
Large Scale, Actively Secure Computation from
LPN and Free-XOR Garbled Circuits

Aner Ben-Efraim2, Kelong Cong1 ID , Eran Omri2 ID , Emmanuela Orsini1 ID ,

Nigel P. Smart1,3 ID , and Eduardo Soria-Vazquez4 ID

1 imec-COSIC, KU Leuven, Leuven, Belgium.
2 Dept. Computer Science, Ariel Univeristy, Israel.

3 Dept. Computer Science, University of Bristol, Bristol, UK.
4 Dept. Computer Science, Aarhus University, Aarhus, Denmark.
anermosh@post.bgu.ac.il, kelong.cong@esat.kuleuven.be,

omrier@gmail.com, emmanuela.orsini@kuleuven.be, nigel.smart@kuleuven.be,

eduardo@cs.au.dk

Abstract. We present a secure multiparty computation (MPC) protocol
based on garbled circuits which is both actively secure and supports
the free-XOR technique, and which has communication complexity O(n)
per party. This improves on a protocol of Ben-Efraim, Lindell and Omri
which only achieved passive security, without support for free-XOR. Our
construction is based on a new variant of LPN-based encryption, but
has the drawback of requiring a rather expensive garbling phase. To
address this issue we present a second protocol that assumes at least n/c
of the parties are honest (for an arbitrary fixed value c). This second
protocol allows for a significantly lighter preprocessing, at the cost of a
small sacrifice in online efficiency. We demonstrate the practicality of our
evaluation phase with an implementation.

1 Introduction

The last decade has seen an enormous amount of progress in the practicality of
actively secure multiparty computation (MPC), spanning many new designs and
implementations of protocols based on both garbled circuits and secret sharing.
Much of the developments have been in the dishonest majority case, where more
than half of the parties can arbitrarily deviate from the protocol, trying to
compromise privacy and correctness of computation. Despite this, there is still
some gap between the complexities one can achieve in theory, and those which
can be met by practical protocols in the real world.

Almost all of the most efficient protocols in the dishonest majority setting are
designed in the so-called preprocessing model, in which parties first produce some
input-independent correlated randomness which can be later used to evaluate the
function. In secret-sharing-based protocols, the main goal of the preprocessing
(or offline) phase is to generate secret-shared random multiplication triples,
which are consumed during the online computation to evaluate multiplication

1

https://orcid.org/0000-0002-2636-4406
https://orcid.org/0000-0001-8928-0587
https://orcid.org/0000-0002-1917-1833
https://orcid.org/0000-0003-3567-3304
https://orcid.org/0000-0002-4882-0230

gates. In garbled-circuit-based protocols, the preprocessing generates a one-time
garbled circuit which will be later evaluated on private inputs.

Recent protocols in both of the above paradigms have incredibly fast exe-
cution times in their online phases when the number of parties n is relatively
small (say less than 10), see for example SPDZ-like protocols [15, 28, 25, 26] and
SPDZ2k [13, 36], for the case of linear secret-sharing based MPC, and BMR-
based protocols [22, 39, 40]. However, when we increase the number of parties
this practicality drops off.

Secret-sharing based protocols [19, 37, 7, 14, 15], which work for both binary
and arithmetic circuits, require a small amount of communication between (es-
sentially) all parties for each layer of multiplication gates in the circuit, and hence
their round complexity is linear in the depth of the circuit. This means that these
protocols require very low bandwidth, and can be very efficient in a LAN (Local-
Area-Networks) setting, but the large amount of rounds of communication and
high latency make them less suited for the WAN (Wide-Area-Networks) setting,
where the parties are usually geographically far apart from each other. If we
consider the complexity of the online evaluation, secret-sharing based protocols
have O(n) complexity per gate per party5.

Garbled circuit protocols, introduced by Yao [41] in the two-party setting
and later generalized to the multiparty case by Beaver, Micali and Rogaway
(BMR) [3], mainly work over binary circuits. In these protocols an “encrypted”
version of the circuit is constructed in such a way that its evaluation does not
require any communication beyond parties providing their “garbled” inputs.
These protocols run in a constant number of rounds and are often slower than
secret-sharing based protocols in a LAN setting due to their higher bandwidth
requirements. Nevertheless, they are usually much faster in the WAN setting.
For practical multiparty garbled-circuit protocols each evaluating party has to
perform O(n2) operations. Thus the scalability of the online phase of secure
multiparty computation protocols in a WAN setting, as the number of parties
increases, is still an issue.

Theoretically, this is not a problem for multi-party garbled circuits. To achieve
a protocol which has complexity O(n) per party, one can take the standard two-
party protocol by Yao [41] and then compute the garbling function via an n-party
actively secure MPC system. The resulting garbled circuit will not depend on the
number of parties, but the garbling itself will be highly inefficient as the underly-
ing pseudo-random functions (PRFs) used in Yao’s construction will need to be
evaluated within MPC. Thus, while theoretically interesting, such an approach
is unlikely to ever be practical.

The O(n2) complexity problem for practical BMR-based protocols led Ben-
Efraim, Lindell and Omri [6] to present a passively secure BMR-based protocol
whose evaluation is independent of the number of parties and such that the

5 The complexity can be reduced to O(1) for all but one of the parties in SPDZ-like
protocols by ‘opening’ being performed in a king-followers fashion: Followers send
their shares to the king, who then replies to all followers with the reconstructed value
(hence O(n) complexity for the king). For more details, see e.g. [15].

2

garbling phase avoids to evaluate PRFs using generic MPC. This was done by
utilizing a specific key-homomorphic PRF, for which two instantiations were
given in the paper, one based on DDH in prime order groups and one based
on Learning-with-Errors. The work of Ben-Efraim et al. provides a large-scale
MPC protocol which is almost practical : their evaluation phase is concretely
faster than previous works for large n, but more research is needed into the
offline phase in order to make it practical. The efficiency of online evaluation
is demonstrated through an implementation which shows that, roughly, their
protocol is more efficient than its O(n2) counterpart [5] as soon as 100 parties
take part in the MPC. However, this large-scale protocol suffers from two major
drawbacks: firstly, it only deals with the case of passive adversaries, and secondly
their techniques are not compatible with the important free-XOR optimization
introduced by Kolesnikov and Schneider [27].

Another relevant large-scale, garbled-circuit based protocol is that proposed
by Hazay, Orsini, Scholl and Soria-Vazquez [21]. Their result, which only deals
with passive adversaries, shortens symmetric keys (as the ones for PRFs in the
garbled circuit) in order to speed up computation and reduce communication.
Security is then retained by relying on the length of the concatenation of all
honest parties’ keys, rather than on each of them individually. Such a protocol
allows to evaluate each garble gate with O(n2`/κ) operations, compared to O(n2)
of standard approaches, where κ > ` is the security parameter and ` is the key
length. In subsequent work [20], the same authors extended their technique to
the active setting, but only for secret-sharing based protocols, leaving actively
secure garbled circuits with short keys as an open problem.

1.1 Our Contribution

In this paper we introduce a new n-party garbling technique and present two
almost-practical, large-scale BMR-style protocols. Both the size and evaluation
complexity of the resulting garbled circuits is O(1), hence resulting in an online
phase which has a complexity of O(n) per party6. Our protocols are actively
secure and employ the free-XOR optimization by Kolesnikov and Schneider [27].

Obtaining Free-XOR. Our construction takes inspiration from the work of Ben-
Efraim et al. [6], but instead of basing the construction on key-homomorphic
PRFs, we use an encryption scheme which is both key-homomorphic and message-
homomorphic. In order to enable the free-XOR technique, we further need to
restrict ourselves to message and key spaces of characteristic two. This rules
out standard Ring-Learning-with-Errors (RLWE) based encryption schemes, for
which the secret key and message spaces are modulo distinct primes. Instead, we
introduce a new homomorphic encryption scheme based on the Learning-Parity-
with-Noise (LPN) problem. We note that LPN-based encryption was also used
by Appelbaum [1] in order to replace the random oracle with standard cryp-
tographic assumptions in two-party, free-XOR garbled circuits. We would like

6 This increase in complexity is due to parties still needing to reconstruct the circuit
and send their masked inputs around.

3

to stress that the motivation (and also the resulting LPN construction) for our
work is different, as we aim to build practical protocols for a large number of
parties rather than a purely theoretical result related to cryptographic assump-
tions. A further overview of our new LPN garbling scheme can be found in the
next subsection, and all its details appear in Section 3.

Obtaining Active Security. Our first protocol achieves active security by em-
ploying an actively-secure garbling phase which guarantees that the resulting
secret-shared garbled circuit is correct. While in standard BMR all of the gar-
bling, except the PRFs evaluations, is computed within an MPC protocol, we
instead entirely generate the garbled gates in a distributed manner using an
actively secure full-threshold MPC system. We will refer to this first protocol as
“authenticated garbling”. This terminology resembles the authenticated-garbling
technique by Wang, Ranellucci and Katz [38, 39] (referred as WRK in the rest
of the paper) and more recently by Yang, Wang and Zhang [40]. However, while
their preprocessing phase is explicitly based on TinyOT-like protocols [33, 17],
which rely on Message Authentication Codes (MACs), our preprocessing works
with any actively secure protocols.

In our construction each garbled AND gate consists of 4 rather than 4n
ciphertexts as in previous BMR-style protocols. In the online phase, parties only
need to broadcast shares of their inputs and perform a cheap, local computation
that requires a single decryption per AND gate. However, this very efficient
online evaluation comes at the price of a rather expensive preprocessing. Thus,
whilst forming a potential bridge from what is theoretically possible to what is
practically realisable, this protocol is only ‘almost’-practical.

Bridging the Gap. To further bridge the gap between theory and practice, we
also present a second construction with a more efficient preprocessing phase.
We achieve this by relaxing some of the requirements in our garbling func-
tionality, which becomes more similar to that described by Hazay, Scholl and
Soria-Vazquez (HSS) [22]. In particular, we allow the shares of the garbled cir-
cuit to be unauthenticated : rather than producing LPN ciphertexts within an
actively secure MPC engine, each party will locally produce additive shares of
these ciphertexts. This effectively allows the adversary to introduce arbitrarily
additive errors to corrupted parties’ shares. To maintain active security, we need
to introduce an extra check in the online evaluation, as we explain in Technical
Overview (Section 1.2).

In order to achieve a better performance, this new construction assumes
that there are at least n/c honest parties, for an arbitrarily chosen constant
1 < c ≤ n. Since our goal is constructing efficient protocols for a large number
of parties (typically more than one hundred), it is very reasonable to assume, in
this setting, more than a single honest party.

Experimental Validation. We validate the claim that our protocol is almost-
practical by demonstrating that the evaluation phase is indeed more efficient
than other truly practical approaches when the number of parties is large. Thus,

4

to turn our almost-practical protocol into a fully practical one, future works only
need to concentrate on the garbling phase.

The concrete efficiency of our schemes crucially depends on the LPN param-
eters and the error correcting codes used to instantiate the two-key LPN based
encryption scheme. We set the security of the scheme according to the work of
Esser et al. [16] and instantiate the cryptosystem with concatenated codes (see
the full version). We stress that our implementation should be taken more as
a proof of feasibility than an optimized implementation of the proposed con-
structions. Moreover, we believe that using more efficient codes, like LDPC or
QC-LDPC, the concrete efficiency of our protocols would improve significantly.

More concretely, in the full-threshold authenticated garbling case, experi-
ments show that our evaluation phase will be more efficient than state of the art
protocols such as HSS or WRK when the number of parties exceeds about 100.
Notice HSS, WRK and the recent protocol of Yang et al. [40] have similar online
efficiency, therefore, to concretely validate our claim, we compare the results of
our experiments in the full-threshold case with the running times reported in
[39]. Setting the statistical security parameter to 40, as in [39], we report a run-
ning time for AES-128 of 1.72 sec (c.f. Table 2 in Section 6), compared to 1.87
sec in a LAN setting and 2.3 sec in a WAN setting reported in WRK [39] for
128 parties. These numbers from WRK will grow quadratically as the number
of parties increases, whereas ours will remain constant.

In the scalable protocol by Ben-Efraim et al. [6] –only passively secure and
without free-XOR– the authors also estimate that the cross over point from the
O(n2) to the O(n) protocols comes when n is about 100. Thus we obtain roughly
the same cross over point in the case of active security with free-XOR as Ben-
Efraim et al. do for passive security with no free-XOR. When comparing our
protocol to [6] we see that, assuming a circuit consisting solely of AND gates,
our protocol is roughly six times slower than that of [6]. Whilst this penalty
for obtaining active security can be considered too much, one needs to consider
the effect over typical circuits, as our protocols evaluate XOR gates for free.
Thus, in practice, our performance penalty to achieve active security compared
to Ben-Efraim et al. is closer to just a 15% of slow down. The details of our
implementation can be found in Section 6. In the full version we also provide an
estimation of the overall complexity of our protocols.

1.2 Technical Overview

We now proceed to discuss our results and techniques in greater detail. They
mainly revolve around two key ideas: how to use LPN encryption to allow n-
party garbling with free-XOR, and how to achieve active security. We give an
overview of these techniques below, more details can be found in the rest of the
paper.

Since our constructions assume a circuit-based representation, we fix some
conventions and notation we adopt across the paper. We consider binary circuits
Cf consisting of |C∧| AND gates, |C⊕| XOR gates, each of which has two input
wires, u and v, and one output wire w. We use g to indicate the gate index. Let

5

W be the set of all wires, Win and Wout be the set of input and output wires,
respectively, we assume |Win| = nin and |Wout| = nout. We denote by Wini the set
of input wires associated to party Pi, and likewise for output wires Wouti .

Background on BMR. Most of the work in multi-party garbled circuits is based
on the BMR protocol by Beaver, Micali and Rogaway [3], which has been recently
improved by a sequence of works [5, 22, 29, 30, 39] both in the case of passive
and active security. In this paper we follow the approach described in [5, 22].

These protocols consist of two phases: an input-independent preprocessing
phase where the garbled circuit is generated, and an online phase where parties
locally evaluate the circuit obtaining the output of the computation. While in
Yao’s two-party protocol only one party, the garbler, creates the garbled circuit,
in BMR all parties generate it in a distributed way. This means that, instead of
having a single key associated to each wire of the circuit, in multiparty garbling
we have n keys for each wire, one for each party.

At the beginning of the preprocessing step, each party Pi chooses a global
correlation ∆i ∈ Fk2 to support free-XOR, and, for each wire w that is not the
output wire of a XOR gate, samples a random key kiw,0, associated to the value

0, and sets kiw,1 = kiw,0⊕∆i for the value 1. Moreover, each Pi samples a random

wire mask λiw ∈ F2, for all the input wires w ∈ Wini and output wires of AND
gates. Therefore the actual wire mask for such wires is given by λw = ⊕i∈[n]λiw.

In this way, XOR gates do not need any additional preprocessed material, as
parties simply set kiw,0 = kiu,0⊕kiv,0, kiw,1 = kiw,0⊕∆i and λw = λu⊕λv (where
u and v are the input wires and w is the output wire).

Let g be denote an AND gate with input wires u, v and output wire w. Given
wire masks λu, λv, λw and wire keys {kiu,α,kiv,β ,kiw,0}(α,β)∈{0,1}2,i∈[n], parties
generate a garbled gate corresponding to the AND truth table. It consists of
four rows, indexed by the values (α, β) ∈ {0, 1}2 on the input wires. Every row
contains n ciphertexts, each of which is encrypted under 2n keys as follows:

g̃jα,β =

(
n⊕
i=1

Fkiu,α,k
i
v,β

(g‖j)

)
⊕ kjw,0 ⊕∆j ·

(
(λu ⊕ α) · (λv ⊕ β)⊕ λw

)
, (1)

where j ∈ [n] represents the j-th ciphertext on the (α, β)-row and F is a double-
key PRF. Note that, as free-XOR asks for every pair of keys (kjw,0,k

j
w,1) to

be correlated according to ∆j , we further need F to be a circular 2-correlation
robust PRF [22].

In the online phase, these encrypted truth tables, along with the input and
output wire masks, are revealed to all parties so to allow local evaluation of
the circuit. More precisely, in the input phase each party Pi broadcasts values
εw = ρw⊕λw, for each w ∈Wini , where ρw is the actual input and λw the corre-
sponding wire mask provided to Pi with other preprocessed material. In response,
every party Pj broadcasts their key kiw,εw . Upon collecting all the keys and
masked inputs, parties can start evaluating the circuit. At this point, this does
not require any interaction. Given complete sets of input keys (k1

u,εu , . . . ,k
n
u,εu)

6

and (k1
v,εv , . . . ,k

n
v,εv), it is possible to decrypt a single row of AND garbled gates

obtaining (k1
w,εw , . . . ,k

n
w,εw). Note that during evaluation each party decrypts

the entire row, requiring n2 PRF evaluations. Once these output keys are ob-
tained, every party Pi can check that the i-th key corresponds to one of its keys
kiw,0,k

i
w,1 generated in the garbling phase. This check allows: 1) To determine

the masked output value, i.e. if kiw,εw = kiw,0, Pi sets εw = 0, and εw = 1
otherwise; 2) To ensure active security for the online evaluation.

Notice that, while [29] uses the actively secure SPDZ protocol [15] to create
an authenticated secret-sharing of Equation (1), Hazay et al. [22] show that, in
order to obtain an actively secure BMR-style protocol, it is enough to generate
an unauthenticated additive sharing of the garbled circuit, provided that the
values ∆j ·

(
(λu ⊕ α) · (λv ⊕ β)⊕ λw

)
in Equation (1) are correctly generated.

BMR Garbling with LPN Encryption. We replace the circular 2-correlation ro-
bust PRF needed to allow the free-XOR technique in garbled circuit based pro-
tocols with a two-key symmetric encryption scheme based on LPN. By applying
the key and message homomorphism, each garbled gate contains only a single
ciphertext per row instead of n. However to achieve efficiency we need to mod-
ify the LPN encryption used in [1], as we have n rather than two parties, and
prove that our system still satisfies the Linear Related-Key and Key-Dependent-
Message (LIN-RK-KDM) security needed to support the free-XOR optimization.

On the other hand, we cannnot naively modify the standard single-key LPN-
based encryption scheme because of the free-XOR technique. Due to the key-
homomorphism of LPN, there would be only two different keys –either ku,0+kv,0
or ku,0 + kv,0 +∆– encrypting each four-ciphertext gate entries in every garbled
table (more details are in Section 3), essentially allowing the adversary to always
decrypt half of them. We define a new scheme that still takes as input two keys
but applies a permutation σ to the second one. We prove that the newly defined
scheme satisfies a related notion of LIN-RK-KDM security, which we denote by
LIN-RK-KDMσ, while supporting the use of free-XOR in our garbled circuits.

Using our new scheme, we can replace the 4 · n ciphertexts given in Equa-
tion (1) with 4 ciphertexts of the form

g̃α,β = Enc
(
(kw,εw,α,β , εw,α,β), (g‖α‖β), (ku,α,kv,β)

)
, (α, β) ∈ {0, 1}2, (2)

where the values εw,α,β = (λu ⊕ α) · (λv ⊕ β)⊕ λw, kw,εw,α,β = kw,0 ⊕∆ · εw,α,β
correpond to the output public-value and output key, respectively.

Obtaining Active Security. We use the garbling technique just described to de-
sign our actively secure BMR protocols with linear online complexity in the
number of parties. At a very high level the approach we follow to obtain active
security is the same approach used in HSS, but with some significant differences.

The first one is clearly in the evaluation phase. In HSS, upon receiving
all the input-wire keys and reconstructing the garbled circuit, parties evalu-
ate the circuit locally by computing, for every AND gate, n2 PRF evaluations.
By subtracting those PRF outputs (see Equation 1), they obtain the n keys

7

(k1
w,εw , . . . ,k

n
w,εw) corresponding to the AND gate’s output, which can be used

to evaluate subsequent gates. Since, during this operation, each party Pi should
recover one of its two possible output keys, (kiw,0,k

i
w,1), checking whether this

condition verifies is enough to guarantee active security for the online evaluation.
In our case this is no longer true, because upon decryption any party obtains
a single unknown output key, kw,εw . For security reasons, such a key needs to
remain unknown to all parties up to this step, therefore, if we just plug-in our
new garbling into HSS, it is no longer possible to check that the keys obtained by
evaluating AND gates are correct. We describe two different ways to overcome
this issue.

The first method, described in Section 4 and corresponding to the fully au-
thenticated LPN-based garbling, proposes to fully authenticate the entire garbled
circuit, and not just the wire mask. This is achieved using any MPC protocol with
active security and dishonest majority. In this way the garbled values opened
during the circuit evaluation are guaranteed to be correct, leading to a very
efficient online phase. However, this comes at the price of a rather expensive
preprocessing.

In our second protocol, described in Section 5, we improve the practicality
of the preprocessing phase while maintaining almost the same online efficiency.
In order to do so, we increase the number of honest parties to n/c, with c ∈ R
and 1 < c ≤ n. The proposed protocol works for any 1 < c ≤ n: when c ≥ 2
we are in the dishonest majority setting and when c = n we go back to the full
threshold case.

By setting the LPN parameters in the right way, we can design a protocol
where each party locally generates “weak” (in term of security) ciphertexts.
Since an adversary will be able to see only the sum of these ciphertexts, we
show that this is enough to obtain a secure protocol. The balance then has to
be drawn to ensure that enough ‘noise’ is added by each party in creating their
own LPN-based ciphertexts in order to ensure privacy, but not too much to
still guarantee correctness. The garbling we use in this case is unauthenticated,
like in HSS, with only few actively secure MPC operations. Since, as explained
before, we cannot rely on the online check used in HSS, we need to introduce a
new additional test. In a little more detail, for each output gate g, with input
wire u and output wire w, we construct a new garbled gate as

g̃α = Enc
(
(ξ1w,α‖ . . . ‖ξnw,α), (g‖α‖0), (ku,α,0)

)
, α ∈ {0, 1},

where each value ξiw,α is generated by party Pi and then secret-shared among
all parties. In the online phase each Pi decrypts g̃εu , where εu is the public value
of g’s input wire, and checks if the i-entry in the obtained vector correspond to
one of the two values ξiw,0, ξ

i
w,1. This extra check per output gate is sufficient to

guarantee active security of our second protocol.

2 Preliminaries

We denote by sec the security parameter. We say that a function µ : N → N
is negligible if, for every positive polynomial p(·) and all sufficiently large sec, it

8

holds that µ(sec) < 1
p(sec) . We assume that all involved algorithms are proba-

bilistic polynomial time Turing machines. We let x ← X denote the uniformly
random assignment to the variable x from the set X, assuming a uniform dis-
tribution over X. We also write x ← y as shorthand for x ← {y}. If D is a
probability distribution over a set X, then we let x← D denote sampling from
X with respect to the distribution D. If A is a (probabilistic) algorithm then
we denote by a ← A the assignment of the output of A where the probability
distribution is over the random tape of A. With Berτ we denote the Bernoulli
distribution of parameter τ , i.e. Pr[x = 1 : x← Berτ] = τ .

Security Model. The protocols presented in this work are proved secure in the
Universal Composability framework of Canetti [12]. We consider security against
a static, malicious adversary who corrupts a subset I ⊂ P = {P1, . . . , Pn} of
parties at the beginning of the protocol.

We assume all parties are connected via authenticated channels as well as
secure point-to-point channels and a broadcast channel. The default method of
communication is through authenticated channels, unless otherwise specified.

Randomized Functions: To describe our garbling technique we follow the
same approach used in [1] and use the terminology of randomized encodings for
garbled circuits [23, 24].

A randomized function f : X×R −→ Y is a two argument function such that,
for every input x ∈ X, we can think of f(x) as a random variable which samples
r ∈ R and then applies f(x; r). When an algorithm A gets oracle access to a
randomized function f we assume A only has control on the inputs x. We denote
the resulting randomized function by Af . We say that two randomized functions
are equivalent, written f ≡ g, if for every input, their output is identically
distributed.

A set of randomized functions {fs}s∈{0,1}∗ , indexed by a key s, is called a
collection of randomized functions if fs is a randomized function for every s. In
the following we drop the dependency on s.

We say that two collections {fs} and {gs} of randomized functions are com-

putationally indistinguishable, written {fs}
c≡ {gs}, if the probability that an

efficient adversary can distinguish between them, given oracle access to a func-
tion in {fs} and a function in {gs}, is negligible.

Let {fs}, {gs}, {hs} be collections of randomized functions, we have the fol-
lowing standard facts [32]:

– if {fs}
c≡ {gs} and A is an efficient function then {Afs} c≡ {Ags};

– if {fs}
c≡ {gs} and {gs}

c≡ {hs} then {fs}
c≡ {hs}.

2.1 LIN-RK-KDM Security

We briefly recall the notion of (Linear) Related-Key and Key-Dependent-Message
security [1, 2, 4, 9, 11] that we need in our constructions: Given a symmetric en-
cryption scheme E = (Enc,Dec) over the plaintext spaceM = F∗2 and key space

9

K = Fsec
2 , we define two families of key-derivation and key-dependent message

functions:

ΦRKA = {φ : K → K} and ΨKDM = {ψ : K →M},

such that Related-Key and Key-Dependent-Message (RK-KDM) security can be
defined through two oracles Reals and Fakes, indexed by a key s ∈ K, as follows:
for each query (φ, ψ) ∈ ΦRKA×ΨKDM, Reals returns a sample from the distribution
Enc(ψ(s);φ(s)) and Fakes a sample from the distribution Enc(0|ψ(s)|;φ(s)).

Definition 1 (RK-KDM secure encryption, [1]). We say that a symmet-
ric encryption scheme E = (Enc,Dec) is semantically-secure under RK-KDM

attacks with respect to ΦRKA and ΨKDM if Reals
c≡ Fakes, where s← K.

If both φ and ψ are linear functions over F2, we refer to this notion as Linear
Key-Related and Key-Dependent-Message (LIN-RK-KDM) security. In this case
we can rewrite the oracles in a compact way:

Reals : (δ,m, b) 7−→ Enc(m⊕ b · s, δ ⊕ s)

Fakes : (δ,m, b) 7−→ Enc(0|m|, δ ⊕ s),

where m ∈ M is a message, s ∈ K a key, b ∈ F2 a bit and δ ∈ Fsec
2 a key-shift.

Notice in computing m⊕b ·s we multiply s by b bitwise, and then pad the result
with |m| − k zeros to left before xor-ing with m.

2.2 Error Correcting Codes

An [`,m, d] binary linear code L is a subspace of dimension m of F`2, where `
is the length of the code, m its dimension and d its distance, i.e. the minimum
(Hamming) distance between any distinct codewords in L. We denote by G a
generator matrix of L, that is any matrix in Fm×`

2 whose rows form a basis for
L. If G has the form [Im|P], where Im is the m×m identity matrix, G is said to

be in standard form. A parity-check matrix for L is a matrix in F(`−m)×`
2 such

that GHT = 0. A linear code can be uniquely specified either by its generator
matrix or its parity-check matrix.

Given an [`,m, d] binary linear code L, we can define a pair of algorithms
(Encode,Decode), where Encode : Fm

2 → F`2 (resp. Decode : F`2 → Fm
2) is an en-

coding (resp. decoding) algorithm, such that:

1. Linearity: For every pair of messages x1,x2 ∈ Fm
2 we have Encode(x1) ⊕

Encode(x2) = Encode(x1 ⊕ x2).
2. b(d − 1)/2c-Correction: The decoding algorithm can correct any error of

Hamming weight up to b(d− 1)/2c, i.e., for every message x ∈ Fm
2 and every

error vector e ∈ F`2 with at most b(d − 1)/2c non-zero elements, it always
holds that Decode(Encode(x)⊕ e) = Decode(Encode(x)) = x.

We will also need the following more general property.

10

Definition 2 ((`, τ)-Correction:). Let Berτ be the Bernoulli distribution with
parameter τ . Given an [`,m, d] binary linear code L and a pair of efficient encod-
ing and decoding algorithms, (Encode,Decode), we say that L is (`, τ)-correcting
if, for any message x ∈ Fm

2 , the decoding algorithm Decode will, with overwhelm-
ing probability, satisfy Decode(Encode(x)⊕ e) = Decode(Encode(x)) = x, where
e ← Ber`τ is a noise vector, and Ber`τ is the distribution over F`2 obtained by
drawing each entry of the vector e independently according to Berτ .

2.3 LPN-based Encryption

The Learning Parity with Noise (LPN) problem [18, 10] is a well-studied problem
in learning and coding theory, and has recently found many applications in
cryptography. In this section we introduce the decisional version of the LPN
problem together with some variants of the standard LPN-based encryption
scheme that we need in our garbling construction.

Definition 3 (Decisional LPN). Let `, k ∈ N and τ ∈ (0, 1/2), the DLPN`,k,τ
problem is to distinguish between the distributions given by{

(C, c) : C ← F`×k2 , s← Fk2 , e← Ber`τ , c← C · s ⊕ e
}

and {
(C, c) : C ← F`×k2 , c← F`2

}
.

The decisional and search variants of the LPN problem are polynomially
equivalent, they have been extensively studied and are widely believed to be hard
for any τ . The DLPN assumption has been used to build various cryptographic
primitives and, in particular, symmetric encryption schemes.

Definition 4 (Standard LPN Encryption). Let m, k, ` = poly(sec) be three
integers. Let K = Fk2 be the key space, C = F`×k2 × F`2 the ciphertext space
and M = Fm

2 the message space. Let τ ∈ (0, 1/2) be a parameter defining the
Bernoulli distribution Ber`τ . Finally, let G ∈ F`×m2 be a generator matrix for
an [`,m, d] binary linear code L which is (`, τ)-correcting. The (standard) LPN
symmetric encryption scheme consists of the three following algorithms:

– KeyGen1τ (1sec): Given as input the security parameter sec, sample uniformly
at random a secret key, s← K.

– Enc1τ (m, s): Given a message m ∈ M and the secret key s ∈ K, sample a
matrix C ← F`×k2 , noise e← Ber`τ and output

c← C · s ⊕ e ⊕ G ·m.

– Dec1τ ((C, c), s): Given a ciphertext (C, c) and the secret key s, compute c ⊕ C·
s and apply a decoding algorithm to recover m.

In [1], Appelbaum proved that (an extension of) the above encryption scheme
is LIN-RK-KDM secure.

11

Theorem 1. Assuming DLPN`,k,τ is hard, the encryption scheme (KeyGen1τ ,
Enc1τ , Dec1τ) is LIN-RK-KDM secure according to the above definition of LIN-
RK-KDM security.

Assuming the DLPN-problem is hard, it is easy to show that also the follow-
ing nonce-based symmetric encryption scheme is IND-CPA, where it is required
that a specific nonce is used only once for each key s.

An eXtendable Output Function (XOF). A XOF is a way to model a random
oracle that can produce outputs of any length. Implementations of such functions
can be created from SHA-3 in a standardized manner [34, 8].

Definition 5 (XOF-Based LPN Encryption). Let m, k, ` = poly(sec) be
three integers and K, C,M as in Definition 4. Let τ ∈ (0, 1/2) and G ∈ F`×m2 be
chosen in the same way as there too. Let a XOF H : {0, 1}∗ −→ F`×k2 be modelled
as a random oracle. The XOF-Based LPN symmetric encryption scheme consists
of the three following algorithms:

– KeyGenXOF
τ (1sec): Sample uniformly at random a secret key, s← K.

– EncXOF
τ ((m, nonce), s): Given a message m ∈ M, a key s ∈ K and a string

nonce, sample noise e← Ber`τ and compute

C ← H(nonce) and c← C · s ⊕ e ⊕ G ·m.

– DecXOF
τ ((C, c), s): Given a ciphertext (C, c), compute c ⊕ C · s and then

apply error correction to recover m

The above LPN encryption scheme is trivially additively homomorphic in the
message space, and is also key homomorphic if two encryptions with the same
nonce value are added together. To reduce bandwidth and storage requirements,
it is possible to define the ciphertext to be (nonce, c) instead of (C, c).

Looking ahead, we will choose the parameters for our LPN-based encryption
scheme based on recent analysis on the security of the LPN assumption by Esser
et al. [16], which implies that the parameter k in the scheme should be selected
to be

k ≥ sec

log2

(
1

1−τ

) , (3)

where sec is the (symmetric-key equivalent) security parameter and τ defines the
noise rate. In what follows one should think of sec as being equal to 128 or 256.

2.4 Functionalities for Secret-shared MPC

Our protocols make use of the functionality FMPC for MPC over binary cir-
cuits described in Figure 1. The functionality is independent of how the values
are stored and represented. In particular, we will need two different implemen-
tations of FMPC, one achieving only passive security and the second achieving
active security. Note that any generic MPC protocol can be used to practically

12

Functionality Fflag
MPC

The functionality runs with parties P1, . . . , Pn and an adversary A.
It is parametrized by flag ∈ {Auth,UnAuth}. Given a set ID of valid identifiers, all
values are stored in the form (varid , x), where varid ∈ ID .

Initialize: On input (Init) from all parties. The adversary is assumed to have
corrupted a subset I of the parties.

Input: On input (Input, Pi, varid , x) from Pi, with x ∈ F2, and (Input, Pi, varid , ?)
from all other parties, with varid a fresh identifier.

Add: On command (Add, varid1, varid2, varid3) from all parties:
1. The functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x⊕y).

Multiply: On input (Multiply, varid1, varid2, varid3) from all parties:
1. The functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x ·y).

Output/Open: On input (Output/Open, varid , i) from all honest parties the func-
tionality retrieves (varid , y), sends y to the adversary, and waits for a reply. If
A answers with Deliver, then do one of the following:
– If flag = Auth: output y to either all parties (if i = 0) or Pi (if i 6= 0).
– If flag = UnAuth: A further specifies an additive error e ∈ F2. The func-

tionality outputs y + e to either all parties (if i = 0) or Pi (if i 6= 0).
In both cases, if A does not answer with Deliver, output abort.

Figure 1. The ideal functionality for MPC over F2

instantiate FMPC in our constructions. However, since TinyOT-like protocols,
that rely on message authentication codes (MACs) to achieve active security,
are currently the most efficient protocols on binary circuits and are used in pre-
vious works like HSS and WRK, we abuse notation and use FAuth

MPC and FUnAuth
MPC

to distinguish between an active and a passive implementation of FMPC. Also
notice that each value in FMPC is uniquely identified by an identifier varid ∈ ID ,
where ID is a set of identifiers.

After an Initialize step, the functionality allows the parties to provide their
inputs, which can be added and multiplied using Add and Multiply, respec-
tively. The functionality also provides an Output/Open command that allows
values to be revealed either publicly or privately to a single party. Note we
maintain the double notation Output/Open only to distinguish between out-
put values and intermediate values that are opened during the execution of the
protocol.

Unauthenticated values: We denote 〈x〉 an additive sharing of x over F2 gener-
ated by FUnAuth

MPC , where x = ⊕i∈[n]xi with party Pi holding the share xi ∈ F2.
Looking ahead, using such a sharing we can perform arbitrary linear operations,
however, upon opening values, an adversary is able to introduce an arbitrary
additive error and reveal incorrect values. For this reason when we use unau-
thenticated values to instantiate our LPN-based protocol, we need to add an
new mechanism to prevent these additive errors introducing a security weakness

13

in the protocol.

Authenticated values: We denote [x] an actively secure additive sharing of x, for
example using a fixed MAC scheme. Addition and multiplication of such ele-
ments will be represented by [x] + [y] and [x] · [y].

To simplify notation we will use the following shorthands for inputing and
outputting values to/from a party/all parties:

[x]← Input(Pi), x← Output([x], Pi), x← Open([x]),

〈x〉 ← Input(Pi), x← Output(〈x〉, Pi), x← Open(〈x〉),
respectively in FAuth

MPC and FUnAuth
MPC . If the type (authenticated/unauthenticated) of

operation is not obvious from the context we will write InputP ,OutputP ,OpenP

for the unauthenticated variant, with no superscript added for the authenticated
variant.

Trivially, from a [x] sharing we can obtain (immediately and with no com-
putation or communication) a 〈x〉 sharing of the same value. We denote this
operation by 〈x〉 ← Convert([x]). Extension of this notation to act on elements
x ∈ Fk2 , for various values of k, will be by using [x] and 〈x〉 in the obvious way.

We can extend the FMPC functionality by a command, which we denote by
[x] ← GenBit() which produces a shared random bit within the MPC engine.
This command can be derived from the base commands by performing:

1. All parties call [xi]← Input(Pi), x
i ∈ F2.

2. Parties compute [x]← ⊕i[xi].

3 Free-XOR Garbling using LPN

We now discuss how to garble a single AND gate using LPN-based encryption
while maintaining the free-XOR invariant. Later on, in Sections 4 and 5, we
will show how this technique can be used in order to build our actively secure
garbled-circuit based MPC protocols.

Our garbling method is similar to the one given in Equation (1), with two
main differences. Firstly and most importantly, we have a single ciphertext per
row, rather than n of them; secondly, we replace the circular 2-correlation robust
PRF F with a nonce-based, two-key symmetric encryption scheme based on
LPN. Thus we obtain the garbling method given in Equation (2).

To achieve this modification one could naively think of just adapting standard
LPN encryption (c.f. Definition 4) to use two keys, where ∆ =

⊕n
i=1∆

i, and,
for t ∈ {u, v, w}, kt,0 =

⊕n
i=1 kit,0 and kt,1 = kt,0 ⊕ ∆. Each garbled row

(εu, εv) ∈ {0, 1}2 could then be set as:

g̃εu,εv = (C, c), C ← F`×k2 , c← C · (ku,εu ⊕ kv,εv)⊕ e⊕G · kw,εw (4)

This naive solution does not result in a secure garbling method. To see this
denote sεu,εv = ku,εu ⊕kv,εv , then due to free-XOR we would have that sεu,εv =

14

ku,0 ⊕ kv,0 ⊕ (εu ⊕ εv) · ∆, and hence s0,0 = s1,1 as well as s1,0 = s0,1. This
would trivially allow corrupted parties to always decrypt half of the entries of
every garbled gate, breaking completely the security of the scheme. A possible
fix to this problem would be to sample two different matrices Cu, Cv ← F`×k2

and compute c← Cu ·ku,εu ⊕ Cv ·kv,εv ⊕ e⊕G ·kw,εw , but this would incur in
increased computational costs due to the sampling of the matrices and the cost
of calculating the matrix-vector products.

In order to avoid these issues in our garbling, while still maintaining security,
we introduce a modification to the previously provided nonce-based version of
LPN encryption. In particular, our scheme will take as input two keys in Fk2 ,
but this time a permutation σ ∈ Sk (where Sk is the set of permutations on k
elements) will be applied to the second one.

Definition 6 (XOF-Based Two-Key LPN Encryption). Let m, k, ` =
poly(sec) be three integers. Let K = Fk2 × Fk2 be the key space, C = F`×k2 × F`2
the ciphertext space and M = Fm

2 the message space. Let τ ∈ (0, 1/2) be a pa-
rameter defining a Bernoulli distribution and σ a permutation in Sk. Finally,
let G ∈ F`×m2 be a generator matrix for an [`,m, d] binary linear code L which
is (`, τ)-correcting (c.f. Definition 2). Let H : {0, 1}∗ −→ F`×k2 be a XOF. A
XOF-based, two-key symmetric LPN encryption scheme EXOF

τ is defined by the
following algorithms:

– KeyGen(1sec): Samples (ku,kv)← F2×k
2 at random.

– Encτ ((m, nonce), (ku,kv)): On input of a message m ∈ M, a pair of keys
(ku,kv) and a string nonce, compute

C ← H(nonce),

c← C · (ku ⊕ σ(kv)) ⊕ e ⊕ G ·m, e← Ber`τ .

– Dec((C, c), (ku,kv)): Compute c ⊕ C · (ku ⊕ σ(kv)) and then apply error
correction to recover m.

Note that this scheme is message homomorphic, and it only requires to store
nonce rather than C. In addition, when the same nonce is used, it is also key
homomorphic.

Returning to our garbling proposal from the beginning of this section, now
the key used to garble entry (εu, εv) of a given gate g is sεu,εv = ku,εu ⊕σ(kv,εv).
By substituting the free-XOR correlation, we see that security now relies on the
secrecy of

sεu,εv = ku,0 ⊕ σ(kv,0) ⊕ εu ·∆ ⊕ εv · σ(∆), (5)

and hence on four possible (distinct) values of sεu,εv . Nevertheless, the security
analysis requires additional care. As it is always the case when using the free-
XOR optimization, we have the problem that we are encrypting key-dependent
messages (where the dependence is the free-XOR correlation ∆), as well as we
are using related keys when encrypting the inactive rows of a garbled gate.

15

Explicitly, given the active row sεu,εv , for (α, β) ∈ {0, 1}2 these inactive rows
are:

sεu⊕α,εv⊕β = sεu,εv ⊕ α ·∆ ⊕ β · σ(∆).

Hence, once the parties learn any sεu,εv by evaluating the garbled circuit, security
for each of the three remaining rows is relying, respectively, on the secret values
∆,σ(∆) and ∆ ⊕ σ(∆). To define an appropriate way of dealing with this RK-
KDM problem, we will first define the following variant of LPN.

Definition 7 (DLPNσ Problem). Let σ ∈ Sk be the set of permutations of
k elements and `, k, τ ∈ N. The DLPNσ`,k,τ problem is to distinguish between the
two distributions given by{

(C, c, σ) : C ← F`×k2 , s← Fk2 , e← Ber`τ , c← C · (s ⊕ σ(s)) ⊕ e
}

and {
(C, c, σ) : C ← F`×k2 , c← F`2

}
,

where Ber`τ is the Bernoulli distribution with parameter τ .

Recalling that any permutationon of a finite set can be uniquely expressed as
the product of disjoint cycles, we now show how the DLPN and DLPNσ problems
are related to each other by the following Lemma, the proof of which is given in
the full version.

Lemma 1. Let σ ∈ Sk be a permutation consisting of exactly k̃ disjoint cycles,
the DLPN`,k−k̃,τ problem reduces to DLPNσ`,k,τ problem.

In our construction, the permutation σ will be chosen to map (δ0, . . . , δk−1) ∈
Fk2 to (δ′0, . . . , δ

′
k−1), where δ′j = δj−1 (mod k). Note that this σ consists of a single

cycle of length k and, hence, the security of DLPNσ is the same as that of DLPN
with keys which are one bit shorter.

We are now just one step away from defining the right RK-KDM notion
for our scheme. A detail that was overlooked in Equation (4) is that the key
space K = Fk2 and the message space M = Fm

2 are different, so we cannot write
G · kw,εw . Furthermore, as in our protocols nobody will know neither kw,0 nor
kw,1 (a problem which does not come up in previous works, because each Pi
has its own pair of keys kiw,0,k

i
w,1), we need the garbled gate to also encrypt

explicitly the external value εw.
We thus define an injection of the space K × F2 into the message space M,

which requires that m ≥ k + 1, via the following linear map:

Ψ :

{
K × F2 −→ M
(k, b) 7−→ A · (k, b)T

for some matrix A ∈ Fm×(k+1)
2 . In order to make the image of Ψ easily recogniz-

able, so that we can efficiently recover its preimage when decrypting a garbled

16

row, we pick the matrix A in the map Ψ such that we obtain:

Ψ : (k, b) 7−→ (0m−k−1‖k‖b) =

0(m−k−1)×(k+1)

Ik‖0k×1
01×k‖1

 · (kT

b

)
.

This choice of matrix A also simplifies somewhat the proof of Theorem 2 below.
We can now finally define the relevant notion of RK-KDM security for our

scheme defined in Definition 6 (LIN-RK-KDMσ security), and show how we will
use it to garble gates in our protocols. For security reasons, which will become
apparent in the proofs, we need to make the assumption that the free-XOR
correlation ∆ ∈ Fk2 is of the form (1, ∆′, 0).

Let ∆ = (1, ∆′, 0) with ∆′ ← Fk−22 be a secret value. Let H the XOF
associated with the scheme (KeyGenXOF, EncXOF

τ , DecXOF) of Definition 5. In the
following we think of the encryption scheme as being defined with respect to
three possible keys ∆, σ(∆), and ∆ ⊕ σ(∆) chosen by (α, β). The variable k is
defining a linearly homomorphic relation with respect to one of the keys and b
is defining the linearly homomorphic key-dependent offset Ψ(b ·∆, b). With this
understanding we define the following oracles:

Realσ∆ : (k, α, β,m, b, nonce) 7−→
EncXOF

τ ((m⊕ Ψ(b ·∆, b), nonce), k⊕ α ·∆⊕ β · σ(∆))

Fakeσ∆ : (k, α, β,m, b, nonce) 7−→ (H(nonce), c), c← C,

where C is the ciphertext space, and forbid the following kind of queries: Let
{(ki, αi, βi,mi, bi, nonce)}qi=1 be a sequence of queries under the same nonce.
Such a sequence is not allowed if and only if there exist coefficients c1, . . . , cq ∈
F2, not all zero, such that

∑q
i=1 ci · (αi, βi) = (0, 0). We can now define our

notion of LIN-RK-KDMσ security:

Definition 8 (LIN-RK-KDMσ secure encryption). The encryption scheme
(KeyGenXOF, EncXOF

τ , DecXOF) is said to be LIN-RK-KDMσ secure if the two or-
acles Realσ∆ and Fakeσ∆ are computationally indistinguishable, when we forbid the
above queries.

The reason for the forbidden queries is in order to stop the distinguisher D
from mounting a trivial attack. Take for example the simplest forbidden query,
where D simply asks once for (k, 0, 0,m, b, nonce). As none of the three possible
secret keys depending on ∆ has been applied, then D can just decrypt using k
and see whether the oracle was implementing Real or Fake. For longer sequences,
the idea is essentially the same, as the key-homomorphism of LPN would other-
wise allow D to mount the same kind of attack simply by computing the linear
combination defined by the ci values.

Theorem 2. Let ∆ = (1, ∆′, 0) with ∆′ ← Fk−22 be a secret value, then, assum-
ing that DLPN is hard, the XOF-Based Two-Key LPN Encryption scheme (c.f.

Definition 6) is LIN-RK-KDMσ secure, i.e. Realσ∆
c≡ Fakeσ∆.

17

The security game GarbleANDSec

This is a game between a challenger and an adversary. The challenger has access
to the oracles Fakeσ∆ or Realσ∆, which we denote by O,

1. The challenger picks three bits εu, εv, εw ∈ {0, 1}, three keys
ku,εu ,kv,εv ,kw,εw ∈ Fk2 , a nonce g and bu, bv ∈ {0, 1}.

2. The challenger sets bw ← bu · bv and λt ← bt ⊕ εt, t ∈ {u, v, w}.
3. The challenger sets k← ku,εu ⊕ σ(kv,εv).
4. The challenger computes the ciphertext

ctεu,εv ← Encτ ((Ψ(kw,εw , εw), (g‖εu‖εv)), (ku,εu ,kv,εv))

5. For α, β ∈ {0, 1}, (α, β) 6= (εu, εv) set

`α,β = (λu ⊕ α) · (λv ⊕ β)⊕ bw.

6. The challenger computes, for (α, β) 6= (εu, εv) the three remaining ciphertexts:

ctα,β ← O(k, εu ⊕ α, εv ⊕ β, Ψ(kw,εw , εw), `α,β , (g‖α‖β))

7. The ciphertexts (ct0,0, ct1,0, ct0,1, ct1,1) along with the keys values, (ku,εu , εu)
and (kv,εv , εv), are returned to the adversary.

8. The adversary goal is to determine which oracle the challenger is using.

Figure 2. The security game GarbleANDSec

Proof. For the proof of this result, see the full version.

We end this section by showing, intuitively, why the garbling method using
our (XOF-Based) Two-Key LPN Encryption is secure. Consider the garbling
game in Figure 2, which models an adversary that is trying to learn something
about a garbled AND gate, given only the pair of keys and external values for
the active path. From our previous discussion, if the LIN-RK-KDMσ problem is
hard then the adversary is clearly unable to win this game. We remark that this
game just provides the intuition around the security of our garbling protocols,
which will not explicitly use it in their respective proofs.

4 MPC from Fully Authenticated LPN-Garbling

We use the garbling technique introduced in the previous section to describe our
first protocol. As we said before, we evaluate the entire garbled circuit using a
generic, actively secure MPC protocol.

In particular, given a secret shared key [k], message [m], and noise vector
[e] (obtained by calling GenBit() and Mult in FAuth

MPC), the parties can compute
a secret shared ciphertext (C, [c]), where C is in the clear, using a double-key
encryption scheme EXOF

τ as described in Definition 6. Since both the generation
and opening of the garbled circuit are done using an active secure MPC system,

18

Protocol ΠGarble

Let EXOF
τ = {KeyGenτ ,Encτ ,Decτ} be a XOF-based two-key LPN encryption

scheme, where τ is a parameter of the scheme. Let K = Fk2 .

Garbling:
1. Each Pi samples ∆i ← Fk−2

2 and calls FAuth
MPC to compute [∆i]← Input(Pi).

2. Set [∆]← (1,0)⊕
⊕

i∈[n](0, [∆
i], 0).

3. For every input wire w ∈Win and output wire of an AND gate, parties do:
– Call FAuth

MPC obtaining a shared random bit [λw]← GenBit().
– Each Pi samples kiw,0 ← K and call FAuth

MPC on [kiw,0]← Input(Pi).
– Set [kw,0]←

⊕
i∈[n][k

i
w,0] and [kw,1]← [kw,0]⊕ [∆].

4. For every wire w in the circuit which is the output of a XOR gate:
– Parties compute the mask on the output wire [λw]← [λu]⊕ [λv].
– Parties compute [kw,0]← [kv,0]⊕ [kv,0] and set [kw,1]← [kw,0]⊕ [∆]

5. For every wire w in the circuit which is the output of an AND gate and for
α, β ∈ {0, 1}, parties call FAuth

MPC to compute
(a) [εw,α,β]← ([λu]⊕ α) · ([λv]⊕ β)⊕ [λw].
(b) [kw,α,β]← [kw,0]⊕ ([∆] · [εw,α,β]).
(c) The encryption (Cw,α,β , [cw,α,β]), given by

Encτ
(

(Ψ([kw,α,β], [εw,α,β]), (g‖α‖β)), ([ku,α], [kv,β])
)
,

where g is a unique gate identifier.
(d) Parties call FAuth

MPC to open the values λw ← Output([λw], Pi) corre-
sponding to party Pi’s output values.

Open Garbling:
1. Parties call FAuth

MPC to open cw,α,β ← Open([cw,α,β]), α, β ∈ {0, 1}.
2. Set the garbled gates to be g̃w,α,β = (Cw,α,β , cw,α,β) for α, β ∈ {0, 1}.

Figure 3. The protocol for authenticated garbling ΠGarble

the reconstructed garbled circuit is guaranteed to be correct and thus there is
no need for any consistency checks during the evaluation phase. The downside of
this simple approach is that the amount of multiplications required to produce
noise vectors [e] with the right distribution could be prohibitively high in some
scenarios.

4.1 Garbling

Our garble protocol ΠGarble, is described in Figure 3. First, the parties produce, in
an actively-secure way, shares of the global key [∆], the wire labels [ki0,w], [ki1,w]

and the wire masks [λw] for the garbled circuit using FAuth
MPC. Then, for each AND

gate g with input wires u, v and output wire w, and for each α, β ∈ {0, 1}, the
parties compute authenticated additive sharing of the values

[εw,α,β]← ([λu]⊕ α) · ([λv]⊕ β)⊕ [λw].

19

Thus the garbled gate for each AND gate is obtained by calling FAuth
MPC to evaluate

the following encryptions

(Cw,α,β , [cw,α,β]) = EncXOF
τ

(
(Ψ([kw,α,β], [εw,α,β]), (g‖α‖β)), ([ku,α], [kv,β])

)
where α, β ∈ {0, 1}, g is a unique gate identifier and kw,α,β = kw,0 ⊕ εw,α,β ·∆.
Finally, parties open the masks for all the output wires of the circuit, so that
they will be able to recover the output at the end of the evaluation phase.

When the garbled circuit is opened, using FAuth
MPC, the parties reconstruct the

four values (Cw,α,β , cw,α,β), α, β ∈ {0, 1}, and set these to be the garbled gates
g̃α,β . Note that the first component Cw,α,β of the ciphertexts in the garbled
gates does not need to be stored, as it can be generated on the fly by applying
the XOF to the relevant nonce = (g‖α‖β).

In order to see how the garbling is correct, note that the output of the AND
gate is exactly the value (λu ⊕ α) · (λv ⊕ β). Hence, assuming λw = 0, we have
two cases: if (λu⊕α) · (λv⊕β) = 0, then εw,α,β = 0 and kw,α,β = kw,0; otherwise
εw,α,β = 1 and kw,α,β = kw,0 ⊕ ∆. The result is reversed if λw = 1. In more
formality, we state the following theorem. It has a relatively standard proof,
which follows the pattern of previous works on n-party garbling, and can be
found in the full version.

Theorem 3. Let EXOF
τ be a XOF-based two-key LPN encryption scheme with

parameter τ . The protocol ΠGarble, given in Figure 3, UC-securely computes the
functionality FPreprocessing (see the full version) in the presence of a static, active
adversary corrupting up to n− 1 parties in the FAuth

MPC-hybrid model.

4.2 Evaluation

The protocol ΠEvaluate, given in the full version, describes how parties evaluate
the garbled circuit. This protocol is very similar to that of HSS, where everyone
evaluates the garbled circuit obtained in the preprocessing phase by broadcasting
their inputs XORed with the corresponding wire mask. The main difference with
HSS is that, as there is a single output key kw,εw for every wire, rather than one
such key per party, parties need to explicitly obtain the masked wire value εw
when decrypting g̃εu,εv . Once the whole circuit has been evaluated, making use
of the output wire masks they obtained at the preprocessing stage, parties can
unmask their corresponding outputs and learn their intended result.

It is important to note that, unlike in HSS and due to the active security of the
base MPC system, all among the garbled circuit, input keys kw,εw and masked
inputs εw are guaranteed to be correct. Since the rest of this phase is purely
local computation, this essentially ensures the output is correct. The security
of the protocol, provided by the following theorem, follows from adapting the
proof of our more complex unauthenticated garbling protocol in Section 5. In
other words, the proof of Theorem 4 is just a specialised version of the proof of
Theorem 6.

20

Theorem 4. Let f be an n-party functionality and EXOF
τ a XOF-based two-key

LPN encryption scheme with parameter τ . The protocol ΠEvaluate UC-securely
computes f in the presence of a static, active adversary corrupting up to n − 1
parties in the {FMPC,FPreprocessing}-hybrid model.

5 MPC from Unauthenticated LPN-Garbling

Whilst the protocol described in the previous section is intuitive and achieves our
goals for the evaluation phase, the usage of an authenticated garbling function-
ality incurs a larger number of oblivious operations in the preprocessing phase.
In this section, we turn to use an unauthenticated preprocessing functionality,
in the style of HSS, in order to improve the efficiency of this phase. Our unau-
thenticated garbling protocol makes clever use of the homomorphic properties
of the LPN encryption scheme. This turns out to be especially efficient when a
large proportion of parties are assumed to be honest. Our protocols and func-
tionalities in this section are parametrised by a value c ∈ R that represents the
proportion 1/c of parties that are assumed honest. In other words, our protocols
will have n/c honest parties, with 1 < c ≤ n. Note that when 2 ≤ c, we obtain
a protocol which is secure against a dishonest majority, and by setting c = n we
would go back to the case of a full-threshold adversary. As expected, the value of
c greatly affects the performances of our construction. We remark that allowing
the possibility of having more than a single honest party is a highly reasonable
assumption in a large scale setting.

5.1 Garbling

In this section we describe how to implement the Fn/cPreprocessing functionality
given in the full version. As this is a weaker functionality which allows the
adversary to introduce additive errors in the garbled circuit, our implementing
protocol will not need to produce the LPN ciphertexts and keys using a fully
active implementation of FMPC as we did in Section 4.

The main idea of our unauthenticated garbling protocol is to use the homo-
morphic property of the LPN encryption scheme, i.e., abusing notation,

Σn
i=1Enc

XOF
τ ((mi, nonce), si) = EncXOF

τ ′ ((Σn
i=1m

i, nonce), Σn
i=1s

i). (6)

However, note that the Bernoulli distribution resulting from the sum has pa-
rameter τ ′ > τ . Additionally, even given only the sum of the encryptions, the
adversary can use the above homomorphic property to “remove” his own encryp-
tions and remain with only the sum of the honest parties’ encryptions. Thus,
the sum of the honest parties’ encryptions must still be secure.

We thus proceed as follows: we let each party locally generate a ‘weak’ LPN
encryption for the garbled gates. The garbled gates are computed by summing
these ’weak’ encryptions. The ‘weak’ ciphertexts are never seen by the adversary,
as the parties compute their sum using additive secret-sharing. Intuitively, if the

21

Protocol Π
n/c
Garble

Let EXOF
τ = {KeyGenτ ,Encτ ,Decτ} be a XOF-based two-key LPN encryption

scheme, where τ is a parameter of the scheme. Let K = Fk2 . Let [x] and 〈x〉 de-
note respectively an authenticated and unauthenticated additive sharing of x.

Garbling:
1. Each Pi generates a random value ∆i ∈ Fk−2

2 and call 〈∆i〉 ← InputP (Pi)
of FMPC.

2. Set 〈∆〉 ← (1,0)⊕i (0, 〈∆i〉, 0).a

3. For every wire w in the circuit which is either an input wire or the output
of an AND gate, parties do as follows:
– Create a secret random bit [λw]← GenBit().
– Each Pi generates a random kiw,0 ∈ K and calls 〈kiw,0〉 ← InputP (Pi).
– Set 〈kw,0〉 ← ⊕i〈kiw,0〉 and 〈kw,1〉 ← 〈kw,0〉 ⊕ 〈∆〉.

4. For every wire w in the circuit which is the output of a XOR gate (with
input wires u and v) parties locally set:
– [λw]← [λu]⊕ [λv].
– 〈kw,0〉 ← 〈ku,0〉 ⊕ 〈kv,0〉 and 〈kw,1〉 ← 〈kw,0〉 ⊕ 〈∆〉.

5. For every wire w in the circuit which is the output of an AND gate g (with
input wires u and v), for α, β ∈ {0, 1},
(a) Parties call FMPC to compute [εw,α,β]← ([λu]⊕ α) · ([λv]⊕ β)⊕ [λw],
(b) Parties call the command 〈εw,α,β ·∆〉 ← Bit× String〈∆〉([εw,α,β]). a

(c) Parties locally compute 〈kw,α,β〉 ← 〈kw,0〉 ⊕ 〈εw,α,β ·∆〉.
(d) Each party Pi computes the encryptions (Cw,α,β , ci,w,α,β) given by

Encτe

(
(Ψ(kiw,α,β , ε

i
w,α,β), (g‖α‖β)), (kiu,α,k

i
v,β)

)
where g is a unique gate identifier.

(e) For every output gate g associated to a set of parties P̂ ⊆ P, with
input wire u and output wire w, perform the following steps
– Set [λw]← [λu].
– For α ∈ {0, 1}, each Pi ∈ P̂ generates two random values ξiw,α ∈
{0, 1}s and shares them as 〈ξiw,α〉 ← InputP (Pi).

– For α ∈ {0, 1} use the trick from step 5d above to construct the
garbled row g̃α = (Cw,α, cw,α) corresponding to the encryption

Encτd

(
((ξi1w,α‖ . . . ‖ξ

i|P̂|
w,α), (g‖α‖0)), (ku,α,0)

)
6. Reveal to each Pi their input and output wire masks: λw ←

Output([λw], Pi), w ∈Wini ∪Wouti .
Open Garbling:

1. Each Pi calls 〈ci,w,α,β〉 ← InputP (Pi). All parties then computes 〈cw,α,β〉 =
⊕i∈[n]〈ci,w,α,β〉 and reveal the result (using ` calls to OpenP) so that each
party obtains the ciphertext (Cw,α,β , cw,α,β)

2. The garbled gate is g̃w,α,β = (Cw,α,β , cw,α,β) for α, β ∈ {0, 1}.
3. Similarly, in output gates, for α ∈ {0, 1} use the trick from step 1 in Open

Garbling to reconstruct g̃w,α = (Cw,α, cw,α)

a See Remark 1

Figure 4. The protocol for unauthenticated garbling, with n/c honest parties

22

adversary cannot learn any information on the keys and messages from the sum,
then this gives the adversary the possibility of (only) an additive attack. Hence,
this scheme works as long as the sum of n ‘weak’ encryptions is decryptable and
the sum of n/c ‘weak’ encryptions is secure.

We now look at how to achieve these requirements. We introduce τs to de-
note the parameter of the Bernoulli distribution that we want the sum of any
n/c ciphertexts to achieve. For the local, weak encryptions, honest parties will
use a parameter τe. Lastly, the sum of all n ciphertexts will have a Bernouilli
distribution with a parameter that we will denote τd. Below we analyse the re-
lationship between the three τ parameters and give an example of how to select
them in practice. Our analysis makes use of the following lemma [31].

Lemma 2 (Piling Up Lemma). Let X be binary random variable which is
equal to one with probability p = 1/2− ε, where ε is the bias approximation, then
we have

Pr[x1 + · · ·+ xn = 1 : xi ← X] =
1

2
− 2n−1 · εn.

Recall we have n parties of which n/c are honest, and in our garbling protocol
each honest party will generate an LPN ciphertext with τ equal to τe, with the
adversary producing a ciphertext in any way it chooses. These ciphertexts are
then secret shared, and the sum of all the n ciphertexts is then released.

As explained, the adversary can determine the sum of the n/c ciphertexts
produced by the honest parties. These sum to a ciphertext whose underlying τ
value, τs, can be evaluated by the Piling Up Lemma. Thus, we have

τs =
1

2
− 2n/c−1 ·

(
1

2
− τe

)n/c
=

1

2
·
(

1− (1− 2 · τe)n/c
)
.

We also require that, if the adversarial parties follow the protocol, the resulting
ciphertext sum can be decrypted correctly. In other words we need to set τd such
that

τd =
1

2
− 2n−1 ·

(
1

2
− τe

)n
=

1

2
· (1− (1− 2 · τe)n) ,

or

τe =
1

2
·
(

1− (1− 2 · τd)1/n
)
.

Note that this gives us

τs =
1

2
·

(
1−

(
1− 2 ·

(
1

2
·
(

1− (1− 2 · τd)1/n
)))n/c)

=
1

2
·
(

1−
(

(1− 2 · τd)1/n
)n/c)

=
1

2
·
(

1− (1− 2 · τd)1/c
)
.

Therefore, we have proved the following fact.

23

Lemma 3. Let τs, τe, τd be LPN parameters, as described above. For fixed τd the
value of τs does not depend on the number of parties, but only on the proportion
c which is honest.

Starting with a τd, a desired security parameter sec and a proportion c, we
can derive the LPN parameters k, τs and τe. First, using τd and c, it is possible to
derive τs. Then, given sec and τs, we can compute k using Equation (3). Finally,
τe, that parties use for encryption, is derived from τs and the number of parties
n. For example, if we take τd = 1/8 and a proportion of 20% honest parties, i.e.
c = 5, then we find that τs = 0.02796. For sec = 128 this implies we need to
select k = 3129. For n = 100 parties we then have that the honest parties need
to encrypt with parameter τe = 0.001436. For more example for sec = {128, 256}
see the full version.

Using the above observations we define, in Figure 4, the garbling protocol
when n/c parties are honest. Our protocol makes use of an operation, which
allows us to compute an unauthenticated sharing of 〈x·∆〉 given an authenticated
sharing of a bit [x], where ∆ ∈ {0, 1}k is a global shared value. We denote this
operation by

〈x ·∆〉 ← Bit× String〈∆〉([x]).

We could näıvely implement this operation using Tiny-OT, but this would be
highly inefficient since ∆ ∈ Fk2 and k is very large as it is the dimension of the
secret key space K of the underlying LPN encryption scheme. For this reason, in
the full version, we show a more efficient bit-string multiplication protocol, that
is still based on Tiny-OT. The new protocol requires that n/c ≥ s, where s is
the statistical security parameter. Since c is a constant, this requirement holds
for sufficiently large n.7

Remark 1. Note that the way that the Bit× String operation is described in the
full version, the shares of ∆ are chosen inside the Bit× String protocol. However,
this would make the unauthenticated garbling protocol description in Figure 4
cumbersome. To simplify the presentation, we let the parties choose their shares
of ∆ at the beginning of the unauthenticated garbling protocol; this is possible
since the ∆ shares are used only locally before the Bit× String operation.

Compared with the evaluation phase of [22], we cannot rely on individual
pairs of keys, kiw,0,k

i
w,1, in order to let a party Pi decide whether to abort or

not in the presence of errors in the garbled circuit. This is because only the sums
of individual keys, kw,0,kw,1 are revealed, and these need to be hidden from all
parties. Instead, we perform a check in the output gates as follows: given a set of
parties P̂ ⊆ P who receive an output of Cf on wire w, a garbled output gate g,
with input wire u and output wire w, consists of the two following entries (one
for each α ∈ {0, 1}):

gα ← EncXOF
τ

(
((ξi1w,α‖ . . . ‖ξ

i|P̂|
w,α), (g‖α‖0)), (ku,α,0)

)
7 If the requirement does not hold, then this operation needs to be done using Tiny-OT

directly as in [22]. Hence, this optimization is mainly for large-scale MPC.

24

where ξiw,α ∈ {0, 1}s is a secret random value chosen by party Pi.
8

The security of our garbling protocol is then given by the following theorem,
the proof of which is given in the full version.

Theorem 5. Let EXOF
τ be a XOF-based two-key LPN encryption scheme with

parameter τ . Let FBS be implemented by the Bit× String operation. The protocol

Π
n/c
Garble described in Figure 4 UC-securely computes Fn/cPreprocessing in the pres-

ence of a static, active adversary corrupting up to (c − 1) · n/c parties in the
{FMPC,FBS}-hybrid model, provided n/c > s (where s is the statistical security
parameter).

Remark 2. By implementing the Bit× String operation in the näıve way, using
TinyOT as in [22], we could prove Theorem 5 in the {FMPC,FTinyOT}-hybrid
model, without the n/c > s requirement.

5.2 Evaluation

The evaluation procedure is given in the full version. This involves no operations
with respect to the MPC functionality, but it requires two rounds of broadcast.
The security of our evaluation protocol is given by the following theorem, the
proof of which is given in the full version.

Theorem 6. Let f be an n-party functionality and EXOF
τ a XOF-based two-key

LPN encryption scheme with parameter τ . The protocol Π
n/c
Evaluate UC-securely

computes f in the presence of a static, active adversary corrupting up to (c −
1) · n/c parties in the {FMPC,Fn/cPreprocessing}-hybrid model.

Our proof follows the blueprint of the online proof of Hazay et al. [22]. More
concretely, after the description of the simulator, we show that the adversary can
succeed in introducing errors in the garbled circuit only with negligible proba-
bility, so ruling out this possibility we show that the ideal and real executions
are indistinguishable trough a reduction to the LIN-RK-KDMσ security of the
LPN-based encryption scheme EXOF. Although the general idea of the proof is
similar to [22], in our proof we need to take care of our new method of garbling
AND gates, and prove that if the adversary introduces some errors such that the
some value is not correct during the evaluation, then the final checks will fail
with overwhelming probability.

6 Implementation and Experimental Results

To demonstrate the practicality of our design, we implemented the circuit evalu-
ation step for both of our protocols, and tested them on a number of ‘standard’
test circuits, given in Table 1. For the preprocessing phase, we give an estima-
tion of the communication complexity in the full version and compare it with
the recent work of Yang et al. [40].

8 For simplicity, we assume the message space is at least |P̂|·s bits long. If the message
space was only of |P̂| · s/r bits, one would compute r ciphertext, each of them with
the ξi values of |P̂|/r parties.

25

Circuit No. ANDs No. XORs No. Invs

AES-128(k,m) 6400 28176 2087
AES-192(k,m) 7168 32080 2317
AES-256(k,m) 8832 39008 2826
Keccak-f(m) 38400 115200 38486

SHA-256-f(H, f) 22573 110644 1856
SHA-512-f(H, f) 57947 286724 4946

Table 1. Standard Test Circuits

The test circuits consisted of a combination of AND, XOR and INV gates.
The SHA-256 and SHA-512 circuits implemented the compression function f
only for a single block message m. Further, we compare our results with existing
work at the end of this section.

The hash function H used to define our nonce-based LPN encryption function
(Definition 6) is implemented using three variants. The first variant is based on
the AES-KDF from NIST [35]. This is very fast but it is not indifferentiable from
a random oracle, and thus not strictly a true XOF. The second variant is based
on the SHA-3 based XOF derived from KMAC128 and KMAC256 given in [34].
The third variant is based on the Kangaroo-12 XOF from [8], which is also based
on SHA-3 which provides 128-bits of security. For our two SHA-3 variants we
used the library provided by the Keccak team https://keccak.team/. For the
AES based KDF variant we used code using the Intel AES-NI instructions.

Code Instantiation. We use concatenated codes as our error correcting code.
While they are not the fastest or offer the highest rate, we can easily calculate the
exact failure probability, unlike the alternatives such as LDPC codes. This makes
selecting a code according to the LPN parameters convenient. The concatenated
codes we use has a Reed-Solomon outer code and a general linear inner code. The
details of concatenated codes and their concrete instantiation is presented in the
full version. We set the decoding failure probability to 2−s, and run experiments
with s = 40 and 80. While finding the best error correcting code is not the goal
of this work, we expect the performance to improve significantly when using a
more efficient family of codes such as LDPC or quasi-cyclic LDPC.

Online Implementation Results. The expensive parts of the algorithms are
the parts related to the evaluation of the garbled circuit; thus these were the
parts of the algorithm we timed. Experiments were run on a Intel i7-7700K CPU
4.20GHz machine with 32GB of RAM.

For the authenticated garbling (resp. unauthenticated garbling) variant of
our algorithm, we obtained the run-times presented in Table 2 (resp. Table 3)
with decryption failure s = 40. For equivalent runtimes when s = 80 see the full
version of the paper. In these tables the security level refers to the security of the
underlying LPN function. Observe that the choice of the underlying method to

26

https://keccak.team/

Execution Time (sec)
128-bit Security 256-bit Security

Circuit AES-KDF KMAC128 Kangaroo KMAC256

AES-128(k,m) 1.72 6.64 4.04 35.4
AES-192(k,m) 1.92 7.41 4.51 39.9
AES-256(k,m) 2.35 9.13 5.58 48.9
Keccak-f(m) 10.2 39.7 24.3 214

SHA-256-f(H, f) 6.02 23.3 14.3 128
SHA-512-f(H, f) 15.6 60.0 36.8 327

Table 2. Evaluation (in sec) of various circuits in the authenticated garbling case. Set-
ting sec = 128 and s = 40, the LPN parameters are (k,m, `, τ) = (664, 672, 7140, 1/8)
and we use the error correcting given by (Lo = [255, 84, 172], Li = [28, 8, 15]). For 256
bit security, the LPN parameters are (k,m, `, τ) = (1328, 1332, 14819, 1/8) and the er-
ror correcting code is given by (Lo = [511, 148, 364], Li = [29, 9, 11]). Details of these
codes are given in the full version.

Execution Time (s)
128-bit Security 256-bit Security

Circuit c = 2 c = 5 c = 10 c = 2 c = 5 c = 10

AES-128(k,m) 10.5 50.4 77.5 16.9 80.2 538
AES-192(k,m) 11.7 56.3 86.7 18.9 89.3 602
AES-256(k,m) 14.4 69.1 106 23.4 110 742
Keccak-f(m) 64.4 309 474 104 490 3333

SHA-256-f(H, f) 36.7 176 271 59.5 284 1899
SHA-512-f(H, f) 94.0 451 692 152 725 4848

Table 3. Evaluation of various circuits in the unauthenticated garbling variant, using
the AES-KDF, and s = 40. For the parameters for the LPN scheme, and the associated
error correcting code we used those given in the full version.

generate the LPN matrix has a key effect on the performance of the system, with
an AES based KDF being the most efficient. For the unauthenticated garbling
variant, we only present runtimes using the efficient AES based KDF function.
Concretely, when using AES-KDF, a majority (81%) of the CPU time is spent
in decoding. When using KMAC128, the majority (84%) of the time is spent on
KMAC128. Thus, the performance bottleneck varies with the choice of H.

We compare our scheme with some related work. In the authenticated gar-
bling case, and the fastest implementation using an AES-KDF based for the
function H, we obtain a throughput of roughly 266 microseconds per AND gate
for s = 40. The experiments from [6], i.e. in the passive case, with no free-XOR,
has a throughput of roughly 45 microseconds per gate (also with s = 40). Ig-
noring the fact we can perform free-XOR, this gives a cost of a factor of six for
using our actively secure variant. However, this cost decreases when we look at
typical circuits. For example the AES-128 circuit has 34, 675 AND and XOR
gates, thus the protocol in [6] would take around 1.5 seconds, compared to our

27

runtime of 1.72 seconds. Thus, the ability to cope with free-XOR means we only
pay an extra 15% in performance for active security.

As a means of comparison with ‘traditional’ n-party garbled circuits via
actively secure BMR with free-XOR, we extrapolated known run times of evalu-
ating AES-128 using the HSS protocol. It would appear that our algorithm will
provide a faster evaluation stage when the number of parties exceeds about 100
in the authenticated garbling case. This is confirmed by a comparison with [39]
that reports an online running time of 2.3 sec for AES with 128 parties in the
WAN setting.

Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC-2015-AdG-
IMPaCT, by the Defense Advanced Research Projects Agency (DARPA) and
Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under contract
No. N66001-15-C-4070, FA8750-19-C-0502 and HR001120C0085, by the Office
of the Director of National Intelligence (ODNI), Intelligence Advanced Research
Projects Activity (IARPA) via Contract No. 2019-1902070006, by the FWO
under an Odysseus project GOH9718N, and by CyberSecurity Research Flanders
with reference number VR20192203. Eduardo Soria-Vazquez was supported by
the Carlsberg Foundation under the Semper Ardens Research Project CF18-112
(BCM). Aner Ben-Efraim and Eran Omri were supported by ISF grant 152/17,
and by the Ariel Cyber Innovation Center in conjunction with the Israel National
Cyber directorate in the Prime Minister’s Office.

Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of any
of the funders. The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright annotation
therein.

References

1. Applebaum, B.: Garbling XOR gates “for free” in the standard model. In: Sahai,
A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 162–181. Springer, Heidelberg (Mar 2013)

2. Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks
and applications. In: Chazelle, B. (ed.) ICS 2011. pp. 45–60. Tsinghua University
Press (Jan 2011)

3. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC. pp. 503–513. ACM Press (May 1990)

4. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 491–506. Springer, Heidelberg (May 2003)

5. Ben-Efraim, A., Lindell, Y., Omri, E.: Optimizing semi-honest secure multiparty
computation for the internet. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 578–590. ACM Press (Oct
2016)

28

6. Ben-Efraim, A., Lindell, Y., Omri, E.: Efficient scalable constant-round MPC via
garbled circuits. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS,
vol. 10625, pp. 471–498. Springer, Heidelberg (Dec 2017)

7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC. pp. 1–10. ACM Press (May 1988)

8. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Keer, R.V., Viguier, B.: Kan-
garooTwelve: Fast hashing based on Keccak-p. In: Preneel, B., Vercauteren, F.
(eds.) ACNS 18. LNCS, vol. 10892, pp. 400–418. Springer, Heidelberg (Jul 2018)

9. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (Aug 2003)

10. Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic primitives based
on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO’93. LNCS, vol. 773,
pp. 278–291. Springer, Heidelberg (Aug 1994)

11. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EU-
ROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (May 2001)

12. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press (Oct 2001)

13. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPD Z2k : Effi-
cient MPC mod 2k for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 769–798. Springer, Heidelberg (Aug
2018)

14. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (Aug 2007)

15. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (Aug 2012)

16. Esser, A., Kübler, R., May, A.: LPN decoded. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 486–514. Springer, Heidelberg (Aug
2017)

17. Frederiksen, T.K., Keller, M., Orsini, E., Scholl, P.: A unified approach to MPC
with preprocessing using OT. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015,
Part I. LNCS, vol. 9452, pp. 711–735. Springer, Heidelberg (Nov / Dec 2015)

18. Goldreich, O., Krawczyk, H., Luby, M.: On the existence of pseudorandom genera-
tors. In: Goldwasser, S. (ed.) CRYPTO’88. LNCS, vol. 403, pp. 146–162. Springer,
Heidelberg (Aug 1990)

19. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
ACM STOC. pp. 218–229. ACM Press (May 1987)

20. Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Concretely efficient large-scale
MPC with active security (or, TinyKeys for TinyOT). In: Peyrin, T., Galbraith,
S. (eds.) ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 86–117. Springer,
Heidelberg (Dec 2018)

21. Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: TinyKeys: A new approach
to efficient multi-party computation. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 3–33. Springer, Heidelberg (Aug
2018)

29

22. Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining
BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017,
Part I. LNCS, vol. 10624, pp. 598–628. Springer, Heidelberg (Dec 2017)

23. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In: 41st FOCS. pp. 294–304.
IEEE Computer Society Press (Nov 2000)

24. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Ruiz, F.T., Bueno, R.M., Hennessy,
M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (Jul 2002)

25. Keller, M., Orsini, E., Scholl, P.: MASCOT: Faster malicious arithmetic secure
computation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 830–842. ACM Press (Oct
2016)

26. Keller, M., Pastro, V., Rotaru, D.: Overdrive: Making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822,
pp. 158–189. Springer, Heidelberg (Apr / May 2018)

27. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (Jul 2008)

28. Larraia, E., Orsini, E., Smart, N.P.: Dishonest majority multi-party computation
for binary circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II.
LNCS, vol. 8617, pp. 495–512. Springer, Heidelberg (Aug 2014)

29. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-party
computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M.J.B. (eds.)
CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg (Aug
2015)

30. Lindell, Y., Smart, N.P., Soria-Vazquez, E.: More efficient constant-round multi-
party computation from BMR and SHE. In: Hirt, M., Smith, A.D. (eds.) TCC 2016-
B, Part I. LNCS, vol. 9985, pp. 554–581. Springer, Heidelberg (Oct / Nov 2016)

31. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT’93. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (May 1994)

32. Maurer, U.M.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.) EU-
ROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (Apr / May
2002)

33. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (Aug 2012)

34. NIST National Institute for Standards and Technology: SHA-3 derived functions:
cSHAKE, KMAC, TupleHash and ParallelHash (2016), http://nvlpubs.nist.

gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
35. NIST National Institute for Standards and Technology: Recommendation for key

derivation through extraction- then-expansion rev.1 (2018), https://nvlpubs.

nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-56c.pdf
36. Orsini, E., Smart, N.P., Vercauteren, F.: Overdrive2k: Efficient secure MPC over

Z2k from somewhat homomorphic encryption. In: Jarecki, S. (ed.) CT-RSA 2020.
LNCS, vol. 12006, pp. 254–283. Springer, Heidelberg (Feb 2020)

37. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: 21st ACM STOC. pp. 73–85. ACM Press
(May 1989)

30

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-56c.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-56c.pdf

38. Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient maliciously
secure two-party computation. In: Thuraisingham, B.M., Evans, D., Malkin, T.,
Xu, D. (eds.) ACM CCS 2017. pp. 21–37. ACM Press (Oct / Nov 2017)

39. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In:
Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp.
39–56. ACM Press (Oct / Nov 2017)

40. Yang, K., Wang, X., Zhang, J.: More efficient MPC from improved triple generation
and authenticated garbling. Cryptology ePrint Archive, Report 2019/1104 (2019),
https://eprint.iacr.org/2019/1104

41. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS. pp. 162–167. IEEE Computer Society Press (Oct 1986)

31

https://eprint.iacr.org/2019/1104

	Large Scale, Actively Secure Computation from LPN and Free-XOR Garbled Circuits
	Introduction
	Our Contribution
	Technical Overview

	Preliminaries
	LIN-RK-KDM Security
	Error Correcting Codes
	LPN-based Encryption
	Functionalities for Secret-shared MPC

	Free-XOR Garbling using LPN
	MPC from Fully Authenticated LPN-Garbling
	Garbling
	Evaluation

	MPC from Unauthenticated LPN-Garbling
	Garbling
	Evaluation

	Implementation and Experimental Results

