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Abstract. At CHES 2016, Bos et al. showed that most of existing white-
box implementations are easily broken by standard side-channel attacks.
A natural idea to apply the well-developed side-channel countermeasure
- linear masking schemes - leaves implementations vulnerable to linear
algebraic attacks which exploit absence of noise in the white-box set-
ting and are applicable for any order of linear masking. At ASIACRYPT
2018, Biryukov and Udovenko proposed a security model (BU-model for
short) for protection against linear algebraic attacks and a new quadratic
masking scheme which is provably secure in this model. However, coun-
termeasures against higher-degree attacks were left as an open problem.
In this work, we study the effectiveness of another well-known side-
channel countermeasure - shuffling - against linear and higher-degree
algebraic attacks in the white-box setting. First, we extend the classic
shuffling to include dummy computation slots and show that this is a cru-
cial component for protecting against the algebraic attacks. We quantify
and prove the security of dummy shuffling against the linear algebraic
attack in the BU-model. We introduce a refreshing technique for dummy
shuffling and show that it allows to achieve close to optimal protection
in the model for arbitrary degrees of the attack, thus solving the open
problem of protection against the algebraic attack in the BU-model. Fur-
thermore, we describe an interesting proof-of-concept construction that
makes the slot function public (while keeping the shuffling indexes pri-
vate).

Keywords: White-box · Obfuscation · Provable Security · Shuffling ·
Algebraic Attack

1 Introduction

White-box model studies security of cryptographic implementations under full
control of an adversary. In seminal works, Chow et al. [8,9] proposed first white-
box implementations of the AES and DES block ciphers, which were later broken
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with practical attacks [1,24]. Further attempts at fixing the implementations did
not succeeded. The main idea behind these implementations is to implement the
cipher as a network of lookup tables (LUTs) and obfuscate tables by composing
them with random encodings. In 2016, Bos et al. [6] showed that most exist-
ing white-box implementations can be defeated with classic correlation attacks
known from side-channel analysis. The adaptation of the attack to the white-
box model was called Differential Computation Analysis (DCA). More recently,
Rivain and Wang [20] showed that any table-based encoding of LUTs is always
susceptible to the DCA attack, possibly applied to a later round.

The DCA attack can be fully automated and is easy to mount. Therefore, a
natural question is how to protect white-box implementations against the DCA
attack. A well-studied countermeasure against correlation attacks is masking.
The idea is to split sensitive variables in the implementation into pseudoran-
dom shares and perform computations without recombining the shares explicitly.
The classic masking schemes are linear. While this is not a problem in the side-
channel setting (e.g. analyzing power measurements) because of large amounts
of noise in measurements, it becomes an issue in the white-box setting. Recently,
Biryukov et al. [2] and Goubin et al. [13] showed that the linear masking coun-
termeasure in the white-box setting can be easily and generically broken using
elementary linear algebra. The attack was called algebraic DCA in the former
and linear decoding analysis (LDA) in the latter and was used in a sophisticated
multi-stage cryptanalysis of the winning challenge from the CHES 2017 CTF /
WhibOx Contest 2017 [13,18]. Biryukov et al. further developed a security model
and a quadratic masking scheme achieving provable security against the linear
algebraic attack. Seker et al. [21] combined the nonlinear masking scheme with
a linear scheme and extended it to a cubic masking scheme, offering protection
against degree-2 algebraic attacks.

Another known side-channel countermeasure is shuffling, inspired by hard-
ware randomization techniques and described by Herbst et al. [15] and later
analyzed in [19, 22, 23]. The idea is to shuffle the evaluation of identical compo-
nents (mainly S-boxes) to introduce more noise into measurements. It provides
limited security against the correlation attacks by itself and is usually combined
with the masking countermeasure. Security of shuffling against the correlation
DCA attack in the white-box setting was recently studied by Bogdanov et al. [5].
In addition, Goubin et al. [14] developed data-dependency higher-order DCA and
used it to cryptanalyze the winning challenges of the CHES 2019 CTF / Whi-
bOx Contest 2019 [4]. One of the challenges included a shuffling countermeasure,
which was defeated by a fault attack.

It can be expected that shuffling provides security against the algebraic attack
due to its nonlinearity. However, the algebraic security of shuffling has not yet
been evaluated. This work aims to fill this gap and analyzes shuffling rigorously
and extensively.

Our contribution

– We show that classic shuffling provides weak security against the linear
algebraic attack, especially against chosen-plaintext attacks. We describe a
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simple generalization of the attack called differential algebraic attack, which
defeats the classic shuffling countermeasure by analyzing pairs of executions
with well-chosen differences in the inputs. However, we show that the model
of [2] guarantees protection against the new differential algebraic attack as
well, highlighting rigidity of the model.

– We define dummy shuffling, which extends the classic shuffling by adding
dummy “random” inputs. While the idea of adding dummy operations was
already present in previous works, our new definition is the first to emphasise
the importance of dummy slots. In addition, we distinguish hidden and public
shuffling, the property which is relevant in the white-box model.

– We prove and quantify security of dummy shuffling against the degree-1
algebraic attack, in the model of [2]. We show that it depends on a particular
property of the implementation being protected, however this property is
hard to evaluate. To overcome this problem, we introduce a novel refreshing
technique, that transforms any implementation into an equivalent one, but
with the relevant property being known and optimal, leading to provable
security against linear algebraic attacks.

– We prove that such “refreshed” implementations in fact provide protection
against algebraic attacks of any degree up to the amount of dummy slots
used. The degree bound is tight as shown by our generic higher-degree at-
tack. As a result, we obtain the first provable method of protection against
algebraic attacks of arbitrary (predetermined) degree. Our main result is
stated in Theorem 3. Surprisingly, our new protection has quite low com-
plexity, as illustrated in Table 1.

– We describe an interesting proof-of-concept construction of uniform public
dummy shuffling. In this construction, shuffling is done implicitly by calling a
single slot function with an extra “index” argument. This construction shows
that a white-box designer needs only to obfuscate a single slot function,
rather than the whole shuffling process and evaluation of all the slots.

To summarize, our work provides extensive analysis of the dummy shuffling
as a countermeasure against algebraic attacks. This proves useful as it turns out
to be a solid provably secure protection. We believe that it is a useful tool for
protecting white-box implementations against generic attacks.

We remark that this work studies dummy shuffling strictly in the gray-box
model of algebraic security of [2] and white-box related problems such as white-
box-secure pseudorandomness generation, structure hiding, fault protection, etc.
are out of scope for this paper.

2 The Framework

In this section, we fix the notation, recall necessary preliminaries and the frame-
work of white-box algebraic attacks.

We write := to note that the equation holds by definition. For a ≤ b integers,
the sequence (a, a+ 1, . . . , b− 1, b) is denoted by [a . . . b]. The finite field of size
2 is denoted by F2, and the n-dimensional vector space over F2 is denoted by
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Table 1: Estimation of gate complexity for protections against algebraic attacks
per original AND/XOR gate. $ stands for one random bit generation. The error
bound τ is a security parameter (larger is more secure). Instances from [21] are
created with minimal order of linear masking (n = 1). The parameter t is an
arbitrary integer greater or equal than the protection degree.

Protection
degree

XOR AND Error τ Ref.

1 33 + 6$ 43 + 6$ 1/16 [2, Alg. 3]
1 7 16 + 2$ 1/16 [21]
1 2 8 + 1$ 1/8 Section 5

2 16 46 + 3$ 1/4096 [21]
2 3 14 + 3$ 1/48 Section 5

d (t ≥ d) t+ 1 (6t+ 2) + t$ t+1−d
t+1

· 1
22d

Section 5

Fn2 . Vectors/sequences are written as v = (v1, v2, . . . , vn). The symbol || denotes
concatenation of vectors/sequences. |X| denotes the size of the vector/set X,
or weight of the Boolean function X, or the number of computed functions in
the implementation X. 0,1 denote constant Boolean functions. The bias of a
Boolean function f : Fn2 → F2 is given by E(f) := |f | /2n − 1/2, and the error
of f is given by err (f) := min(|f | , |f ⊕ 1|)/2n = 1/2 − |E(f)|. The Kronecker
delta function [x = y] : Fn2 × Fn2 → F2 is a Boolean function that is equal to 1 if
and only if x = y; its complement is denoted by [x 6= y]. For a Boolean function
f(x1, . . . , xt) we denote its restriction to xi = c by f |xi=c. Every Boolean func-
tion f : Fn2 → F2 can be uniquely written in the algebraic normal form (ANF):
f(x) =

⊕
u∈Fn2

aux
u, where au ∈ F2 and xu is a shorthand for xu1

1 . . . xunn . The al-

gebraic degree (or simply degree) of f , denoted deg f , is the maximum Hamming
weight of all u with au = 1.

2.1 Implementations and Computational Traces

In this work, we do not restrict our analysis to any particular type of implemen-
tations (e.g. Boolean circuits or programs), even though our constructions are
most naturally and generally expressed as Boolean circuits. The only requirement
for analysis is that an implementation represents a finite sequence of Boolean
functions, which can be efficiently evaluated on arbitrary inputs (resulting in
a computational trace). Note that not all programs are easily expressed in this
form due to possibly varying control flow paths on different inputs. However,
various techniques for recording and processing (e.g. aligning) computational
traces of (compiled) programs are described in the literature [6, 7]. Our setting
is formalized as follows.

Definition 1 (Implementation). An implementation is a vectorial Boolean
function C : Fn2 → Fm2 together with an associated sequence of efficiently com-
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putable Boolean functions

F(C) = (Fi(C) : Fn2 → F2 | i ∈ [1 . . . |C|]) .

The functions x 7→ xi representing the input variables x ∈ Fn2 and the output
coordinates of C are included in F(C).

Remark 1. For ease of understanding one can think of C as a Boolean circuit and
Fi(C) as nodes of this circuit. Note that our definition omits data-dependency
relations. While out of scope for this work, they can be used to aid higher-order
correlation or algebraic attacks by selecting nearby nodes and thus reducing the
combinatorial complexity, as was recently shown in [14].

In the context of white-box attacks, an adversary typically analyzes a part
of the implementation, for example the first 10% of operations to target the first
round of a block cipher. We call such part a window.

Definition 2 (Window). Let C be an implementation. A window W is a sub-
sequence of F(C).

For the correlation/algebraic attacks, an adversary runs the analyzed imple-
mentation on a chosen input and records all intermediate computed values inside
the chosen window, producing a so-called computational trace.

Definition 3 (Computational trace). A computational trace of an imple-
mentation C : Fn2 → Fm2 on a window W ⊆ F(C) and on input x ∈ Fn2 is the

vector W(x) := (f(x) | f ∈ W) ∈ F|W|2 .

After recording a certain amount of computational traces, the adversary is
trying to check whether a chosen sensitive function is computed in the imple-
mentation. This analysis can be done statistically (correlation attacks) or alge-
braically (algebraic attacks). A standard example of a sensitive function that we
will use throughout the paper is an output bit of the S-box in the first round
of AES. This function depends on one key byte and the adversary recovers the
key byte by matching the correct sensitive function with the traces. More gener-
ally, one may also consider an obfuscation-related scenario, where an adversary’s
goal is to decide whether a given protected implementation computes internally
a certain function or not. In order to develop generic protection against such
adversaries, we will consider every function in the original unprotected imple-
mentation to be sensitive. The protection is then required to “hide” all original
computations and anything related to them. This is also a standard requirement
in the side-channel context of correlation attacks.

2.2 Algebraic Attack

We now recall and restate formally the notion of an algebraic attack. In the
degree-1 (linear) algebraic attack, the idea is to find a linear combination of func-
tions computed in the analyzed implementation that results in a sensitive func-
tion. For example, in an implementation protected by a linear masking scheme,
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the shares of a sensitive value describe such a linear combination. By utilizing
elementary linear algebra, the shares can be located efficiently, given a sufficient
amount of computational traces. This allows to avoid the step of guessing the
locations of shares and thus avoid the combinatorial explosion in the complexity.

Note that it may be possible to find the shares by other methods, for ex-
ample, by analyzing the implementation structure. Indeed, the attacks against
winning challenges of the WhibOx 2017/2019 competitions included analysis of
the data-dependency graphs of the implementations [13, 14]. Nonetheless, the
current state-of-the-art of white-box implementations struggles to provide secu-
rity even against generic, automated attacks. Thus achieving security against
the powerful algebraic attack is already an ambitious goal.

The linear algebraic attack can be naturally extended to higher degrees. The
idea is to include products of 2, 3 or more computed functions in the allowed
linear combinations. This extension can break nonlinear masking schemes, such
as quadratic masking proposed in [2]. In addition, it can also defeat table-based
encodings, since in that case a sensitive value can be computed as a higher-degree
function of the exposed encoded value.

We first define the degree-d expansion of a vector, which captures the idea
of including products of degree up to d.

Definition 4 (Degree-d expansion and closure). Let x be an n-dimensional
vector over a ring K. For an integer d ≥ 1 define the degree-d expansion of x,
denoted πd(x), as a concatenation of all products of 0, 1, 2, . . . , d coordinates of
x in a fixed order:

πd(x) := (1) || x || (xi1xi2 | 1 ≤ i1 < i2 ≤ n) || . . .
|| (xi1xi2 . . . xid | 1 ≤ i1 < i2 < . . . < id ≤ n) .

Let V be a sequence of Boolean functions with the same domain Fn2 . The
degree-d closure of V [2] is defined as:

V(d) := span c(πd(V)) = span ({1} ∪ {f1f2 · · · fd | f1, f2, . . . , fd ∈ V}),

where c maps a vector to the set of its coordinates3.

Example 1. Let V = (f1, f2, f3) for some Boolean functions f1, f2, f3 : Fn2 → F2.
Then V(2) is a vector space of Boolean functions spanned by 1, f1, f2, f3, f1f2,
f1f3, f2f3.

Example 2. We will usually consider F (d)(C) for an implementation C : Fn2 →
Fm2 . This set consists of all degree-d combinations of intermediate functions com-
puted in C. Elements of this set are Boolean functions f mapping Fn2 to F2.

Let
(
n
≤d
)

:=
∑d
i=0

(
n
i

)
. It is easy to see that the length of πd(x) is equal to(|x|

≤d
)
. When n� d,

(
n
≤d
)

= nd/d! +O(nd−1). We are now ready to formalize the
algebraic attack.

3 Products of degrees less than d are included by setting, for example, f1 = f2.
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Definition 5 (Algebraic attack). A degree-d algebraic attack against an
implementation C : Fn2 → Fm2 targeting a sensitive function f : Fn2 → F2 consists
of the following steps :

1. choose a window W ⊆ F(C);

2. choose an input vector x := (x1, . . . ,xt) ∈ (Fn2 )t, where t :=
(|W|
≤d
)

+ ε for
some small integer ε;

3. compute on these inputs the t traces W(xi) and their degree-d expansion;
4. compute on these inputs the sensitive function f(xi);
5. solve the following linear system in z:πd(W(x1))

...
πd(W(xt))

× z =

f(x1)
...

f(xt)

 . (1)

The attack succeeds if at least one non-trivial solution is found. It is further
required that x is such that the right-hand side of the equation is non-zero.

Example 3. Consider an AES implementation protected with a Boolean masking
of an arbitrarily large order (for example, the ISW scheme [17]). An adversary
may choose f as a coordinate of an S-box output in the first round. Then, the
degree-1 algebraic attack succeeds, as f can be expressed as a linear combination
of shares which are computed in the implementation. Note that in order to
compute f (for the right part of the Equation 1), the adversary has to guess a
subkey byte.

The time complexity of the attack on a single window W with |W| � d is

O

((
|W|
≤ d

)2.8
)

= O

(
|W|2.8d

d!2.8

)
, (2)

where 2.8 is the matrix multiplication exponent using the Strassen algorithm.
We leave out the discussion about the choice of the window(s). For a relevant
analysis we refer to [2, 13].

2.3 Security Model

We now recall the security model introduced in [2] and reformulate it concisely.
Biryukov et al. proposed a game-based notion of prediction security, which aimed
to motivate the security goals. Furthermore, the authors defined algebraically
secure circuits and encoding functions, which together implied a stronger no-
tion [2, Def. 3] sufficient for achieving prediction security. In this work, we con-
centrate on this strongest combined notion, which we equivalently reformulate
as an algebraically secure scheme.

The model is a variant of the gray box model allowing a particular type of
leakage. Roughly speaking, the implementation may leak a degree-d function
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of intermediate inputs, whereas in t-probing security, the implementation may
leak t intermediate wires. The model relies on the use of randomness, which in
the white-box setting has to be derived pseudorandomly from the inputs. The
model formally defines security of a scheme, containing an encoding function, an
implementation and a decoding function.

Definition 6 (Scheme). Let f : Fn2 → Fm2 be a function. A scheme S comput-
ing f consists of

1. an encoding function S.enc(x, re) : Fn2 × F|re|2 → Fn′2 ;

2. an implementation S.comp(x′, rc) : Fn′2 × F|rc|2 → Fm′2 ;
3. a decoding function S.dec(y′) : Fm′2 → Fm2 .

It is required that for all re ∈ F|re|2 , rc ∈ F|rc|2 S.dec(S.comp(S.enc(x, re), rc)) =
f(x).

The encoding step is considered as a black-box and its implementation is not
analyzed. However, it is important that it has access to the random bits re. The
output of the encoding step S.enc is passed to the implementation S.comp, which
may access additional random bits rc. The output of S.comp is then decoded by
the black-box function S.dec to obtain the final output. Full computation process
can be described as

x′ ← S.enc(x, re), y′ ← S.comp(x′, rc), y ← S.dec(y′).

Remark 2. The randomness rc used in S.comp can always be generated in S.enc
and included in the “encoded” input x′. The schemes that we propose in this
work in fact do not use any randomness in S.comp by construction. A downside
of this is that the intermediate state x′ may become very large because of the
included randomness, which otherwise could be computed “on the fly”.

The algebraic security model requires that the implementation S.comp pro-
vides security against the algebraic attacks. In the attacks, the adversary controls
the input x ∈ Fn2 to S.enc and is mounting the algebraic attack on S.comp as de-
scribed in Definition 5. The security goal is to prevent the algebraic attack from
succeeding on any function computed in S.comp and any set of inputs chosen
by the adversary. This becomes possible due to the use of (pseudo)randomness.

Note that functions F(S.comp) computed in the implementation are functions
of the “encoded” input (that is, of the output of S.enc), which is not directly
controlled by the adversary. This requirement can be captured by composing
each function from F(S.comp) with S.enc.

We are now ready to reformulate the main security definition given in [2].
Recall that F (d)(S.comp) contains all degree-d combinations of intermediate
functions from S.comp. The idea is to require every non-trivial function from
F (d)(S.comp(S.enc)) and restricted to any fixed input x to have a non-negligible
error (as a function of random bits re, rc)

4.

4 In a real white-box implementation re, rc would be constant for fixed x, but in our
definitions we allow a more powerful adversary with ability to re-randomize for the
same x.
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Then, any such function would be hard to predict and target in the attack
even when the input is fully controlled. Such security requirement guarantees
hardness of launching an algebraic attack even when the adversary knows all
the intermediate values computed in the original implementation (for example,
knows the secret key if the scheme implements a white-box AES). While such
an adversary would not need anymore to launch such an attack, this property
highlights the universality of the protection.

We define the algebraic security in terms of the error (τ -error-d-AS scheme)
instead of the bias as in [2] ((1/2−τ)-d-AS circuits and encoding functions), as it
simplifies the notation. Indeed, the error in our cases is small, especially for the
higher-degree case but sufficient to thwart an attacker. Furthermore, it highlights
the link with the Learning Parity with Noise (LPN) problem, where a linear
system with errors has to be solved. Indeed, if some equations in Equation 1
from Definition 5 are erroneous, the attack might still succeed if the fraction of
erroneous equations is small enough for LPN-solving algorithms to be applicable.
For example, in the case of an extremely small error, the constructed linear
system may be error-free and then even the basic algebraic attack succeeds.

Definition 7 (τ-error-d-AS scheme). Let S be a scheme and let d ≥ 1 be
an integer. Let τ be the minimum error among all non-trivial functions from
F (d)(S.comp) composed with S.enc and with any fixed x = x̃ ∈ Fn2 :

τ := min
{
err
(
f(S.enc(x̃, ·), ·)

) ∣∣∣ f(x, rc) ∈ F (d)(S.comp) \ {0,1} , x̃ ∈ Fn2
}
,

where the error is computed over re, rc. If τ > 0, the scheme S is said to be
degree-d algebraically secure with error τ (τ -error-d-AS).

Remark 3. The larger is the error bound τ , the more secure the scheme is against
LPN attacks. As noted above, an extremely low error may even allow the basic
algebraic attack to succeed.

Remark 4. The algebraic security definition does not cover the decoding function
S.dec, which is defined for completeness and to restrict the analysis to useful
schemes - schemes that indeed compute the desired function C : Fn2 → Fm2 .

A major goal is to develop a method of embedding any given implementa-
tion into a τ -error-d-AS scheme with a constant τ > 0 (i.e. independent of the
circuit size) and with the encoding function independent of the circuit structure.
Biryukov et al. proposed a quadratic masking scheme that achieves 1/16-error-
1-AS (i.e. based on 7/16-1-AS circuit gadgets), but didn’t provide schemes for
degree d > 1. The aim of this work is to evaluate shuffling techniques as such a
protection method.

What is the maximum value of τ that could possibly be achieved by a scheme?
Consider a Boolean circuit-based scheme and consider d independent functions
computed in the scheme. Their product has error 2−d if the functions are bal-
anced and less otherwise. As a linear computation would not be universal, we
assume that d AND gates with independent balanced inputs are present. Since
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each computed function in such gate has error 1/4, the degree-d product of these
functions has error 2−2d. We conclude that in Boolean circuit implementations
the error lower bound close to 2−2d would be optimal to achieve. In other imple-
mentation models, such as lookup table (LUT) networks, a larger error bound
may be achievable.5

In a recent exposition of algorithms for solving LPN by Esser et al. [12], all
time complexities are exponential in the number of unknowns k, with the base
of the exponent close to 2τ for small errors (excluding BKW [3] with complexity

2
k

log k−log τ ). Since the number of unknowns k =
(|W|
≤d
)

in the algebraic attack

grows much faster than τ−1 ≥ 22d, the error bound close to 2−2d provide a

sound protection with roughly estimated attack complexity 2τk ≈ 2(|W|/4)
d

or

2
|W|d

(d+1)! log |W| using the BKW algorithm. More precise analysis of the complexity
of solving LPN instances with such errors is beyond the scope of this work.

3 Shuffling Definitions

We first briefly survey the literature on the shuffling countermeasure with a
stress on the white-box model in Subsection 3.1 and then proceed with our new
definitions. High-level definition of dummy shuffling is given in Subsection 3.2
and its variants in the white-box setting are discussed in Subsection 3.3. Fi-
nally, we describe our formal model of dummy shuffling in the algebraic security
framework in Subsection 3.4.

3.1 Related Work

Shuffling is a side-channel countermeasure that often complements masking. The
idea is to randomize the order of the operations to desynchronize sensitive leakage
points. A comprehensive study from the side-channel point of view is given by
Veyrat-Charvillon et al. [23]. More recently, two works analyzed shuffling in the
white-box setting and described two classifications.

Bogdanov et al. [5] distinguished two dimensions of shuffling in white-box
implementations: time and memory. Time shuffle randomizes the order of the
computations. This is precisely what matters from the classic side-channel point
of view, as it desynchronizes the leakage channel. In the white-box setting how-
ever, such shuffling can be defeated by synchronizing computational traces by
memory addresses, rather than by time. Therefore, it is necessary to augment
time shuffle with memory shuffle, which randomizes the addresses of stored in-
termediate values.

Goubin et al. [14] distinguished horizontal and vertical shuffling. In horizontal
shuffling, the computations are performed at the same time, while the data being

5 Absence of intermediate nodes in pure LUT-based implementation gives less vari-
ables to use for an attack. As an extreme case, consider one big LUT e.g. of a
permutation. Since inputs and outputs are balanced, best error bound to get is 2−d,
which is better than 2−2d for circuits.
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processed is shuffled. In vertical shuffling, slots are processed sequentially, and
the data is shuffled. Thus, both time and memory shuffle are performed. The
authors further allowed dummy slots, which could be based on pseudorandom
input or on an irrelevant dummy key.

3.2 Dummy Shuffling

In order to distinguish the time/memory and vertical/horizontal separation from
the presence of dummy computations, we propose a definition that specifically
focuses on the “dummy” part, while being independent of being serial/parallel.
The main idea is to hide the real computation among several redundant but sim-
ilarly looking computations. We start by defining a computational slot, which is
the target of shuffling: an operation that is computed multiple times indepen-
dently.

We remark that the definitions in this and the next subsection are infor-
mal and introduce only the terminology and broad implementation and hiding
strategies.

Definition 8 (Slot (informal)). A slot is a part of the implementation com-
puting a particular sensitive function. In the context of shuffling, it is expected
that the implementation contains multiple slots for each (sub)function being pro-
tected.

Example 4. In a Boolean or arithmetic circuit, an example of a slot is a sub-
circuit reproduced multiple times, possibly with modifications or alternative
circuit representations. In a program, an example of a slot is a function or a
piece of code that is called multiple times, or simply multiple pieces of code each
computing the same sensitive function.

We are now ready to provide informal definition of our main protection tool
- dummy shuffling.

Definition 9 (Dummy Shuffling (informal)). Dummy shuffling is an im-
plementation strategy, in which a sensitive function is computed in multiple slots,
such that during an execution:

1. at least one of the slots (main slot(s)) computes the function on the correct
( main) input(s);

2. at least one of the slots (dummy slot(s)) computes the function on a (pseudo)randomly
generated input(s);

3. the locations of the main slots are (pseudo)randomly generated on each exe-
cution or on each distinct input.

Dummy shuffling is performed in three phases (see Figure 1):

1. in the input-shuffling phase, the dummy inputs are generated and shuffled
together with the main inputs;
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⋯ ⋯x1 x2 xt $ $

main inputs dummy inputs

input-shuffling $

C C C C C⋯ ⋯evaluation slots

output-selection

y1 y2 ⋯ yt
× ×⋯

main outputs

Fig. 1: Dummy Shuffling. The symbol $ denotes a uniform and independent
source of randomness. Implementation of each application of C can be differ-
ent or, for example, can be one shared procedure in software implementations.

2. in the evaluation phase, the sensitive function is evaluated on each of the
inputs, using slots;

3. in the output-selection phase, the main outputs are extracted and passed into
further computations (by unshuffling or by any other means).

Multiple main slots can be used for two reasons. First, multiple main slots
may be running on the same main input, with the goal of error detection and/or
correction. Second, multiple main slots may be running on different main inputs,
when in the reference implementation the sensitive function is computed multiple
times. The second case corresponds to the standard shuffling, for example, the
16 identical S-boxes (or 4 identical MixColumns operations) in the AES may
constitute main slots.

3.3 Hidden and Public Dummy Shuffling

We now introduce a further classification of dummy shuffling techniques with
respect to whether the slots are clearly isolated in the implementation or are
intertwined with each other to hide the shuffling structure. Furthermore, another
important factor is whether all slots have an identical implementation.

Definition 10 (informal). Hidden dummy shuffling is an implementation of
dummy shuffling for which it must be difficult for an adversary to isolate any
single slot or a group of slots, no matter main or dummy.

Public dummy shuffling is an implementation of dummy shuffling in which
all slots are clearly separated in the implementation and are easy to isolate.
However, the locations of the main/dummy slots must still be difficult to predict
for an adversary in any evaluation. Furthermore, if all slots’ implementations
are fully identical and an adversary is able to interchange them freely, then we
say that the dummies are uniform.
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This definition captures the level at which an obfuscation is performed. In
hidden dummy shuffling, the whole implementation is obfuscated and the slots
are hard to locate and isolate. In public dummy shuffling, each slot may be
obfuscated but is still easy to locate and isolate in the implementation.

In this work we analyze dummy shuffling as a countermeasure against the al-
gebraic attack. In this context, the difference between hidden and public dummy
shuffling mainly affects the size of the window that contains all nodes of the cir-
cuit used in the attack. Typically, two configurations of attacked nodes arise in
the attacks: (1) all attacked nodes are contained in a single slot; (2) attacked
nodes contain the same group of nodes in multiple/all slots. Case 2 is illustrated
in Figure 2, where the adversary tries to blindly select a window in the full im-
plementation such that it contains the same target sensitive function computed
in each of the slots; the red areas highlight the uncertainty for selecting such a
window.

C′C C′′

(a) hidden

C C′ C′′

(b) non-uniform public

C C C

(c) uniform public

Fig. 2: Variants of dummy shuffling and window selection uncertainty. Red areas
illustrate possible positions of a window relatively to the slots.

1. In hidden dummy shuffling, the slots are not clearly separated and thus a
window has to be selected from the entire implementation including all slots.
Furthermore, in the case (2) the size of the window has to be much larger
to be able to cover multiple slots.

2. In non-uniform public shuffling (for example, if each slot is obfuscated in-
dependently), the slots are easy to isolate. Therefore, a window in a single
slot is selected from that slot only, reducing the combinatorial complexity
and the required window size. A window covering the same group of nodes
in multiple slots is still similar to the hidden dummy shuffling case, since it
should be hard to find the parts of obfuscated circuits related to the target
attacked group.

3. In uniform public shuffling, the slots are clearly isolated and are identical.
Therefore, in both cases (1) and (2), the window can be selected inside a sin-
gle slot, and extended to the same area in the other slots in the case (2). This
case allows minimal combinatorial complexity of the attacks. However, from
the designer’s viewpoint, it removes the high-level obfuscation requirement
and leads to a cleaner solution.

In Section 6, we describe a proof-of-concept construction for uniform public
dummy shuffling. It shows that it is possible to implement dummy shuffling in
a way that, even given a black-box access to the slot function, it is hard to
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distinguish main slots from dummy slots for any particular input. Therefore, a
white-box designer aiming to use dummy shuffling does not have to obfuscate the
whole implementation including the shuffling procedure and all slot evaluations;
obfuscating a single slot function is sufficient.

3.4 Modeling Algebraic Security of Dummy Shuffling

In this work, we analyze security of the slot evaluation phase, which is the core
of dummy shuffling. It is the most critical part where all the computations of
the original implementation take place. This subsection defines a formal model
for analyzing security of dummy shuffling in the framework of [2].

In the following, let smain denote the number of main inputs, sdummy the
number of dummy inputs, and s := smain+sdummy. For simplicity, we assume that
there are no always-duplicate main inputs and all main inputs are independent,
i.e. an adversary can set each main input to any value independently.

We analyze the security of the evaluation phase by considering the input-
shuffling phase as the “encoding” part of a scheme (S.enc), the slot evaluation
phase as the main “implementation” (S.comp), and the output-selection phase
as the “decoding” part (S.dec). Finally, the goal is to determine the algebraic
security of the resulting scheme S. This gray-box setting is formally described in
the following definition.

Definition 11 (Evaluation-Phase Model). Let C(x) : Fn2 → Fm2 be an
implementation. Let smain, sdummy be positive integers, s := smain + sdummy. In
the evaluation-phase model, we analyze the algebraic security (in the sense of
Definition 7) of the scheme EPM(C, smain, sdummy) := S, constructed as follows:

Func.
S.enc(x, re) : (Fn

2 )smain ×F|re|2 → (Fn
2 )s

let v ∈ (Fn
2 )s

for i ∈ [1 . . . smain] do
vi ← xi

(r′e, r
′′
e )← re

for i ∈ [(smain + 1) . . . s] do

vi
r′e←− Fn

2

return x′
r′′e←−− Shuffle(v1, . . . , vs)

Impl. S.comp(x′) : (Fn
2 )s → (Fm

2 )s

let y′ ∈ (Fm
2 )s

for i ∈ [1 . . . s] do
y′i ← C(x′i)

return y′ ← (y′1, . . . , y
′
s)

Func. S.dec(y′, r′′e ) : (Fm
2 )s → (Fm

2 )smain

y
r′′e←−− Unshuffle(y′1, . . . , y

′
s)

return (y1, . . . , ysmain)

Here, by
r′e←− (

r′′e←−) we mean that r′e (r′′e ) is used as randomness to generate the
value (sample uniformly from Fn2 shuffle almost-uniformly).

Remark 5. The EPM scheme does not use randomness in the implementation
part, so the argument rc in S.comp is omitted.

Remark 6. We define the decoding function by unshuffling the computed state
y using saved randomness r′′e which was used to shuffle in S.enc. Formally, we
could include r′′e in S.comp by encrypting it in S.enc so that it does not introduce
algebraic leakage, and decrypting in S.dec. This just an example method of
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implementing the output-selection. As we focus on the evaluation phase, this
process is out of scope of this model.

Remark 7. The shuffling permutation does not have to be perfectly uniform (in
fact, it is not possible for s ≥ 3). In addition, it is easy to show that it is enough
to choose uniformly locations of smain main slots and shuffle them; shuffling
dummy slots does not change the output distribution of S.enc.

4 Algebraic Attacks on Dummy(less) Shuffling

In this section, we describe weaknesses in the algebraic security of dummy(less)
shuffling. We start by exhibiting leakage of classic dummyless shuffling in the
model in Subsection 4.1, where we also sketch a standard linear algebraic attack
to highlight the practical relevance. In Subsection 4.2, we develop a differential
algebraic attack which exploits the leakage more effectively. We show however
in Subsection 4.3 that the security model of [2] is strong enough to provide
security against the differential attack technique out-of-the-box. We continue by
generalizing the attack to a higher-degree algebraic attack against shuffling with
dummy slots in Subsection 4.4. This attack gives an upper-bound on the degree
of algebraic security of dummy shuffling depending on the number of dummy
slots.

4.1 Standard Algebraic Attack against Dummyless Shuffling

Shuffling without dummy slots requires the implementation to have multiple
main slots and thus is quite limited in its applications. Nonetheless, a typical
application is a block cipher utilizing the Substitution-Permutation Network
(SPN) structure and almost all such ciphers use the same S-box in each round,
clearly exposing multiple main slots for the substitution layer. The linear layers
however have a large variety of structures and the applicability of classic dum-
myless shuffling depends on each case. Since white-box implementations of SPN
ciphers is a typical goal, we analyze this case.

We start by exhibiting a critical weakness of dummyless shuffling. Briefly
speaking, shuffling leaks any symmetric function of the permuted values. For a
degree one attack, the only such function is the sum of the value over all slots.
For higher degrees, there are more possibilities.

Proposition 1. Let C : Fn2 → Fm2 be an implementation and let S := EPM(C, s, 0)
for an integer s ≥ 1. Then, for any f ∈ F(C) and any symmetric function g :
Fs2 → F2 the following function h is leaked, i.e. there exists h′ ∈ F (deg g)(S.comp),
such that h′(S.enc(x, re)) = h(x), where

h : (Fn2 )s → F2 : (x1, . . . , xs) 7→ g(f(x1), . . . , f(xs)).

Proof. Since f(xi) is computed in clear in each slot, a degree-d symmetric com-
bination h′ of these functions belongs to F (deg g)(S.comp). The effect of S.enc
only permutes the inputs x1, . . . , xn, which does not have an effect on h′ since
it is symmetric: h(x) = h′(S.enc(x, re)) = h′(x).
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Example 5. The most trivial example is the sum of a sensitive function f over
all slots being vulnerable to the algebraic attack. Note that a related technique
called integration attack was applied to differential power analysis (DPA) of
randomized implementations in [10] in order to reduce the introduced noise and
lower the required number of traces.

The proposition shows that classic dummyless shuffling does not achieve se-
curity in the evaluation-phase model. We now show a concrete practical attack
on the example of the AES.

Consider an AES implementation where the 16 S-boxes are shuffled and pos-
sibly protected by a linear masking scheme. We target any single bit output of
the S-box after the first round. However, as observed above, only the sum of
these bits of all 16 S-boxes is leaked. Let S1 : F8

2 → F2 denote the first output
bit of the AES S-box and define a function f as follows:

f : (F8
2)16 → F2 : (x1, . . . , x16) 7→ S1(x1 ⊕ k1)⊕ . . .⊕ S1(x16 ⊕ k16),

where k1, . . . , k16 is the first round subkey. Clearly, f can be computed via a
linear combination of some intermediate variables in the analyzed implementa-
tion. The standard approach of guessing a portion of the key to compute f does
not work, since it depends on the full key. We show that in the chosen-plaintext
(CPA) setting an efficient attack is possible. Note that the algebraic security
model assumes CPA and so such attack is covered by the model. The idea is to
fix x2, . . . , x16 to arbitrary constants and guess one bit

c := S1(x2 ⊕ k2)⊕ . . .⊕ S1(x16 ⊕ k16).

Then, after guessing k1 the value of f can be computed for all 256 values of x1,
i.e. on inputs of the form (F8

2, x2, . . . , x16). The limited number of inputs upper
bounds the window size that can be used for the attack which can become a
limitation for an attacker. While this is already a proof-of-concept attack, we
can further overcome the limitation. Let us guess another bit, which is now a
bit of difference

S1(x′2 ⊕ k2)⊕ S1(x2 ⊕ k2)

for some x′2 6= x2. This allows to compute the value of f on 256 more inputs
of the form (F8

2, x
′
2, x3, . . . , x16). More generally, we can guess t ≤ 15 bits of

difference (in addition to the 8 bits of k1) to be able to compute f on 256 · 2t
different inputs, which already allows a huge window. Further, more difference
bits per each byte can be guessed to cover more inputs at a little cost.

We conclude that dummyless shuffling provides little security even against
standard algebraic attack (with modified key guessing method) in the chosen
plaintext setting.

4.2 Differential Algebraic Attack against Dummyless Shuffling

In this section, we describe a generalization of the algebraic attack called dif-
ferential algebraic attack. The idea follows rather naturally from the previously
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described attack, where bits of differences were guessed. Let us attack the differ-
ence of f on pairs of inputs (i.e. f(x)⊕f(x′)), instead of the function f itself (i.e.
f(x)). Indeed, the difference is at least not harder to compute and, in particular
cases, may be much easier.

This modification works very well for the dummyless shuffling setting de-
scribed above. In fact, it works out-of-the-box with a standard key guessing
procedure. First, an attacker chooses pairs (x, x′) such that (x2, . . . , x16) =
(x′2, . . . , x

′
16) and x1 6= x′1. Then, she records computational traces W(x),W(x′)

and computes a new differential trace

v(x) := (Wi(x)⊕Wi(x
′) | 1 ≤ i ≤ |W|) ,

which is used further as in the standard algebraic attack. Similarly, instead of
computing f(x) for a given key guess, the attacker computes f(x) ⊕ f(x′). In
the AES example, it requires only one key byte guess as

f(x)⊕ f(x′) = S1(x1 ⊕ k1)⊕ S1(x′1 ⊕ k1),

while computing f(x) requires 16 key bytes:

f(x) = S1(x1 ⊕ k1)⊕ . . .⊕ S1(x16 ⊕ k16).

The attack can be viewed as a standard algebraic attack with an extra pre-
processing step of the collected traces and of the predicted sensitive function.
A formal definition of a general degree-d differential attack, similar to Defini-
tion 5 (Algebraic attack), can be found in the full version of this paper.

4.3 Security against Differential Algebraic Attack

We will show that the differential algebraic attack does not provide any advan-
tage against algebraically secure schemes (τ -error-d-AS), in particular, against
secure variants of dummy shuffling which we will identify later. To state it for-
mally, we define an analogue of the security notion τ -error-d-AS and show that
the new notion is implied by τ -error-d-AS.

Definition 12. Let S be a scheme and let d ≥ 1 be an integer. Let τ be defined
as follows6:

τ := min

{
err
(
f
(
S.enc(x, ·), ·

)
⊕ f

(
S.enc(x′, ·), ·

) )
∣∣∣ f ∈ F (d)(S.comp) \ {0,1} , x, x′ ∈ Fn2

}
.

If τ > 0, the scheme S is said to be degree-d differentially algebraically secure
with error τ (τ -error-d-DAS).

6 The randomness variables re, rc are independent in each application of f and S.enc.
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We now show that standard algebraic security implies differential algebraic
security.

Proposition 2. Let S be a scheme. If it is τ -error-d-AS for some τ, d, then it
is τ ′-error-d-DAS with τ ′ = 2τ(1− τ) ≥ τ .

Proof. Let f ∈ F (d)(S.comp) \ {0,1} and x, x′ ∈ Fn2 . Define

e := err (f(S.enc(x, ·), ·)) ≥ τ, e′ := err (f(S.enc(x′, ·), ·)) ≥ τ,
e′′ := err (f(S.enc(x, ·), ·)⊕ f(S.enc(x′, ·), ·)) .

Since f(S.enc(x, ·), ·) and f(S.enc(x′, ·), ·) each use independent inputs rc, re, it
follows that

e′′ = e(1− e′) + (1− e)e′ = e+ e′ − 2ee′,

which is minimized when both e and e′ are minimized, that is e′′ ≥ 2τ − 2τ2 =
2τ(1− τ). This is always not less than τ , since τ ≤ 1/2 and so 2(1− τ) ≥ 1.

The proof shows that, in fact, the error only increases when multiple traces
are combined. It is trivial to prove a similar statement for the case of higher-order
differentials or general integrals (i.e. adding values of f in more than 2 inputs).
Therefore, the differential algebraic attack is not useful against algebraically
secure schemes. Note that this was not a problem in the dummyless shuffling
setting, because the attack targeted a function with error 0. We conclude that τ -
error-d-AS is a strong security notion and automatically covers some extensions
of the algebraic attack.

4.4 Generic Higher-Degree Attack

After (crypt)analyzing dummyless shuffling, we switch to dummy shuffling with
at least one dummy slot. We consider higher-degree attacks in order to establish
an upper bound on the degree of the algebraic security of dummy shuffling.
We describe a generic degree-(sdummy + 1) attack in the evaluation-phase model
(meaning that the attack is very generic), and further sketch how an actual
attack would look like in practice. In a way, this attack generalizes the attack
from Subsection 4.1. Indeed, the former attack described a degree-1 attack on
shuffling with sdummy = 0.

Proposition 3. Let C be an implementation, and let smain ≥ 1, sdummy ≥
0. The evaluation-phase model scheme EPM(C, smain, sdummy) is not τ -error-
(sdummy + 1)-AS for any τ > 0.

Proof. Let d = sdummy + 1. The idea is to select the same sensitive variable
z ∈ F (1)(C) in arbitrary d slots (for the sake of the proof, any input bit function
of S.comp suffices), and to multiply these linear functions. The resulting function,
denoted z ∈ F (d)(S.comp), is always a product of some bits computed on dummy
inputs and of the sensitive variable at one (or more) of the main slots.
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Let p denote the probability of z = 1 when the input is sampled uniformly
at random, i.e. p = Prx∈Fn2 [z(x) = 1] > 0. Let us consider all main inputs set to
the same value, namely x0 or x1, such that z(x0) = 0, z(x1) = 1.

In the first case, the sensitive variable z is equal to 0 in at least one of the
considered slots and the product is always equal to zero:

Pr
re

[
z(S.enc(x0, re)) = 0

]
= 1.

In the second case, the probability of the product being equal to 1 is pt where
t denotes the number of dummy slots among the chosen d slots. It is minimal
when all d− 1 dummy slots are selected. We conclude that the whole product is
equal to 1 with probability at least pd−1:

Pr
re

[
z(S.enc(x1, re)) = 1

]
≥ pd−1.

This concludes the proof, since for the described non-constant function z ∈
F (d)(S.comp) \ {0,1}, the function z(S.enc(x0, ·), ·) is constant and thus has the
error equal to 0.

The proposition shows that dummy shuffling does not achieve τ -error-d-AS,
but it does not prove that it is in fact insecure against the algebraic attack. We
go further and sketch a concrete attack that is applicable to an implementation
protected with dummy shuffling. Let W ⊆ F(S.comp) denote the attacked win-
dow and let w := |W| denote its size, e.g. w = |S.comp| = s |C| for the whole
circuit. We assume that there is a sensitive variable z ∈ W(1) that defines a
balanced or a close to balanced Boolean function.

Let X0 (resp. X1) denote the set of inputs for which the sensitive variable is
equal to 0 (resp. 1). The adversary chooses t := wd/d! + ε inputs from X0 for
which the sensitive variable is equal to 0 and computes traces on these inputs.
Then, she chooses an input from X1 for which the sensitive variable is equal to
1 and computes a single trace on it. She applies the degree-d algebraic attack
to the t + 1 traces together, searching for the vector (0, . . . , 0, 1) in the space
W(d) restricted to the traced inputs, which has size at most

(
w
≤d
)
< wd/d! .

The sensitive function z constructed as in the proof above would match the
first t zeroes with probability 1 and match the last one with probability at least
1/2d−1. We assume that the probability of other vectors matching (i.e. a false
positive) is negligible since t is larger then the dimension of the vector space.
With probability 1/2d−1 an attack trial succeeds. Therefore, O(2d) traces with
inputs from X1 are enough to find the desired degree-d combination with high
probability. The complexity of the attack is thus O(2d · (wd/d!)2.8) (using the
Strassen algorithm).

Example 6. Consider an AES implementation protected with dummy shuffling,
smain = 1 and sdummy ≥ 1, i.e. a slot computes the whole cipher. The sensitive
variable z is as usual the output of a first-round S-box, and we target z: the
product of z taken over all s = sdummy+1 slots. A guess of the respective subkey
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byte allows to split the input space into X0 and X1. A standard assumption
is that the wrong subkey guess results in an incorrect split and leads to an
unsuccessful attack. We conclude that the correct subkey can be identified by
running the attack 256 times.

5 Provable Algebraic Security of Dummy Shuffling

After establishing the limits of the algebraic security of dummy shuffling in
the previous section, we switch to quantifying and proving security of dummy
shuffling. In Subsection 5.1, we analyze the security of basic dummy shuffling
against the linear attack. Next, we develop a refreshing technique which allows
to achieve provable security in Subsection 5.2. Finally, we use the same technique
to prove security against higher-degree algebraic attack in the case of a single
main slot in Subsection 5.3.

5.1 Security Analysis (Linear Case)

After showing an upper-bound on the algebraic security degree provided by
dummy shuffling, we now study the case of degree-1 attack, and analyze when
dummy shuffling indeed provides a protection and evaluate the security param-
eter τ . We show that algebraic security of the EPM scheme depends on a par-
ticular property of the original circuit, which is defined formally in the following
definition.

Definition 13. Let C be an implementation. For an integer d ≥ 1, denote by
errd (C) the minimum error of a nontrivial function from F (d)(C):

errd (C) := min
f∈F(d)(C)\{0,1}

τf.

We now give a bound on the 1-AS security of the EPM scheme, parameterized
by the value err1 and the number of main and dummy slots.

Theorem 1. Let C be an implementation and let smain ≥ 1, sdummy ≥ 0 be
integers, s = smain + sdummy. Then the evaluation-phase model scheme S :=
EPM(C, smain, sdummy) is τ -error-1-AS, where

τ ≥ sdummy

s
· err1 (C) .

Proof. Consider a function f ∈ F (1)(S.comp) \ {0,1} and an arbitrary input x.
Since f is nontrivial, it can be expressed w.l.o.g. as f(x′) = g(x′1)+h(x′2, · · · , x′s),
where g ∈ F (1)(C) \ {0,1} is a function computed in one of the slots, and
h is a function computed in the other slots. The slot of g is a dummy slot
with probability

sdummy

s . In this case, g takes as input an independent uniformly
random input (derived from r′e in S.enc), and its error is lower-bounded by
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err1 (C). In the case it is a main slot, the value of g is constant and the error is
equal to 0. It follows that

err (g(S.enc(x, ·)) ≥ sdummy

s
· err1 (C) +

smain

s
· 0.

For any fixed shuffling order outcome (decided by r′′e in S.enc), g and h are
independent, and so the error err (f(S.enc(x, ·))) satisfies the same bound.

Simply stating, the error bound is proportional to err1 (C) with coefficient
equal to the fraction of dummy slots: when all slots are dummy slots, the bound
is equal to err1 (C); when all slots are main slots, the bound is equal to 0.

According to this theorem, dummy shuffling provides security against the
linear algebraic attack as soon as at least one dummy slot is used. However, the
security parameter τ depends on the original circuit C and thus is not generally
a constant. Furthermore, even determining or approximating the bound err1 (C)
for an arbitrary implementation C is not an easy problem. We consider one
special case when the bias can be upper bounded.

Corollary 1. Let C : Fn2 → Fm2 be an implementation and let r = degC :=
maxf∈F(C) deg f . Then the scheme EPM(C, smain, sdummy) is τ -error-1-AS with

τ ≥ 1

2r
· sdummy

s
.

Proof. We use the well-known facts that the minimum weight of a nonzero
Boolean function of degree r is 2n−r, i.e. the minimum error satisfies err1 (C) ≥
1/2r, and that a linear combination of such functions can not increase the de-
gree.

In the following subsection, we propose a solution to obtain concrete security
guarantees for arbitrary circuits.

5.2 Provable Security via Refreshing (Linear Case)

In this solution, we first transform the original implementation C before applying
the shuffling countermeasure. For simplicity, we assume that the implementation
is based on a Boolean circuit.

First, we add extra inputs to the circuit. After embedding the extended circuit
in the EPM scheme, the extra bits would be set to zero on main inputs, while
on dummy inputs they would be uniformly random (by the definition of EPM).
Then, we use these extra inputs to “refresh” each non-linear gate by an extra
XOR. In a main slot, this will have no effect on the computation, since the extra
bits are equal to zero. In a dummy slot, this will randomize all computations
and maximize the value err1(C̃) of the new implementation C̃.

Definition 14 (Refreshed Circuit). Let C(x) : Fn2 → Fm2 be a Boolean
circuit implementation with l AND gates and an arbitrary amount of XOR and
NOT gates. Define the refreshed circuit C̃(x, r) : Fn2 × Fl2 → Fm2 as follows.
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Replace each AND gate ak = zi ∧ zj in C, 1 ≤ k ≤ l by the circuit a′k =
rk ⊕ ak = rk ⊕ (zi ∧ zj), where rk is the k-th extra bit; each wire using ak is
rewired to use a′k.

Refreshing has a useful effect on the computed functions: up to a bijective
modification of the input, a refreshed circuit computes only quadratic functions
of the input. This immediately implies err1(C̃) ≥ 1/4 for any circuit C and will
also be useful for proving higher-degree security in Subsection 5.3.

Lemma 1. Let C : Fn2 → Fm2 be an implementation in a form of a Boolean cir-
cuit in the {AND,XOR,NOT} basis using l AND gates and let C̃ be its refreshed
version. Then, there exists a bijection h mapping Fn2 × Fl2 to itself, such that
deg f ◦ h−1 ≤ 2 for all f(x, r) ∈ F(C̃).

Proof. We use the notation from Definition 14. For all 1 ≤ k ≤ l, let

gk : Fn2 × Fl2 → Fn2 × Fl2 : (x, r) 7→ (x, r′), where

r′i =

{
ri ⊕ ak(x, (r1, . . . , rk−1)), if i = k

ri if i 6= k.

That is, gk replaces rk by rk + ak = a′k in the full state (x, r). Note that ak is a
function of x and r1, . . . , rk−1 and so gk is a bijection.

Define h := gl ◦ . . . ◦ g1 and let (x, r′) := h(x, r). Then, we have r′k = a′k(x, r)

for all k. Let f ∈ F(C̃) be the function computed in an arbitrary AND gate of
C̃. Note that outputs of AND gates are used only to compute a′k in C̃ and the
inputs of AND gates can only be affine functions of x and all refreshed AND
gates a′k. That is,

f(x, r) = p(x, a′(x, r))q(x, a′(x, r))

for some affine functions p, q. Since (x, a′) = (x, r′) is the output of h(x, r), it
follows that

f(x, r) = p(h(x, r))q(h(x, r)).

The right-hand side defines (at most) quadratic function o(z) := p(z)q(z) such
that f = o ◦ h. We conclude that f ◦ h−1 = o has degree at most 2.

Remark 8. From the proof it can be observed that the last topologically inde-
pendent AND gates (i.e. those, output of which does not affect any other AND)
do not have to be refreshed for the lemma to hold.

The linear algebraic security of dummy shuffling with refreshing follows nat-
urally from the lemma and Corollary 1.

Theorem 2. Let C(x) : Fn2 → Fm2 be an implementation in a form of a Boolean
circuit in the {AND,XOR,NOT} basis. Then, EPM(C̃, smain, sdummy) is τ -error-
1-AS, where

τ ≥ 1

4
· sdummy

s
.

In particular, EPM(C̃, 1, 1) is a 1/8-error-1-AS scheme.
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Proof. The weight/error of any function f ∈ F (1)(C̃) \ {0,1} is unchanged
when the function is composed with a bijection (in this case, the bijection h−1

from Lemma 1): err (f) = err
(
f ◦ h−1

)
≥ 1/4. Therefore, any considered func-

tion f is weight-equivalent to a (non-zero) quadratic function, which has error
at least 1/4, and so err1(C̃) ≥ 1/4. The result follows from Theorem 1.

5.3 Provable Security via Refreshing (Higher-Degree)

We now switch to higher-degree algebraic security. In this subsection we show
that the refreshing technique allows to achieve algebraic security of degree match-
ing the upper-bound given by the generic attack given in Subsection 4.4, namely
the degree equal to the number of dummy slots.

We will use the following lemma. Intuitively, consider s parallel applications
of an implementation C : Fn2 → Fm2 and assume f : (Fn2 )s → F2 be a non-
constant function of the s inputs obtained by applying a degree-d function to
intermediate functions inside all copies of C. Assume that we can set one of the
inputs to any constant c ∈ Fn2 , making all intermediate computations in that
C constant as well. However, which one out of s copies is set to the constant is
chosen uniformly at random. The lemma says that f can be constant in at most
d such choices out of s.

The motivation for the lemma comes from a simple choice of such f and c
(coming from the generic attack from Subsection 4.4) set c = 0 and f be (for
example) a product of the first input bit of the first d copies of C: f(x1, . . . , xs) =
x1,1x2,1 . . . xd,1. Clearly, f = 0 when x1 = c = 0, or x2 = c = 0, . . ., or xd = c =
0. However, it is non-constant in all other s − d choices, namely xd+1 = c = 0,
. . ., or xs = c = 0. The lemma thus states that such a choice of f, c is the best
an adversary (aiming to find f that is constant as often as possible) can achieve.

Lemma 2. Let C : Fn2 → Fm2 be an implementation. For an integer s ≥ 1 denote
s parallel applications of C by C⊗s (as an implementation):

C⊗s : (Fn2 )s → (Fm2 )s : (x1, . . . , xs) 7→ (C(x1), . . . , C(xs)).

Let f ∈ F (d)(C⊗s) \ {0,1} for an integer d, 1 ≤ d ≤ s. Then, for any c ∈ Fn2
the number of positions i, 1 ≤ i ≤ s such that f |xi=c is constant is at most d:∣∣{f |xi=c ∈ {0,1} ∣∣ i ∈ [1 . . . s]

}∣∣ ≤ d.
Proof. The proof is by contradiction. Let g denote the degree-d function associ-
ated to f , that is the function applied to (F(C))s to obtain f :

g :
(
F|F(C)|
2

)s
→ F2, such that

g(F(C)(x1), . . . ,F(C)(xs)) = f(x1, . . . , xs) for all x1, . . . , xs ∈ Fn2 .

Here F(C)(xi) is the computational trace of C on input xi (the bit-vector of all
intermediate values computed in C on input xi).
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Assume that there exist (at least) d + 1 positions j1, . . . , jd+1 such that for
all j ∈ {j1, . . . , jd+1}, f |xj=c is constant. Note that it is the same constant for
all such positions, since these restrictions intersect at xj1 = c, . . . , xjd+1

= c.
We can assume w.l.o.g. that the constant is 0. Since f is not constant, there
exist a = (a1, . . . , as) ∈ (Fn2 )s such that f(a) = 1. Consider the affine subspace
V = V1 × . . .× Vs, where

Vi =

{
{F(C)(ai),F(C)(c)} , if i ∈ {j1, . . . , jd+1} ,
{F(C)(ai)} , otherwise.

Observe that
⊕

v∈V g(v) = 1. Indeed, g(v) = 0 for all v ∈ V except v =
(F(C)(a1), . . . ,F(C)(as)). Since V is a (d + 1)-dimensional affine subspace, it
follows that deg g ≥ d+ 1, which is a contradiction.

We can now prove our main result. At its core, it relies on the above lemma
to bound the number of (bad) shuffling outcomes when f is constant, and
on Lemma 1 (stating that a refreshed circuit is equivalent to a quadratic circuit)
to lower-bound the error in good shuffling outcomes.

Theorem 3 (Main). Let C be an implementation and s ≥ 2 an integer. The
evaluation-phase model scheme S := EPM(C̃, 1, s − 1) is τ -error-d-AS for any
1 ≤ d ≤ s− 1, with

τ ≥ 1

22d
· s− d

s
.

Proof. Consider arbitrary f ∈ F (d)(S.comp)\{0,1}. We need to prove that when
the input x of S.enc(x, re) is fixed, the error of f(S.enc(x, ·)) is at least τ . Recall
that S.enc uses r′′e (part of re) to shuffle the sequence (x, r′e,1, . . . , r

′
e,s−1) (r′e

being another part of re), which is then passed to the input to f . By Lemma 2,
in at most d/s fraction of the shuffling outcomes (i.e. positions i with x′i = x) the
function f(S.enc(x, ·)) = f |xi=x can be constant. Consider the remaining (s −
d)/s fraction of the outcomes. By Lemma 1, we can see F (1)(S.comp) as spanned
by at most quadratic functions of the input (it has the structure of a refreshed
circuit), and so F (d)(S.comp) = (F (1)(S.comp))(d) spanned by functions of degree
at most 2d (when composed with h−1 from Lemma 1). Since in the considered
case f is non-constant, we can use the bound err (f) ≥ 1/22d. By combining the
two different shuffling outcomes we obtain

err (f(S.enc(x, ·))) ≥ d

s
· 0 +

s− d
s
· 1

22d
=

1

22d
· s− d

s
.

This result shows that dummy shuffling together with the refreshing tech-
nique provides algebraic security for degrees up to the number of dummy slots.
Furthermore, the error bound τ can be seen as close to the maximal 1/22d in
e.g. Boolean circuit implementations, as was discussed in Subsection 2.3. We
conclude that dummy shuffling with refreshing solves the problem of algebraic
security, at least in the gray-box model of [2].
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5.4 Implementation Cost Estimation

Dummy shuffling with refreshing allows cheap provably secure protection against
algebraic attacks of any predetermined degree d ≥ 1 using a single main slot and
d dummy slots (sdummy = d). We estimate roughly the number of gates required
for implementing dummy shuffling.

Let lA (resp. lX) denote the number of AND gates (resp. the number of XOR
gates) in the original implementation. In the input-shuffling phase, the cost is to
generate |x|+ sdummylA bits of randomness and shuffle s vectors of size |x|+ lA
bits. For typical complex circuits C, the number of AND gates is much larger
than the input size: lA � |x|, so we ignore the latter for our estimation. We
utilize the controlled swap construction, which can be implemented in Boolean
circuits as

(xi, yi) 7→
(
(c ∧ (xi ⊕ yi))⊕ xi, (c ∧ (xi ⊕ yi))⊕ yi

)
for each index i, where c is the control (random) bit. For d = 1, one controlled
swap of l-bit state is sufficient for perfectly uniform shuffling. For d > 1, we only
have to place the single main slot in a random position. This can be implemented
in circuits using sdummy conditional swaps of lA-bit states, assuming a random
bitstring with a single one is generated, which would be negligible for the final
cost. The output-selection phase can be for example implemented as the inverse
of the input-shuffling and has the same cost, excluding random bits. The total
cost of such implementation of input-shuffling is 4sdummylA = 4dlA gates for
swaps and generation of sdummylA random bits for dummy slots. The cost of the
evaluation phase is s(|C| + lA) = 2slA + slX = (2d + 2)lA + (d + 1)lX gates. We
conclude with the total cost estimation of (6d+ 2)lA + (d+ 1)lX gates and d · lA
random bits.

6 Public Dummy Shuffling Construction

In this section, we describe a construction of public dummy shuffling. This proof-
of-concept shows that a white-box designer willing to implement dummy shuf-
fling does not have to obfuscate the whole implementation but rather a single
slot function.

The goal of the construction is to have a clear slot separation without any
interaction between slots except the final merging step, which in our case is
simply XOR of outputs of all the slots. The input-shuffling phase is also implicit
and is performed inside the slot, using an extra index input, specifying the slot
index. The high-level description of the scheme is as follows:

output =
⊕

0≤index<s

slot(input, index).

The construction implements dummy shuffling with a single main slot and mul-
tiple dummy slots. The location of main slot depends pseudorandomly on the
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input. More precisely, for any fixed input there exists a unique value of the index
i that corresponds to the main slot computation, and this value should be hard
to predict for an adversary, even after observing the outputs of slots. For this
purpose, the output of each slot is “masked” by a pseudorandom mask, with the
property that all masks XOR to zero. Note that the output of the main slot is
masked too, since otherwise it would match the final output and thus would be
trivial to locate.

When the slot function is implemented as a Boolean circuit, the construction
can be implemented in a bit-slice style by performing bitwise operations on 32-
or 64-bit registers. This allows to compute up to 32 or 64 slots in parallel without
any significant overhead, leading to very efficient implementations.

The construction requires two standard pseudorandom functions (PRFs) and
a special primitive called tweakable zero-sum PRF, which we formally define in
the following.

Definition 15 (TZS-PRF). A function with the signature Fk[t](x) : F|k|2 ×
F|t|2 × Fn2 → Fm2 is called a tweakable zero-sum PRF if

1. for all k, t the function Fk[t] sums to zero over Fn2 :
⊕

x∈Fn2
Fk[t](x) = 0;

2. for a uniformly sampled k ∈ F|k|2 , the family Fk is computationally indis-
tinguishable from a uniformly sampled function family (ft : Fn2 → Fm2 )

t∈F|t|2

with the constraint
⊕

x∈Fn2
ft(x) = 0 for all t ∈ F|t|2 .

We describe a simple TZS-PRF construction from a PRF in the full version
of this paper, with the TZS-PRF security reduced to the PRF security. It is
based on the following simple observation: the zero-sum property is equivalent
to requiring each Fk[t] have algebraic degree at most n − 1. The general idea
follows: multiply each monomial of degree at most n− 1 by a pseudorandom bit
derived from the tweak using another PRF, and sum all monomials to get one
output coordinate. This construction is tailored to our application, where the
TZS-PRF input has size logarithmic in the number of slots and so the number
of considered monomials is linear in the number of slots.

We are now ready to describe our proof-of-concept public dummy shuffling
construction. The high-level pseudocode is given in Algorithm 1. We now de-
scribe each step of the algorithm in details.

Line 1-4 First, the input x is used to determine the index i ∈ Fh2 of the main slot.
For this purpose, the PRF Gk1 (with a hardcoded key) is used. If Gk1(x) is
not equal to the value of i passed into the current slot, then the dummy input
is generated by applying the PRF Hk2 to the full input (x, i). Otherwise, the
original input is used and padded with zeroes.

Line 5 Main computation is done by using the refreshed circuit (as in Defini-
tion 14). By Line 1-4 of the algorithm, the input in the main slot is the
original input x padded with zeroes, and the input in a dummy slot is fully
pseudorandom. Note that x, i are passed through the slot evaluation phase.
This does not introduce algebraic leakage, since otherwise an algebraic attack
would serve as a distinguisher for the PRF Gk1 or Hk2 .
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Algorithm 1 Public Dummy Shuffling Construction

Input: an implementation C : Fn
2 → Fm

2 with l AND gates;
an integer h ≥ 1;
Gk1(x) : Fn

2 → Fh
2 : a PRF instance (impl.);

Hk2(x) : Fn+h
2 → Fn+l

2 : a PRF instance (impl.);
Fk3 [t](x) : Fn

2 × Fh
2 → Fm

2 : a tweakable zero-sum PRF instance (impl.);
Output: slot implementation S(x, i) : Fn

2 ×Fh
2 → Fm

2 , such that
⊕

i∈Fh2
S(x, i) = C(x).

Input-Shuffling:
1: if Gk1(x) = i then . Gk1(x) determines the main slot index
2: x′ ← (x || 0l)
3: else
4: x′ ← Hk2(x || i)

Slot Evaluation:
5: y′ ← C̃(x′) . x, i are passed through

Output-Selection:
6: mask ← Fk3 [x](i)
7: if Gk1(x) = i then . determine the main output
8: return y ⊕mask
9: else

10: return mask

Line 6 The output mask is generated using the tweakable zero-sum PRF Fk3
tweaked by x. The necessary property is that the generated masks XOR to
zero for any fixed input x.

Lines 7-10 The PRF Gk1 is again used to identify the main slot. In the main
slot, the generated mask is XOR-ed with the output y′ (which is equal to the
main output) and returned. In dummy slots, the generated mask is returned
unmodified. As a result, the output of the main slot is the correct output
XOR-ed with an output mask, and the output of a dummy slot is simply
an output mask. Since all output masks sum to zero, the sum of all slots
outputs results in the desired output C(x).

The slot evaluation phase can be proven to provide algebraic security, under
the assumption of the pseudorandomness of H. More precisely, by Theorem 3,
the scheme S with S.enc defined by Lines 1-4, S.comp defined by Line 5, and
S.dec defined by lines 6-10, is τ -error-d-AS for any 1 ≤ d ≤ s− 1, with

τ ≥ 1

22d
· s− d

s
.

This proves that algebraically secure computations are possible for any fixed
degree and any target circuit. However, the whole construction can be still sus-
ceptible to algebraic attacks of degree 2, if the sensitive terms are computed
in clear, namely [Gk1(x) = i], which identifies the main slot. Provably secure
implementation of these functions is left as future work: it would first require
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a meaningful extension of the algebraic security model to include encoding and
decoding phases7 .

Note that the output masks used in the construction are used not for achiev-
ing the algebraic security, but to prevent black-box slot identification attacks.
Indeed, without the masks, all the dummy slots will have the all-zero output and
thus, the main slot at each execution would be trivially identifiable. Any obfus-
cation of the slot procedure would not prevent the attack, since only outputs of
the slots are used. Therefore, the outputs should not reveal the location of the
main slot. In particular, the output of the main slot should be indistinguishable
from an output of any dummy slot, even with the knowledge of the main output.
This is naturally guaranteed by the tweakable zero-sum PRF security. Indeed, in
our scheme the adversary is given access to the TZS-PRF modified by XORing
a constant (the main output of the scheme) to a single output of the TZS-PRF
per each tweak. Note that for an ideal TZS-PRF this modification produces the
same distribution of random function families independently of which output is
modified (and of the constant, which can be chosen adversarially). Therefore,
the adversary can not gain any advantage in guessing which output is modified,
or, equivalently, what is the index of the main slot.

7 Conclusions

In this work, we analyzed algebraic security of dummyless and dummy shuffling
in the gray-box model of [2]. Dummy shuffling allows to achieve close to optimal
security for arbitrary degrees of the attack with reasonable overhead. This is a
rather surprising development, since the minimalist quadratic masking scheme
of [2] was already rather heavy. We conclude that this work solves the open
problem of higher-order algebraic security and provides useful tools for white-
box implementations. Nonetheless, there are still many open questions around
the topic.

Towards White-Box Model. The current BU-model covers only the main com-
putation part. A natural question is how to extend this model to cover both en-
coding and decoding steps, including pseudorandomness generation. Steps were
made towards such a solution in the context of probing security [11,16]. Finally,
dummy shuffling requires to generate a lot of random bits in the encoding step.
This leads to large intermediate state and may incur a large overhead for fur-
ther obfuscation. Therefore, a masking-style solution to higher-degree algebraic
security is still a desirable tool.

Public Dummy Shuffling. We proposed a proof-of-concept construction of
public dummy shuffling. An interesting task is to develop an efficient instantia-
tion using existing PRFs or develop new white-box-friendly PRFs.

Fault Attacks. Fault attacks pose a dangerous threat to dummy shuffling.
Most importantly, faults can be used to distinguish main slots from dummy
slots in public dummy shuffling (as was done in [14]), and aid algebraic attacks

7 Direct extension is not possible, since input and output are sensitive functions by
definition and will be leaked in the encoding/decoding phases.
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in hidden dummy shuffling. For example, the attacker can filter the inputs for
which chosen intermediate values lead to a difference in the output when faulted.
In a basic dummy shuffling, this would identify the inputs for which those inter-
mediate values belong to a main slot.

We conclude that the topic of algebraic security and, in general, provable
countermeasures for white-box implementations still has many interesting open
problems and research directions.
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