate tradeoffs between
communication complexity and time complexity in non-cryptographic settings,
including deterministic two-party protocols, query complexity and property
testing. Our simulation theorems can be thought of as similar tradeoffs in the
cryptographic setting.
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1.5 Notation

We denote by [n] the set {1, . . . , n}. For a string x ∈ {0, 1}∗, we denote its length
by |x|; if X is a set, |X | represents the number of elements in X . When x is
chosen randomly in X , we write x←$ X . When A is a randomized algorithm, we
write y←$ A(x) to denote a run of A on input x (and implicit random coins r)
and output y; the value y is a random variable and A(x; r) denotes a run of A on
input x and randomness r. An algorithm A is probabilistic polynomial-time (PPT
for short) if A is randomized and for any input x, r ∈ {0, 1}∗, the computation
of A(x; r) terminates in a polynomial number of steps (in the size of the input).
For a random variable X, we write P[X = x] for the probability that X takes
on a particular value x ∈ X , with X being the set where X is defined. The
probability mass function of X is denoted PX , i.e., PX(x) = P[X = x] for all
x ∈ X ; we sometimes omit X and just write P when X is clear from the context.
For a set (or event) S ⊆ X , we write P (S) for the probability of event S, i.e.,
P (S) =

∑
x∈S P (x). We denote the statistical distance between two distributions

P and P ′ by ∆(P ;P ′). The min-entropy of a random variable X is denoted by
H∞(X), and the average conditional min-entropy of X given Y is denoted by
H̃∞(X|Y ).

We denote with λ ∈ N the security parameter. A function p is polynomial (in
the security parameter), denoted p ∈ poly(λ), if p(λ) ∈ O(λc) for some constant
c > 0. A function ν : N → [0, 1] is negligible (in the security parameter) if it
vanishes faster than the inverse of any polynomial in λ, i.e. ν(λ) ∈ O(1/p(λ))
for all positive polynomials p(λ). We sometimes write negl(λ) to denote an
unspecified negligible function. Unless stated otherwise, throughout the paper,
we implicitly assume that the security parameter is given as input (in unary) to
all algorithms.

Basic definitions and lemmas in cryptography used throughout the paper are
discussed in [13].

2 Rejection Sampling for Approximate Density

The problem that we consider in this section is the following: How can we sample
from a distribution P with statistical error at most ε, given only black-box access
to i.i.d. samples from another distribution P ′?

It turns out that the problem above can be solved via rejection sampling,
assuming that P is approximately dense in P ′ as defined below.

Definition 1 (δ-density) Given distributions P and P ′ over a set Z and δ ∈
(0, 1], we say P is δ-dense in P ′ if for every z ∈ Z it holds that P (z) ≤ P ′(z)

δ .

Definition 2 ((γ, δ)-density) Given distributions P and P ′ over a set Z and
γ ∈ [0, 1], δ ∈ (0, 1], we say P is γ-approximate δ-dense in P ′, or simply (γ, δ)-
dense in P ′, if there exists a set S ⊆ Z such that P (S), P ′(S) ≥ 1− γ, and for
all z ∈ S it holds that P (z) ≤ P ′(z)

δ .
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2.1 The Case of Exact Density
First, we consider the special case where P is δ-dense in P ′.

Lemma 1 Suppose P is δ-dense in P ′. Then, for any ε ∈ (0, 1], it is possible to
sample P̃ such that P̃ ≈ε P given access to s = log(1/ε)

δ i.i.d. samples from P ′.

Proof. Consider the following rejection sampling algorithm:
1. Sample z1, . . . , zs i.i.d. according to the distribution P ′, and set y := ⊥;
2. For i = 1, . . . , s do the following: Set Bi := 1 with probability pi = δP (zi)

P ′(zi)
and Bi := 0 otherwise. If Bi := 1, set y := zi and stop the cycle;

3. Output y.

Observe that δP (zi)
P ′(zi) ≤ 1 for all zi (hence the algorithm above is valid), and that

the probability that the algorithm outputs some z in the i-th round is

P[Bi = 1] =
∑
z

P ′(z) · δP (z)
P ′(z) = δ. (3)

Let P̃ denote the distribution of the output of the algorithm above and let Y be
the corresponding output. Observe that (Y |Y 6= ⊥) is distributed exactly like
P . This holds because, in view of Eq. (3), the probability that the algorithm
outputs z in the i-th round given that it stops in the i-th round is

P[Y = z|Bi = 1,∀j < i : Bj = 0] =
(1− δ)i−1 · P ′(z) · δP (z)

P ′(z)

(1− δ)i−1 · δ
= P (z).

Moreover, we have

P[Y = ⊥] = (1− δ)s ≤ exp(−δ · s) = ε.

From these observations, we conclude that ∆(P̃ ;P ) ≤ Pr[Y = ⊥] ≤ ε.

2.2 The Case of Approximate Density
The analogous result for approximate density follows by a similar proof.
Lemma 2 Suppose P is (γ, δ)-dense in P ′. Then, for any ε ∈ (0, 1], it is possible
to sample P̃ such that P̃ ≈

ε+ε
1

4δ +γ
P given access to 2 log(1/ε)

δ(1−γ)2 i.i.d. samples from
P ′.

3 Leakage Models

In this section, we review several leakage models from the literature, and introduce
the simulation paradigm which will later allow us to draw connections between
different leakage models. Our take is very general, in that we think as the leakage
as a randomized function f on a random variable X, over a set X , which yields a
correlated random variable Z = f(X). Different leakage models are then obtained
by putting restrictions on the joint distribution (X,Z). We refer the reader to §5
for concrete examples of what the distribution X is in applications.
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3.1 Bounded Leakage

A first natural restriction is to simply assume an upper bound ` ∈ N on the total
length of the leakage. This yields the so-called Bounded Leakage Model, which
was formalized for the first time by Dziembowski and Pietrzak [28].

Definition 3 (Bounded leakage) Given a random variable X over X , we say
a randomized function f : X → Z is an `-bounded leakage function for X if
Z ⊆ {0, 1}`. For fixed X, we denote the set of all its `-bounded leakage functions
by Bounded`(X).

3.2 Noisy Leakage

A considerable drawback of the Bounded Leakage Model is that physical leakage
is rarely of bounded length. The Noisy Leakage Model overcomes this limitation
by assuming that the length of the leakage is unbounded but somewhat noisy.

There are different ways from the literature how to measure the noisiness of
the leakage. A first way, considered for the first time by Naor and Segev [44], is
to assume that the leakage drops the min-entropy of X by at most ` ∈ R>0 bits.
We will refer to this model as the ME-Noisy Leakage Model.

Definition 4 (ME-noisy leakage) Given a random variable X over X , we
say a randomized function f : X → Z is an `-ME-noisy leakage function for X
if, denoting Z = f(X), we have H̃∞(X|Z) ≥ H∞(X)− `. For fixed X, we denote
the set of all its `-ME-noisy leakage functions by Noisy∞,`(X).

Dodis et al. [20] considered a slight variant of the above definition where the
min-entropy drop is measured w.r.t. the uniform distribution U over X (rather
than X itself). We will refer to this model as the U-Noisy Leakage Model.

Definition 5 (U-noisy leakage) Given a random variable X over X , we say
a randomized function f : X → Z is an `-U-noisy leakage function for X if it
holds that H̃∞(U |f(U)) ≥ H∞(U)− `, where U denotes the uniform distribution
over X . For fixed X, we denote the set of all its `-U-noisy leakage functions by
UNoisy∞,`(X).

A second way to measure noisiness is to assume that the leakage only implies
a bounded bias in the distribution X, which is formally defined as distributions
PXZ and PX⊗PZ being close according to some distance when seen as real-valued
vectors. Prouff and Rivain [47] were the first to consider this restriction using the
Euclidean norm (i.e., the `2-norm), whereas Duc, Dziembowski and Faust [24]
used the statistical distance (i.e., the `1-norm). We recall the latter definition
below, which we will refer to as the SD-Noisy Leakage Model.

Definition 6 (SD-noisy leakage) Given a random variable X over X , we say
a randomized function f : X → Z is an η-SD-noisy leakage function for X if,
denoting Z = f(X), it holds that ∆(PXZ ;PX ⊗PZ) ≤ η, where PX ⊗PZ denotes
the product distribution of X and Z. For fixed X, we denote the set of all its
η-SD-noisy leakage functions by Noisy∆,η(X).
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Duc, Dziembowski, and Faust [24] considered only a restricted subset of
SD-noisy leakage, which we call DDF-noisy leakage. We discuss it in [13], placing
it with respect to other leakage models and deriving an associated simulation
theorem.

Alternatively, as suggested by Prest et al. [46], we can measure the noisiness of
the leakage by looking at the mutual information between X and Z. We can define
the mutual information between X and Z as I(X;Z) = DKL(PXZ‖PX ⊗ PZ),
where DKL(P‖P ′) =

∑
x∈X P (x) log

(
P (x)
P ′(x)

)
is the Kullback-Leibler divergence

between P and P ′.

Definition 7 (MI-noisy leakage) Given a random variable X over X , we say
a randomized function f : X → Z is an η-MI-noisy leakage function for X if,
denoting Z = f(X), it holds that I(X;Z) ≤ η. For fixed X, we denote the set of
all its η-MI-noisy leakage functions by MINoisyη(X).

The well-known Pinsker inequality allows us to relate MI-noisy leakage to
SD-noisy leakage.

Lemma 3 (Pinsker inequality) For arbitrary distributions P and P ′ over a
set X it holds that ∆(P ;P ′) ≤

√
2 ·DKL(P‖P ′).

As an immediate corollary of Lemma 3, we obtain the following result (which
was observed also in [46]).

Corollary 1 For any η > 0 and X we have MINoisyη(X) ⊆ Noisy∆,√2η(X).

3.3 Dense Leakage

Next, we introduce a new leakage model which we dub the Dense Leakage Model.
This model intuitively says that the distribution of Z|X = x is approximately
dense in the distribution of Z for a large fraction of x’s. Looking ahead, dense
leakage will serve as a powerful abstraction to relate different leakage models.

Definition 8 (Dense leakage) Given a random variable X over X , we say a
randomized function f : X → Z is a (p, γ, δ)-dense leakage function for X if,
denoting Z = f(X), there exists a set T ⊆ X with PX(T ) ≥ 1 − p such that
PZ|X=x is (γ, δ)-dense in PZ for all x ∈ T . For fixed X, we denote the set of all
its (p, γ, δ)-dense leakage functions by Densep,γ,δ(X).

3.4 The Simulation Paradigm

Finally, we define the simulation paradigm which allows to draw connections
between different leakage models. Intuitively, for any random variable X, we will
say that a leakage family F(X) is simulatable from another leakage family G(X)
if for all functions f ∈ F(X) there exists a simulator Simf which can generate Z̃
such that (X,Z) and (X, Z̃) are statistically close, using a single sample g(X)
for some function g ∈ G(X).
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Definition 9 (Leakage simulation) Given a random variable X and two leak-
age families F(X) and G(X), we say F(X) is ε-simulatable from G(X) if for all
f ∈ F(X) there is a (possibly inefficient) randomized algorithm Simf such that
(X,Z) ≈ε (X,SimLeak(X,·)

f ), where Z = f(X) and the oracle Leak(X, ·) accepts a
single query g ∈ G(X) and outputs g(X).

Remark 1 (On the simulator). Note that since the simulator Simf knows the dis-
tribution PX of X and the leakage function f , it also knows the joint distribution
PX,Z where Z = f(X). We will use this fact to design our leakage simulators. We
will also sometimes think of the simulator Simf as two machines with a shared
random tape, where the first machine outputs the description of a leakage function
g ∈ G(X), while the second machine outputs the simulated leakage Z̃ given the
value g(X).

4 Relating Different Leakage Models

In this section, we show both implications and separations between the leakage
models defined in §3. In a nutshell, our implications show that all the noisy-leakage
models from §3 can be simulated by bounded leakage with good parameters.
We achieve this in two main steps: First, we prove that dense leakage can be
simulated by bounded leakage with good parameters. Second, we show that
dense leakage contains the other leakage models we have previously defined.
Combining the two steps above, we conclude that many different leakage models
can be simulated by bounded leakage with good parameters. To complement
these results, our separations show that the containment of the different leakage
models in dense leakage are essentially the best we can hope for in general.

The simulation theorem for the case of ME-noisy leakage only holds for certain
distributions X, which are nevertheless the most relevant in applications. In
particular, we will require to assume that the random variable X is semi-flat, as
formally defined below.

Definition 10 (Semi-flat distribution) We say that X is α-semi-flat if for
all x, x′ ∈ supp(X) we have PX(x) ≤ 2α · PX(x′).

4.1 Simulating Dense Leakage with Bounded Leakage

The following theorem states that one dense leakage query can be simulated with
one bounded leakage query to within small statistical error. The efficiency of
the simulator and the bounded leakage function is essentially governed by the
density parameter δ.

Theorem 3 For arbitrary X, and for any ε ∈ (0, 1], the set of dense leakages
Densep,γ,δ(X) is (ε+ ε1/4δ + γ + p)-simulatable from Bounded`(X) with

` = 1 + log
(

2 log(1/ε)
(1− γ)2δ

)
= log(1/δ) + log log(1/ε) + 2 log

(
1

1− γ

)
+ 2.
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Proof. Fix any f ∈ Densep,γ,δ(X). By hypothesis, there is a set T ⊆ X such that
PX(T ) ≥ 1 − p and PZ|X=x is (γ, δ)-dense in PZ for all x ∈ T . Thus, we may
assume that X ∈ T by adding p to the simulation error.

We consider the simulator Simf which, given the distribution PXZ , samples
s∗ = 2 log(1/ε)

(1−γ)δ i.i.d. samples z = (z1, z2, . . . , zs∗) from PZ . Then, Simf makes a
query to Z ′ = gz(X) ∈ Bounded`(X), where ` = 1 + log s∗ and gz : X → {0, 1}`
on input x ∈ T runs the rejection sampling algorithm from the proof of Lemma 2
to sample from PZ|X=x to within statistical error ε + ε1/4δ + γ using the s∗
i.i.d. samples (z1, . . . , zs∗) from PZ , and outputs the index i ≤ s∗ such that zi is
output by the rejection sampling algorithm, or s∗+ 1 if this algorithm outputs ⊥.
Finally, if I = gz(X) ≤ s∗, then Simf outputs zI , and otherwise it outputs ⊥. Let
Z̃ the random variable corresponding to the output of the simulator. Summing
up all simulation errors, Lemma 2 guarantees that (X,Z) ≈ε+ε1/4δ+γ+p (X, Z̃),
which completes the proof. ut

Remark 2 (On useful parameters). The statement of Theorem 3 is most useful
when ε, γ, and p are negligible in the security parameter, so as to obtain negligible
simulation error. The parameter δ essentially dictates the number of bits of
bounded leakage required to simulate a given class of dense leakages. Indeed, it is
usually the case that log log(1/ε) + 2 log

(
1

1−γ

)
is much smaller than log(1/δ).

Remark 3 (On efficiency of the simulation). The complexity of the simulator
from Theorem 3 is dominated by the complexity of computing the distributions
PZ (possible with knowledge of PX and f) and PZ|X=x (possible with knowledge
of X and f), and of sampling both the zi according to PZ and the decision in
each step of rejection sampling. If these steps can be implemented in polynomial
time with respect to some parameter of interest, then the simulator is efficient.

4.2 Min-Entropy-Noisy Leakage is Dense Leakage

The following theorem states that all ME-noisy leakage is also dense leakage
for semi-flat distributions. Looking ahead, we will later establish that the semi-
flatness condition is necessary.

Theorem 4 Suppose X is α-semi-flat. Then, for every β > 0 and ` > 0, and for
p = 2−β/2, γ = 2−β/2 and δ = 2−(`+β+α), we have Noisy∞,`(X) ⊆ Densep,γ,δ(X).

Combining Theorem 3 and Theorem 4, we immediately obtain the following
corollary.

Corollary 2 If X is α-semi-flat, then, for any β > 0 and ε > 0, the set of
leakages Noisy∞,`(X) is (ε+ε2`+β+α−2 +2−β/2+1)-simulatable from Bounded`′(X)
with `′ = `+ β + α+ log log(1/ε) + 2 log

(
1

1−2−β/2

)
+ 2.

The remark below says that there is a natural tradeoff between the simulation
error in the above corollary and the leakage bound.
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Remark 4 (Trading simulation error with ME-noisy leakage). By choosing ε =
2−λ and β = 2 + log2(λ) in Corollary 2, we can obtain negligible simulation error
ε′ = λ−ω(1) with leakage15 `′ = `+O(log2(λ) + α). By choosing β = λ, we can
instead obtain a much smaller simulation error of ε′ = 2−Ω(λ) with larger leakage
`′ = `+O(λ+ α).

Near-optimality of simulation theorem for ME-noisy leakage. We now show that
our simulation result for ME-noisy leakage (Corollary 2) is essentially optimal.
More precisely, we obtain the following result.

Theorem 5 For every n and α, ` > 0 such that ` + α < n − 2 there exists an
(α+ 1)-semi-flat random variable X and f ∈ Noisy∞,`+2(X) such that simulating
f(X) with error less than 1/4 requires one `′-bounded leakage query for `′ ≥
`+ α− 1.

Essentially, Theorem 5 states that `+α−O(1) bits of bounded leakage are required
to simulate `-ME-noisy leakage from an α-semi-flat random variable X with
useful simulation error. Our simulation theorem from Corollary 2 complements
this negative result, showing that `′ ≈ `+ α bits of bounded leakage are enough
even with negligible simulation error.

Necessity of the semi-flatness assumption in Corollary 2. Theorem 5 implies that
assuming α-semi-flatness of X is necessary to obtain a non-trivial simulation
theorem for ME-noisy leakage, even when we are attempting to simulate only
0-ME-noisy leakage functions. Indeed, setting ` = 0 and α = n− 3 in Theorem 5,
we conclude that there exists a random variable X along with an associated
0-ME-noisy-leakage function f ∈ Noisy∞,0(X) that requires n − O(1) bits of
bounded leakage from X in order to be simulated with error less than 1/4.

Note also that the proof of Theorem 5 shows the impossibility of non-trivial
simulation theorems for ME-noisy leakage even for a restricted subset of semi-flat
distributions X for which there exists x∗ such that PX(x∗) may be large but
(X|X 6= x∗) is flat.

4.3 Uniform-Noisy Leakage is Also Dense Leakage

There is a known connection between U-noisy and ME-noisy leakage, i.e., every
U-noisy leakage function is also a ME-noisy leakage function by itself.

Lemma 4 ([20]) Given any randomized function f : X → Z, if it holds
that H̃∞(U |f(U)) ≥ H∞(U) − `, then for any X over X it is the case that
H̃∞(X|f(X)) ≥ H∞(X) − `. In particular, this implies that UNoisy∞,`(X) ⊆
Noisy∞,`(X).

15 In fact, we can push the leakage bound down to `′ = `+O(log log(λ) log(λ) + α) or
even `′ = `+O(log∗(λ) log(λ) + α), while still obtaining negligible simulation error.
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We remark that there also exist some X and a leakage function f such that
f ∈ Noisy∞,`(X) but f 6∈ UNoisy∞,`(X) (such an example is provided in [20]).
This shows that the containment of U-noisy leakage in ME-noisy leakage may be
strict for some X.

Although Lemma 4 immediately yields an analogue of Corollary 2 for U-noisy
leakage, we can obtain a better result by arguing directly that every U-noisy
leakage function is also a dense leakage function for arbitrary X, i.e., without
requiring that X be semi-flat. Our result is stated formally in the next theorem.

Theorem 6 For every β > 0 and X, we have UNoisy∞,`(X) ⊆ Densep,γ,δ(X),
where p = 2−β/2, γ = 2−β/2 and δ = 2−(`+β).

Combining Theorem 3 and Theorem 6 immediately yields the following result.

Corollary 3 For every X and every β > 0 and ε > 0, the set of leakages
UNoisy∞,`(X) is (ε + ε2`+β−2 + 2−β/2+1)-simulatable from Bounded`′(X) with
`′ = `+ β + log log(1/ε) + 2 log

(
1

1−2−β/2

)
+ 2.

The remark below says that there is a natural tradeoff between the simulation
error in the above corollary and the leakage bound.

Remark 5 (Trading simulation error with U-noisy leakage). By choosing ε = 2−λ
and β = 2 + log2(λ) in Corollary 3, we can obtain negligible simulation error
ε′ = λ−ω(1) with leakage `′ = ` + O(log2(λ)). By choosing β = λ, we can
instead obtain a much smaller simulation error of ε′ = 2−Ω(λ) with larger leakage
`′ = `+O(λ).

Near-optimality of simulation theorem for U-noisy leakage. We now show that
in order to simulate arbitrary `-U-noisy leakage from X uniformly distributed
over {0, 1}n with simulation error less than 1/2, we need access to one query of
`′-bounded leakage from X for `′ ≥ `− 1. As we shall see, this result implies that
our simulation theorem from Corollary 3 is nearly optimal.

Theorem 7 For X uniform over {0, 1}n and every ` ≥ 1 there exists f ∈
UNoisy∞,`(X) ⊆ Noisy∞,`(X) such that f(X) cannot be simulated with error less
than 1/2 by one (`− 1)-bounded leakage query to X. Moreover, it also holds that
f ∈ Densep=0,γ=0,δ=2−`(X).

Comparing Theorem 7 with Corollary 3, we see that our simulation theorem for
U-noisy leakage is nearly optimal with respect to the bounded leakage parameter,
since we only require approximately ` bits of bounded leakage to simulate U-noisy
leakage for uniform X. Furthermore, we can achieve this result with negligible
simulation error.

4.4 SD-Noisy and MI-Noisy Leakage are Also Dense Leakage

We now proceed to relate SD-noisy leakage and dense leakage.
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Theorem 8 For every γ > 0 and X, we have Noisy∆,η(X) ⊆ Densep,γ,δ(X) with
p = 2η/γ and δ = 1/2.

By combining Corollary 1 and Theorem 8, we immediately obtain an analogous
result for MI-noisy leakage.

Theorem 9 For every γ > 0 and X, we have MINoisyη(X) ⊆ Densep,γ,δ(X)
with p =

√
8η/γ and δ = 1/2.

Near-optimality of trivial simulator for SD-noisy and MI-noisy leakages. While
one can combine Theorem 8 and Theorem 9 with Theorem 3 in order to obtain
simulation theorems for SD-noisy and MI-noisy leakage from bounded leakage, it
turns out that these simulation theorems do not perform better than the trivial
simulator that makes no bounded leakage queries to X: Sample X̃ according
to PX , and output Z̃ = f(X̃). In [13], we show that this is inherent, since the
trivial simulator is nearly optimal for SD-noisy and MI-noisy leakages.

5 Applications

In this section we show that our results have interesting implications for so-
called leakage-resilient cryptography. In particular, we will show that many
cryptographic primitives that have been shown to be resilient to bounded leakage
are also resilient to different forms of noisy leakage, with only a small loss in
parameters.

5.1 Secret Sharing with Local Leakage Resilience

In this section, we consider the following kind of local leakage attack on a
threshold secret sharing scheme: after seeing an unauthorized subset of shares,
the adversary performs one query of leakage from all the shares independently.

Definition 11 (Local leakage-resilient secret sharing) Let t, n, u ∈ N be
parameters such that u < t ≤ n, and let Σ = (Share,Rec) be a t-out-of-n secret
sharing scheme. We say that Σ is a (p, γ, δ)-dense u-local ε-leakage-resilient
secret sharing scheme (or (u, p, γ, δ, ε)-DLLR-SS for short) if for all messages
y0, y1 ∈ {0, 1}m, all unauthorized subsets U ⊆ [n] such that |U| ≤ u, and
every tuple of leakage functions (f1, . . . , fn) such that fi is (p, γ, δ)-dense for all
i ∈ [n], we have ∆

((
X0
U , (fi(X0

U , X
0
i ))i∈[n]

)
,
(
X1
U , (fi(X1

U , X
1
i ))i∈[n]

))
≤ ε, where

(Xb
1, . . . , X

b
n) = Share(yb) for all b ∈ {0, 1}.

Moreover, in case the functions fi in the above definition are:

– `-bounded leakage functions, we say that Σ is `-bounded u-local ε-leakage-
resilient (or (u, `, ε)-BLLR-SS);

– `-ME-noisy leakage functions, we say that Σ is `-min-entropy-noisy u-local
ε-leakage-resilient (or (u, `, ε)-ME-NLLR-SS);
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– `-U-noisy leakage functions, we say that Σ is `-uniform-noisy u-local ε-
leakage-resilient (or (u, `, ε)-U-NLLR-SS).

The theorem below says that any bounded leakage-resilient secret sharing
scheme is also secure in the presence of dense leakage.

Theorem 10 Any (u, `, ε)-BLLR-SS is also a (u, p, γ, δ, ε′)-DLLR-SS so long as

` = log(1/δ) + log log(1/ε) + 2 log
(

1
1−γ

)
+ 2

ε′ = (2n+ 1)ε+ 2nε1/4δ + 2nγ + 2np.

Next, using the connection between ME-noisy and U-noisy leakage with dense
leakage established in §4, we obtain the following corollary.

Corollary 4 Any (u, `′, ε′)-BLLR-SS is also an:

(i) (u, `, ε)-ME-NLLR-SS so long as ` = `′ − 2 log(1/ε′)− α− log log(1/ε′)− 1
and ε = (6n+ 1)ε′, and assuming that (X1, . . . , Xn) = Share(y) is such that
Xi is α-semi-flat for all i ∈ [n].

(ii) (u, `, ε)-U-NLLR-SS so long as ` = `′ − 2 log(1/ε′) − log log(1/ε′) − 1 and
ε = (6n+ 1)ε′.

Proof. The statement follows by choosing β = 2 + 2 log(1/ε′) and ε = ε′ in
Corollary 2 and Corollary 3. ut

We present concrete instantiations of Corollary 4 in [13].

5.2 Bounded-Collusion Protocols

In this section, we deal with applications related to so-called bounded-collusion
protocols (BCPs). These are interactive protocols between n parties where at each
round a subset of k < n parties are selected, and the output of a leakage function
applied to the input of such parties is appended to the protocol’s transcript.

Definition 12 (Bounded-communication BCPs) An interactive (possibly
randomized) protocol π is called an n-party r-round `-bounded communication
k-bounded-collusion protocol ((n, r, `, k)-BC-BCP, for short) if:

(i) the n parties start the protocol with input x1, . . . , xn ∈ X , and the transcript
τ is empty at the beginning of the protocol;

(ii) there is a function Next : {0, 1}∗ →
([n]
k

)
taking as input a (partial) transcript

τ and outputting a set S ⊂ [n] with |S| = k along with a function f : X k →
{0, 1}∗;

(iii) at each round j ∈ [r] with current transcript τ , the protocol runs Next(τ)
obtaining (Sj , fj) and appends the message fj(XSj ) to the current transcript
τ ;

(iv) the final transcript τ consists of at most ` ∈ N bits.
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The above notion, which was introduced by Kumar, Meka, and Sahai [38],
interpolates nicely between the well-known number-in-hand (NIH) and number-
on-forehead (NOF) models, which correspond respectively to the extreme cases
k = 1 and k = n− 1. Note that the number of rounds in a BC-BCP is at most
r ≤ `.

Below, we generalize the definition of BCPs to settings where the round
functions correspond to noisy-leakage (in particular, dense and uniform-noisy
leakage) functions on the parties’ inputs, and thus there is no restriction on the
size of the final transcript.

Definition 13 (Dense-communication BCPs) An interactive (possibly ran-
domized) protocol π is called an n-party r-round (p, γ, δ)-dense communication
k-bounded-collusion protocol ((n, r, p, γ, δ, k)-DC-BCP, for short) if it satisfies
the same properties as in Definition 12, except that property (iv) is replaced by

(iv’) for each j ∈ [r], the function fj : X k → {0, 1}∗ is (p, γ, δj)-dense leakage for
XSj |τj−1, where τj denotes the transcript up to the j-th round and 0 < δj ≤ 1,
and where additionally

∏r
j=1 δj ≥ δ.

Definition 14 (Noisy-communication BCPs) An interactive (possibly ran-
domized) protocol π is called an n-party r-round `-noisy communication k-bounded-
collusion protocol ((n, r, `, k)-NC-BCP, for short) if it satisfies the same properties
as in Definition 12, except that property (iv) is replaced by

(iv”) for each j ∈ [r], the function fj : X k → {0, 1}∗ is `j-U-noisy leakage for XSj ,
where `j ≥ 0 and additionally

⌈∑r
j=1 `j

⌉
≤ `.

Observe that the number of rounds in a DC-BCP or NC-BCP is unbounded.
Also, note that property (iv”) in Definition 14 implicitly implies that the overall
leakage drops the min-entropy of the uniform distribution over any subset of k
inputs by at most `. More formally, the final transcript τ is such that16 for all
subsets S ∈

([n]
k

)
we have

H̃∞(US |π(U1, . . . , Un)) ≥ H∞(US)− `, (4)

where U = (U1, . . . , Un) is uniform over Xn and π(U1, . . . , Un) denotes the
distribution of the transcript τ at the end of the protocol.

Clearly, any BC-BCP is also a NC-BCP with the same leakage parameter.
Below, we show that the converse is also true, in the sense that the transcript of
any NC-BCP π can be simulated using the transcript of a related BC-BCP π′,
up to a small statistical distance. In fact, the latter statement holds true for the
more general case of DC-BCPs.
16 This is because, by [20, Lemma L.3], any sequence of (adaptively chosen) functions
f1, . . . , fr on a random variable X, such that each function fj is `j-ME-noisy leak-
age for some `j ≥ 0 and where

∑r

j=1 `j ≤ `, satisfies H̃∞(X|f1(X), . . . , fr(X)) ≥
H∞(X)− `. Furthermore, for the case of NC-BCPs, in the worst case all the leakage
happens on the same subset S of inputs.
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Theorem 11 Let π be an (n, r, p, γ, δ, k)-DC-BCP. There exists an (n, r, `′, k)-
BC-BCP π′ such that, for any ε > 0, a transcript of π can be simulated within
statistical distance r · (ε + ε1/4 + γ + p) given a transcript of π′ with length
`′ = log(1/δ) + r · (log log(1/ε) + 2 log(1/(1− γ)) + 2).

Proof. We start by describing protocol π′ acting on a random variable X =
(X1, . . . , Xn). Consider the simulator Simf guaranteed by Theorem 3.

– Let τ ′ be initially empty, and sample r independent random tapes ρ1, . . . , ρr
for Sim.

– At each round j ∈ [r], the function Next′ takes as input the current transcript
τ ′ = z′1|| . . . ||z′j−1 and runs Next(τ̃), where

τ̃ = Simf1(z′1; ρ1)|| . . . ||Simfj−1(z′j−1; ρj−1).

– Let (fj ,Sj) be the j-th output of Next. Then, Next′ runs Simfj on XSj |τ̃
(with fixed random tape ρj), obtaining a leakage function f ′j : X k → {0, 1}`

′
j ,

and outputs (f ′j ,Sj).

Next, we claim that protocol π′ has `′-bounded communication for `′ as in
the statement of the theorem. Recall that, for each j ∈ [r], the function fj
output by Next is (p, γ, δj)-dense leakage for XSj |τ̃ , with 0 < δj ≤ 1. Then, by
applying Theorem 3, for any ε > 0 we get that `′j = log(1/δj) + log log(1/ε) +
2 log(1/(1−γ))+2. Hence, the final transcript τ ′ has size at most `′ =

∑r
j=1 `

′
j =

log(1/δ) + r · (log log(1/ε) + 2 log(1/(1− γ)) + 2), which is the bound in the
statement of the theorem.

It remains to prove that we can simulate a transcript of π given a transcript
of π′. Consider the simulator that, after running π′ with random tapes ρ1, . . . , ρr,
obtains the transcript τ ′ = z′1|| . . . ||z′r and simply outputs the simulated transcript
τ̃ = Simf1(z′1; ρ1)|| . . . ||Simfr(z′r; ρr). By a hybrid argument, Theorem 3 implies
that the transcript τ̃ is within statistical distance at most r · (ε+ γ + p) +∑r
j=1 ε

1/4δj ≤ r · (ε+ ε1/4 + γ + δ) from the transcript τ obtained by running π.
This finishes the proof. ut

Theorem 12 Let π be an (n, r, `, k)-NC-BCP. There exists an (n, r, `′, k)-BC-
BCP π′ such that, for any 0 < δ < 1, a transcript of π can be simulated within
statistical distance r · 3δ given a transcript of π′ with length `′ ≤ ` + r · (6 +
2 log(1/δ) + log log(1/δ)).

Next, we show that Theorem 11 and Theorem 12 have applications to commu-
nication complexity lower bounds, and to constructing cryptographic primitives
with adaptive noisy-leakage resilience (i.e., where leakage resilience is modeled
either as a NC-BCP or as a DC-BCP).

Communication complexity lower bounds We say that an (n, r, `, k)-BCP
π (with either bounded or noisy communication) ε-computes a (deterministic)
Boolean function φ : Xn → {0, 1}, if there exists an unbounded predictor P that,
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after running a BCP protocol π on the parties’ inputs yielding a final transcript
τ , outputs φ(X1, . . . , Xn) with probability at least 1/2 + ε (over the randomness
of (Xi)i∈[n], π and P). The theorem below says that for any NC-BCP π that
computes a Boolean function φ there is a BC-BCP π′ that computes the same
function with roughly the same probability, where the size `′ of a transcript of π′
is related to the leakage parameter ` of π.

Corollary 5 Let π be any (n, r, `, k)-NC-BCP that ε-computes a Boolean func-
tion φ. Then, there exists an (n, r, `′, k)-BC-BCP π′ that ε′-computes φ so long
as `′ ≤ `+ r · (6 + 2 log(6r/ε) + log log(6r/ε)) and ε′ = ε/2.

The above corollary can be used to translate known lower bounds in commu-
nication complexity for BC-BCPs to the more general setting of NC-BCPs.17

Note that a lower bound on the communication complexity of BC-BCPs does
not necessarily imply a lower bound on the noisiness of NC-BCPs, as the fact
that the transcript must consist of at least ` bits does not say anything about
how each round function reveals on the players’ inputs. We argue how the result
from Corollary 5 can be used to lift lower bounds on bounded communication
needed to compute certain functions φ to more general lower bounds on noisy
communication in [13].

Remark 6 (On lower bounds on the leakage parameters of NC-BCPs). It may
seem that a lower bound on the parameter ` of NC-BCPs does not necessarily mean
that any protocol must reveal a lot of information on the parties’ inputs, as the
actual min-entropy drop in Eq. (4) could be much smaller18 than `. Nevertheless,
we observe that the definition of NC-BCP implies that there must exist an index
j∗ ∈ [r] such that, say, `j∗ ≥ `−1

r . This is because, if `j < `−1
r for all j ∈ [r], then

d
∑r
j=1 `je ≤ `− 1. In this light, the corollaries below still say that, for certain

Boolean functions, a transcript must necessarily reveal enough information about
the inputs so long as the number of rounds is not too large.

BCP Leakage Resilience Finally, we show how to lift bounded-leakage re-
silience to dense-leakage and uniform-noisy-leakage resilience in applications
where the leakage itself is modelled as a BCP protocol. For concreteness, we
focus again on secret sharing schemes and refer the reader to [13] for additional
examples.

Let Σ = (Share,Rec) be a secret sharing scheme. The definition below captures
security of Σ in the presence of an adversary leaking information jointly from
subsets of the shares of size k < n, where both the leakage functions and the
subsets of shares are chosen adaptively. For simplicity, we focus on threshold
secret sharing but our treatment can be generalized to arbitrary access structures.
17 In fact, using Theorem 11, we could also derive lower bounds on DC-BCPs. However,

we stick to the setting of NC-BCPs for simplicity.
18 For instance, take k = 1 and consider the functions f1, . . . , fn that always reveal the

first bit of X1. Then, ` =
∑n

j=1 `j = n, but H̃∞(U1|π(U1, . . . , Un)) = H∞(U1)− 1.
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Definition 15 (Secret sharing with BCP leakage resilience) Let t, n, ` ∈
N, ε ∈ [0, 1] be parameters. A t-out-of-n secret sharing scheme (Share,Rec)
is a k-joint r-adaptive (p, γ, δ)-dense ε-leakage-resilient secret sharing scheme,
(k, r, p, γ, δ, ε)-JA-DLR-SS for short, if for all messages y0, y1 ∈ {0, 1}m and
all (n, r, p, γ, δ, k)-DC-BCP π we have π(X(0)

1 , . . . , X
(0)
n ) ≈ε π(X(1)

1 , . . . , X
(1)
n ),

where (X(b)
1 , . . . , X

(b)
n ) = Share(yb) is the distribution of the shares of message

yb ∈ {0, 1}m for all b ∈ {0, 1}.

Moreover, in case the protocol π in the above definition is an:
– (n, r, `, k)-NC-BCP, we say that Σ is k-joint r-adaptive `-noisy ε-leakage-

resilient (or (k, r, `, ε)-JA-NLR-SS);
– (n, r, `, k)-BC-BCP, we say that Σ is k-joint r-adaptive `-bounded ε-leakage-

resilient (or (k, r, `, ε)-JA-BLR-SS).

Corollary 6 Every (k, r, `, ε)-JA-BLR-SS scheme Σ is also a (k, r, p, γ, δ, ε′)-
JA-DLR-SS so long as ` = log(1/δ) + r · (log log(1/ε) + 2 log(1/(1− γ)) + 2) and
ε′ = ε+ 2r · (ε+ ε1/4 + γ + p).

Corollary 7 Every (k, r, `′, ε′)-JA-BLR-SS scheme Σ is also a (k, r, `, ε)-JA-
NLR-SS scheme so long as `′ = `+ r ·O(log(r/ε)) and ε = 3ε′.

Explicit constructions of secret sharing schemes with BCP leakage resilience
in the bounded leakage setting can be built for any leakage bound ` and any
ε > 0 from n-party functions with large NOF complexity with collusion bound
k = O(log(n)) [38] (for arbitrary access structures) and k = O(t/ log(t)) [39] (for
threshold access structures). By the above corollaries, these schemes are also
directly secure in the settings of dense and U-noisy leakage.

6 Conclusions and Open Problems

We have shown that a single query of noisy leakage can be simulated in the
information-theoretic setting using a single query of bounded leakage, up to
a small statistical distance and at the price of a slight loss in the leakage
parameter. The latter holds true for a fairly general class of noisy leakage (which
we introduce) dubbed dense leakage. Importantly, dense leakage captures many
already existing noisy-leakage models including those where the noisiness of
the leakage is measured using the conditional average min-entropy [20, 44], the
statistical distance [24], or the mutual information [46]. For some of these models,
our simulation theorems require additional assumptions on the input distribution
or only hold for certain range of parameters, but in each case we show this is the
best one can hope for.

The above result has applications to leakage-resilient cryptography, where
we can reduce noisy-leakage resilience to bounded-leakage resilience in a black-
box way. Interestingly, for some applications, the latter holds true even in the
computational setting. Additionally, we have shown that our simulation theorems
yield new lower bounds in communication complexity.

Several interesting open questions remain. We list some of them below:
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– Can we prove that other families of noisy leakage (e.g., hard-to-invert leak-
age [21]) fall within the class of dense leakage (or directly admit simulation
theorems with good parameters from bounded leakage)?

– Can we make the simulator efficient for certain families of noisy leakage?
The latter would allow to lift bounded-leakage resilience to noisy-leakage
resilience for all computationally-secure applications, and for statistically-
secure applications with simulation-based security in which the running time
of the simulator needs to be polynomial in the running time of the adversary
(such as leakage-tolerant MPC [10]).

– Can we generalize Theorem 12 to a more general setting where the leakage
parameter ` of NC-BCPs measures the worst-case average min-entropy drop
w.r.t. the final transcript of the protocol (instead of being the summation
over the worst-case min-entropy drops of each round function in isolation)?
The latter would allow to strengthen the lower bounds in §5.2, as well as the
security of the applications in §5.2 and [13].
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