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Abstract. We provide the first constructions of non-interactive zero-
knowledge and Zap arguments for NP based on the sub-exponential
hardness of Decisional Diffie-Hellman against polynomial time adver-
saries (without use of groups with pairings).

Central to our results, and of independent interest, is a new notion
of interactive trapdoor hashing protocols.

1 Introduction

Zero-knowledge (ZK) proofs [31] are a central object in the theory and practice
of cryptography. A ZK proof allows a prover to convince a verifier about the
validity of a statement without revealing any other information. ZK proofs have
found wide applications in cryptography in all of their (interactive) avatars, but
especially so in the non-interactive form where a proof consists of a single message
from the prover to the verifier. This notion is referred to as non-interactive zero
knowledge (NIZK) [22]. Applications of NIZKs abound and include advanced
encryption schemes [46,23], signature schemes [4,7], blockchains [6], and more.

Since NIZKs for non-trivial languages are impossible in the plain model,
the traditional (and de facto) model for NIZKs allows for a trusted setup that
samples a common reference string (CRS) and provides it to the prover and the
verifier algorithms. Starting from the work of [22], a major line of research has
been dedicated towards understanding the assumptions that are sufficient for
constructing NIZKs in the CRS model [9,28,5,18,35,34,30,53,19,16,14,50,21]. By
now, NIZKs for NP are known from most of the standard assumptions known to
imply public-key encryption – this includes factoring related assumptions [9,28],
bilinear maps [18,35,34], and more recently, learning with errors (LWE) [14,50].

Notable exceptions to this list are standard assumptions related to the discrete-
logarithm problem such as the Decisional Diffie-Hellman (DDH) assumption. In
particular, the following question has remained open for three decades:

Do there exist NIZKs for NP based on DDH?

From a conceptual viewpoint, an answer to the above question would shed
further light on the cryptographic complexity of NIZKs relative to public-key
encryption. It would also improve our understanding of the power of groups
with bilinear maps relative to non-pairing groups in cryptography. There are (at
least) two prominent examples where bilinear maps have traditionally had an



edge – advanced encryption schemes such as identity-based [10] and attribute-
based encryption [54,33] (and more broadly, functional encryption [54,11,48]),
and NIZKs. For the former, the gap has recently started to narrow in some im-
portant cases; see, e.g., [24]. We seek to understand whether such gap is inherent
for NIZKs based on standard assumptions.1

A recent beautiful work of Brakerski et al. [13] demonstrates that this gap
disappears if we additionally rely on the hardness of the learning parity with
noise (LPN) problem. Namely, they construct NIZKs assuming that DDH and
LPN are both hard. NIZKs based on the sole hardness of DDH, however, still
remain elusive.

Zaps. Dwork and Naor [26] introduced the notion of Zaps, aka two-round
public-coin proof systems in the plain model (i.e., without a trusted setup) that
achieve a weaker form of privacy known as witness-indistinguishability (WI) [29].
Roughly speaking, WI guarantees that a proof for a statement with multiple
witnesses does not reveal which of the witnesses was used in the computation of
the proof.

Despite this seeming weakness, [26] proved that (assuming one-way func-
tions) Zaps are equivalent to statistically-sound NIZKs in the common ran-
dom string model. This allows for porting some of the known results for NIZKs
to Zaps; specifically, those based on factoring assumptions and bilinear maps.
Subsequently, alternative constructions of Zaps were proposed based on indis-
tinguishability obfuscation [8]. Very recently, computationally-sound Zaps, aka
Zap arguments were constructed based on quasi-polynomial LWE [2,42,32].

As in the case of NIZKs, constructing Zaps (or Zap arguments) for NP based
on standard assumptions related to discrete-logarithm remains an open problem.
Moreover, if we require statistical privacy, i.e., statistical Zap arguments [2,32],
curiously, even bilinear maps have so far been insufficient.2 In contrast, statistical
NIZKs based on bilinear maps are known [35,34].

1.1 Our Results

In this work, we construct (statistical) NIZK and Zap arguments for NP based
on the sub-exponential hardness of DDH against polynomial-time adversaries in
standard groups.

Theorem 1 (Main Result – Informal). Assuming sub-exponential hardness
of DDH against polynomial-time attackers, there exist:

– (Statistical) NIZK arguments for NP in the common random string model.
– Statistical Zap arguments for NP.

1 If we allow for non-standard assumptions (albeit those not known to imply public-key
encryption), then this gap is not inherent, as demonstrated by [16,21].

2 A variant of statistical Zap arguments where the verifier is private-coin but the
proofs are publicly verifiable is known from standard assumptions on bilinear maps
[43].
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Our NIZK achieves adaptive, multi-theorem statistical zero knowledge and non-
adaptive soundness. By relaxing the zero-knowledge guarantee to be computa-
tional, we can achieve adaptive soundness. Our Zap argument achieves adaptive
statistical witness indistinguishability and non-adaptive soundness.3

Our results rely on the assumption that polynomial-time adversaries can-
not distinguish Diffie-Hellman tuples from random tuples with better than sub-
exponentially small advantage. To the best of our knowledge, this assumption is
unaffected by known attacks on the discrete logarithm problem.4

While our primary focus is on constructing NIZKs and Zap arguments from
DDH, we note that our constructions enjoy certain properties that have previ-
ously not been achieved even using bilinear maps:

– Our NIZK constructions rely on a common random string setup unlike prior
schemes based on bilinear maps that require a common reference string for
achieving statistical ZK [35,34].

– Our statistical Zap argument is the first group-based construction (irrespec-
tive of whether one uses bilinear maps or not). Known constructions of Zaps
from bilinear maps only achieve computational WI [35,34].

In particular, statistical NIZKs in the common random string model were pre-
viously only known from LWE (or circular-secure FHE) [14,50], and statistical
Zap arguments were previously only known from (quasi-polynomial) LWE [2,32].

Interactive Trapdoor Hashing Protocols. Towards obtaining our results,
we introduce the notion of interactive trapdoor hashing protocols (ITDH). An
ITDH for a function family F is an interactive protocol between two parties – a
sender and a receiver – where the sender holds an input x and the receiver holds
a function f ∈ F . At the end of the protocol, the parties obtain an additive
secret-sharing of f(x). An ITDH must satisfy the following key properties:

– The sender must be laconic in that the length of each of its messages (con-
sisting of a hash value) is independent of the input length.

– The receiver’s messages must hide the function f .

ITDH generalizes and extends the recent notion of trapdoor hash functions
(TDH) [25] to multi-round interactive protocols. Indeed, (ignoring some syntactic
differences) a TDH can be viewed as an ITDH where both the receiver and the
sender send a single message to each other.

3 Following [43], by standard complexity leveraging, our statistical NIZK and Zap
arguments can be upgraded (without changing our assumption) to achieve adap-
tive soundness for all instances of a priori (polynomially) bounded size. For the
“unbounded-size” case, [49] proved the impossibility of statistical NIZKs where adap-
tive soundness is proven via a black-box reduction to falsifiable assumptions [44].

4 There are well-known attacks for discrete logarithm over Z∗
q that require sub-

exponential time and achieve constant success probability [1,20]. However, as ob-
served in [16], a 2t time algorithm with constant successful probability does not
necessarily imply a polynomial time attack with 2−t successful probability.
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Our primary motivation for the study of ITDH is to explore the feasibility
of a richer class of computations than what can be supported by known con-
structions of TDH. Presently, TDH constructions are known for a small class of
computations such as linear functions and constant-degree polynomials (based
on various assumptions such as DDH, Quadratic Residuosity, and LWE) [25,13].
We demonstrate that ITDH can support a much broader class of computations.

Assuming DDH, we construct a constant-round ITDH protocol for TC0 cir-
cuits. While ITDH for TC0 suffices for our main application, our approach can
be generalized to obtain a polynomial-round ITDH for P/poly.

Theorem 2 (Informal). Assuming DDH, there exists a constant-round ITDH
for TC0.

We view ITDH as a natural generalization of TDH that might allow for a
broader pool of applications. While our present focus is on the class of com-
putations, it is conceivable that the use of interaction might enable additional
properties in the future that are not possible (or harder to achieve) in the non-
interactive setting.

Our Approach: Round Collapsing, Twice. We follow the correlation in-
tractability framework for NIZKs implemented in a recent remarkable sequence
of works [16,36,14,50,13,21]. The central idea of this framework is to instantiate
the random oracle in the Fiat-Shamir paradigm [29] by so-called correlation in-
tractable hash functions (CIH) [17]. In particular, given a CIH for all efficiently
searchable relations, this approach can be used to collapse the rounds of so-called
trapdoor sigma protocols [14] to obtain NIZKs in the CRS model.

The works of [14,50] used (leveled) fully homomorphic encryption to con-
struct CIH for all efficiently searchable relations and therefore required LWE-
related assumptions. Recently, Brakerski et al. [13] demonstrated a new approach
for constructing CIH via (rate-1) TDH by crucially exploiting the laconic sender
property of the latter. This raises hope for potential instantiations of CIH – ide-
ally for all efficiently searchable relations – from other standard assumptions. So
far, however, this approach has yielded CIH only for relations that can be ap-
proximated by constant-degree polynomials over Z2 due to limitations of known
results for TDH. This severely restricts the class of compatible trapdoor sigma
protocols that can be used for constructing NIZKs via the CIH framework. In-
deed, Brakerski et al. rely crucially on LPN to construct such sigma protocols.

Somewhat counter-intuitively, we use interaction to address the challenge of
constructing NIZKs solely from DDH. Specifically, we show that by using in-
teraction – via the abstraction of ITDH – we can expand the class of functions
that can be computed with a laconic sender. Furthermore, if an ITDH is suffi-
ciently function-private (where the amount of security required depends on the
round complexity), then we can collapse its rounds to construct CIH. Using this
approach, we construct a CIH for TC0 based on sub-exponential DDH.

Theorem 3 (Informal). Assuming sub-exponential hardness of DDH against
polynomial-time attackers, there exists a CIH for TC0.
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Expanding the class of relations for CIH in turn expands the class of com-
patible trapdoor sigma protocols. In particular, we show that trapdoor sigma
protocols for NP compatible with CIH from the above theorem can be built
from DDH. This allows us to construct NIZK and Zap arguments in Theorem 1.

Overall, our approach for constructing NIZKs involves two stages of round
collapsing – we first collapse rounds of ITDH to construct CIH, and then use
CIH to collapse rounds of trapdoor sigma protocols to obtain NIZKs. Our con-
struction of Zaps follows a similar blueprint, where the first step is the same
as in the case of NIZKs and the second round-collapsing step is similar to the
recent works of Badrinarayanan et al. [2] and Goyal et al. [32].

1.2 Guide to the paper

We present the technical overview in Section 2 and the necessary preliminaries in
Section 3. We define and construct ITDH in Sections 4 and Section 5 respectively,
and construct CIH for TC0 in Section 6.

Due to page limits, we defer our constructions of NIZKs and Zap arguments
to the full version.

2 Technical Overview

Our constructions rely on the correlation-intractability framework for instanti-
ating the Fiat-Shamir paradigm. We start by recalling this framework.

Fiat-Shamir via Correlation Intractability. A family of hash functions
defined by a tuple of algorithms (Gen,Hash) is said to be correlation intractable
(CI) for a relation class R if for any R ∈ R, given a hash key k sampled by
Gen, an adversary cannot find an input x such that (x,Hash(k, x)) ∈ R. In the
sequel, we focus on searchable relations where R is associated with a circuit C
and (x, y) ∈ R if and only if y = C(x).

The CI framework instantiates the random oracle in the Fiat-Shamir paradigm
for NIZKs via a family of CIH (Gen,Hash). Let Σ be a sigma protocol for a lan-
guage L where the messages are denoted as α, β and γ. To obtain a NIZK in
the CRS model, we collapse the rounds of Σ by computing β as the output of
Hash(k, α) for a key k sampled by Gen and fixed as part of CRS.

We now recall the argument for soundness of the resulting scheme. From the
special soundness of Σ, for any x /∈ L and any α, there exists a bad challenge
function BadC such that the only possible accepting transcript (α, β, γ) must
satisfy β = BadC(α). In other words, any cheating prover must find an α such
that β = Hash(k, α) = BadC(α). However, if (Gen,Hash) is CI for the relation
searchable by BadC, then such an adversary must not exist.

Note that in general, BadC may not be efficiently computable. However, for
trapdoor sigma protocols, BadC is efficiently computable given a “trapdoor” asso-
ciated with the protocol. In this case, we only require CI for efficiently searchable
relations.
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Prior Work. A sequence of works [15,38,16,36,21] have constructed CIH for var-
ious classes of (not necessarily efficiently searchable) relations from well-defined,
albeit strong assumptions that are not well understood. Recently, Canetti et al.
[14] constructed CIH for all efficiently searchable relations from circular-secure
fully homomorphic encryption. Subsequently, Peikert and Shiehian [50] obtained
a similar result based on standard LWE.

Very recently, Brakerski et al. [13] leveraged the compactness properties
of (rate-1) trapdoor hash functions to build CIH from standard assumptions.
Specifically, assuming DDH (or other standard assumptions such as Quadratic
Residuosity or LWE), they construct CIH for functions that can be approximated
by a distribution on constant-degree polynomials. While this is a small class, [13]
show that it nevertheless suffices for constructing NIZKs for NP. Specifically,
they show that by relying on the LPN assumption, it is possible to construct
trapdoor sigma protocols where the bad challenge function has probabilistic
constant-degree representation. By collapsing the rounds of this protocol, they
obtain NIZKs for NP.

Main Challenges. We now briefly discuss the main conceptual challenges in
buildings NIZKs based only on DDH (in light of the work of [13]).

On the one hand, (non-pairing) group-based assumptions seem to have less
structure than lattice assumptions; for example, we can only exploit linear homo-
morphisms. Hence it is not immediately clear how to construct rate-1 trapdoor
hash functions from DDH beyond (probabilistic) linear functions or constant-
degree polynomials (a constant-degree polynomial is also a linear function of its
monomials).5 On the other hand, it seems that we need CIH for more complicated
functions in order to build NIZKs from (only) DDH via the CIH framework.

Indeed, the bad challenge function in trapdoor sigma protocols involves (at
least) extraction from the commitment scheme used in the protocol, and it is
unclear whether such extraction can be represented by probablistic constant-
degree polynomials when the commitment scheme is constructed from standard
group-based assumptions. For example, the decryption circuit for the ElGamal
encryption scheme [27] (based on DDH) is in a higher complexity class, and is
not known to have representation by probabilistic constant-degree polynomials.
Indeed, there are known lower-bounds for functions that can be approximated by
probabilistic polynomials. Specifically, [55,56,47,41] proved that approximating
a n fan-in majority gate by probabilistic polynomials over binary field with a
small constant error requires degree at least Ω(

√
n).

Roadmap. We overcome the above dilemma by exploiting the power of inter-
action.

– In Section 2.1, we introduce the notion of interactive trapdoor hashing proto-
cols (ITDH) – a generalization of TDH to multi-round interactive protocols.

5 The breakthrough work of [12] shows that in the case of homomorphic secret-sharing,
it is in fact possible to go beyond linear homomorphisms in traditional groups. The
communication complexity of the sender in their scenario, however, grows with the
input length and is not compact as in the case of TDH.
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We show that despite increased interaction, ITDH can be used to build CIH.
Namely, we devise a round-collapsing approach to construct CIH from ITDH.

– We next show that ITDH can capture a larger class of computations than
what can be supported by known constructions of TDH. Namely, we con-
struct a constant-round ITDH protocol for TC0 where the sender is laconic
(Section 2.2).

– Finally, we demonstrate that using DDH, it is possible to construct trapdoor
sigma protocols where the bad challenge function can be computed in low
depth. Using such sigma protocols, we build multi-theorem (statistical) NIZK
and statistical Zap arguments for NP (Sections 2.3 and 2.4, respectively).

2.1 Interactive Trapdoor Hashing Protocols

We start by providing an informal definition of ITDH and then describe our
strategy for constructing CIH from ITDH.

Defining ITDH. An L-level ITDH is an interactive protocol between a “sender”
and a “receiver”, where the receiver’s input is a circuit f and the sender’s in-
put is a string x. The two parties jointly compute f(x) by multiple rounds of
communication that are divided into L levels. Each level ` ∈ [L] consists of two
consecutive protocol messages – a receiver’s message, followed by the sender’s
response:

– First, the receiver uses f (and prior protocol information) to compute a key
k` and trapdoor td`. It sends the key k` to the sender.

– Upon receiving this message, the sender computes a hash value h` together
with an encoding e`. The sender sends h` to the receiver but keeps e` to
herself. (The encoding e` can be viewed as sender’s “private state” used for
computing the next level message.)

Upon receiving the level L (i.e., final) message hL from the sender, the receiver
computes a decoding value d using the trapdoor. The function output f(x) can
be recovered by computing e ⊕ d, where e is the final level encoding computed
by the sender. We require the following properties from ITDH:

– Compactness: The sender’s message in every level must be compact. Specif-
ically, for every level ` ∈ [L], the size of the hash value h` is bounded by the
security parameter, and is independent of the length of the sender’s input x
and the size of the circuit f .

– Approximate Correctness: For an overwhelming fraction of the random
tapes for the receiver, for any input x, the Hamming distance between e⊕ d
and f(x) must be small. Note that this is an adaptive definition in that the
input x is chosen after the randomness for the receiver is fixed.

– Leveled Function Privacy: The receiver’s messages computationally hide
the circuit f . Specifically, we require that the receiver’s message in every
level can be simulated without knowledge of the circuit f . Moreover, we
allow the privacy guarantee to be different for each level by use of different
security parameters for different levels.
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As we discuss in Section 4.1, barring some differences in syntax, trapdoor
hash functions can be viewed as 1-level ITDH. We refer the reader to the tech-
nical sections for a formal definition of ITDH.

CIH from ITDH. We now describe our round-collapsing strategy for construct-
ing CIH from ITDH. Given an L-level ITDH for a circuit family C, we construct
a family of CIH for relations searchable by C as follows:

– Key Generation: The key generation algorithm uses the function-privacy
simulator for ITDH to compute a simulated receiver message for every level.
It outputs a key k consisting of L simulated receiver messages (one for each
level) as well as a random mask mask.

– Hash Function: Given a key k and an input x, the hash function uses the
ITDH sender algorithm on input x to perform an ITDH protocol execution
“in its head.” Specifically, for every level ` ∈ [L], it reads the corresponding
receiver message in the key k and uses it to computes the hash value and the
encoding for that level. By proceeding in a level-by-level fashion, it obtains
the final level encoding e. It outputs e⊕mask.

We now sketch the proof for correlation intractability. For simplicity, we first
consider the case when L = 1. We then extend the proof strategy to the multi-
level case.

For L = 1, the proof of correlation intractability resembles the proof in [13].
We first switch the simulated receiver message in the CIH key to a “real” message
honestly computed using a circuit C ∈ C. Now, suppose that the adversary finds
an x such that Hash(k, x) = C(x). Then by approximate correctness of ITDH,
C(x) ≈ e⊕ d, where the “ ≈ ” notation denotes closeness in Hamming distance.
This implies that e ⊕ d ≈ e ⊕ mask, and thus d ≈ mask. However, once we fix
the randomness used by the receiver, d only depends on h. Since h is compact,
the value d is exponentially “sparse” in its range. Therefore, the probability
that d ≈ mask is exponentially small, and thus such an input x exists with only
negligible probability.

Let us now consider the multi-level case. Our starting idea is to switch the
simulated receiver messages in the CIH key to “real” messages in a level-by-level
manner. However, note that the honest receiver message at each level depends
on the hash value sent by the sender in the previous level, and at the time of the
key generation of the CIH, the sender’s input has not been determined. Hence,
it is not immediately clear how to compute the honest receiver message at each
level without knowing the sender’s input.

To get around this issue, at each level `, we first simply guess the sender’s
hash value h`−1 in the previous level (` − 1), and then switch the simulated
receiver message in level ` to one computed honestly using the ITDH receiver
algorithm on input h`−1. To ensure this guessing succeeds with high probability,
we rely on the compactness of the hash values. Specifically, let λ` denote the
security parameter for the `th level in ITDH (as mentioned earlier, we allow the
security parameters for each level to be different). Then the guessing of the level
(`− 1) hash value succeeds with probability 2−λ`−1 . We set λ`−1 to be sublinear
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in λ, where λ is the security parameter for CIH. Then, when we reach the final
level, all our guesses are successful with probability 2−(λ1+λ2+...+λL), which is
sub-exponential in λ. Since the probability of d ≈ mask can be exponentially
small in λ, we can still get a contradiction.

However, the above argument assumes the function privacy is perfect, which
is not the case. Indeed, at every level, we must also account for the adversary’s
distinguishing advantage when we switch a simulated message to a real message.
In order to make the above argument go through, we need the distinguishing
advantage to be a magnitude smaller than 2−λ`−1 (for every `). That is, we
require ITDH to satisfy sub-exponential leveled functional privacy. Now, the
distinguishing advantage can be bounded by 2−λ

c
` , where 0 < c < 1 is a constant.

Once we choose λ` large enough, then 2−λ
c
` can be much smaller than 2−λ`−1 ,

and thus the above argument goes through as long as L is not too large.
In particular, there is room for trade-off between the number of levels in ITDH

that we can collapse and the amount of leveled function privacy required. If we
wish to rely on polynomial time and sub-exponential advantage assumptions,
then the above transformation requires the number of levels to be constant. If
we allow for sub-exponential time (and sub-exponential advantage) assumptions,
then the above transformation can work for up to O(log log λ) levels. We refer
the reader to Section 6.2 for more details.

2.2 Constructing ITDH

We now provide an overview of our construction of constant-round ITDH for
TC0. Let not-threshold gate be a gate that computes a threshold gate and then
outputs its negation. Since not-threshold gates are universal for threshold cir-
cuits, it suffices for our purposes to consider circuits that consist of only not-
threshold gates.

At a high-level, we implement the following two-step blueprint for construct-
ing ITDH:

– Step 1 (Depth-1 Circuits): First, we build an ITDH for a simple circuit
family T where each circuit is simply a single layer of layer of not-threshold
gates.

– Step 2 (Sequential Composition): Next, to compute circuits with larger
depth, we sequentially compose multiple instances of ITDH from the first
step, where the output of the ith ITDH is used as an input in the (i + 1)th

ITDH.

Overall, our construction uses only one cryptographic tool, namely, TDH for
linear functions. As we will see later, we will use additional ideas to introduce
non-linearity in the computation.

In the following, we elaborate on each of these steps. We first focus on step 2,
namely, the sequential composition step, and discuss the main challenges therein.
We will later describe how we implement step 1.

Controlling the Error. Recall that ITDH guarantees only approximate cor-
rectness, i.e., the xor of the final-level encoding e and decoding d is “close” (in
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terms of Hamming distance) to the true function output. Then, in a sequential
composition of an ITDH protocol, each execution only guarantees approximate
correctness. This means that the errors could spread across the executions, ulti-
mately causing every output bit of the final execution to be incorrect. For example,
suppose a coordinate of the output for an intermediate execution is flipped and
later, the computation of every output bit depends on this flipped output bit.
In this case, every output bit could be incorrect.

To overcome this issue, we observe that any circuit can be converted to a
new circuit that satisfies a “parallel structure” demonstrated in Figure 1.

Fig. 1. Parallel structure. The top (resp., bottom) layer corresponds to input (resp.,
output) wires.

In such circuits, each output bit only depends on the input to one parallel
repetition. Hence, the spreading of one Hamming error is controlled in one par-
allel execution. We leverage this observation to prove approximate correctness
of the sequential composition.

Input Passing. Recall that the protocol output in any ITDH execution is
“secret shared” between the sender and the receiver, where the sender holds the
final level encoding e, and the receiver holds the decoding d. Then, a plausible
way to implement Step 2 is for the receiver to simply send the decoding in the
ith ITDH to the sender so that the latter can compute the output, and then use
it as input in the (i+1)th ITDH. However, this leaks intermediate wire values (of
the TC0 circuit that we wish to compute) to the sender, thereby compromising
function privacy. Note that the reverse strategy of requiring the sender to send
the encoding to the receiver (to allow output computation) also does not work
since it violates the compactness requirement on the sender’s messages to the
receiver.

To resolve this issue, we keep the secret-sharing structure of the output in
every ITDH intact. Instead, we extend the functionality of the ITDH in Step 1
so that the output of the ith ITDH can be computed within the (i+ 1)th ITDH.
Specifically, in Step 1, we construct an ITDH for a circuit family T ⊕ where
every circuit consists of a single layer of Xor-then-Not-Threshold gates, namely,
gates that first XOR the input with a pre-hardwired string and then compute
the not-threshold operation on the resulting value. This allows for resolving the
above problem as follows: the final-level encoding from the ith ITDH constitutes
the sender’s input in the (i + 1)th ITDH. On the other hand, the decoding in
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the ith ITDH is used as the pre-hardwired string in the circuit computed by the
(i+ 1)th ITDH.

Putting together these ideas in a careful manner, we are able to implement
Step 2. We refer the reader to the technical section for more details on this step.

ITDH for T ⊕. We now discuss how we implement revised step 1, namely
constructing an ITDH for T ⊕, where every circuit consists of a single layer of
Xor-then-Not-Threshold gates. At a high-level, we proceed in the following three
steps:

– We first “decompose” a circuit in T ⊕ as the composition of two linear func-
tions.

– Next, we use a 1-level ITDH, which is implied by TDH, to compute each of
these linear functions.

– Finally, we “compose” the two ITDH executions sequentially to obtain a
2-level ITDH for T ⊕.

An observant reader may wonder how we decompose the computation of
threshold gates into linear functions. Indeed, composition of linear functions is
still a linear function, while a threshold gate involves non-linear computation. As
we will soon see, our decomposition strategy crucially relies on some “offline”
processing by the parties on the intermediate encoding and decoding values
between different TDH executions. This introduces the desired non-linearity in
the computation.

For simplicity, let us focus on the simpler goal of computing a single Xor-
then-Not-Threshold gate. Our ideas easily extend to the more general setting.
To compute such a gate, we proceed in three simple steps.

– First, bitwise xor the input string x with another string y, where y is hard-
wired in the circuit description.

– Next, sum the elements in the string x⊕ y.
– Finally, compare the summation with the threshold t (defined by the gate).

For the first step, let a and b be two bits at (say) the ith coordinate of x and
y, respectively. Then a⊕b = 1 if and only if a = 0∧b = 1 or a = 1∧b = 0. Hence,
a⊕ b = (1− a) · b+ a · (1− b). Since b is part of the circuit description, the right
hand side is a linear function of a over Z. For the second step, we simply sum over
the result of step 1 on all coordinates. Combining the first step and the second
step, this summation is still a linear function of x over Z, and thus we can use a
TDH for linear functions to compute such a summation. We note, however, that
the known construction of TDH in [25,13] is only for linear functions over Z2.
We therefore extend the TDH construction in [25,13] to arbitrary polynomial
modulus. In our case, since the summation cannot be more than n, it suffices to
choose the modulo (n+ 1).

We now proceed to express the comparison in the third step as a linear func-
tion. We start with a simpler case. Suppose that the summation obtained from
the second step is sum ∈ {0, 1, 2, . . . , n} and we want to compare it with a thresh-
old t. Let 1sum denote the indicator vector of x, i.e., 1sum = (0, 0, . . . , 0, 1, 0, . . . , 0),
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where the (sum+ 1)th coordinate is 1, and all other coordinates are 0. Then, we
have that

sum < t ⇐⇒ 〈1sum,1<t〉 = 1,

where 1<t = (1, 1, . . . , 1, 0, . . . , 0) is a vector with 1’s on the first t coordinates,
and 0’s on on the remaining coordinates. We can therefore express the compar-
ison as the inner product between 1sum and 1<t, which is a linear function over
1sum. Hence, such a comparison can be computed by a TDH for linear functions
over Z2.

The above discussion is oversimplified, however, since the sender and the
receiver do not have the value sum. Instead, at the end of the “previous” TDH
execution, the sender and the receiver only obtained encoding e and a decoding
d, respectively, such that (e+ d) mod R = sum. Fortunately, we can still express
the comparison (e + d) mod R < t as

(e + d) mod R < t ⇐⇒ 〈1e,1j,<t〉 = 1,

where 1e is the indicator vector for e and 1j,<t =
∑t−1
j=0 1(j−d) mod R. This ex-

pression works because comparing (e + d) mod R < t is equivalent to checking
if there exists a 0 ≤ j < t such that (e + d) mod R = j, which is equivalent
to checking whether e = (j − d) mod R. Note that the right hand side of this
formula is a linear function of 1e, and can thus be computed using a TDH for
linear functions over Z2.

In the above two executions of TDH, the sender processes e from the first
TDH execution to obtain 1e, and uses it as the input to the second TDH. The
receiver processes d from the first TDH execution to obtain 1j,<t, and uses
it as the function for the second TDH execution. Note that this intermediate
processing is non-linear, since computing the indicator vector can be done by
several equality checks, and equality check is not a linear function. Hence, it
introduces the necessary non-linearity in the computation, but is done “outside”
of the TDH executions.

2.3 Constructing NIZKs

Armed with our construction of CIH, we now sketch the main ideas underlying
our construction of (statistical) multi-theorem NIZK for NP. We proceed in the
following two steps:

1. First, using CIH for TC0, we construct a non-interactive witness indistin-
guishable (NIWI) argument for NP in the common random string model.
Our construction satisfies either statistical WI and non-adaptive soundness,
or computational WI and adaptive soundness.

2. We then transform the above NIWI into an adaptive, multi-theorem NIZK for
NP in the common random string model via a variant of the Feige-Lapidot-
Shamir (FLS) “OR-trick” [28].6 Our NIZK satisfies either statistical ZK and

6 By using “programmable” CIH, one could directly obtain NIZKs in the first step.
However, the resulting NIZK only achieves single-theorem ZK; hence an additional
step is still required to obtain multi-theorem NIZKs.

12



non-adaptive soundness, or computational ZK and adaptive soundness. Cru-
cially, our transformation does not require “CRS switching” in the security
proof and hence works for both cases seamlessly while preserving the distri-
bution of the CRS in the underlying NIWI.

Statistical NIZKs. In the remainder of this section, we focus on the construc-
tion of statistical NIZKs. We briefly discuss the steps necessary for obtaining the
computational variant (with adaptive soundness) at the end of the section.

Towards implementing the first of the above two steps, we first build the
following two ingredients:

– A lossy public key encryption scheme with an additional property that we
refer to as low-depth decryption, from DDH. Roughly speaking, this property
requires that there exists a TC0 circuit Dec that takes as input any ciphertext
ct and a secret key sk, and outputs the correct plaintext.

– A trapdoor sigma protocol for NP with bad challenge function in TC0 from
the above lossy public key encrytion scheme. We also require the trapdoor
sigma protocol to satisfy an additional “knowledge extraction” property,
which can be viewed as an analogue of special soundness for trapdoor sigma
protocols. Looking ahead, we use this property to construct NIWIs with ar-
gument of knowledge property, which in turn is required for our FLS variant.

Lossy Public Key Encryption. The lossy public key encryption we use is
essentially the same as in [40,51,3]. We start by briefly describing the scheme.

A public key pk =

[
g1 gb

ga gc

]
is a matrix of elements in a group G. When the

matrix

[
1 b
a c

]
is singular (i.e., c = ab), then the public key is in the “injective

mode” and the secret key is sk = a; when the matrix is non-singular (i.e., c 6= ab),
then the public key is in the “lossy mode.” The encryption algorithm is described
as follows:

Enc

(
pk,m ∈ {0, 1}; r =

[
r1
r2

])
=

[
(g1)r1 · (gb)r2

(ga)r1 · (gc)r2 · gm
]

= g

1 b
a c

r1
r2

+

 0
m


.

Let us now argue the low-depth decryption property. Let [c1, c2]T denote
the ciphertext obtained by encrypting a message m using an injective mode
public key pk with secret key sk = a. To decrypt the ciphertext, we can compute
c−a1 · c2 = gm and then comparing with 1G to recover m. However, it is not
known whether c−a1 can be computed in TC0 (recall that a depends on the
security parameter).

Towards achieving the low-depth decryption property, we use the following
observation. Let a0, a1, . . . aλ be the binary representation of a. Then, we have
that (

c−2
0

1

)a0
·
(
c−2

1

1

)a1
·
(
c−2

2

1

)a2
· . . . ·

(
c−2

λ

1

)aλ
· c2 = gm.
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Note that given [c1, c2]T , one can “precompute” c−2
0

1 , c−2
1

1 , . . . , c−2
λ

1 with-
out using the secret key sk. In our application to NIZKs and Zaps, such pre-
computation can be performed by the prover and the verifier.

We leverage this observation to slightly modify the definition of low-depth
decryption to allow for a deterministic polynomial-time “pre-computation” algo-
rithm PreComp. Specifically, we require that the output of Dec(PreComp(1λ, ct), sk)

is the correct plaintext m. We set PreComp(1λ, c) = (c−2
0

1 , c−2
1

1 , . . . , c−2
λ

1 , c2),

and allow the circuit Dec to receive c−2
0

1 , c−2
1

1 , . . . , c−2
λ

1 , c2 and a0, a1, . . . , aλ as
input. The decryption circuit Dec proceeds in the following steps:

– For each i = 0, 1, . . . , λ, it chooses gi to be either 1G or c−2
i

1 , such that

gi = (c−2
i

1 )ai . This computation can be done in constant depth, and is hence
in TC0.

– Multiply the values g0, g2, . . . , gλ and c2. From [52], this iterative multipli-
cation can be computed in TC0 when we instantiate G as a subgroup of
Z∗q .

– Compare the resulting value with 1G. If they are equal, then output 0. Oth-
erwise output 1.

Since each of the above steps can be computed in TC0, we have that Dec is
also in TC0.

Trapdoor Sigma Protocol for NP. Recently, Brakerski et al. [13] constructed
a “commit-and-open” style trapdoor sigma protocol where the only crypto-
graphic primitive used is a commitment scheme. Crucially, the bad challenge
function for their protocol involves the following two computations: extraction
from the commitment, and a post-extraction verification using 3-CNF. By ex-
ploiting the specific form of their bad challenge function, we construct a trapdoor
sigma protocol for NP with our desired properties by simply instantiating the
commitment scheme in their protocol with the above lossy encryption scheme.

Let us analyze the bad challenge function of the resulting trapdoor sigma
protocol. Since our lossy public key encryption satisfies the low-depth decryption
property, the first step of the bad challenge computation can be done in TC0.
Next, note that the second step of the bad challenge computation is also in TC0

since it involves evaluation of 3-CNF which can be computed in AC0. Thus, the
bad challenge function is in TC0.

We observe that our protocol also satisfies a knowledge extraction property
which requires that one can efficiently extract a witness from a single accepting
transcript (α, β, γ) by using a trapdoor (namely, the secret key of the lossy public
key encryption), if β does not equal to the output of the bad challenge function
evaluated on α. We use this property to construct NIWIs with argument of
knowledge property.

NIWI from Fiat-Shamir via CIH. We construct NIWI arguments in the
CRS model by using CIH to collapse the rounds of our trapdoor sigma protocol
repeated λ times in parallel. The CRS of the resulting construction contains
a public-key of lossy public key encryption scheme from above and a CIH key.
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When the public key is in lossy mode, the NIWI achieves statistical WI property
and non-adaptive argument of knowledge property.

To prove the argument of knowledge property, we observe that for any ac-
cepting transcript ({αi}i∈[λ], {βi}i∈[λ], {γi}i∈[λ]), it follows from correlation in-
tractability of the CIH that {βi}i∈[λ] is not equal to the outputs of the bad
challenge function evaluated on {αi}i∈[λ]. Hence, there exists at least one index
i∗ such that βi∗ is not equal to the output of the bad challenge function on αi∗ .
We can now extract a witness by relying on the knowledge extraction property
of the i∗-th parallel execution of the trapdoor sigma protocol.

From NIWI to Multi-theorem NIZK. The FLS “OR-trick” [28] is a stan-
dard methodology to transform NIWIs (or single-theorem NIZKs) into multi-
theorem NIZKs. Roughly speaking, the trick involves supplementing the CRS
with an instance (say) y of a hard-on-average decision problem and requiring
the prover to prove that either the “original” instance (say) x or y is true. This
methodology involves switching the CRS either in the proof of soundness or
zero-knowledge, which can potentially result in a degradation of security. E.g.,
in the former case, one may end up with non-adaptive (computational) sound-
ness while in the latter case, one may end up with computational ZK even if the
underlying scheme achieves statistical privacy. The instance y also needs to be
chosen carefully depending on the desired security and whether one wants the
resulting CRS to be a reference string or a random string.

We consider a variant of the “OR-trick” that does not require CRS switching
and preserves the distribution of the CRS of the underlying scheme. We sup-
plement the CRS with an instance of average-hard search problem, where the
instance is subjected to the uniform distribution. For our purposes, the discrete
logarithm problem suffices. The ZK simulator simply uses the secret exponent
of the discrete-log instance in the CRS to simulate the proof. On the other
hand, soundness can be argued by relying on the computational hardness of
the discrete-log problem. One caveat of this transformation is that the proof
of soundness requires the underlying NIWI to satisfy argument of knowledge
property. We, note, however, that this property is usually easy to achieve (in the
CRS model).

Using this approach, we obtain statistical multi-theorem NIZK arguments
in the common random string model from sub-exponential DDH. Previously,
group-based statistical NIZKs were known only in the common reference string
model [34,34].

We remark that the above idea can be easily generalized to other settings. For
example, starting from LWE-based single-theorem statistical NIZKs [50], one can
embed the Shortest Integer Solution (SIS) problem in the CRS to build multi-
theorem statistical NIZKs in the common random string model. This settles an
open question stated in the work of [50].

Computational NIZKs with Adaptive Soundness. Using essentially the
same approach as described above, we can also construct computational NIZKs
for NP with adaptive soundness. The main difference is that instead of using lossy
public-key encryption scheme in the construction of trapdoor sigma protocols,
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we use ElGamal encryption scheme [27]. Using the same ideas as for our lossy
public-key encryption scheme, we observe that the ElGamal encryption scheme
also satisfies low-depth decryption property. This allows us to follow the same
sequence of steps as described above to obtain a computational NIZK for NP
with adaptive soundness in the common random string model.7

2.4 Constructing Zaps

At a high-level, we follow a similar recipe as in the recent works of [2,32] who
construct statistical Zap arguments from quasi-polynomial LWE.

The main idea in these works is to replace the (non-interactive) commitment
scheme in a trapdoor sigma protocol with a two-round statistical-hiding com-
mitment scheme in the plain model and then collapse the rounds of the resulting
protocol using CIH, as in the case of NIZKs. Crucially, unlike the non-interactive
commitment scheme that only allows for extraction in the CRS model, the two-
round commitment scheme must support extraction in the plain model. The key
idea for achieving such an extraction property (in conjunction with statistical-
hiding property) is to allow for successful extraction with only negligible but

still much larger than sub-exponential probability (for example, 2− log2 λ) [37].
By carefully using complexity leveraging, one can prove soundness of the result-
ing argument system.

Statistical-Hiding Commitment with Low-depth Extraction. We imple-
ment this approach by replacing the lossy public-key encryption scheme in our
NIWI construction (from earlier) with a two-round statistical hiding commit-
ment scheme. Since we need the bad challenge function of the sigma protocol to
be in TC0, we require the commitment scheme to satisfy an additional low-depth
extraction property.

To construct such a scheme, we first observe that the construction of (public-
coin) statistical-hiding extractable commitments in [39,37,2,32] only makes black-
box use of a two-round oblivious transfer (OT) scheme. We instantiate this
generic construction via the Naor-Pinkas OT scheme based on DDH [45]. By
exploiting the specific structure of the generic construction as well as the fact
that Naor-Pinkas OT decryption can be computed in TC0, we are able to show
that the extraction process can also be performed in TC0. We refer the reader
to the full version for more details.

3 Preliminaries

For any positive integer N ∈ Z, N > 0, denote [N ] = {1, 2, . . . , N}. For any
integer R > 0, and x ∈ ZR, 0 ≤ x < R, the indicator vector 1x of x is a vector

7 We note that one could obtain computational NIZKs with adaptive soundness by
simply “switching the CRS” in our construction of statistical NIZKs. However, the
resulting scheme in this case is in the common reference string model.
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in {0, 1}R, where the (x+ 1)th position is 1, and all other coordinates are zero.
A binary relation R is a subset of {0, 1}∗ × {0, 1}∗.

Statistical Distance. For any two discrete distributions P,Q, the statis-
tical distance between P and Q is defined as SD(P,Q) =

∑
i

∣∣Pr [P = i] −
Pr [Q = i]

∣∣/2 where i takes all the values in the support of P and Q.

Hamming Distance. Let n be an integer, and S be a set, and x = (x1, x2, . . . , xn)
and (y1, y2, . . . , yn) be two tuples in Sn, the Hamming distance Ham(x, y) is de-
fined as Ham(x, y) = |{i | xi 6= yi}|.

Threshold Gate. Let x1, x2, . . . , xn be n binary variables. A threshold gate is
defined as the following function:

Tht(x1, x2, . . . , xn) =

{
1
∑
i∈[n] xi ≥ t

0 Otherwise

Not-Threshold Gate. A not-threshold gate Tht is the negation of a threshold
gate.

Threshold Circuits and TC0. A threshold circuit is a directed acyclic graph,
where each node either computes a threshold gate of unbounded fan-in or a
negation gate.

In this work, for any constant L, we use TC0
L to denote the class of L-depth

polynomial-size threshold circuits. When the depth L is not important or is clear
from the context, we omit it and simply denote the circuit class TC0

L as TC0.
The not-threshold gate is universal for TC0, since we can convert any threshold
circuit of constant depth to a constant depth circuit that only contains not-
threshold gates. The conversion works as follows: for each negation gate, we
convert it to a not-threshold gate with a single input and threshold t = 1. For
each threshold gate, we convert it to a not-threshold gate with the same input
and threshold and then compose it with a negation gate, where the negation
gate can be implemented as a not-threshold gate.

We defer more preliminaries to the full version.

4 Interactive Trapdoor Hashing Protocols

In this section, we define interactive trapdoor hashing protocols (ITDH). At a
high-level, ITDH is a generalization of trapdoor hash functions – which can be
viewed as two-round two-party protocols with specific structural and communi-
cation efficiency properties – to multi-round protocols.

More specifically, an interactive trapdoor hashing protocol involves two par-
ties – a sender and a receiver. The sender has an input x, while the receiver has
a circuit f . The two parties jointly compute f(x) over several rounds of interac-
tion. We structure the protocols in multiple levels, where a level consists of the
following two successive rounds:
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– The receiver generates a key k and a trapdoor td using a key generation
algorithm KGen, which takes as input the circuit f , the level number, and
some additional internal state of the receiver. Then it sends k to the sender.

– Upon receiving a key k, the sender computes a hash value h and an encoding
e using the algorithm Hash&Enc, which takes as input x, the key k, the level
number, and the previous level encoding. Then it sends the hash h to the
receiver, and keeps e as an internal state.

Finally, there is a decoding algorithm Dec that takes the internal state of the
receiver after the last level as input, and outputs a decoding value d. Ideally, we
want the output f(x) to be e⊕ d.

In the following, we proceed to formally define this notion and its properties.

Per-level Security Parameter. In our formal definition of ITDH, we allow the
security parameter to be different for every level. This formulation is guided by
our main application, namely, constructing correlation-intractable hash functions
(see Section 6). Nevertheless, we note that ITDH could also be meaningfully
defined w.r.t. a single security parameter for the entire protocol.

4.1 Definition

Let C = {Cn,u}n,u be a family of circuits, where each circuit f ∈ Cn,u is a
circuit of input length n and output length u. An L-level interactive trap-
door hashing protocol for the circuit family C is a tuple of algorithms ITDH =
(KGen,Hash&Enc,Dec) that are described below.

We use λ1, . . . , λL to denote the security parameters for different levels.
Throughout this work, these parameters are set so that they are polynomially
related. That is, there exists a λ such that λ1, . . . , λL are polynomials in λ.

– KGen(1λ` , `, f, h`−1, td`−1): The key generation algorithm takes as input a
security parameter λ` (that varies with the level number), a level number `,
a circuit f ∈ Cn,u, a level (` − 1) hash value h`−1 and trapdoor td`−1 (for
` = 1, h`−1 = td`−1 = ⊥). It outputs an `th level key k` and a trapdoor td`.

– Hash&Enc(k`, x, e`−1): The hash-and-encode algorithm takes as input a level
` hash key k`, an input x, and a level (` − 1) encoding e`−1. It outputs an
`th level hash value h` and an encoding e` ∈ {0, 1}u. When ` = 1, we let
e`−1 = ⊥.

– Dec(tdL, hL): The decoding algorithm takes as input a level L trapdoor tdL
and hash value hL, and outputs a value d ∈ {0, 1}u.

We require ITDH to satisfy the following properties:

– Compactness: For each level ` ∈ [L], the bit length of h` is at most λ`.
– (∆, ε)-Approximate Correctness: For any n, u ∈ N, any circuit f ∈ Cn,u

and any sequence of security parameters (λ1, . . . , λL), we have

Pr
r1,r2,...,rL

[∀x ∈ {0, 1}n,Ham(e⊕ d, f(x)) < ∆(u)] > 1− ε(u, λ1, . . . , λL),

where e, d are obtained by the following procedure: Let h0 = td0 = e0 = ⊥.
For ` = 1, 2, . . . , L,
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• Compute (k`, td`) ← KGen(1λ` , `, f, h`−1, td`−1; r`) using random coins
r`.

• Hash and encode the input x: (h`, e`)← Hash&Enc(k`, x, e`−1).
Finally, let e = eL be the encoding at the final level, and d = Dec(tdL, hL).

– Leveled Function Privacy: There exist a simulator Sim and a negligible
function ν(·) such that for any level ` ∈ [L], any polynomials n(·) and u(·) in
the security parameter, any circuit f ∈ Cn,u, any trapdoor td′ ∈ {0, 1}|td`−1|,
any hash value h′ ∈ {0, 1}|h`−1|, and any n.u. PPT distinguisher D,∣∣∣∣Pr

[
(k`, td`)← KGen(1λ` , `, f, h′, td′) : D(1λ` , k`) = 1

]
−

Pr
[
k̃` ← Sim(1λ` , 1n, 1u, `) : D(1λ` , k̃`) = 1

] ∣∣∣∣ ≤ ν(λ`).

We say that the ITDH satisfies sub-exponential leveled function privacy, if
there exists a constant 0 < c < 1 such that for any n.u. PPT distinguisher,
ν(λ`) is bounded by 2−λ

c
` for any sufficiently large λ`.

Note that since the security parameters for different levels are polynomially
related, n(·) and u(·) are polynomials in λ` iff they are polynomials in λ.

Relationship with Trapdoor Hash Functions. A 1-level ITDH is essentially
the same as TDH, except that in TDH, there are two kinds of keys: a hash key
and an encoding key. In particular, a hash value is computed using the hash key
and can be reused with different encoding keys for different functions. In 1-level
ITDH, however, the receiver’s message only consists of one key that is used by
the sender for computing both the hash value and the encoding. Therefore, the
hash value is not reusable for different functions.

We choose the above formulation of ITDH for the sake of a simpler and
cleaner definition. Moreover, if we consider multi-bit output functions, then the
above difference disappears, since we can combine multiple functions into one
multi-bit output function and encode it using one key.

5 Construction of ITDH

In this section, we construct an interactive trapdoor hashing protocol (ITDH)
for TC0 circuits. We refer the reader to Section 2 for a high-level overview of our
approach. The remainder of this section is organized as follows:

– Depth-1 Circuits: In Section 5.1, we first construct a 2-level ITDH proto-
col for T ⊕ – roughly speaking, a family of depth-1 Xor-then-Not-Threshold
circuits (see below for the precise definition of T ⊕).

– Sequential Composition: Next, in Section 5.2, we present a sequential
composition theorem for ITDH where we show how to compose L instances
of a 2-level ITDH for some circuit family to obtain a 2L-level ITDH for a
related circuit family.

– Construction for TC0: Finally, in Section 5.3, we put these two construc-
tions together to obtain an ITDH for TC0.
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5.1 ITDH for T ⊕

We start by introducing some notation and definitions.

XOR-then-Compute Circuits. Let C = {Cn,u}n,u be a circuit family, where
for any n and u, Cn,u contains circuits with n-bit inputs and u-bit outputs. For
any C, we define an Xor-then-Compute circuit family C⊕ = {C⊕n,u}n,u consisting
of circuits that first compute a bit-wise xor operation on the input with a fixed
string and then compute a circuit in C on the resulting value.

Specifically, C⊕n,u contains all the circuit C⊕y : {0, 1}n → {0, 1}u, where
y ∈ {0, 1}n and there exists a C ∈ Cn,u such that for every x ∈ {0, 1}n,

C⊕y(x) = C(x⊕ y).

Circuit Families T and T ⊕. We define a circuit family T = {Tn,u}n,u consist-
ing of depth-1 not-threshold circuits, i.e., a single layer of not-threshold gates
(see Section 3). Specifically, Tn,u contains all circuits T~t,~I : {0, 1}n → {0, 1}u

where ~t = {t1, . . . , tu} is a set of positive integers, and ~I = {I1, . . . , Iu} is a
collection of sets Ij ⊆ [n] s.t. for any x ∈ {0, 1}n,

T~t,~I(x) =
(
Tht1(x[I1]), . . . ,Thtu(x[Iu])

)
,

where for any index set Ij = {i1, i2, . . . , iw} ⊆ [n], we denote x[Ij ] = (xi1 , xi2 , . . . ,
xiw) as the projection of string x to the set Ij .

The function family T ⊕ = {T ⊕n,u}n,u is defined as the Xor-then-Compute

family corresponding to T . We denote the circuits in T ⊕n,u as T⊕y
~t,~I

, where ~t, ~I

and y are as defined above.
For a high-level overview of our construction, see Section 2.2. We now proceed

to give a formal description of our construction.

Construction of ITDH for T ⊕. We construct a 2-level interactive trapdoor
hashing protocol ITDH = (KGen,Hash&Enc,Dec) for the circuit family T ⊕ as de-
fined above. Our construction relies on the following ingredient: a trapdoor hash
function TDH = (TDH.HKGen,TDH.EKGen,TDH.Hash,TDH.Enc,TDH.Dec) for
the linear function family F = {Fn,R}n,R that achieves τ -enhanced correctness
and function privacy.

For ease of exposition, we describe the algorithms of ITDH separately for each
level. The first level algorithms of ITDH internally use TDH to evaluate a circuit
(defined below) with input length n1 = n and modulus R1 = n+ 1. The second
level algorithms of ITDH internally use TDH to evaluate another circuit (defined
below) with input length n2 = R1 · u and modulus R2 = 2. We use λ1 and λ2
to denote the security parameters input to the first and second level algorithms,
respectively.

– Level 1 KGen(1λ1 , 1,T⊕y
~t,~I
, h0 = ⊥, td0 = ⊥):

• Sample a hash key of TDH w.r.t. security parameter λ1, input length
n1 = n and modulus R1 = n+ 1

hk1 ← TDH.HKGen(1λ1 , 1n1=n, 1R1=n+1)
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• Parse ~I = {I1, . . . , Iu}. For every i ∈ [u], sample an encoding key:

(ek1,i, td1,i)← TDH.EKGen(hk1,XorSumIi,y)

where for any set I ⊆ [n], XorSumI,y is the linear function described in
Figure 2.

• Output (k1, td1) where k1 = (1, hk1, {ek1,i}i∈[u]) and td1 = {td1,i}i∈[u].
– Level 1 Hash&Enc(k1, x, e0 = ⊥):

• Parse k1 = (1, hk1, {ek1,i}i∈[u]).
• Compute “first level” hash over x: h1 ← TDH.Hash(hk1, x)

• For every i ∈ [u], compute a “first level” encoding: e1,i ← TDH.Enc(ek1,i, x)

• Output (h1, e1), where e1 = {e1,i}i∈[u].

– Level 2 KGen(1λ2 , 2,T⊕y
~t,~I
, h1, td1):

• Parse td1 = {td1,i}i∈[u]. For every i ∈ [u], decode h1: d1,i ← TDH.Dec(td1,i, h1)

• Sample a new hash key of TDH w.r.t. security parameter λ2, input length
n2 = R1 · u and modulus R2 = 2,

hk2 ← TDH.HKGen(1λ2 , 1n2=R1·u, 1R2=2).

• Parse ~t = {t1, . . . , tu}. For each i ∈ [u], sample a new encoding key

(ek2,i, td2,i)← TDH.EKGen(hk2,AddThi,ti,d1,i),

where for any index i ∈ [u], positive integer t and value d ∈ ZR1
,

AddThi,t,d is the linear function defined in the Figure 3.

• Output (k2, td2), where k2 = (2, hk2, {ek2,i}i∈[u]) and td2 = {td2,i}i∈[u].
– Level 2 Hash&Enc(k2, x, e1):

• Parse k2 = (2, hk2, {ek2,i}i∈[u]), and e1 = {e1,i}i∈[u].
• Compute “second level” hash over {1e1,i}i∈[u], where 1e is the indicator

vector for any e.

h2 ← TDH.Hash(hk2, {1e1,i}i∈[u])

• For any i ∈ [u], compute “second level” encoding: e2,i ← TDH.Enc(ek2,i,
{1e1,j}j∈[u]).

• Output (h2, e2), where e2 = {e2,i}i∈[u]).
– Decoding Dec(td2, h2):

• Parse td2 = {td2,i}i∈[u]. For every i ∈ [u], decode h2: d2,i ← TDH.Dec(td2,i, h2).

• Output d = {d2,i}i∈[u].

This completes the description of ITDH. We defer the proof of approximate
correctness and leveled function privacy to the full version.
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Linear Function XorSumI,y(x1, . . . , xn) over ZR1

– Let y = (y1, y2, . . . , yn).
– Compute and output

∑
i∈I xi · (1− yi) + (1− xi) · yi.

Fig. 2. Description of the linear function XorSumI,y. This function computes the sum
over ZR1 of I values obtained by bit-wise XOR of y[I] and x[I], where x = (x1, . . . , xn).

Linear Function AddThi,t,d(~e) over Z2

– Let ~e = (e1, . . . , eu), where ej ∈ {0, 1}R1 for every j ∈ [u].
– Compute and output the inner product: 〈ei, f〉 mod 2, where f =∑t−1

j=0 1(j−d) mod R1
is the sum of indicator vectors for (j − d) mod R1, for

0 ≤ j < t.

Fig. 3. Description of the linear function AddThi,t,d. For any e1, e2, . . . , eu ∈ ZR1 , this
function computes whether (ei + d) mod R1 is less than the threshold t. The actual
input ~e to the function is such that ei is the indicator vector for ei.

5.2 ITDH Composition

In this section, we establish a sequential composition theorem for ITDH. Roughly
speaking, we show how a 2-level ITDH for an “Xor-then-Compute” circuit family
can be executed sequentially L times to obtain an ITDH for a related circuit
family (the exact transformation is more nuanced; see below). The main benefit
of sequential composition is that it can be used to increase the depth of circuits
that can be computed by ITDH.

We start by introducing some notation and terminology for circuit composi-
tion that we shall use in the sequel.

Parallel Composition. Let w be a positive integer. Informally, an w-parallel
composition of a circuit f ′ is a new circuit f that computes w copies of f ′

in parallel. More formally, for any circuit family C, we define a corresponding
parallel-composition circuit family as follows:

Definition 1 (Parallel Composition). For any circuit family C and any poly-
nomial w = w(n), we say that C[−→w ] = {C[−→w ]n,u}n,u is a family of w-parallel
composition circuits if for every f ∈ C[−→w ]n,u, there exists a sequence of circuits
f ′1, f

′
2, . . . , f

′
w ∈ Cn′,u′ such that n = n′ · w(n) and u = u′ · w(n), and for any

input x = (x1, x2, . . . , xw) ∈ {0, 1}n′·w (where every xi ∈ {0, 1}n
′
), we have

f(x1, x2, . . . , xw) = (f ′1(x1), f ′2(x2), . . . , f ′w(xw)).

Parallel-and-Sequential-Composition. For any circuit family C, we now
define another circuit family obtained via parallel and sequential composition of
circuits in C.
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Informally speaking, for any polynomials w(n) and L(n) and an integer s,
a w-parallel-and-L-sequential-composition of a circuit family C is a new circuit
family C[−→w↓L] = {C[−→w↓L]n,s}n,s, where each circuit f ∈ C[−→w↓L]n,s is computed by a
sequence of circuits f1, f2, . . . , fL. For any input x, to compute f(x), we firstly
evaluate f1 on input x, then use the output f1(x) as the input to the circuit
f2, and so on, such that the output of fL is the output of f . Furthermore, we
require that for every ` ∈ [L], f` is an m-parallel composition of some sequence
of circuits f ′`,1, f

′
`,2, . . . , f

′
`,w ∈ C. For the ease of presentation, we fix the output

length of the circuit f` for every ` < L as s, and the output length of f as w.

Definition 2 (Parallel-and-Sequential-Composition). Let C = {Cn,u}n,u
be a circuit family, where each circuit in Cn,u has input length n and output length
u. For any polynomials w = w(n), L = L(n), and integer s, we say that C[−→w↓L] =

{C[−→w↓L]n,s}n,s is a family of w-parallel-and-L-sequential-composition circuits if

every circuit f ∈ C[−→w↓L]n,s is of the form

f = fL ◦ fL−1 ◦ . . . ◦ f1

where for every ` ∈ [L], f` : {0, 1}n` → {0, 1}n`+1 satisfies n1 = n, n2 = n3 =
. . . = nL−1 = s, nL = w. Furthermore, there exists a sequence of integers {n′`}`
and circuits {f ′`,j}`∈[L],j∈[w], where f ′`,j ∈ Cn′`,n′`+1

, and n` = n′` · w,

f`(x1, . . . , xw) =
(
f ′`,1(x1), f ′`,2(x2), . . . , f ′`,w(xw)

)
for every x = (x1, . . . , xw) ∈ {0, 1}n′`·w, where xi ∈ {0, 1}n

′
` for every i ∈ [w].

Construction of ITDH for C[−→w↓L]. Let C = {Cn,u}n,u be any circuit fam-
ily, and let C[−→w ] be the corresponding w-parallel composition circuit family.
Let C[−→w ]⊕ = {C[−→w ]⊕n,u}n,u be the “Xor-then-Compute” circuit family defined
w.r.t. C[−→w ]. Let ITDH = (ITDH.KGen, ITDH.Hash&Enc, ITDH.Dec) be a 2-level
interactive trapdoor hashing protocol for C[−→w ]⊕ = {C[−→w ]⊕n,u}n,u with (∆, ε)-
approximate correctness and leveled function privacy.

Given ITDH, we construct a 2L-level interactive trapdoor hashing protocol
ITDH′ = (KGen,Hash&Enc,Dec) for the circuit family C[−→w↓L] as defined above. For

ease of exposition, we describe the algorithms of ITDH′ for “odd” and “even”
levels separately.

– Level `′ = 2`− 1, KGen(1λ`′ , `′, f, h`′−1, td`′−1):
• If ` = 1, set d0 to be an all zero string of length n.
• If ` ≥ 2, decode h`′−1: d`−1 ← ITDH.Dec(td`′−1, h`′−1)
• Let f1, . . . , fL be such that f = fL ◦ fL−1 ◦ . . . ◦ f1 (as defined above),

where f` has input length n` and output length n`+1.
• Compute a key w.r.t. security parameter λ`′ and the “Xor-then-Compute”

circuit f
⊕d`−1

` ∈ C[−→w ]⊕n`,n`+1

(k`,1, td`,1)← ITDH.KGen(1λ`′ , 1n` , 1, f
⊕d`−1

` ,⊥,⊥).

23



• Output (k`′ , td`′) where k`′ = (`′, k`,1) and td`′ = td`,1.
– Level `′ = 2`− 1, Hash&Enc(k`′ , x, e`′−1):
• If ` = 1, let x` = x, otherwise, let x` = e`′−1. Execute

(h`,1, e`,1)← ITDH.Hash&Enc(k`,1, x,⊥)

• Output (h` = h`,1, e` = (x`, e`,1)).
– Level `′ = 2`, KGen(1λ`′ , `′, f, h`′−1, td`′−1):
• Parse h`′−1 = h`,1, and td`′−1 = td`,1.

(k`,2, td`,2)← ITDH.KGen(1λ`′ , 1n` , 2, f
⊕d`−1

` , h`,1, td`,1)

• Output (k`′ , td`′), where k`′ = (`′, k`,2), and td`′ = td`,2.
– Level `′ = 2`, Hash&Enc(k`′ , x, e`′−1):
• Parse e`′−1 = (x`, e`,1), k`′ = k`,2.
• Output (h`′ , e`′)← Hash&Enc(k`,2, x`, e`,1).

– Decoding Dec(td2L, h2L):
• Output d← ITDH.Dec(td2L, h2L).

This completes the description of ITDH′. We defer the proof of approximate
correctness and leveled function privacy to the full version.

5.3 ITDH for TC0

We now describe how we can put the above constructions together to obtain
an ITDH for TC0. Recall that, we use the notation TC0

L to denote the class of
L-depth TC0 circuits.

Let T [
−→w
↓L] be the circuit family obtained by w-parallel-and-L-sequential com-

position of the circuit family T , as per Definition 2. We first show that any
circuit in TC0

L can be converted to a circuit in T [
−→w
↓L].

Lemma 1. TC0
L can be computed in T [

−→w
↓L]. Specifically, for any circuit f ∈ TC0

L

with n bit input and w output bits, we convert it in polynomial time to a circuit
f ′ ∈ T [

−→w
↓L] such that, for any x ∈ {0, 1}n, f(x) = f ′(x, x, . . . , x).

We defer the proof to the full version.
Next, we combine the construction of ITDH for the circuit family T ⊕ from

Section 5.1 together with the sequential composition theorem in section 5.2 to
obtain an ITDH for the circuit family T [

−→w
↓L], and therefore an ITDH for TC0

L.

Theorem 4. If for any inverse polynomial τ in the security parameter, there
exists a trapdoor hash function TDH for linear function family F with τ -enhanced
correctness and sub-exponential function privacy, then for any constants L =
O(1), α = O(1), and any polynomial w in the security parameter, there exists
a 2L-level interactive trapdoor hashing protocol for TC0

L that achieves (∆, ε)-
approximate correctness and sub-exponential function privacy, where ∆(w) =
α · w and for any λ1 < λ2 < . . . < λ2L < w/2L, ε(w, λ1, . . . , λL) = 2−2w+O(1).

We defer the proof to the full version.

ITDH for P/poly. Since any circuit in P/poly can be converted to a layered
circuit as in Lemma 1, the above construction of ITDH for TC0 can be naturally
extended to obtain a polynomial-level ITDH for P/poly.

24



6 Correlation Intractable Hash Functions for TC0

In this section, we build correlation intractable hash functions for the circuit
family TC0.

6.1 Definition

Correlation intractable hash (CIH) function is a tuple of algorithms CIH =
(Gen,Hash) described as follows:

– Gen(1λ): It takes as input a security parameter λ and outputs a key k.
– Hash(k, x): It takes as input a hash key k and a string x, and outputs a

binary string y of length w = w(λ).

We require CIH to satisfy the following property:

– Correlation Intractability: Recall that, a binary relation R is a subset
of {0, 1}∗ × {0, 1}∗. We say that CIH is correlation intractable for a class of
binary relations {Rλ}λ if there exists a negligible function ν(λ) such that,
for any λ ∈ N, any n.u. PPT adversary A, and any R ∈ Rλ,

Pr
[
k← Gen(1λ), x← A(1λ, k) : (x,Hash(k, x)) ∈ R

]
≤ ν(λ)

We say that the CIH is sub-exponential correlation intractable, if there exists
a constants c such that for any n.u. PPT adversary, its successful probability is
bounded by 2−λ

c

for any sufficiently large λ.

Definition 3 (CIH for TC0). Let n(λ), w(λ) be polynomials. Let L = O(1)
be a constant. Recall that, we use TC0

L to denote the class of L-depth threshold
circuits. We say that CIH is a CIH for TC0

L, if CIH is correlation intractable for
the class of relations {Rλ}λ, where Rλ = {Rf,λ | f ∈ TC0

L}, and

Rf,λ = {(x, y) ∈ {0, 1}n(λ) × {0, 1}w(λ) | y = f(x)}

6.2 Our Construction

For any L = O(1), we show a generic transformation from an L-level ITDH for
TC0

L to a CIH for the same circuit family.

CIH for TC0. Let ITDH = (ITDH.KGen, ITDH.Hash&Enc, ITDH.Dec) be an L-
level interactive trapdoor hashing protocol for the circuit class TC0

L that satisfies
the following properties:

– (0.01w, 2−2w+O(1))-approximate correctness.
– Sub-exponential leveled function privacy. Let Sim be the leveled function

privacy simulator. Let c be the constant in the sub-exponential security
definition.
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Correlation Intractable Hash CIH

– Gen(1λ):

• For each ` ∈ [L], set λ` = λ
1
2 (
c
2 )
L−`

.
• Compute simulated receiver’s messages for ITDH:

∀` ∈ [L], k` ← ITDH.Sim(1λ` , 1n, 1w, `)

• Sample a mask mask← {0, 1}w uniformly at random.
• Output k =

(
{k`}`∈[L],mask

)
.

– Hash(k, x):
• Parse k = ({k`}`∈[L],mask).
• Let e0 = ⊥. Compute hash values and encodings for ITDH:

∀` ∈ [L], (h`, e`)← ITDH.Hash&Enc(k`, x, e`−1).

• Output e⊕mask, where e = eL.

Fig. 4. Description of CIH.

We construct a correlation intractable hash function CIH = (CIH.Gen,CIH.Hash)
for TC0

L in Figure 4.

Theorem 5 (Correlation Intractability). If w = Ω(λ), the construction in
Figure 4 is sub-exponential correlation intractable for the circuit class TC0

L.
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