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Abstract. We present a new, simple candidate construction of indis-
tinguishability obfuscation (iO). Our scheme is inspired by lattices and
learning-with-errors (LWE) techniques, but we are unable to prove secu-
rity under a standard assumption. Instead, we formulate a new falsifiable
assumption under which the scheme is secure. Furthermore, the scheme
plausibly achieves post-quantum security.
Our construction is based on the recent “split FHE” framework of Brak-
erski, Döttling, Garg, and Malavolta (EUROCRYPT ’20), and we pro-
vide a new instantiation of this framework. As a first step, we construct
an iO scheme that is provably secure assuming that LWE holds and that
it is possible to obliviously generate LWE samples without knowing the
corresponding secrets. We define a precise notion of oblivious LWE sam-
pling that suffices for the construction. It is known how to obliviously
sample from any distribution (in a very strong sense) using iO, and our
result provides a converse, showing that the ability to obliviously sample
from the specific LWE distribution (in a much weaker sense) already also
implies iO. As a second step, we give a heuristic contraction of oblivious
LWE sampling. On a very high level, we do this by homomorphically gen-
erating pseudorandom LWE samples using an encrypted pseudorandom
function.

1 Introduction

Indistinguishability obfuscation (iO) [BGI+01, GR07] is a probabilistic polynomial-
time algorithm O that takes as input a circuit C and outputs an (obfuscated)
circuit C ′ = O(C) satisfying two properties: (a) functionality: C and C ′ com-
pute the same function; and (b) security: for any two circuits C1 and C2 that
compute the same function (and have the same size), O(C1) and O(C2) are com-
putationally indistinguishable. Since the first candidate for iO was introduced
in [GGH+13b], a series of works have shown that iO would have a huge impact
on cryptography.

The state-of-the-art iO candidates with concrete instantiations may be broadly
classified as follows:

– First, we have fairly simple and direct candidates based on graded “multi-
linear” encodings [GGH+13b, GGH13a, GGH15, FRS17, CVW18, BGMZ18,



CHVW19] and that achieve plausible post-quantum security. These candi-
dates have survived fairly intense scrutiny from cryptanalysts, [CHL+15,
MSZ16, CLLT16, ADGM17, CLLT17, CGH17, Pel18, CVW18, CCH+19],
and several of them are also provably secure in restricted adversarial models
that capture a large class of known attacks. However, none of these candi-
dates have a security reduction to a simple, falsifiable assumption.

– Next, we have a beautiful and remarkable line of works that aims to base
iO on a conjunction of simple and well-founded assumptions, starting from
[Lin16, LV16, Lin17, LT17], through [AJL+19, Agr19, JLMS19, GJLS20],
and culminating in the very recent (and independent) work of Jain, Lin
and Sahai [JLS20] basing iO on pairings, LWE, LPN and PRG in NC0.
These constructions rely on the prior constructions of iO from functional
encryption (FE) [BV15, AJ15], and proceed to build FE via a series of del-
icate and complex reductions, drawing upon techniques from a large body
of works, including pairing-based FE for quadratic functions, lattice-based
fully-homomorphic and attribute-based encryption, homomorphic secret-sharing,
as well as hardness amplification.

– A number of more recent and incomparable candidates, including a direct
candidate based on tensor products [GJK18] and another based on affine de-
terminant programs (with noise) [BIJ+20]; the BDGM candidate based on an
intriguing interplay between a LWE-based and a DCR-based cryptosystems
[BDGM20a]; the plausibly post-quantum secure candidates in [Agr19, AP20]
that replace the use of pairings in the second line of works with direct candi-
dates for FE for inner product plus noise. All of these candidates, as with the
first line of work, do not present a security reduction to a simple, falsifiable
assumption. 3

To the best of our knowledge, none of these existing approaches yields a lattice-
inspired iO candidate that is plausibly post-quantum secure and enjoys a security
reduction under a simple, falsifiable assumption referring solely to lattice-based
cryptosystems, which is the focus of this work. We further believe that there is a
certain aesthetic and minimalistic appeal to having an iO candidate whose hard-
ness distills to a single source of computational hardness (as opposed to lattice
plus pairing/number-theoretic hardness). Such a candidate is also potentially
more amenable to crypto-analytic efforts as well as further research to reduce
security to more standard lattice problems.

1.1 Our Contributions

Our main contribution is a new candidate construction of iO that relies on
techniques from lattices and learning-with-errors (LWE). We formulate a new
falsifiable assumption on the indistinguishability of two distributions, and show
that our construction is secure under this assumption. While we are unable to

3 We defer a comparison with the independent and concurent works [GP20,
BDGM20b] to Section 1.3.



prove security under a standard assumption such as LWE, we view our construc-
tion as a hopeful step in that direction. To our knowledge, this is the first iO
candidate that is simultaneously based on a clearly stated falsifiable assump-
tion and plausibly post-quantum secure. Perhaps more importantly, we open
up a new avenue towards iO by showing that, under the LWE assumption, the
ability to “obliviously sample from the LWE distribution” (see below) prov-
ably implies iO. Unlike prior constructions of iO from simpler primitives (e.g.,
functional encryption [AJ15, BV15], succinct randomized encodings [LPST16b],
XiO [LPST16a], etc.), oblivious LWE sampling does not inherently involve any
“computation” and appears to be fundamentally different. Lastly, we believe our
construction is conceptually simpler and more self-contained (relying on fewer
disjoint components) than many of the prior candidates.

Our main building block is an “oblivious LWE sampler”, which takes as
input a matrix A ∈ Zm×nq and allows us to generate LWE samples A · s + e
with some small error e ∈ Zm without knowing the secrets s, e. We discuss the
notion in more detail below (see the “Our Techniques” section), and provide
a formal definition that suffices for our construction. Our notion can be seen
as a significant relaxation of “invertible sampling” (in the common reference
string model) [IKOS10, DKR15], and the equivalent notion of “pseudorandom
encodings” [ACI+20]. The work of [DKR15] showed that, assuming iO, it is
possible to invertibly sample from all distributions, and [ACI+20] asked whether
it may be possible to do so under simpler assumptions that do not imply iO.
As a side result of independent interest, we settle this question by showing that,
under LWE, even our relaxed form of invertible sampling for the specific LWE
distribution already implies iO.

Overall, our candidate iO construction consists of two steps. The first step
is a provably secure construction of iO assuming we have an oblivious LWE
sampler and that the LWE assumption holds (both with sub-exponential secu-
rity). The second step is a candidate heuristic instantiation of an oblivious LWE
sampler. On a very high level, our heuristic sampler performs a homomorphic
computation that outputs a pseudorandom LWE sample generated using some
pseudorandom function (PRF). Security boils down to a clearly stated falsifi-
able assumption that two distributions, both of which output LWE samples,
are indistinguishable even if we give out the corresponding LWE secrets. Our
assumption implicitly relies on some form of circular security: we assume that
the error term in the pseudorandom LWE sample “drowns out” any error that
comes out of the homomorphic computation over the PRF key that was used
to generate it. We also discuss how our construction/assumption avoids some
simple crypto-analytic attacks.

1.2 Technical Overview

Our iO construction is loosely inspired by the “split fully-homomorphic en-
cryption (split FHE)” framework of Brakerski, Döttling, Garg, and Malavolta
[BDGM20a] (henceforth BDGM). They defined a new cryptographic primitive
called split FHE, which they showed to provably imply iO (under the LWE
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mmaps-based iO, cf. [GGH+13b] X
NLFE candidates [Agr19, AP20] X X
split-FHE, DCR, LWE [BDGM20a]
LWE, SXDH, LPN, PRG in NC0 [JLS20] X X X
circular-SRL [GP20, BDGM20b] X X
this work (Conjecture 1 HPLS) X X X X

Fig. 1. Summary of the main approaches and assumptions used for IO. The column
“falsifiable” refers to whether there is a reduction to a clearly stated falsifiable as-
sumption (we don’t count just assuming the scheme is secure). The term “circuit-
independent” means that the assumption does not refer to computation for general
circuits (which is closely related to the notion of instance-independent assumptions
[GLW14]). We consider assumptions that quantify over worst-case inputs/parameters
to be interactive, since the adversary chooses them in the first step.

assumption). They then gave a candidate instantiation of split FHE by heuristi-
cally combining decisional composite residue (DCR) and LWE-based techniques,
together with the use of a random oracle. We rely on a slight adaptation of their
framework by replacing split-FHE with a variant that we call functional en-
codings. Our main contribution is a new instantiation of this framework via
“oblivious LWE sampling”, relying only on LWE-based techniques.

We first describe what functional encodings are and how to construct iO
from functional encodings. Then we describe our instantiation of functional en-
codings via oblivious LWE sampling. We defer a detailed comparison to BDGM
to Section 1.3.

iO from Functional Encodings

As in BDGM, instead of constructing iO directly, we construct a simpler a prim-
itive called “exponentially efficient iO” XiO, which is known to imply iO under
the LWE assumption [LPST16a]. We first describe what XiO is, and then discuss
how to construct it from Functional Encodings via the BDGM framework.

XiO. An XiO scheme [LPST16a], has the same syntax, correctness and security
requirements as iO, but relaxes the efficiency requirement. To obfuscate a circuit
C with input length n, the obfuscator can run in exponential time 2O(n) and
the size of the obfuscated circuit can be as large as 2n(1−ε) for some ε > 0.
Such a scheme is useful when n is logarithmic in the security parameter, so that
2n is some large polynomial. Note that there is always a trivial obfuscator that
outputs the entire truth table of the circuit C, which is of size 2n. Therefore, XiO
is only required to do slightly better than the trivial construction, in that the
size of the obfuscated circuit must be non-trivially smaller than the truth table.



The work of [LPST16a] showed that XiO together with the LWE assumption
(assuming both satisfy sub-exponential security) imply full iO.

Functional Encodings. We define a variant of the “split FHE” primitive
from BDGM, which we call “functional encodings”. A functional encoding can
be used to encode a value x ∈ {0, 1}` to get an encoding c = Enc(x; r), where r

is the randomness of the encoding process. Later, for any function f : {0, 1}` →
{0, 1}m, we can create an opening d = Open(f, x, r) for f , which can be decoded
to recover the function output Dec(f, c, d) = f(x). We require many-opening
simulation based security: the encoding c = Enc(x; r) together with the many
openings d1 = Open(f1, x, r), . . . , dQ = Open(fQ, x, r) can be simulated given
only the functions f1, . . . , fQ and the outputs f1(x), . . . , fQ(x). In other words,
nothing about the encoded value x is revealed beyond the function outputs
fi(x) for which openings are given. So far, we can achieve this by simply setting
the opening d to be the function output f(x). The notion is made non-trivial,
by additionally requiring succinctness: the size of the opening d is bounded by
|d| = O(m1−ε) for some ε > 0, and therefore the opening must be non-trivially
smaller than the output size of the function. We do not impose any restrictions on
the size of the encoding c, which may depend polynomially on m. Unfortunately,
this definition is unachievable in the plain model, as can be shown via a simple
incompressibility argument. Therefore, we consider functional encodings in the
common reference string (CRS) model and only require many-opening simulation
security for some a-priori bound Q on the number of opening (i.e., Q-opening
security). We allow the CRS size, (but not the encoding size or the opening size)
to grow polynomially with the bound Q.

XiO from Functional Encodings. We construct XiO from functional en-
codings. As a first step, we construct XiO in the CRS model. Let C : {0, 1}n →
{0, 1} be a circuit of size ` that we want to obfuscate. We can partition the
input domain {0, 1}n of the circuit into Q = 2n/m subsets Si, each contain-

ing |Si| = m inputs. We then define Q functions fi : {0, 1}` → {0, 1}m such
that fi(C) = (C(x1), . . . , C(xm)) outputs the evaluations of C on all m inputs
xj ∈ Si. Finally, we set the obfuscation of the circuit C to be

(Enc(C; r),Open(f1, C, r), . . . ,Open(fQ, C, r)),

which is sufficient to recover the value of the circuit at all Q ·m = 2n possible
inputs. By carefully balancing between m and Q = 2n/m, we can ensure that
the obfuscated circuit size is O(2n(1−ε)) for some constant ε > 0, and therefore
satisfies the non-triviality requirement of XiO. On a high level, we amortize the
large size of the encoding across sufficiently many openings to ensure that the
total size of the encoding and all the openings together is smaller than the total
output size.4 The above gives us XiO with a strong form of simulation-based

4 In detail, assume we start with a functional encoding where the encoding size is
O(ma) and the opening size is O(m1−δ) for some constants a, δ > 0, ignoring any



security (the obfuscated circuit can be simulated given the truth table) in the
CRS model, which also implies the standard indistinguishability-based security
in the CRS model.

So far, we only got XiO in the CRS model, where the CRS size can be as large
as poly(Q ·m) = 2O(n). As the second step, we show that XiO in the CRS model
generically implies XiO in the plain model. A naive idea would be to simply make
the CRS a part of the obfuscated program, but then we would lose succinctness,
since the CRS is large. Instead, we repeat a variant of the previous trick to
amortize the cost of the CRS. To obfuscate a circuit C : {0, 1}n → {0, 1},
we partition the domain {0, 1}n into Q = 2n/m subsets containing m = 2n

′

inputs each, and we define Q sub-circuits Ci : {0, 1}n
′
→ {0, 1}, each of which

evaluates C on the m = 2n
′

inputs in the i’th subset. We then choose a single
CRS for input size n′ and obfuscate all Q sub-circuits separately under this CRS;
the final obfuscated circuit consists of the CRS and all the Q obfuscated sub-
circuits. By carefully balancing between m = 2n

′
and Q = 2n/m, in the same

manner as previously, we can ensure that the total size of the final obfuscated
circuit is O(2n(1−ε)) for some constant ε > 0, and therefore thescheme satisfies
the non-triviality requirement of XiO.

Constructing Functional Encodings

We now outline our construction of a functional encoding scheme. We start
with a base scheme, which is insecure but serves as the basis of our eventual
construction. We show that we can easily make it one-opening simulation secure
under the LWE assumption, meaning that security holds in the special case
where only a single opening is ever provided (i.e., Q = 1). Then we show how to
make it many-opening secure via oblivious LWE sampling. Concretely, we obtain
a Q-opening secure functional encoding candidate for bounded-depth circuits
f : {0, 1}` → {0, 1}m with CRS size O(Q ·m), encoding size O(m2) and opening
size O(1), and where O(·) hides factors polynomial in the security parameter,
input size `, and circuit depth.

Base Scheme. Our construction of functional encodings is based on a vari-
ant of the homomorphic encryption/commitment schemes of [GSW13, GVW15].

Given a commitment to an input x = (x1, . . . , x`) ∈ {0, 1}`, along with a circuit

f : {0, 1}` → {0, 1}m, this scheme allows us to homomorphically compute a
commitment to the output y = f(x). Our variant is designed to ensure that the
opening for the output commitment is smaller than the output size m.

Given a public random matrix A ∈ Zm×nq where m � n, we define a com-
mitment C to an input x via

C = (AR1 + x1G + E1, . . . ,AR` + x`G + E`)

other polynomial factors in the security parameter or the input size. The size of the
obfuscated circuit above is then bounded by O(ma + Qm1−δ). By choosing m =
2n/(a+δ) and recalling Q = 2n/m, the bound becomes O(2n(1−ε)) for ε = δ/(a+ δ).



where Ri ← Zn×m log q
q , Ei ← χm×m log q has its entries chosen from the error

distribution χ, and G ∈ Zm×m log q
q is the gadget matrix of [MP12]. Although this

looks similar to [GSW13, GVW15], we stress that the parameters are different.
Namely, in our scheme A is a tall/thin matrix while in the prior schemes it is
a short/fat matrix, we allow Ri to be uniformly random over the entire space
while in the prior schemes it had small entries, and we need to add some error Ei

that was not needed in the prior schemes. The commitment scheme is hiding by
the LWE assumption. We can define the functional encoding Enc(x; r) = (A,C)
to consist of the matrix A and the homomorphic commitment C, where r is all
the randomness used to sample the above values.

Although we modified several key parameters of [GSW13, GVW15], it turns
out that the same homomorphic evaluation procedure there still applies to our
modified scheme. In particular, given the commitment C to an input x and a
boolean circuit f : {0, 1}` → {0, 1}, we can homomorphically derive a commit-
ment Cf = ARf +f(x)G+Ef to the output f(x). Furthermore, given a circuit

f : {0, 1}` → {0, 1}m with m bit output, we can apply the above procedure
to get commitments to each of the output bits and “pack” them together using
the techniques of (e.g.,) [MW16, BTVW17, PS19, GH19, BDGM19] to obtain a
vector cf ∈ Zmq such that

cf = A · rf + f(x) · q2 + ef ∈ Zmq

where f(x) ∈ {0, 1}m is a column vector, rf ∈ Znq , and ef ∈ Zm is some small
error term.

A
Ri

xiG+ + Ei 7→ A

rf
y+

Now, observe that rf constitutes a succinct opening to f(x), since |rf | �
|f(x)| and rf allows us to easily recover f(x) from cf by computing roundq/2(cf−
A · rf ). Furthermore, we can efficiently compute rf by applying a homomorphic
computation on the opening of the input commitment as in [GVW15], or alter-
nately, we can sample A with a trapdoor and use the trapdoor to recover rf .
Therefore, we can define the opening procedure of the functional encoding to
output the value rf = Open(f,x, r), and the decoding procedure can recover
f(x) = Dec(f, (A,C), rf ) by homomorphically computing cf and using rf to
recover f(x) as above. This gives us our base scheme (in the plain model), which
has the correct syntax and succinctness properties. Unfortunately, the scheme
so far does not satisfy even one-opening simulation security, since the opening
rf (along with the error term ef that it implicitly reveals) may leak additional
information about x beyond f(x).

One-Opening Security from LWE. We can modify the base scheme to
get one-opening simulation security (still in the plain model). In particular, we



augment the encoding by additionally including a single random LWE sample
b = A · s + e inside it. We then add this LWE sample to cf to “randomize” it,
and release df := rf + s as an opening to f(x). Given the encoding (A,C,b)
and the opening df , we can decode f(x) by homomorphically computing cf and
outputting y = roundq/2(cf + b−A ·df ). Correctness follows from the fact that
cf + b ≈ A(rf + s) + f(x) · q/2.

With the above modification, we can simulate an encoding/opening pair given
only f(x) without knowing x. Firstly, we can simulate the opening without
knowing the randomness of the input commitments or the trapdoor for A. In
particular, the simulator samples df uniformly at random from Znq , and then
“programs” the value b as b := A ·df − cf + f(x) · q2 + e. The only difference in
the distributions is that in the real case the error contained in the LWE sample
b is e, while in the simulated case it is e−ef , but we can choose the error e to be
large enough to “smudge out” this difference and ensure that the distributions
are statistically close. Once we can simulate the opening without having the
randomness of the input commitments or the trapdoor for A, we can rely on
LWE to replace the input commitment to x with a commitment to a dummy
value.

Many-Opening Security via Oblivious LWE Sampling. We saw that we
can upgrade the base scheme to get one-opening simulation security by adding
a random LWE sample b = A · s + e to the encoding. We could easily extend
the same idea to achieve Q-opening simulation security by adding Q samples
bi = A ·si+ei to the encoding. However, this would require the encoding size to
grow with Q, which we cannot afford. So far, we have not relied on a CRS, and
perhaps the next natural attempt would be to add the Q samples bi to the CRS
of the scheme. Unfortunately, this also does not work, since the scheme needs to
know the corresponding LWE secrets si to generate the openings, and we would
not be able to derive them from the CRS.

Imagine that we had an oracle that took as input an arbitrary matrix A
and would output Q random LWE samples bi = A · si + ei. Such an oracle
would allow us to construct Q-opening simulation secure functional encodings.
The encoding procedure would choose the matrix A with a trapdoor, call the
oracle to get samples bi and use the trapdoor to recover the values si that it
would use to generate the openings. The decoding procedure would get A and
call the oracle to recover the samples bi needed to decode, but would not learn
anything else. The simulator would be able to program the oracle and choose the
values bi itself, which would allow us to prove security analogously to the one-
opening setting. We define a cryptographic primitive called an “oblivious LWE
sampler”, whose goal is to approximate the functionality of the above oracle in
the standard model with a CRS. We can have several flavors of this notion, and
we start by describing a strong flavor, which we then relax in various ways to
get our actual definition.



Oblivious LWE Sampler (Strong Flavor). A strong form of oblivious LWE
sampling would consist of a deterministic sampling algorithm Sam that takes as
input a long CRS along with a matrix A and outputs Q LWE samples bi =
Sam(CRS,A, i) for i ∈ [Q]. The size of CRS can grow with Q and the CRS
can potentially be chosen from some structured distribution, but it must be
independent of A. We want to be able to arbitrarily “program” the outputs
of the sampler by programming the CRS. In other words, there is a simulator
Sim that gets A and Q random LWE samples {bi} as targets; it outputs a
programmed string CRS ← Sim(A, {bi}) that causes the sampler to output
the target values bi = Sam(CRS,A, i). We want the real and the simulated
CRS to be indistinguishable, even for a worst-case choice of A for which an
adversary may know a trapdoor that allows it to recover the LWE secrets. This
notion would directly plug in to our construction to get a many-opening secure
functional encoding scheme in the CRS model. It turns out that this strong form
of oblivious LWE sampling can be seen as a special case of invertible sampling
(in the CRS model) as proposed by [IKOS10], and can be constructed from
iO [DKR15]. Invertible sampling is also equivalent to pseudorandom encodings
(with computational security in the CRS model) [ACI+20], and we answer one
of the main open problems posed by that work by showing that these notions
provably imply iO under the LWE assumption. Unfortunately, we do not know
how to heuristically instantiate this strong flavor of oblivious LWE sampling
(without already having iO).

Oblivious LWE Sampler (Relaxed). We relax the above strong notion in
several ways. Firstly, we allow ourselves to “pre-process” the matrix A using
some secret coins to generate a value pub ← Init(A) that is given as an addi-
tional input to the sampler bi = Sam(CRS, pub, i). We only require that the size
of pub is independent of the number of samples Q that will be generated. The
simulator gets to program both CRS, pub to produce the desired outcome. Sec-
ondly, we relax the requirement that, by programming CRS, pub, the simulator
can cause the sampler output arbitrary target values bi. Instead, we now give
the simulator some target values b̂i and the simulator is required to program
(CRS, pub)← Sim(A, b̂i) to ensure that the sampled values bi = Sam(CRSpub, i)

satisfy bi = b̂i + b̃i for some LWE sample b̃i = A · s̃i + ẽi for which the simula-
tor knows the corresponding secrets s̃i, ẽi. In other words, the produced samples
bi need not exactly match the target values b̂i given to the simulator, but the
difference has to be an LWE sample b̃i for which the simulator can produce the
corresponding secrets. Lastly, instead of requiring that the indistinguishability
of the real and simulated (CRS, pub) holds even for a worst-case choice of A with
a known trapdoor, we only require that it holds for a random A, but the adver-
sary is additionally given the LWE secrets si contained in the sampled values
bi = A · si + ei. In other words, we require that real/simulated distributions of
(CRS, pub, {si}) are indistinguishable.

We show that this relaxed form of an oblivious LWE sampling suffices in
our construction of functional encodings. Namely, we can simply add pub to the



encoding of the functional encoding scheme, since it is short. In the proof, we
can replace the real (CRS, pub) with a simulated one, using some random LWE

tuples b̂i as target values. Indistinguishability holds even given the LWE secrets
si for the produced samples bi = Sam(CRS, pub, i), which are used to generate

the openings of the functional encoding. The b̂i component of the produced
samples bi = b̂i + b̃i is sufficient to re-randomizes the output commitment cf ,

and the additional LWE sample b̃i that is added in does not hurt security, since
we know the corresponding LWE secret s̃i and can use it to adjust the opening
accordingly.

Constructing an Oblivious LWE Sampler. We give a heuristic construc-
tion of an oblivious LWE sampler, by relying on the same homomorphic com-
mitments that we used to construct our base functional encoding scheme. The
high level idea is to give out a commitment to a PRF key k and let the sam-
pling algorithm homomorphically compute a pseudorandom LWE sample bprf :=
A · sprf + eprf where sprf , eprf are sampled using randomness that comes from the
PRF. The overall output of the sampler is a commitment to the above LWE
sample, which is itself an LWE sample! While we do not know how to construct
a simulator for this basic construction, we conjecture that it may already be
sufficient to instantiate functional encodings. To allow the simulator to program
the output, we augment the computation to incorporate the CRS. We give a
more detailed description below.

The CRS is a uniformly random string, which we interpret as consisting of
Q values CRSi ∈ Zmq . To generate pub, we sample a random key k for a pseudo-
random function PRF(k, ·) and set a flag bit β := 0. We creates a commitment
C to the input (k, β) and we set the public value pub = (A,C). The algorithm
bi = Sample(CRS, pub, i) performs a homomorphic computation of the function
gi over the commitment C, where gi is defined as follows:

gi(k, β): Use PRF(k, i) to sample bprf
i := A · sprfi + eprf

i and output

b∗i := bprf
i + β · CRSi.

The output of this computation is a homomorphically evaluated commitment to
b∗i and has the form bi = A ·sevali +eeval

i +b∗i where sevali , eeval
i come from the ho-

momorphic evaluation.5 Overall, the generated samples bi = Sample(CRS, pub, i)
can be written as

bi = A · (sevali + sprfi ) + (eeval
i + eprf

i ) + β · CRSi

where sprfi , e
prf
i come from the PRF output and sevali , eeval

i come from the homo-
morphic evaluation.

5 Recall that previously we relied on a “packed” homomorphic evaluation, where we
could evaluate a function f : {0, 1}` → {0, 1}m on a commitment to x to get a
commitment cf = A·sf+ef+f(x)· q

2
. The above relies on a slight variant that’s even

further packed and allows us to homomorphically evaluate a function g : {0, 1}` →
Zmq over a commitment to x and derive a commitment cg = A · sg + eg + g(x).



In the real scheme, the flag β is set to 0 and so each output of Sample is
an LWE sample bi = A · (sevali + sprfi ) + (eeval

i + eprf
i ). In the simulation, the

simulator gets some target values b̂i and puts them in the CRS as CRSi := b̂i.
It sets the flag to β = 1, which results in the output of Sample being bi =
A · (sevali + sprfi ) + (eeval

i + eprf
i ) + b̂i. Note that the simulator knows the PRF key

k and the randomness of the homomorphic commitment, and therefore knows
the values (sevali + sprfi ), (eeval

i + eprf
i ). This means that the difference between

the target values b̂i and the output samples bi is an LWE tuple for which the
simulator knows the corresponding secrets, as required.

Security under a new conjecture. We conjecture that the above construc-
tion is secure. In particular, we conjecture that the adversary cannot distinguish
between β = 0 and β = 1 given the values:

(CRS = {CRSi = Aŝi+êi}i∈[Q], pub = (A,C = Commit(k, β)), {si = sevali +sprfi +βŝi}i∈[Q])

We refer to this as the homomorphic pseudorandom LWE samples (HPLS)
conjecture (see Conjecture 1 for a precise statement), and we argue heuristi-
cally why we believe it to hold. Since CRS, pub completely determine the val-
ues bi = A · si + ei, revealing si = sevali + sprfi + βŝi also implicitly reveals

ei = eeval
i + eprf

i +βêi. We can think of the HPLS conjecture as consisting of two
distinct heuristic components. The first component is to argue that the values
si, ei look pseudorandom and independent of β given only (CRS,A), but with-

out getting the commitment C. Intuitively, we believe this to hold since sprfi , e
prf
i

are provably pseudorandom (by the security of the PRF). Therefore, as long as

we choose the noise eprf
i to be large enough to “smudge out” êi, we can prov-

ably argue that sprfi + βŝi and eprf
i + βêi are pseudorandom and independent of

β. Unfortunately, this does not suffice – we still need to rely on a heuristic to
ague that there are no computationally discernible correlations between these
values and sevali , eeval

i respectively. We believe this should hold with most natural
PRFs. Although the first component is already heuristic, there is hope to remove
the heuristic nature of this component by explicitly analyzing the distributions
sevali + sprfi , e

eval
i + eeval

i for a specific PRF, and leave this as a fascinating open
problem for future work. The second heuristic component is to argue that se-
curity holds even in the presence of the commitment C. This part implicitly
involves a circular security aspect between the pseudorandom function and the
commitment. We’d like to argue that the PRF key k and the bit β are protected
by the security of the commitment scheme, but we release si = sevali + sprfi + βŝi,
where sevali depends on the commitment randomness; nevertheless we’d like to
argue that this does not hurt commitment security since the value sevali is masked
by the PRF output, but this argument is circular since the PRF key is contained
in the commitment! This circularity does not easily lend itself to a proof, and
we see much less hope in removing the heuristic nature of the second component
than the first. Still, this type of circularity also seems difficult to attack: one
cannot easily break the security of the commitment without first breaking the
security of the PRF and vice versa.



Simplified Construction. In the full version, we also give a simplified direct
construction of functional encodings in the plain model that we conjecture to
satisfy indistinguishability based security. The simplified construction does not
go through the intermediate “oblivious LWE sampler” primitive. In contrast
to our main construction, which is secure under a non-interactive assumption
that two distributions are indistinguishable, the assumption that our simplified
construction is secure and interactive.

1.3 Discussion and Perspectives

Comparison to BDGM

We now give a detailed comparison of our results/techniques with those of Brak-
erski, Döttling, Garg, and Malavolta [BDGM20a] (BDGM). BDGM defined a
primitive called split FHE, which they show implies iO under the LWE assump-
tion. They then gave a candidate instantiation of split FHE by heuristically
combining decisional composite residue (DCR) and LWE-based techniques, to-
gether with the use of a random oracle. While they gave compelling intuition
for why they believe this construction of split FHE to be secure, they did not
attempt to formulate an assumption under which they could prove security. In
our work, we define a variant of split FHE that we call functional encodings. We
then provide an entirely new instantiation of functional encodings via oblivious
LWE sampling. The main advantages of our approach are:

– We get a provably secure construction of iO under the LWE assumption
along with an additional assumption that there is an oblivious LWE sampler,
where the latter is a clearly abstracted primitive, which we then instantiate
heuristically. In particular, we are able to confine the heuristic portion of our
construction to a single well defined component.

– We can prove security of our overall construction under a falsifiable, non-
interactive assumption that is independent of the function being obfuscated.

– Our construction of iO relies only on LWE-based techniques rather than the
additional use of DCR. In our opinion, this makes the construction conceptu-
ally simpler and easier to analyze. Furthermore, the construction is plausibly
post-quantum secure.

– We avoid any reliance on random oracles.

On a technical level, we lightly adapt the split FHE framework of BDGM.
In particular, our notion of functional encodings can be seen as a relaxed form
of split FHE, and our result that functional encodings imply iO closely follows
BDGM. The main differences between the two works, lie in the our respective
instantiations of split-FHE and functional encodings. We explain the differences
in the framework and the instantiation in more detail below.

Functional Encodings vs Split FHE. There are two differences between
our notion of functional encodings versus the split FHE framework of BDGM.
Firstly, our notion of functional encodings has a simplified syntax compared to



split FHE (in particular, we do not require any key generation or homomorphic
evaluation algorithms and the opening can depend on all of the randomness
r used to generate the encoding rather than just a secret key). While we find
the simplified syntax conceptually easier, it is not crucial, and our candidate
construction of functional encodings can be adapted to also match the syntactic
requirements of split FHE. The second difference is that we explicitly allow for
a CRS in functional encodings, and show that the CRS can be removed when
we go to XiO (in particular, we show that XiO in the CRS model implies XiO
in the plain model). In contrast, the work of BDGM considered split FHE in the
plain model (with indistinguishability rather than simulation security). Their
instantiation relies on a random oracle model and they argued heuristically that
the random oracle can be removed. The fact that we explicitly consider the
CRS model allows us to avoid random oracles entirely, and therefore reduce the
number of heuristic components in the final construction.6

Heuristic Instantiations. Both BDGM and our work provide a heuristic
instantiation of the main building block: split FHE and functional encodings,
respectively. These instantiations are concretely very different, and rely on dif-
ferent techniques. On a conceptual level, they also differ in the role that heuristic
arguments play. BDGM constructs a provably secure instantiation of split FHE
under the combination of LWE and DCR assumptions, in some idealized oracle
world (essentially, the oracle samples Damgard-Jurik encryptions of small val-
ues). They then give a heuristic instantiation of their oracle. However, there is
no attempt to define any standard-model notion of security that such an instan-
tiation could satisfy to make the overall scheme secure. In contrast, we construct
a provably secure instantiation of functional encodings under the LWE assump-
tion and assuming we have an “oblivious LWE sampler”, where the latter is a
cryptographic primitive in the standard model (with a CRS) with a well-defined
security requirement. We then give a heuristic construction of an oblivious LWE
sampler using LWE techniques. Although the security notion of oblivious LWE
sampling involves a simulator, our heuristic construction comes with a candidate
simulator for it. Therefore, the only heuristic component of our construction is a
clearly stated falsifiable assumption that two distributions (real and simulated)
are indistinguishable.

We conjecture that the split FHE construction of BDGM could similarly be
proven secure under the LWE assumption, DCR assumption, and some type
of “oblivious sampler” for Damgard-Jurik encryptions of random small values.
Moreover, the heuristic instantiation of the oracle in BDGM could likely be seen
as a heuristic candidate for such an oblivious sampler. However, BDGM does not
appear to have a plausible candidate simulator for this instantiation and hence
security does not appear to follow from any simple falsifiable assumption (other
than assuming that the full construction of split FHE is secure).

6 We believe that this change could also be applied retroactively to remove the use of
a random oracles in BDGM.



We note that BDGM (Section 4.4) also presents an alternate construction of
split FHE based only the LWE assumption (without DCR) in some other ide-
alized oracle world. However, they were not able to heuristically instantiate the
oracle for this alternate construction, and hence it did not lead to even a heuris-
tic candidate for post-quantum secure iO in their work.7 Their construction
does yield a one-opening secure split-FHE / functional encoding under LWE,
and our one-opening secure scheme is in part inspired by it (and can be seen as
simplifying it). The main advantage of our scheme is that we can extend it to
many-opening security via oblivious LWE sampling, which we then instantiate
heuristically to get a candidate iO.

Comparison with FE

The line of work on building iO from simple, well-founded assumptions first
builds functional encryption (FE). A functional encryption scheme allows us to
encrypt a value x and generate secret keys for functions f so that decryption
returns f(x) while leaking no additional information about x. We also consider
Q-key security, where an adversary given an encryption of x and Q secret keys
for functions f1, . . . , fQ should learn nothing about x beyond f1(x), . . . , fQ(x).
A functional encoding scheme can be viewed as a relaxation of a secret-key
functional encryption where we allow the key for f to depend on x.

The state-of-the-art for functional encryption is analogous to that for func-
tional encoding:

– We have one-key secure public-key FE for bounded-depth circuits f : {0, 1}` →
{0, 1}m from LWE with ciphertext size O(m) and key size O(1) [GKP+13,
GVW13, BGG+14].

– A construction of iO from one-key secure public-key FE for bounded-depth
circuits f : {0, 1}` → {0, 1}m with ciphertext size O(m1−ε) [BV15, AJ15].

The latter is in turn implied by Q-key secure public-key FE for f : {0, 1}` →
{0, 1} with ciphertext size O(Q1−ε).

– A construction of iO fromQ-key secure secret-key FE bounded-depth circuits
f : {0, 1}` → {0, 1}m with ciphertext size Q1−ε ·poly(m). Our main candidate
is essentially the functional encoding analogue of such a secret-key FE scheme
(in the CRS model).

This analogue raises two natural open problems: Do the techniques in this work
also yield non-trivial FE schemes (that imply iO) with a polynomial security loss,
without passing through iO as an intermediate building block? Can we simplify
the constructions or assumptions underlying the FE schemes in [AJL+19, Agr19,
JLMS19, GJLS20, JLS20] by relaxing the requirements from FE to functional
encodings (which would still suffice for iO)?

7 As stated in BDGM Section 4.4: “We stress that, in contrast with the instantiation
based on the Damgard-Jurik encryption scheme (Section 4.3), this scheme does not
satisfy the syntactical requirements to apply the generic transformations (described
in Section 4.2) to lift the scheme to the plain model.”



Comparison with Concurrent Works: [GP20, BDGM20b]

The recent work of [GP20] together with a follow-up to it [BDGM20b] (both
of which are concurrent and independent of our work), present new candidate
constructions of iO by adapting the BDGM [BDGM20a] framework. Just like
our work, they go through the route of constructing XiO in the CRS model,
and have instantiations that rely only on LWE-style techniques and are plausi-
bly post-quantum secure. While there are many high-level similarities between
these works and our work, the concrete construction and security assumption
are different. In terms of construction, the main difference lies in how the works
“re-randomize” the opening/hint that allows one to recover the output of the
computation. In our case, we do so via an “oblivious LWE sampler”, which is
instantiated by using an encrypted PRF key to produce an encrypted pseu-
dorandom LWE sample. The two works [GP20, BDGM20b] follow the original
construction of [BDGM20a] more closely and rely on homomorphically decrypt-
ing random ciphertexts in the CRS using a key cycle.8 Our overall construction
is arguably somewhat simper than the others since it relies on a single homo-
morphic cryptosystem (a variant of GSW FHE) rather than switching between
two different homomorphic cryptosystems with different properties. In terms of
assumptions, both of the works [GP20, BDGM20b] prove security under a new
assumption that a certain cryptosystem satisfies a strong form of “circular secu-
rity” in the presence of some oracle. In the full version, we give a more detailed
comparison and our take on the circular security assumptions.

2 Preliminaries

2.1 Notations

We will denote by λ the security parameter. The notation negl(λ) denotes any
function f such that f(λ) = λ−ω(1), and poly(λ) denotes any function f such
that f(λ) = O(λc) for some c > 0. For a probabilistic algorithm alg(inputs),
we might explicit the randomness it uses by writing alg(inputs; coins). We will
denote vectors by bold lower case letters (e.g. a) and matrices by bold upper
cases letters (e.g. A). We will denote by a> and A> the transposes of a and A,
respectively. We will denote by bxe the nearest integer to x, rounding towards
0 for half-integers. If x is a vector, bxe will denote the rounded value applied
component-wise. For integral vectors and matrices (i.e., those over Z), we use
the notation |r|, |R| to denote the maximum absolute value over all the entries.

We define the statistical distance between two random variables X and Y
over some domain Ω as: SD(X,Y ) = 1

2

∑
w∈Ω |X(w)− Y (w)| . We say that two

ensembles of random variables X = {Xλ}, Y = {Yλ} are statistically indistin-

guishable, denoted X
s
≈ Y , if SD(Xλ, Yλ) ≤ negl(λ).

8 Interestingly, since decrypting random ciphertexts is a (weak-)PRF, the two ap-
proaches may be more similar than may appear.



We say that two ensembles of random variables X = {Xλ}, and Y = {Yλ} are

computationally indistinguishable, denoted X
c
≈ Y , if, for all (non-uniform) PPT

distinguishers Adv, we have |Pr[Adv(Xλ) = 1]− Pr[Adv(Yλ) = 1]| ≤ negl(λ). We
also refer to sub-exponential security, meaning that there exists some ε > 0 such
that the distinguishing advantage is at most 2−λ

ε

.
We assume familiarity with the learning-with errors (LWE) assumption [Reg05],

noise smudging (e.g., [AJL+12]), the Gadget Matrix G [MP12] and lattice trap-
doors [Ajt96, MP12]. See the full version for details.

3 Functional Encodings

3.1 Definition of Functional Encodings

A functional encoding scheme (in the CRS model) for the family F`,m,t =

{f : {0, 1}` → {0, 1}m} of depth-t circuits consists of four PPT algorithms
crsGen,Enc,Open,Dec where Open and Dec are deterministic, satisfying the fol-
lowing properties:

Syntax: The algorithms have the following syntax:

– CRS← crsGen(1λ, 1Q,F`,m,t) outputs CRS for security parameter 1λ and
a bound Q on the number of openings;

– C ← Enc(CRS, x ∈ {0, 1}`; r) encodes x using randomness r;

– d← Open(CRS, f : {0, 1}` → {0, 1}m, i ∈ [Q], x, r) computes the opening
corresponding to i’th function f ;

– y ← Dec(CRS, f, i, C, d) computes a value y for the encoding C and
opening d.

Correctness:

Dec(f,Enc(x, r),Open(f, x, r)) = f(x)

Q-SIM Security: There exists a PPT simulator Sim such that the following
distributions for all PPT adversaries A and all x, f1, . . . , fQ ← A(1λ), the
following distributions of (CRS, C, d1, . . . , dQ) are computationally indistin-
guishable (even given x, f1, . . . , fQ):

– Real Distribution: CRS ← crsGen(1λ, 1Q), C ← Enc(CRS, x; r), di ←
Open(CRS, f i, i, x, r), i ∈ [Q].

– Simulated Distribution: (CRS, C, d1, . . . , dQ)← Sim({f i, f i(x)}i∈Q).

Succinctness: There exists a constant ε > 0 such that, for CRS← crsGen(1λ, 1Q,F`,m,t),
C ← Enc(CRS, x; r), d← Open(CRS, f, i, x, r) we have:

|CRS| = poly(Q,λ, `,m, t), |C| = poly(λ, `,m, t), |d| = m1−εpoly(λ, `, t).

In our discussion, we also refer to indistinguishability-based security, a relax-
ation of Q-SIM security:

Q-IND Security: For all PPT adversaries A and all x0,x1, f
1, . . . , fQ ← A(1λ)

such that f i(x0) = f i(x1) for all i ∈ [Q], the following distributions of



(CRS, C, d1, . . . , dQ) are computationally indistinguishable for β = 0 and
β = 1:

CRS← crsGen(1λ, 1Q), C ← Enc(CRS, xβ ; r), di ← Open(CRS, f i, i, xβ , r), i ∈ [Q]

Remark 1 (Comparison with split-FHE). One can think of functional encodings
as essentially a relaxation of split-FHE, where we remove the explicit require-
ments for decryption (and secret keys) and for homomorphic evaluation. This
simplifies both the syntax and the security definition. In the language of BDGM,
Open corresponds to a decryption hint for an encryption of f(x), obtained by
applying partial decryption to homomorphic evaluation of f on the encryption of
x. Note that in BDGM, the hint should be computable given the decryption key,
whereas we allow the hint to depend on the encryption/commitment random-
ness. Finally, BDGM circumvents the impossibility of simulation-based security
for many-time security in the plain model by turning to indistinguishability-
based security, whereas we rely on a CRS.

Remark 2 (Comparison with functional encryption). Functional encoding is very
similar to (secret-key) functional encryption where given an encryption of x and
a secret key for f , we learn f(x) and nothing else about x. A crucial distinction
here is that Open also gets x as input.

4 Homomorphic Commitments
with Short Openings

In this section, we describe a homomorphic commitment scheme with short open-
ings.

Lemma 1 (Homomorphic computation on matrices [GSW13, BGG+14]).

Fix parameters m, q, `. Given a matrix C ∈ Zm×`m log q
q and a circuit f : {0, 1}` →

{0, 1} of depth t, we can efficiently compute a matrix Cf such that for all

x ∈ {0, 1}`, there exists a matrix HC,f,x ∈ Z`m log q×m log q with |HC,f,x| = mO(t)

such that9

(C− x> ⊗G) ·HC,f,x = Cf − f(x)G (1)

where G ∈ Zm×m log q
q is the gadget matrix. Moreover, HC,f,x is efficiently com-

putable given C, f,x.

9 Note that if we write C = [C1 | · · · | C`] where C1, . . . ,C` ∈ Zm×m log q
q and

x = (x1, . . . , x`), then

C− x> ⊗G = [C1 − x1G | . . . | C` − x`G]



Using the “packing” techniques in [MW16, BTVW17, PS19], the above re-
lation extends to circuits with m-bit output. Concretely, given a circuit f :
{0, 1}` → {0, 1}m of depth t, we can efficiently compute a vector cf such that

for all x ∈ {0, 1}`, there exists a vector hC,f,x ∈ Z`m log q with |hC,f,x| = mO(t)

such that

(C− x> ⊗G) · hC,f,x = cf − f(x) · q2 (2)

where f(x) ∈ {0, 1}m is a column vector. Concretely, let f1, . . . , fm : {0, 1}m →
{0, 1} denote the circuits computing the output bits of f . Then, we have:

cf =

m∑
j=1

Cfj ·G−1(1j · q2 ) (3)

hC,f,x =

m∑
j=1

HC,fj ,x ·G−1(1j · q2 )

where 1j ∈ {0, 1}m is the indicator column vector whose j’th entry is 1 and
0 everywhere else, so that f(x) =

∑
j fi(x) · 1j . Here, hC,f,x is also efficiently

computable given C, f,x.

Construction 1 (homomorphic commitments pFHC) The commitment scheme
pFHC (”packed fully homomorphic commitment”) is parameterized by m, ` and
n, q, and is defined as follows.

– Gen chooses a uniformly random matrix A← Zm×nq .

– Com(A ∈ Zm×nq ,x ∈ {0, 1}`; R ∈ Zn×`m log q
q ,E ∈ Zm×`m log q) outputs a

commitment
C := AR + x> ⊗G + E ∈ Zm×`m log q

q .

Here, R← Zn×`m log q
q ,E← χm×`m log q

– Eval(f : {0, 1}` → {0, 1}m,C ∈ Zm×`m log q
q ) for a boolean circuit f : {0, 1}` →

{0, 1}m, deterministically outputs a (column) vector cf ∈ Zmq . Here, cf is
the same as that given in (2).

– Evalopen(f,A ∈ Zm×nq ,x ∈ {0, 1}`,R ∈ Zn×`m log q
q ,E ∈ Zm×`m log q): deter-

ministically outputs (column) vectors rf ∈ Znq , ef ∈ Zmq .

Lemma 2. The above commitment scheme pFHC satisfies the following proper-
ties:

– Correctness. For any boolean circuit f : {0, 1}` → {0, 1}m of depth t, any

x ∈ {0, 1}`, any A ∈ Zm×nq ,R ∈ Zn×`m log q
q ,E ∈ Zm×`m log q, we have

C := Com(A,x; R,E), cf := Eval(f,C), (rf , ef ) := Evalopen(f,A,x,R,E)

satisfies
cf = Arf + f(x) · q2 + ef ∈ Zmq

where f(x) ∈ {0, 1}m is a column vector and |ef | = |E| ·mO(t).



– Privacy. Under the LWE assumption, for all x ∈ {0, 1}`, we have:

A,Com(A,x) ≈c A,Com(A,0)

Proof. Correctness follows from substituting C = AR + x> ⊗G + E into (2),
which yields

cf = (AR + E) · hC,f,x + f(x) · q2 = A ·R · hC,f,x︸ ︷︷ ︸
rf

+f(x) · q2 + E · hC,f,x︸ ︷︷ ︸
ef

.

The bound on |ef | follows from |hC,f,x| = mO(t). Privacy follows readily from
the pseudorandomness of (A,AR + E), as implied by the LWE assumption.

Handling f : {0, 1}` → Zmq . Next, we observe that we can also augment
pFHC with a pair of algorithms Evalq,Evalqopen to support bounded-depth circuits

f : {0, 1}` → Zmq (following [PS19]). That is,

– Correctness II. For any boolean circuit f : {0, 1}` → Zmq of depth t, any

x ∈ {0, 1}`, any A ∈ Zm×nq ,R ∈ Zn×`m log q
q ,E ∈ Zm×`m log q, we have

C := Com(A,x; R,E), cf := Evalq(f,C), (rf , ef ) := Evalqopen(f,A,x,R,E)

satisfies

cf = Arf + f(x) + ef ∈ Zmq

where f(x) ∈ Zmq is a column vector and |ef | = |E| ·mO(t).

Concretely, let f1, . . . , fm log q : {0, 1}m → {0, 1} denote the circuits computing
the output of f interpreted as bits. Then, we have:

cf =

m log q∑
j=1

Cfj ·G−1(1j ⊗ g>) (4)

hC,f,x =

m log q∑
j=1

HC,fj ,x ·G−1(1j ⊗ g>)

5 1-SIM Functional Encoding from LWE

We construct a 1-SIM functional encoding scheme for bounded-depth circuits
F`,m,t based on the LWE assumption. The scheme does not require a CRS. Such
a result is given in [BDGM20, Section 4.4], starting from any FHE scheme with
“almost linear” decryption; we provide a more direct construction that avoids
key-switching.

Construction 2



– Enc(x; A,R,E, s, e). Sample

A← Zm×nq ,R← Zn×`m log q
q ,E← χm×`m log q, s← Znq , e← χ̂m

Compute
C := pFHC.Com(A,x; R,E), b := As + e

and output
(A,C,b)

– Open(f,x; A,R,E, s, e): Compute (rf , ef ) := pFHC.Evalopen(f,A,x,R,E)
and output

d := rf + s ∈ Znq
– Dec(f, (A,C,b),d): Compute cf := pFHC.Eval(f,C) and output

roundq/2(cf + b−Ad) ∈ {0, 1}m

where roundq/2 : Zmq → {0, 1}
m

is coordinate-wise rounding to the nearest
multiple of q/2.

Theorem 3. Under the LWEn,q,χ assumption, the construction above is a 1-SIM
functional encoding.

We defer the proof to the full version.

Remark 3 (An attack given many openings.). We describe an attack strategy
on our 1-SIM scheme in the Q-SIM setting, namely, when the adversary gets
openings d1, . . . ,dQ corresponding to many functions f1, . . . , fQ. (We stress
that this does not contradict our preceding security claim.) Observe that we
have

di = R · hC,fi,x + s

where hC,fi,x (as defined in (2)) is efficiently computable given x,C, f i. In the
case of linear functions, hC,fi,x does not even depend on x. This gives us Q
linear equations in the unknowns R, s, and allows us to recover R and break
many-opening security in both the indistinguishability-based and simulation-
based settings as long as we can choose f i’s in such a way that the equations
are linearly independent.

6 Oblivious Sampling
From a Falsifiable Assumption

Oblivious LWE sampling allows us to compute Q seemingly random LWE sam-
ples bi = Asi + ei relative to some LWE matrix A, by applying some determin-
istic function to a long CRS that is independent of A along with a short public
value pub that can depend on A but whose length is independent of Q. We
require that there is a simulator that can indistinguishably program CRS, pub



to ensures that the resulting samples bi “almost match” some arbitrary LWE
samples b̂i given to the simulator as inputs. Ideally, the simulator could ensure
that bi = b̂i match exactly. However, we relax this and only require the sim-
ulator to ensure that bi = b̂i + b̃i for some LWE sample b̃i = As̃i + ẽi for
which the simulator knows the corresponding secret s̃i. Note that the simulator
does not get the secrets ŝi for the target values b̂i = Aŝi + êi, but indistin-
guishability should hold even for a distinguisher that gets the secrets si for the
output samples bi = Asi+ei. In the full version, we show that we can construct
a strong form of oblivious sampling using the notion of invertible sampling (in
the CRS model) from [IKOS10, DKR15, ACI+20], which can be constructed
from iO. This highlights that the notion is plausibly achievable. We then give a
heuristic constructions of oblivious LWE sampling using LWE-style techniques
and heuristically argue that security holds under a new falsifiable assumption.

6.1 Definition of Oblivious Sampling

An oblivious LWE sampler consists of four PPT algorithms: CRS← crsGen(1λ, 1Q), pub←
Init(A),bi = Sample(CRS, pub, i) and (CRS, pub, {s̃i}i∈[Q])← Sim(1λ, 1Q,A, {b̂i}i∈[Q]).
The Sample algorithm is required to be deterministic while the others are ran-
domized. Let (TrapGen, LWESolve) be the lattice trapdoor algorithms for gener-
ating A with a trapdoor and solving LWE using the trapdoor respectively.

Definition 1. An (n,m, q, χ̂, BOLWE) oblivious LWE sampler satisfies the fol-
lowing properties:

Correctness: Let Q = Q(λ) be some polynomial. Let (A, td)← TrapGen(1n, 1m, q),CRS←
crsGen(1λ, 1Q),pub← Init(A). Then, with overwhelming probability over the
above values, for all i ∈ [Q] there exists some si ∈ Znq and ei ∈ Zmq with
||ei||∞ ≤ BOLWE such that bi = Asi + ei.

Security: The following distributions of (CRS,A, pub, {si}i∈[Q]) are computa-
tionally indistinguishable:
– Real Distribution: Sample (A, td)← TrapGen(1n, 1m, q), CRS← crsGen(1λ, 1Q),

pub← Init(A). For i ∈ [Q] set bi = Sample(CRS, pub, i), si = LWESolvetd(bi).
Output (CRS,A, pub, {si}i∈[Q]).

– Simulated Distribution: Sample (A, td)← TrapGen(1n, 1m, q), ŝi ← Znq , êi ←
χ̂m and let b̂i = Aŝi+êi. Sample (CRS, pub, {s̃i}i∈[Q])← Sim(1λ, 1Q,A, {b̂i}i∈[Q])
and let si = ŝi + s̃i. Output (CRS,A, pub, {si}i∈[Q]).

Observe that the algorithm pub ← Init(A) in the above definition does not
get Q as an input and therefore the size of pub is independent of Q. On the
other hand, the algorithm CRS ← crsGen(1λ, 1Q) does not get A as an input
and hence CRS must be independent of A. This is crucial and otherwise there
would be a trivial construction where either CRS or pub would consist of Q LWE
samples with respect to A.

Note that the security property implicitly also guarantees the following cor-
rectness property of the simulated distribution. Assume we simulate the val-
ues (CRS,A, pub, {s̃i}i∈[Q]) ← Sim(1λ, 1Q,A, {b̂i}i∈[Q]) where the simulator is



given LWE samples b̂i = Aŝi + êi as input. Then the resulting (CRS,A, pub)

will generate samples bi = Sample(CRS, pub, i) of the form bi = b̂i + b̃i where
b̃i = As̃i + ẽi some small ẽi. This is because, in the simulation, we must have
bi = Asi + ei where ||ei||∞ ≤ B as otherwise it would be trivial to distinguish
the simulation from the real case. But si = ŝi + s̃i and so ei = êi + ẽi. This
implies ẽi = ei − êi will be small.

Remark 4 (Naive construction fails). Consider the naive construction:

pub := (AS + E), CRS := (r1, . . . , rQ), bi := (AS + E)ri

where
A← Zm×nq , S← Zn×m log q

q , E← χm×m log q ri ← χm log q

We stress that the simulator receives a random A but not the corresponding
trapdoor. Indeed, under the LWE assumption, there does not exist an efficient
simulator for the naive construction. In more detail, the simulator is required on
input (A, {b̂i}i∈[Q]) to output ({ri}i∈[Q],B, {s̃i}i∈[Q]) such that

({ri}i∈[Q],AS + E, {Sri}i∈[Q]) ≈c ({ri}i∈[Q],B, {ŝi + s̃i}i∈[Q])

We claim that checking whether Bri ≈ b̂i+As̃i yields a distinguisher for whether
(A, {b̂i}i∈[Q]) is drawn from LWE versus uniform distribution. The proof relies
on the fact that given ({ri}i∈[Q], {Sri}i∈[Q]) for Q � m, we can solve for S
via Gaussian elimination, which means that the matrix B must be of the form
AS0 +E0 and therefore any b̂i that passes the check satisfies b̂i ≈ A(S0ri− s̃i).
Note that the LWE distinguisher works even if it does not know S0,E0.

6.2 Heuristic Construction

We now give our heuristic construction of an oblivious LWE sampler. Let n,m, q
be some parameters and χ, χprf , χ̂ be distributions over Z that are B,Bprf , B̂
bounded respectively. Let D be an algorithms that samples tuples (s, e) where
s ← Znq and e ← χmprf . Assume that D uses v random coins, and for r ∈
{0, 1}v define (s, e) = D(r) to be the output of D with randomness r. Let

PRF : {0, 1}λ × {0, 1}∗ → {0, 1}v be a pseudorandom function. We rely on
the homomorphic commitment algorithms Com,Evalq,Evalqopen with parameters
n,m, q, χ from Section 4.

Construction 4 We define the oblivious LWE sampler as follows:

– CRS← crsGen(1λ, 1Q): CRS := (CRS1, . . . ,CRSQ) where CRSi ← Zmq .

– pub ← Init(A): Sample a PRF key k ← {0, 1}λ and set a flag β := 0. Set
pub := (A,C) where C← Com(A, (k, β)).

– bi = Sample(CRS, pub, i): Let gi,CRSi,A : {0, 1}λ+1 → Zmq be a circuit that
contains the values (i,A,CRSi) hard-coded and performs the computation:

gi,CRSi,A(k, β) : Let (sprfi , e
prf
i ) = D(PRF(k, i)). Output Asprfi + eprf

i + β · CRSi.

Output bi = Evalq(gi,CRSi,A,C).



– (CRS, pub, {s̃i}i∈[Q]) ← Sim(1λ, 1Q,A, {b̂i}i∈[Q]): Set CRS := (b̂1, . . . , b̂Q).
Set the flag β := 1 and pub := (A,C) for C = Com((k, β); R,E) where R,E
is the randomness of the commitment. Let (revali , eeval

i ) = Evalqopen(gi,CRSi,A,A, (k, β),R,E)

and (sprfi , e
prf
i ) = D(PRF(k, i)). Set s̃i = revali + sprfi .

Form of samples bi. Let us examine this construction in more detail and see
what the samples bi look like.

In the real case, where pub ← Init(A), we have pub = (A,C) where C =
Com(A, (k, 0); (R,E)). For bi = Sample(CRS, pub, i) we can write

bi = A (revali + sprfi )︸ ︷︷ ︸
si

+ (eeval
i + eprf

i )︸ ︷︷ ︸
ei

(5)

where (sprfi , e
prf
i ) = D(PRF(k, i)) are sampled using the PRF and (revali , eeval

i ) =
Evalqopen(gi,A, (k, 0),R,E) come from the homomorphic evaluation.

In the simulated case, where CRS, pub are chosen by the simulator, we have
pub = (A,C) where C = Com(A, (k, 1); (R,E)) and CRSi = b̂i = Aŝi + êi. For
bi = Sample(CRS, pub, i) we can write

bi = A (

s̃i︷ ︸︸ ︷
revali + sprfi +ŝi)︸ ︷︷ ︸

si

+ (

ẽi︷ ︸︸ ︷
eeval
i + eprf

i +êi)︸ ︷︷ ︸
ei

(6)

where (sprfi , e
prf
i ) = D(PRF(k, i)) are sampled using the PRF and (revali , eeval

i ) =
Evalqopen(gi,CRSi,A,A, (k, 0),R,E) come from the homomorphic evaluation.

Correctness. Equation 5 implies that the scheme satisfies the correctness of
an n,m, q, χ̂, BOLWE oblivious LWE sampler, where BOLWE is a bound ||ei||∞. In
particular, B ≤ Bprf + B · mO(t), where t is the depth of the circuit gi,CRSi,A

(which is dominated by the depth of the PRF).

6.3 Security under a New Conjecture

The security of our heuristic oblivious sampler boils down to the indistinguisha-
bility of the real and simulated distributions, which is captured by the following
conjecture:

Conjecture 1 (HPLS Conjecture). For β ∈ {0, 1}, let us define the distribution
DIST(β) over

({b̂i = Aŝi + êi}i∈[Q],A,C, {si = revali + sprfi + β · ŝi}i∈[Q])

where

– A← Zm×nq , ŝi ← Znq , êi ← χm, b̂i := Aŝi + êi.

– k ← {0, 1}λ, (C = A ·R + E + (k, β)⊗G)← Com(A, (k, β); (R,E))



– (sprfi , e
prf
i ) := D(PRF(k, i)), (revali , eeval

i ) := Evalqopen(gi,b̂i,A
,A, (k, β),R,E)

where

gi,b̂i,A
(k, β) : Let (sprfi , e

prf
i ) = D(PRF(k, i)). Output Asprfi + eprf

i + β · b̂i.

– si := (revali + sprfi + β · ŝi).
The (sub-exponential) homomorphic pseudorandom LWE samples (HPLS) con-
jecture with parameters (n,m, q, χ, χ̂, χprf) and pseudodrandom function PRF
says that the distributions DIST(0) and DIST(1) are (sub-exponentially) com-
putationally indistinguishable.

When we do not specify parameters, we assume the conjecture holds for
some choice of PRF and any choices of n, q, χ, χ̂ and any polynomial m, such
that LWEn,q,χ and LWEn,q,χ̂ assumptions hold and χprf smudges out error of

size B̂+B ·mO(t), where t is the depth of the circuit gi,CRSi,A (which is dominated
by the depth of the PRF).

Observations. We begin with two simple observations about the conjecture:

– The distribution DIST(β) satisfies the following consistency check for both
β = 0 and β = 1, namely

Evalq(gi,Aŝi+êi,A,C) ≈ Asi

This means that we cannot rely on homomorphic evaluation to distinguish
between the two distributions. In addition, note that the distinguisher can
compute

ei := Evalq(gi,Aŝi+êi,A,C)−Asi = eeval
i + eprf

i + β · êi
– If we omit revali from si, then indistinguishability follows from standard as-

sumptions. Concretely, under the LWE assumption and security of PRF, we
have:

({Aŝi + êi}i∈[Q],A,C, {sprfi , e
prf
i }i∈[Q])

≈c ({Aŝi + êi}i∈[Q],A,C, {sprfi + ŝi, e
prf
i + ê}i∈[Q])

By privacy of Com, we can replace C with a commitment to 0, and then
security follows from PRF security plus noise smudging. In particular eprf

i

smudges out êi.

That is, the non-standard/heuristic nature of Conjecture 1 arises from (1) the

interaction and potential correlations between revali and sprfi (and between eeval
i

and eprf
i ), and (2) the fact that giving out C = Com(A, (k, β)) introduces cir-

cularity between the PRF key and the commitment randomness – commitment
security is needed to ensure PRF security by making sure that the PRF key is
hidden by the commitment, while at the same time the PRF securty is needed to
ensure commitment security by making sure that the values sprfi , e

prf
i mask any

information about the commitment randomness contained in revali , eeval
i . We de-

fer further discussion on the conjecture, its plausibility, and analysis of zeroizing
attacks to the full version.



Oblivious LWE sampling from the new conjecture. We now that the
conjecture implies the (sub-exponential security) of our oblivious LWE sampler
in Definition 1.

Lemma 3. Under the homomorphic pseudorandom LWE samples (HPLS) con-
jecture (Conjecture 1) (with sub-exponenital security), the oblivious sampler con-
struction is (sub-exponentially) secure.

We defer the proof to the full version.

7 Q-SIM Functional Encodings
from Oblivious Sampling

We construct a Q-SIM functional encoding scheme (crsGen,Enc,Open,Dec) for
bounded-depth circuits F`,m,t from LWE and an oblivious LWE sampler (OLWE.crsGen, Init,Sample).

Construction 5

– crsGen(1λ, 1Q,F`,m,t). Output OLWE.crsGen(1λ, 1Q).
– Enc(CRS,x): Sample

(A, td)← TrapGen(1n, 1m, q), pub← Init(CRS,A),R← Zn×`m log q
q ,E← χm×`m log q

Compute C := pFHC.Com(A,x; R,E) and output (pub,A,C).
– Open(f i,x): Compute

(rfi , efi) := pFHC.Evalopen(f
i,A,x,R,E), bi := Sample(CRS, pub, i), si := LWESolvetd(bi)

and output di := rfi + si ∈ Znq .

– Dec(f i, (pub,A,C),di): Compute

cfi := pFHC.Eval(f,C), bi := Sample(CRS, pub, i)

and output yi := roundq/2(cfi + bi −Adi) ∈ {0, 1}m.

Theorem 6. Under the LWE assumption and the existence of a (n,m, q, χ,B)
oblivious LWE sampler, the construction above is a Q-SIM functional encoding.

We defer the proof to the full version.

8 IO from Functional Encodings

See the full version for how to construct XiO from functional encodings. We then
rely on the work of [LPST16a], which shows that (sub-exponentially secure) XiO
+ LWE implies iO. Below, we summarize the main results.



Theorem 7. The existence of (sub-exponenitally secure) functional encoding
implies (sub-exponenitally secure) XiO. In particular, sub-exponentially secure
functional encodings and sub-exponential security of LWE imply the existence of
iO.

Corollary 1. Assuming that there exists a sub-exponentially secure oblivious
LWE sampler and that the sub-exponentially secure LWE assumption holds, there
exists iO.

Corollary 2. Assuming the sub-exponential security of Conjecture 1 and the
sub-exponential security of LWE, there exists iO.

Acknowledgments. We thank Yilei Chen and Vinod Vaikuntanathan for in-
sightful discussions on cryptanalysis and bootstrapping.
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