
Password Hashing and Preprocessing

Pooya Farshim1 and Stefano Tessaro2

1 University of York, York, UK
pooya.farshim@gmail.com

2 University of Washington, Seattle, USA
tessaro@cs.washington.edu

Abstract. How does the cryptanalytic effort needed to compromise t
out of m instances of hashed passwords scale with the number of users
when arbitrary preprocessing information on the hash function is avail-
able? We provide a formal treatment of this problem in the multi-instance
setting with auxiliary information. A central contribution of our work
is an (arguably simple) transcript-counting argument that allows us to
resolve a fundamental question left open by Bellare, Ristenpart, and
Tessaro (BRT; CRYPTO 2012) in multi-instance security. We leverage
this proof technique to formally justify unrecoverability of hashed salted
passwords in the presence of auxiliary information in the random-oracle
model. To this end we utilize the recent pre-sampling techniques for deal-
ing with auxiliary information developed by Coretti et al. (CRYPTO
2018). Our bounds closely match those commonly assumed in practice.
Besides hashing of passwords through a monolithic random oracle, we

consider the effect of iteration, a technique that is used in classical mech-
anisms, such as bcrypt and PBKDF2, to slow down the rate of guessing.
Building on the work of BRT, we formulate a notion of KDF security,
also in the presence of auxiliary information, and prove an appropriate
composition theorem for it.

Keywords. Password hashing, multi-instance security, preprocessing,
KDF security.

1 Introduction

Password hashing plays a central role in the design of secure systems. We store
a password hash H (pw) in lieu of a password pw for authentication purposes.
Moreover, whenever key-management is too complex (e.g., in hard-drive encryp-
tion), one typically uses H (pw) as a secret key. Generally, one assumes that
the hash function is by itself secure in a standard cryptographic sense, and the
real threat are attacks which exploit the limited entropy of humanly generated
passwords and only evaluate the hash function in the forward direction on a
sequence of password guesses. Several approaches have been adopted to make
this task as hard as possible – these typically consist of making the computa-
tion of H as expensive as acceptable (e.g., via iteration, as in PKCS#5 [Kal00]
or bcrypt [PM99], or by making the computation memory hard as in e.g.,
[PJ16, AS15]).

Our contributions, in a nutshell. This paper focuses on a crucial aspect
of password-cracking attacks, namely the role of pre-processing. For example,
rainbow tables [Oec03] are a well-known type of data structures that help speed
up password-cracking attacks. The common wisdom is that salting defeats such
pre-processing – one uses H (sa, pw) instead of H (pw), for a fresh salt sa. Indeed,
recent works (cf. e.g. [Unr07, DGK17, CDGS18, CDG18]) analyze the security of
random oracles under auxiliary information, and partially validate the benefits
of salting.

Still, these results do not consider important aspects which are specific to
password hashing. First, they focus on protecting a single password. Bellare,
Ristenpart, and Tessaro (BRT) [BRT12] however point out that the security
study of password hashing must consider multi-instance security metrics, to en-
sure that the hardness of password cracking grows with the number of passwords
under attack. Second, existing results focus on monolithic random oracles, as op-
posed to constructions using them (e.g., by iterating them). Third, they focus
on cryptographic hardness for uniformly chosen secrets, as opposed to using
arbitrary distributions, with correlations across instances.

In this paper, we address all of the above, and extend the provable-security
treatment of password-hashing (following BRT) to the pre-processing setting. On
the way, of independent interest, we resolve open problems in the characteriza-
tion of the hardness of password distributions via guessing games. We elaborate
on our contributions next.

1.1 Guessing games

The first set of contributions are independent of pre-processing, and revisit
password-recovery hardness metrics in the multi-instance setting. For example,
consider a vector pw = (pw[1], . . . ,pw[m]) of m passwords sampled from a
distribution P, and our aim is to guess all of them. Then, the optimal guess is
the most likely vector pw∗ output by P, and the success probability is captured
exactly by the min-entropy H∞(P).

It is not immediately clear whether min-entropy, however, is a good metric
in the password-hashing setting – there, one is additionally given m hashes

H (sa[1],pw[1]), . . . ,H (sa[m],pw[m]) , (1)

where sa is a public vector of salts – which we assume to be distinct and suf-
ficiently long for this discussion – and is asked to recover the entire vector pw.
The availability of the hashes themselves allows for verification of individual
password guesses. Following [BRT12], this can be abstracted as an interactive
password guessing game which initially samples pw←← P, and the adversary can
issue user-specific queries Test(i, pw), and learn whether or not pw[i] = pw .
The adversary wins if a query Test(i,pw[i]) is made for every i ∈ [m].

BRT suggest that the best probability of winning this game with a given
budget T of Test queries—which we denote as Advguess

P (T)—is by itself a

2

good metric of hardness for password distributions. However, it is very hard to
evaluate. Our first contribution is a bound of the form

Advguess
P (T) ≤

(
eT

m

)m
· 2−H∞(P) , (2)

which only depends on the min-entropy of the distribution P. This resolves the
main open question of [BRT12], which only gave a bound for the case where
(1) the passwords are independent and (2) we know separate and a-priori fixed
bounds Ti on the number of Test(i, ·) queries for each i ∈ [m]. We note that (2)
is a strong assumption, since an optimal attacker generally stops using queries
for a particular password when successful. For the case where the passwords are
drawn independently from a set of size N , for example, our bound is

(
eT
mN

)m,
which is clearly tight (the optimal strategy makes T/m distinct guesses for each
i ∈ [m]).

In fact, our framework studies a more general metric Advsa-guess
P,`,Gen (T, c) which

considers a general salt generator Gen (which may generate colliding salts, or
salts with low entropy), allows for a password to be re-used across ` salts, and
enables the adversary to learn c passwords via corruption queries. On special
case of interest is that of no salts, i.e., Gen = ⊥ outputs m empty strings as salts
(and thus ` = 1 without loss of generality). Here, we prove that

Advsa-guess
P,1,⊥ (T) ≤ Tm · 2−H∞(P) . (3)

While this bound appears natural, the main technical challenge in the proof
(which exploits a combinatorial counting argument) is to deal with distributions
which yield collisions across passwords. It is worth noticing here that the effort
needed to compromise all passwords, for example, increases by a factor ofm – this
is because every individual query can be helpful to guess any of the passwords.

1.2 Unrecoverability bounds

We then turn to our first contribution in the pre-processing model. Here, we give
tight bounds on the success probability of recovering all of pw in the setting of
(1), when H is a random oracle with n-bit outputs (in the following, we let
N = 2n) to which the adversary can issue T queries, and where additionally the
adversary is given S bits of pre-processed information about the random oracle
H . This model is often referred to as the random-oracle model with auxiliary
information, or AI-ROM for short. This generalizes in particular prior works on
studying one-wayness in the AI-ROM [GT00, Wee05, Unr07, DTT10, DGK17,
CDGS18] in that we consider both general pre-image distributions as well as
(most importantly) multi-instance security.

Our analyses rely on a reduction to the bounds for guessing games discussed
above, combined with the bit-fixing random oracle model (BF-ROM) of [Unr07,
CDGS18]. In the BF-ROM, one analyzes unrecoverability in a setting where P
input-output pairs of the random oracle are chosen arbitrarily (the rest of the
random oracle is truly random) – here, P is a parameter. In [CDGS18] it is shown

3

that replacing P with (roughly) ST , and multiplying the recovering probability
by 2, gives a corresponding AI-ROM bound. We will slightly relax this paradigm,
and realize that setting P = ST/m, while multiplying the probability by 2m,
allows us to obtain the right bound.

Unrecoverability in the unsalted case. For example, for the case where
passwords are chosen uniformly from a set of size N (which is equal to the output
size of the random oracle), we show that if no salts are used, then the probability
of recovering all passwords is of order (assuming S is large enough)(

ST

mN

)m
.

We also obtain a corresponding bound for arbitrary distributions. This is inter-
esting, because it means that if we want to recover all passwords with probability
one, then we need to invest time T = mN/S, in other words, the complexity of
recovering multiple passwords without salts, even given a rainbow tables, grows
linearly in the number of passwords. This is in contrast to the setting without
auxiliary information, where in time T = N we can recover essentially any num-
ber of passwords. In Appendix A, we give a self-contained and straightforward
extension of Hellman’s space-time trade-off for multi-instance security, where
one can exactly see that computation needed to break one password cannot be
recycled for another one.

Unrecoverability in the salted case. For the case with salts, in contrast,
the expectation is that the S bits of pre-processing is not helpful. We confirm this
via a bound, which depends on the salt size K, and prove that the probability
of recovering all m passwords is roughly(

T

N

)m
+
m`

K

(
eST

m2N

)m
+
m2

K

for the special case of passwords drawn independently from an N -element set.
(Again, our final bound is more general.) In other words, the first term becomes
the leading one if K is sufficiently large.

1.3 AI-KDF security of iteration

Finally, we consider a simulation-based notion of KDF security which extends
the notion introduced by BRT [BRT12] to the AI-ROM setting. The basic idea of
KDF security is to see the functionality provided by a key-derivation function as
providing m keys to honest users and giving an attacker the ability to test pass-
words guess for correctness. Thus, this notion requires that for any (real-world)
attacker against a KDF function with salted passwords and auxiliary informa-
tion there is a simulator against the ideal functionality that has essentially the
same advantage. This notion in particular justified the use of password-based
KDFs to replace uniform keys with those derived from (salted) passwords.

4

BRT’s notion was inspired by the indifferentiability framework [MRH04,
CDMP05], and restricts it to a particular ideal KDF functionality. Directly us-
ing indifferentiability as the target security notion, however, suffers from two
drawbacks: the indifferentiability of iterated constructions (from RO) in general,
remain unclear. Second, concrete security bounds for indifferentiability, due to
the attack surface exposed, often fall short of providing the guarantees that are
needed in practice to provably set salt sizes.

To prove our result, we first formulate a notion of KDF security in the bit-
fixing random-oracle model. In this model we can present a simulator that simu-
lates the primitive oracle by looking for about to complete chains of length r−1,
where r in the iteration count, and if so, using the Test oracle provided in the
ideal game to handle the query. As with BRT, we require that when the number
of queries made by the adversary to the primitive oracle is T , the number of
queries made by the simulator to its Test oracle is only T/r . This restriction will
allow us to conclude that in applications an adversary needs to place r queries to
the random oracle to check whether or not a candidate guess for a password was
correct. Finally, we lift this BF-ROM result to the AI-RO model using [CDGS18,
Theorem 5].

Applications. We prove a composition theorem for AI-KDF security for a
range of games beyond IND-CPA security as considered by BRT and extended
to encompass a preprocessing phase. This result shows that uniform values used
in a game can be replaced with those derived from salted passwords via an AI-
KDF-secure function, even in the presence of preprocessing. This result can thus
be seen as formal justification of “salting defeats preprocessing in password-based
cryptography.” As with BRT, our simulation-based notion allows us to reduce
security to the full difficulty of the multi-instance password-guessing game.

1.4 Structure of the paper

We start by recalling the necessary preliminaries in Section 2. We define our
basic measures of unguessability of passwords in Section 3, where we establish
our basic bounds. In Section 4 we define unrecoverability of hashed passwords
and relate them to unguessability, both in the salted and unsalted settings.
In Section 5 we study iterated hashing under KDF security in the presence of
auxiliary information and show how to apply this result (and in general KDF
security) to securely replace uniform keys with password-derived ones in various
applications in the presence of preprocessing.

2 Preliminaries

Notation. Throughout the paper N denotes the set of nonnegative integers in-
cluding zero, {0, 1}n the set of all bit strings of length n, and {0, 1}∗ denotes the
set of all finite-length bit strings, and ε the empty string. For two bit-strings X

5

and Y , X|Y denotes string concatenation and (X,Y) denotes a uniquely decod-
able encoding of X and Y . The length of a string X is denoted by |X|. For a
finite, non-empty set S we write s←← S to mean that s is sampled uniformly
at random from S. Overloading the notion, for a randomized algorithm A with
input(s) x we write y←← A(x) to mean that y is sampled from the outputs of A
according to the distribution induced by running A on uniform random coins.
We denote adversarial procedures, which may be randomized and/or stateful,
by A, honest stateless procedures with C, and honest stateful procedures with
S.

Factorials and friends. Recall that (n/3)n ≤ n! ≤ e · (n/2)n and that
n! ∼

√
2πn(n/e)n. Further, for all 1 ≤ m ≤ T ,(

T

m

)
≤ Tm

m!
<

(
eT

m

)m
.

We let (T)m :=
(
T
m

)
m! denote the falling factorial. The Stirling numbers of

the second kind
{
m
k

}
count the number of partitions of a set of size m into k

non-empty sets. For these numbers we have,

m∑
k=0

{
m

k

}
(T)k = Tm and

{
m

k

}
≤
(
m

k

)
km−k .

We also have that
{
m
0

}
= 0 for m ≥ 1.

The RO model. We denote the set of all functions from a domain D to a
finite range R by Fun(D,R). The random-oracle model RO(D,R) is a model
of computation where parties are given oracle access to a uniformly random
function H←← Fun(D,R).3 We denote an adversary A with access to H by AH().

The BF-RO model. An assignment (or pre-set) list L is a list of pairs of points
(x, y) ∈ D ×R that respects the property of defining a function, i.e., for each x
there is at most one y such that (x, y) ∈ L. For P ∈ N, the bit-fixing random-
oracle model BF-RO(P,D,R) grants oracle access to a uniformly chosen random
function H←← Fun(N,M) compatible with L, where (σ, L)←← A0() is chosen by
an initial (aka. offline or preprocessing) adversary A0() and has size at most P .
Note that A0 does not get access to H. We denote the online phase of the attack
by AH

1 (σ), which gets access to H and σ, the information passed from A0. Thus,
σ does not depend on H. We use H[L] for a random oracle conditioned on L.
Note that in the BF-RO model, there is no upper bound on the size of σ.

The AI-RO model. For P ∈ N, the auxiliary-input (AI) random-oracle model
AI-RO(S,D,R) grants oracle access to a random function H←← Fun(D,R) to-
gether with oracle-dependent auxiliary information σ←← A0(H), where |σ| ≤ P .
We denote the online phase by AH

1 (σ).

3 Note the distribution is well-defined when D = {0, 1}∗ and can be formalized in the
language of measure theory.

6

Games. A game is a randomized stateful algorithm (y, st)← G(x; r; st), where
x is the input, r the randomness, and st the state, which is initialized to ε. The
output y is returned to a stateful adversary (x, st′)←← A1(y, st

′), which then calls
the game x and so on. This interaction terminates by the game returning a flag
win indicating win/loss. For indistinguishability games, the advantage metric
takes the form Advind

G (A1) := 2 · Pr[win] − 1 and for unpredictability games
it takes the form Advpred

G (A1) := Pr[win]. We can lift this definition to ideal
models of computation by sampling a random oracle H←← Fun(D,R), which
both G and A1 can access, and passing auxiliary information computed by A0,
as described above, to A1. We define Advind

G,AI-RO(S, T) by taking the maximum
of Advind

G (A0,A1) over all (A0,A1) that output at most S bits of auxiliary
information and place at most T queries to the random oracle. Unpredictability
advantages and advantages in the BF-RO model are defined analogously.

Coretti, Dodis, Guo, and Steinberger [CDGS18, Theorems 5 and 6] prove
the following result, which bounds adversarial advantage in the AI-RO model in
terms of that in the BF-RO model.

Theorem 1 ([CDGS18, Theorems 5 and 6]). For any P ∈ N and any γ > 0
and any game G in the AI-RO model,

Advind
G,AI-RO(S, T) ≤ Advind

G,BF-RO(P, TG + T) +
(S + log γ−1) · (TG + T)

P
+ γ ,

where TG is the query complexity of G. Furthermore, for any unpredictability
game G,

Advpred
G,AI-RO(S, T) ≤ 2(S+log γ−1)·(TG+T)/P ·Advpred

G,BF-RO(P, TG + T) + γ .

3 Unguessability

Password samplers. A password sampler is a randomized algorithm P that
takes no input and outputs a vector of passwords pw = (pw[1], . . . ,pw[m]) and
some leakage z on the passwords.4 We assume that P always outputs the same
number of passwords m. To make this explicit we call the sampler an m-sampler.
We note that password samplers in our work do not get access to the random
oracle.5

A basic measure of the unguessability of a password sampler is its min-
entropy. We consider an average-case notion over leakage z, as this will not be
under the control of the adversary:

H̃∞(P | Z) := − logEZ(2−H∞(P|Z=z)) ,

4 This is not the preprocessing information, only some partial information related to
passwords.

5 In this work we do not consider password samplers that have oracle access to an
ideal primitive.

7

Here Z denotes the random variable corresponding to the leakage.

Unguessability. Following [BRT12], we consider a guessability game which
allows for testing and adaptive corruptions of guessed passwords. The goal of
the adversary is to guess all passwords. More precisely, for an adversary A we
define

Advguess
P (T, c) := max

A
Pr
[
GuessAP

]
,

where game GuessAP is defined in Fig. 1 and the maximum is taken over all A
that place at most T queries to Test, and at most c queries to Cor. Observe
that the test oracle takes an index i. This signifies the fact that guesses are user-
specific and thus cannot be amortized over all users. Our definition also includes
some side information z for generality, which was not present in BRT.

Game GuessAP :
(pw, z)←← P
y←← ATest,Cor(z)
return

∧m
i=1 wini

Proc. Test(i, pw):
wini ← (pw = pw[i])
return wini

Proc. Cor(i):
wini ← true
return pw[i]

Fig. 1. The guessing game.

Simplifying assumptions. We assume, wlog, that A does not call Cor(i) on
any index i for which Test returned true. Similarly, we assume that A does not
call Test with an index i which was queried to Cor(i). Moreover, for c′ ≤ c ≤
m, any adversary A that places c′ queries to Cor can be transformed to an
adversary B that places c ≥ c′ queries to Cor without any loss in advantage. 6

Thus, throughout the paper we may assume, wlog, that adversaries that place
at most c corrupt queries place exactly c corrupt queries. Furthermore, the set
of corrupted indices and those for which Test was successful are disjoint.

A basic measure of unguessability. It follows from the definitions of unguess-
ability and average-case min-entropy that

Advguess
P (m, 0) = 2−H̃∞(P|Z) .

To see this, note that given any P and any A in Guess we can build an adversary
B with no oracle access as follows. B runs A on the leakage that it receives and
6 Algorithm B runs A and forwards its Test and Cor queries to its own respective
oracles. It stops A from making further queries to Test once m − c queries to
Test return true. B corrupts the remaining indices. By the previous assumption,
the passwords for these indices have not been found due to a corrupt or a test query
so far. Clearly, the number of Test queries of B is less than those of A. Further B
places in total at most c queries to Cor. To see this let c′0 be the number of corrupt
queries by A when it was stopped. At this point c′0 +m− c passwords were found.
Hence there are m − (c′0 +m − c) = c − c′0 passwords that were not found at that
stage. Thus, B places c′0+(c−c′0) = c queries to its Cor oracle after A was stopped.

8

answers all its Test queries with true, and outputs the set of passwords queried
to Test sorted according to their index. For all password vectors where A is
successful, these queries are answered correctly. Thus, B runs A perfectly in the
environment that it expects. Thus, B is successful whenever A is. Inequality in
the opposite direction is trivial and we obtain the result. We note that in the
presence of adaptive corruptions, it is unclear how to relate the above game-based
notion of unguessability to a standard information-theoretic notion. Thus,

Advguess
P (m− c, c)

will form our basic measure of unguessability of passwords, which we call c-
unguessability.

Threshold security. Consider a threshold notion of unguessability whereby
the adversary’s goal is to guess t out ofm of the passwords, while having access to
Test oracle, but no longer a Cor oracle. The advantage of any such adversary is
easily upper bounded by the advantage of an adversary that before termination
simply corrupts the m− t users for which recovery was not attempted. Thus,

Advt-guessP (T) ≤ Advguess
P (T,m− t) .

In the reverse direction, however, an inequality does not hold in general.7 How-
ever, when the password sampler is a product sampler in the sense that for some
Pi it computes (pw[i], zi)←← Pi (run on independent coins) and returns the
vector ((pw[1], . . . ,pw[m]), z) where z := (z1, . . . , zm), we have

Advguess
⊗Pi

(T, c) ≤ Adv
(m−c)-guess
⊗Pi

(T) .

Using an argument similar to [BRT12, Lemma F.1] the independence of the pass-
words allows for a perfect simulation of Cor(i). Run the corrupting adversary
and answer its test oracle using its own test oracle. When a Cor(i) query is
placed, return a value distributed according to Pi, conditioned on auxiliary in-
formation zi and output not matching any pw for which Test(i, pw) previously
responded with false.

Thus for product samplers, recovering t out of m passwords without corrup-
tions is equivalent to recovering t passwords while corrupting m − t of them.
Since for non-product distributions the corrupting adversaries are stronger, we
work with such adversaries.8

Our first result relates the unguessability of passwords to c-unguessability.

Theorem 2 (Unguessability). For any m-sampler P and any T, c ∈ N,

Advguess
P (T, c) ≤

(
T

m− c

)
·Advguess

P (m− c, c) .
7 Consider m identical passwords, where the common password is uniformly dis-
tributed within a large set. With corruptions, guessing the common value is trivial;
without, it can be done with small probability.

8 Note however that for correlated passwords, this may imply that there is no security,
whereas in practice we would like to argue that there is some security. We leave the
treatment of this intermediate notion to future work.

9

Proof. By our simplifying assumptions, A makes exactly c corrupt queries and
of the T test queries, exactly m − c are successful. Consider an adversary B
against Guess that runs A as follows. At the onset, B guesses which of the
m − c queries among the T queries will result in true. There are

(
T

m−c
)
such

choices. It then runs A and answers all Test queried for the guessed indices
with true. The corruption queries are relayed. If the set of indices guessed is
correct, the algorithm B runs A perfectly. We obtain the claim inequality by
maximizing over A. ut

Despite its simplicity, this argument is novel and in particular resolves a problem
left open by BRT on upper bounds for guessability with only a global bound on
the total number of Test queries (and not a priori bounds on the number of
user-specific guesses, as treated by BRT).

Salted guessability. Following BRT, we consider an extension of Guess
that incorporates salts. We allow for multiple salts per password (as required
in applications such as password-based encryption) and consider a Test oracle
which is salt-specific rather than user-specific. This test procedure thus amor-
tizes guessing over all users who share a salt value. The rationale for this choice
is that given salted hashes of passwords—whose security we will be ultimately
analyzing—once a password is recovered, it is also recovered for all users for
which password-salt pairs match. Crucially, a single query is needed to deduce
this information.

Our formal definition, which is shown in Fig. 2, differs from that of BRT in
a number of aspects. First, we allow for an arbitrary salt-generation algorithm
Gen that takes a user index i and a counter j. (This choice allows for stateful
generation of salts, which may be possible in certain contexts.) Second, under
Test we set wini to true for all matching i, rather than only the first i for which
a match is found as in BRT. This ensures that password-salt collisions do not
result in an unwinnable game. We also release the set of all passwords indices for
which password-salt matches the query (rather than the first such index). This
choice more closely matches the setting of hashed passwords. Finally, we leak the
collision pattern of the password-salt pairs. This is formalized via an algorithm
Colls(pw, sa) that takes a vectors of passwords pw of length m and an m × `
matrix of salts and returns an m` ×m` matrix whose ((i1, j1), (i2, j2)) entry is
set to 1 iff (pw[i1], sa[i1, j1]) = (pw[i2], sa[i2, j2]). We define the advantage of
(T, c)-adversaries analogously to the Guess game.

A direct reduction shows that for any password sampler P, any salt-sampler
Gen, and any number of salts per password `,

Advguess
P (T, c) ≤ Advsa-guess

P,`,Gen (T, c) .

In order to prove a result in the opposite direction, for a salt sampler Gen,
we define

CollGen(m, `) := Pr[∃(i, j) 6= (i′, j′) ∈ [m]× [`] : Gen(i, j) = Gen(i′, j′)]

10

Game sa-GuessAP,`,Gen:
(pw, z)←← P
for (i, j) ∈ [m]× [`] do

sa[i, j]←← Gen(i, j)
zcoll ← Colls(pw, sa)
y←← ATest,Cor(sa, z, zcoll)
return

(∧m
i=1 wini

)

Proc. Test(pw , sa):
S ← {i : ∃j(pw , sa) =

= (pw[i], sa[i, j])}
for i ∈ S do

wini ← true
return S

Proc. Cor(i):
wini ← true
return pw[i]

Fig. 2. The password-guessing game with salts where the collision pattern of password-
salt pairs is always leaked. wini are initialized to false.

as the probability of obtaining m` distinct salts. For uniform salts in [K],

CollGen(m, `) = 1− K!

Km`(K −m`)!
≤ m2`2

K
.

We note that in some settings, the distinctness of salts may be guaranteed.
For instance, by appending (i, j) to salts, where i is a “user-id” and j is an
application-specific “session-id,” one can guarantee distinctness. As we shall see,
to defeat preprocessing the salts must also be unpredictable. Hence (i, j, sa) for
a random sa←← [K] can be used in these settings.

The next theorem relates salted unguessability of passwords to their user-
specific guessability.

Theorem 3. For any m-sampler P, any Gen, and any `, T, c ∈ N,

Advsa-guess
P,`,Gen (T, c) ≤ Advguess

P (T, c) +CollGen(m, `) .

Proof. Given a (T, c)-adversary A against sa-Guess we build a (T, c)-adversary
B against Guess as follows. Algorithm B(z) picks m` salts via Gen(i, j) and
terminates if the salts are not distinct. Algorithm B sets zcoll to be the identity
matrix (if the salts do not collide, certainly password-salt pairs will not), runs
A(sa, z, zcoll) and answers its corrupt queries using its own equivalent oracle.
Test(pw , sa) queries are handled by first checking if sa = sa[i, j] for some (i, j).
If not, B returns ⊥; else it finds the unique (i, j) such that sa = sa[i, j]. Such an
index pair is unique due to the distinctness of salts. Algorithm B then queries
Test(i, pw) and returns S := {i} if it receives true, and the empty set otherwise.
(We note that the loss is additive, rather than multiplicative, since A might be
successful exactly when there is a collision among the salts.) ut

The unsalted setting. Unsalted hashing of passwords is interesting from both
a historical and theoretical point of view. Unsalted unguessability is closely linked
to amplification of hardness. Second, unguessability of passwords without salts
constitutes a “worst-case” scenario and can be used to upper-bound unguess-
ability with respect to any other salt generator.9 When there are no salts, all
9 The proof of this fact follows from the observation that the collision pattern of
passwords and the collision pattern of salts (which is publicly available) are sufficient
to infer the collision pattern of password-salt pairs.

11

passwords fall under a single (empty) salt, and in order to check if a candidate
password matches any of the sampled passwords a reduction analogous to one
given above would need to call Test(i, pw) for all i ∈ [m]. This, however, results
in a blow up in the number of test queries, which we aim to avoid in this work.

Let us, by a slight abuse of notation, denote the salt generator Gen that
always returns ε by ⊥. We directly prove an upper bound on Advsa-guess

P,`,⊥ (T, c).
This extends [BRT12, Theorem 3.2] in two aspects: first, and as mentioned above,
the number of queries to Test(i, ·) for each index i are no longer a priori fixed.
Second, P no longer comprises independent and identically distributed samples
from some base single-password distribution. Proving such a result was left open
by BRT.

Theorem 4. For any m-sampler P and any `, T ∈ N,

Advsa-guess
P,`,⊥ (T, 0) ≤ Tm ·Advguess

P (m, 0) .

Proof. Observe that ` does not affect unguessability and thus we may assume,
wlog, that ` = 1. We now fix a deterministic adversary B and count the number
of vectors (pw[1], . . .pw[m]) on which B wins. Call this number N . Then, the
final bound will be N ·Advguess

P (m, 0).
Consider a vector (pw[1], . . .pw[m]) on which B wins with T queries, and

suppose the m passwords are distinct. These can be represented uniquely by
a permutation giving the order in which the uncorrupted passwords appear.
There are (m − c)! such permutations. There are

(
T

m−c
)
such indices and thus

N = (m− c)!
(
T

m−c
)
= (T)m−c.

In general, the collision pattern induces a partition of passwords into k
groups. Suppose there are no corruptions. Then the number of password vec-
tors (pw[1], . . .pw[m]) on which B wins is at most{

m

k

}
· k! ·

(
T

k

)
,

where
{
m
k

}
are the Stirling numbers of the second kind. Thus, the total number

of representations is at most

N ≤
m∑
k=1

{
m

k

}
· (T)k = Tm ,

where the last equality is by an identity for Stirling numbers. ut

We now deal with the general case with corruptions. We consider a non-
adaptive guessability game NA-Guess, where corruptions are carried out non-
adaptively at the beginning of the game in parallel. This potentially lowers un-
predictability advantage and thus strengthens upper bounds using it. Unpre-
dictability in the adaptive game can be bounded by that in the non-adaptive
game by guessing at the onset the

(
m
c

)
indices that will be corrupted. However,

below we carry a direct reduction to NA-Guess to avoid multiple losses.

12

Theorem 5. For any m-sampler P and `, T, c ∈ N,

Advsa-guess
P,`,⊥ (T − c, c) ≤ (Tm−c +O(Tm−c−1)) ·Advna-guess

P (m− c, c) .

Proof. Once again, wlog, ` = 1. We prove the bound for a modified game where
Cor(i) leaks the set of all indices j for which pw[j] = pw[i]. In this game,
wlog, we may assume that Test and Cor oracles return disjoint sets that form
a partition of [m]. This game is equivalent to the unmodified game where the
adversary after a corrupt query places a test query on the password just revealed
to learn its equality pattern. This results in c additional Test queries.

We now count the number of successful transcripts.

– The number of sets in the partition, k ≥ c.
– A partition of [m] into k sets:

{
m
k

}
choices.

– Which c of the k sets will be corrupted:
(
k
c

)
choices. (No ordering of the

guesses is needed, since the queried index will be contained in exactly one
set.

– The order of the remaining k − c sets that will be returned as responses to
Test queries: (k − c)! choices.

– The T test queries which these k−c sets will be responses for:
(
T
k−c
)
choices.

(The rest of the queries are answered ∅.)

Hence,

Advsa-guess
P,1,⊥ (T − c, c) ≤

m∑
k=c

{
m

k

}(
k

c

)
(k − c)!

(
T

k − c

)
·Advna-guess

P (m− c, c) .

When c = 0, this bound matches that stated in Theorem 4. Using (computer)
algebra we have that,

m∑
k=c

{
m

k

}(
k

c

)
(k−c)!

(
T

k − c

)
=

m−c∑
k=0

C(m−c, k, c)·Tm−c−k = Tm−c+O(Tm−c−1) ,

where the coefficients C(n, k, c) are defined recursively via

C(n, k, c) :=


1 if k = 0 ;{
n+c
c

}
if k = n ;

c · C(n− 1, k − 1, c) + C(n− 1, k, c) otherwise.

When there is a single corruption (c = 1), the sum bounding the advantage has
the simple closed form (T + 1)m−1. ut

4 Unrecoverability

We now define two notions of unrecoverability for hashed passwords in the AI-
RO and the BF-RO models respectively. In the AI-RO model the adversary

13

Game AI-RecA0,A1
P,`,Gen,KD:

H←← Fun(D,R)
σ←← A0(H)
(pw, z)←← P
for (i, j) ∈ [m]× [`] do

sa[i, j]←← Gen(i, j)
k[i, j]← KDH(pw[i], sa[i, j])

pw′←← AH,Cor
1 (sa,k, σ, z)

return (pw′ = pw)

Proc. Cor(i):
return pw[i]

Game BF-RecA0,A1
P,`,Gen,KD:

H←← Fun(D,R)
(σ, L)←← A0()
(pw, z)←← P
for (i, j) ∈ [m]× [`] do

sa[i, j]←← Gen(i, j)
k[i, j]← KDH[L](pw[i], sa[i, j])

pw′←← AH[L],Cor
1 (sa,k, σ, z)

return (pw′ = pw)

Proc. Cor(i):
return pw[i]

Fig. 3. The password recoverability games in the AI-RO model (left) and the BF-RO
model (right).

can carry out an initial stage of the attack and obtain arbitrary preprocessing
information on the entire table of the random oracle. Formally, we define

Advai-rec
P,`,Gen,KD(S, T, c) := max

A0,A1

Pr
[
AI-RecA0,A1

P,`,Gen,KD

]
,

where game AI-Rec is defined in Fig. 3 (left) and the maximum is taken over
all A0 that output at most S bits of auxiliary information, and all A1 that place
at most T queries to the random oracle and at most c queries to the corrupt
oracle.

Similarly, we define

Advbf-rec
P,`,Gen,KD(P, T, c) := max

A0,A1

Pr
[
BF-RecA0,A1

P,`,Gen,KD

]
,

where game BF-Rec is defined in Fig. 3 (right) and the maximum is taken over
all A0 that output a list L of size at most P and all A1 that place at most T
queries to the random oracle and at most c queries to the corrupt oracle.

We start by showing that for any salt generator the BF-RO advantage can
be upper bounded by that in the salted unguessability game. Here we will rely
on the fact that the collision pattern zcoll is known in the sa-Guess game.

Theorem 6. Let KDH(pw , sa) := H(pw |sa) for random oracle H. Then for any
m-sampler P, any salt generator Gen, and any `, P, T, c ∈ N,

Advbf-rec
P,`,Gen,H(P, T, c) ≤ Advsa-guess

P,`,Gen (T + P, c) .

Proof. Let (A0,A1) be a (P, T, c)-adversary in the BF-Rec game. We construct
a (T+P, c)-adversary B in the sa-Guess game as follows. Algorithm B(sa, z, zcoll)
receives a salt vector sa, z and a collision pattern zcoll. It then runs A0() to obtain
(σ, L).

Algorithm B now needs to prepare the challenge key vector k for A1. To
this end, it will use its access to a Test oracle to find out whether or not a

14

password-salt pair appears on L. If it does, it uses the provided value in L. Else
it will pick the answer randomly, ensuring consistency using the collision pattern
of password-salt pairs zcoll.

In more detail, for each (pw |sa, y) ∈ L with sa = sa[i, j] for some (i, j),
algorithm B queries Test(pw , sa) and obtains a set S of indices. If S is non-
empty, it contains indices i for which (pw[i], sa[i, j]) = (pw , sa) for some j. For
these indices, algorithm B uses y as the challenge value. If S is empty, B does
nothing (the (pw , sa) pair on L is not one of the challenge password-salt pairs).
For indices (i, j) such that (pw[i], sa[i, j]) does not appear on L, algorithm B
generates uniform values compatible with zcoll as the corresponding challenge
keys. Note that for these lazily sampled values the domain point is only partially
known. Note also that at this point B places at most P queries to Test.

Let k be the set of challenge keys sampled as above. Algorithm B runs
AH[L],Cor

1 (sa,k, σ, z) as follows. It relays all its Cor(i) queries to its own Cor(i)
oracle. For the pw[i] received, B updates the corresponding unknown entry part
of the domain point with pw[i]. Note that B places at most c queries to Cor.

To answer a random-oracle query H[L](pw , sa) outside L, if sa does not match
sa[i, j] for any (i, j) it chooses a random value. If sa = sa[i, j] for some (i, j),
algorithm B queries Test(pw , sa) to get a set of indices S. If this set is empty,
B returns a random value. If S is non-empty, then pw[i] for i ∈ S are discovered
and the random value generated at the challenge phase is used. Note that for
i ∈ S this value was set consistently using zcoll. (Algorithm B also updates the
corresponding unknown half of the domain point.) Note also that B places at
most T queries to Test during this phase. ut

The estimated extra P queries to Test queries during challenge preparation
may indeed arise for example when passwords are predictable and there are no
salts. On the other hand, for large random salts, with overwhelming probability
no queries to Test will be made at this stage. Our next theorem formalizes this.

Theorem 7. Let KDH(pw , sa) := H(pw |sa) for random oracle H. Then for any
m-sampler P, any salt generator Gen := [K] that outputs uniform salts in a set
of size K, and any `, P, T, c ∈ N,

Advbf-rec
P,`,[K],H(P, T, c) ≤

((
T

m− c

)
+
m`

K

(
T + P

m− c

))
·Advguess

P (m−c, c)+m
2`2

K
.

Proof. Let (A0,A1) be a (P, T, c)-adversary in the BF-Rec game. We construct
an adversary B in the Guess game. Algorithm B(z) receives z and runs A0()
to obtain (σ, L). It then generates a salt vector sa of size m × `. If there is a
collision among these salts, B terminates. Otherwise, B sets zcoll to be the all-
zero collision pattern and prepares the challenge key vector k as follows. The
difficulty in preparing these values lies in that the values need to be consistent
with those specified in L. Let S denote an ordered list of salts and let Psa for
sa ∈ [K] denote the number of passwords which together with sa appear in L.
Since L is of size P we have that∑

sa∈[k]

Psa = P .

15

To prepare the challenge vector consistently, B calls its Test(i, pw) oracle on
each password pw appearing on the L together with some salt sa[i, j] ∈ S. If a
password-salt pair is discovered to be on L, algorithm B uses the value provided
in L, else it picks a random value. At this phase algorithm B makes

∑
sa∈S Psa

queries to Test.
Algorithm B now runs A1(sa,k, σ, z) and answers its corruption queries by

queries its own corruption oracle. Primitive queries on (pw , sa), which wlog
can be assumed to be outside L, are handled by first querying Test(i, pw)
if sa = sa[i, j] for some (i, j) and accordingly using either a value from the
challenge phase, or a uniform value. Thus,

Advbf-rec
P,`,[K],H(P, T, c) ≤

m2`2

K
+

∑
S∈[K](m`)

1

Km`
·Advguess

P (T +
∑
sa∈S

Psa , c) ,

where [K](m`) denotes all ordered lists of size m` with distinct entries in K.
By Theorem 2 each summand above can be bound as

Advguess
P (T +

∑
sa∈S

Psa , c) ≤
(
T +

∑
sa∈S Psa

m− c

)
·Advguess

P (m− c, c) .

Now for fixedm and c the right-hand side is a convex function. Thus, by Jensen’s
inequality, the sum attains its maximum at one of the extremal values where
Psa = P for a single salt sa = sa∗, and Psa = 0 elsewhere. Since the advantage
terms are symmetric, without loss of generality, we may assume that sa∗ = 1.

For this particular distribution of passwords in L, we have that for (m`)!
(
K−1
m`

)
terms the number of additional queries,

∑
sa∈S Psa , is zero: choose m` salts in

[K] \ {sa∗} and order them. For these cases B places T queries in total. For
(m`)!

(
K−1
m`−1

)
terms the number of additional queries is

∑
sa∈S Psa = P : choose

one salt to be sa∗, the rest in [K] \ {sa∗}, and order. For these cases B places
T + P queries in total.

Hence we obtain that

Advbf-rec
P,`,[K],H(P, T, c) ≤

m2`2

K
+
(m`)!

Km`
·
(
K − 1

m`

)
·
(

T

m− c

)
·Advguess

P (m−c, c)

+
(m`)!

Km`
·
(
K − 1

m`− 1

)
·
(
T + P

m− c

)
·Advguess

P (m− c, c) .

Using the upper bound on the binomial coefficients we have

(m`)!

Km`
·
(
K − 1

m`

)
≤ 1 and

(m`)!

Km`
·
(
K − 1

m`− 1

)
≤ m`

K
.

The theorem follows. ut

4.1 Main theorems

In this section we derive upper bounds on the adversarial advantage in the
AI-Rec game based on the bounds established in the previous section. The-

16

orems 8–10 below upper-bound unrecoverability of hashed passwords in three
different settings. We will use Theorems 2–4 to prove these results.

We start with the case of unsalted passwords. We focus on the case with
no corruption; the case with corruptions can be dealt with similarly using our
results but the involved bounds are more complex.

Theorem 8 (No salts). Let P be an m-sampler and consider the empty salt
generator. Then for any adversary in the AI-Rec game outputting at most S
bits of side information, making at most T queries to the random oracle and no
corruption queries, for any γ > 0 and m ≤ T we have that

Advai-rec
P,`,⊥,H(S, T, 0) ≤ 2m ·

(
T +

2T (S + log γ−1)

m

)m
·Advguess

P (m, 0) + γ .

Proof. Theorems 4 and 6 together yield

Advbf-rec
P,`,⊥,H(P, T, 0) ≤ (T + P)m ·Advguess

P (m, 0) .

Using the second (i.e., the unpredictability) part of Theorem 1, noting that in
our setting there are m+ T calls to H, and assuming that m ≤ T for any γ > 0,
we may set

P :=
(S + log γ−1)(m+ T)

m
≤ 2T (S + log γ−1)

m

to deduce the stated bound for any γ > 0.10 ut

We next consider the case of distinct and potentially low-entropy salts. This
is for example the case when salts are an index and consequently the domain of
the hash function is separated for different users.

Theorem 9 (Known distinct salts). Let P be an m-sampler and consider
a salt generator that always outputs distinct, but potentially low-entropy, known
salts. Then for any adversary in the AI-Rec game outputting at most S bits
of side information, making at most T queries to the random oracle and no
corruption queries, for any γ > 0 and m ≤ T we have that

Advai-rec
P,`,Gen,H(S, T, 0) ≤ 2m ·

(
eT + 2eT (S + log γ−1)/m

m

)m
·Advguess

P (m, 0)+γ .

Proof. In the case of salted passwords with distinct salts, Theorems 3 and 6
together yield

Advbf-rec
P,`,Gen,H(P, T, 0) ≤

(
T + P

m

)
·Advguess

P (m, 0) ≤
(
e(T + P)

m

)m
·Advguess

P (m, 0) .

Using the second part of Theorem 1, we may set P as in the unsalted case (which
is close to the optimal) to deduce that the stated bound for any γ > 0. ut
10 Via differentiation, this value of P is close to the optimal choice.

17

We finally consider the case of uniform salts.

Theorem 10 (Uniform salts). Let P be an m-sampler and consider a salt
generator that always outputs uniformly random salts in a set of size K. Then for
any adversary in the AI-Rec game outputting at most S bits of side information,
making at most T queries to the random oracle and no corruption queries, for
any γ > 0 and m ≤ T we have that

Advai-rec
P,`,[K],H(S, T, 0) ≤ 2m·

((
eT

m

)m
+
m`

K
·
(
eT + 2eT (S + log γ−1)/m

m

)m)
·Advguess

P (m, 0) +
m2`2

K
+ γ .

Proof. Using Theorems 3 and 7 for uniform salts in [K] we get

Advbf-rec
P,`,[K],H(P, T, 0) ≤

((
eT

m

)m
+
m`

K

(
e(T + P)

m

)m)
·Advguess

P (m, 0)+
m2`2

K
.

We may set P as in the previous cases, which is again close to optimal, to deduce
the stated bound for any γ > 0. ut

We summarize the above discussion for the case of uniform passwords in [N]
in the table below. We have assumed log γ−1 ≤ m and have removed the additive
“+γ” terms, and in the uniform case “+m2`2

K ” terms, to help readability.

No salts Known distinct salts Uniform salts

S = 0
(
6T
N

)m (
6eT
mN

)m (
1 + m`

K

)
·
(
6eT
mN

)m
“Large” S ≥ 3m

(
6ST
mN

)m (
6eST
m2N

)m (
2eT
mN

)m
+ m`

K ·
(
6eST
m2N

)m
5 Iterated Hashing

A well-known method for reducing vulnerabilities to brute-force attacks is to
compute iterated hashes of salted passwords. The effects of iteration will be
hardly noticeable by the honest users, but for the adversary the cryptanalytic
effort will increase by a factor proportional to the number of iteration rounds
(converting weeks of effort to years). This mechanism has been used, for example,
in classical password-hashing mechanisms such as PBKDF and bcrypt.

The r -iterated construction is

KDH
r (pw , sa) := H ◦ · · · ◦ H ◦ H︸ ︷︷ ︸

r

(pw |sa) ,

where r ∈ N is the number of rounds, and H : {0, 1}∗ → {0, 1}n is a hash function
that we will model as a random oracle. We also assume that pw |sa is never of
length n (and hence such values cannot be a hash output).

18

Game AI-KDF-RealD0,D1
P,`,Gen,KD:

H←← Fun(D,R)
σ←← D0(H)
(pw, z)←← P
for (i, j) ∈ [m]× [`] do

sa[i, j]←← Gen(i, j)
k[i, j]← KDH(pw[i], sa[i, j])

b′←← DPrim
1 (pw, sa,k, z, σ)

return b′

Proc. Prim(w):
return H(w)

Game BF-KDF-RealD0,D1
P,`,Gen,KD:

H←← Fun(D,R)
(σ, L)←← D0()
(pw, z)←← P
for (i, j) ∈ [m]× [`] do

sa[i, j]←← Gen(i, j)
k[i, j]← KDH(pw[i], sa[i, j])

b′←← DPrim
1 (pw, sa,k, z, σ)

return b′

Proc. Prim(w):
return H[L](w)

Game BF/AI-KDF-IdealD1
P,`,Gen,S0,S1 :

(σ, st)←← S0()
(pw, z)←← P
for (i, j) ∈ [m]× [`] do

sa[i, j]←← Gen(i, j)
k[i, j]←←{0, 1}k

b′←← DPrim
1 (pw, sa,k, z, σ)

return b′

Proc. Prim(w):
(y, st)←← STest

1 (w; st)
return y

Proc. Test(pw , sa):
S ← {i ∈ [m] : ∃j ∈ [`] st.

(pw[i], sa[i, j]) = (pw , sa)}
return k[S]

Fig. 4. Simulation-based notion of KDF security in the AI-RO and BF-RO model.
Note that the ideal games are syntactically identical.

Following BRT, in this section we adopt a more modular approach to security
and formulate two simulation-based notions of security for KDF. In the next
section we will then show how to use KDF security to argue for the security of
password-based protocols.

AI-KDF security. Our first definition is a (simulation-based) notion of KDF
security which extends that of [BRT12, Section 3.1] to the AI-RO model. We
define the KDF advantage of an adversary D = (D0,D1) in the AI-RO model
with respect to a simulator S = (S0,S1) as

Advai-kdf
P,`,Gen,KD,S0,S1(D0,D1) := Pr

[
AI-KDF-RealD0,D1

P,`,Gen,KD

]
−

Pr
[
AI-KDF-IdealD1

P,`,Gen,S0,S1

]
,

where games AI-KDF-Real and AI-KDF-Ideal are defined in Fig. 4.
Our definition differs from that of BRT in a number of aspects. First, it

includes a preprocessing stage via D0 in the real game and a simulated prepro-
cessing stage via S0 in the ideal game. Second, our games sample salts via Gen,
whereas in BRT an arbitrary joint distribution on passwords-salt pairs was con-
sidered. Such a notion is infeasible to achieve in the presence of preprocessing
as salts need to have entropy. Finally, the Test procedure in the ideal game
returns the set of all indices i for which the i-th password matches the queried

19

password and some salt associated with it matches the queried salt. We note
that, as in BRT, the simulator does not get access to the collision pattern of the
password-salt pairs: the purpose of the ideal KDF game is to translate security
to a setting where keys are truly random, and their collision patterns are not
necessarily known.

BF-KDF security. We now define an analogous notion of KDF security in the
BF-RO model. We set

Advbf-kdf
P,`,Gen,KD,S0,S1(D0,D1) := Pr

[
BF-KDF-RealD0,D1

P,`,Gen,KD

]
−

Pr
[
BF-KDF-IdealD1

P,`,Gen,S0,S1

]
,

where games BF-KDF-Real and BF-KDF-Ideal are defined in Fig. 4. Note
that the ideal AI and BF games are syntactically identical.

Using Theorem 1, we first show that KDF security in the BF-RO model
implies KDF security in the AI-RO model.

Theorem 11 (BF-to-AI KDF Security). Let KDH be a key-derivation where
H is a random oracle and let Gen be a salt generator. Then for any AI-KDF
distinguisher (D0,D1), where D0 outputs S bits of auxiliary information and D1

places at most T queries to its Prim oracle, and any P ∈ N and γ > 0 there is
a BF-KDF distinguisher (D̃0, D̃1), where D̃0 output a string of length at most S
and a list of size at most P , and such that for any BF-KDF simulator (S0,S1)
and any ` ∈ N,

Advai-kdf
P,`,Gen,KD,S0,S1(D0,D1) ≤ Advbf-kdf

P,`,Gen,KD,S0,S1(D̃0, D̃1)+

+
(S + log γ−1) · (rm`+ T)

P
+ γ .

Proof. Let (D0,D1) be an AI-indifferentiability adversary. We apply the first
part of Theorem 1 to the real AI-KDF game and obtain a BF-KDF distinguisher
(D̃0, D̃1). In the real game there are in total at most rm`+T queries to H. Now
let (S0,S1) be a BF-KDF simulator for (D̃0, D̃1). Then (S0,S1) is also an AI-
KDF simulator as the ideal BF- and AI-KDF games are syntactically identical.

ut

We now prove that salted iteration of a random oracle achieves KDF security
in the BF-RO model. The technical challenge here is to show that the results
of [BRT12] can be “lifted” to a setting with auxiliary information. To do so, we
can follow the generic approach of Coretti et al. [CDGS18] (i.e., Theorem 1),
but this results in a different construction where every primitive call in the
construction is salted. Standard iterated constructions, however, only salt the
innermost call.

We thus directly establish the bit-fixing KDF security of the iterated con-
struction when pw |sa are never an n-bit string where n is the output length of
H. We then translate this result to the auxiliary-input setting using the above

20

theorem. The length restriction on pw |sa allows us to decouple the innermost
call to H from the rest of the calls.11

Theorem 12 (Bit-fixing KDF security). Let KDH
r be the r -iterated key-

derivation function where H : {0, 1}∗ → {0, 1}n is a random oracle, and let Gen
be a salt generator that outputs uniform salts in a set of size K. Let N := 2n.
Then for any BF-KDF distinguisher (D0,D1) where D1 outputs a list of size P
and makes at most T primitive queries, there is a simulator (S0,S1) such that
for any ` ∈ N

Advbf-kdf
P,`,Gen,KDr ,S0,S1(D0,D1) ≤

(r + 1)m`T

N
+3·
(
rm`(rm`+ P)

N
+
m`P

K
+
m2`2

K

)
.

Furthermore, S1 places at most T/r queries to RO and runs in time Õ(r).

We start with a high-level overview of our simulator, which we define in
Fig. 5. The initial stage of the simulator S0 simply runs D0 to get (σ, L), and
populates table H with assignments in L. It passes H (which is essentially L)
onto S1 via state st. The online simulator simulates H via lazy sampling using H
and detecting completed chains (as is common in indifferentiability proofs). For
a query w, it looks for a chain of queries w0, w1, . . . , wr−1 such that the chain
starts at w0 = pw |sa for a one of salts (note that the simulator knows the salts)
and ends at wr−1 = w, and furthermore along the chain there were no collisions
inH (and hence the chain, if defined, is unique). If a chain is found, the simulator
uses the random oracle RO to answer the query; else a fresh random string is
chosen. This simulator makes a Test query as a result of a chain completion.
Hence it makes at most T2/r queries.12

Proof (Sketch). We now give an overview of the game transitions used in the
proof of BF-KDF security and refer the reader to the full version of the paper
for the details.

G0: In this game we initially populate a table H (used for lazy sampling) with
entries in L. We compute the challenge vector using lazy sampling and also
answer primitive queries using H.

G1: In this game we “optimistically” sample the outputs of the random oracle
for the challenge values. We also set a bad flag bad if while computing chains
we encounter a penultimate value whose hash has already been set. We still
use the value already set, but in the next game we would like to set this
value to the optimistically chosen one. G1 and G0 are identical.

11 In particular, we do not run into “hash-of-hash” problems as in [DRST12] as not
every H call is salted.

12 We emphasize that without the length restriction on password-salt pairs, this sim-
ulator can fail. Consider a differentiator that gets wr ← Const(pw , sa), w′r+1 ←
Prim(wr), and w′1 ← Prim(pw |sa). It the parses w′1 as (pw ′, sa ′), gets wr+1 ←
Const(pw ′, sa ′), and checks if (wr+1 = w′r+1). This attack corresponds to the com-
putation of two overlapping chains. Our S1 fails as it simulates the two Prim queries
randomly since it won’t be able to detect any chains.

21

Algo. S0():
(σ, L)←← D0()
for (w, y) ∈ L do
H[w]← y

st← H
return (σ, st)

Algo. STest
1 (w):

if H[w] 6=⊥: return H[w]
(pw , sa)← FindChain(w)
if (pw , sa) 6=⊥:
y ← Test(pw , sa)
if y 6=⊥ then H[w]← y
else H[w]←←{0, 1}n

return H[w]

Sub. FindChain(w):
wr−1 ← w
for i = 1 to r − 1 do
S[wr−i] := {x : H[x] = wr−i}
if |S[wr−i]| 6= 1: return ⊥
wr−i−1←← S[wr−i]

if∃(pw , sa[i, j]) :w0=pw |sa[i, j]:
return (pw , sa)

return ⊥

Fig. 5. Simulator for the bit-fixing KDF security of the r -iterated random oracle.

G2: In this game, even if the hash of a penultimate value is already defined and
the flag bad gets set, we set the hash of the penultimate value to the opti-
mistically chosen one. (Note that the primitive oracle has not been changed.)
G2 and G1 are identical until bad.

G3: In this game we introduce two conceptual changes: (1) We no longer set
the entry in H for the penultimate values; and (2) We modify the primitive
oracle to check if a query is a penultimate value. If so, the primitive oracle
uses the optimistically sampled value. G2 and G3 are identical.

G4: In this game we change the way the primitive oracle operates by first check-
ing if there is a chain of values of length r − 1 leading to the query w. (This
is done by maintaining a set of edges E for the graph resulting from the
queries. If so, we set the hash of w to the optimistically chosen one. Other-
wise if the query w matches a penultimate value, we set a flag bad2 and set
hash value to the optimistically chosen one. G3 and G4 are identical until
bad.

G5: In this game if bad2 is set, we do not use the optimistically set value, but
rather a random value. The two games are identical until bad2.

G6: This game removes code in computing the challenge keys and setting of
bad2. It also moves populating H with L to the primitive oracle. This game
is identical to G5.

G7: In this game we modify the way chains are detected. Now of course the
simulator does not know the password-salt pairs. Hence, we modify this chain
detection procedure so that it uses a Test oracle to check if a password-
salt pair that traces to the queried point is indeed one of the challenge
password-salt pairs. This game is identical to the ideal AI-KDF game with
the simulator in Fig. 5.
Such a path, if it exists, will be unique as long the paths are isolated (that
is there are no edges (u, v) on graph of execution E such that v is on the
path but u is not) and the path has no loops. Here we use the fact that
password-salt pairs have length different than n-bit, so that the adversary
cannot “slide” the path.
These conditions ensure that there is at more one path for a given w. In par-
ticular the simulator makes at most T/r such paths and thus the simulator’s
number of queries to Test is also at most T/r times.

22

We now bound the distinguishing advantage in the transitions above. The games
G1–G4 are all identical until bad. So we can bound this difference with a single
game hop. (G2 and G3 were used for reasoning.) The probability of bad is upper
bounded by the probabilities of (1) hitting a bad starting point with a non-fresh
salt, that is m`P/K; (2) two salts colliding, m2`2/K (here we do not make
any assumptions about the entropy of P and in particular it could be that the
sampled passwords are not distinct); and (3) any value generated collides with a
value generated before, or one of the pre-sampled values, i.e., (rm`)(rm`+P)/N .
Thus, the overall bound is

m`P

K
+
m2`2

K
+

(rm`)(rm`+ P)

N
.

The distance between G4 and G5 is bounded by the probability of setting
bad2. We have that Pr[bad2] ≤ Pr[bad] + Pr[bad2|¬bad]. Now under ¬bad the
values that provoke bad2 are uniform. Since there are rm` of them we get that
Pr[bads|¬bad] ≤ rm`T/N .

We now bound the distance between G6 and G7. The probability that input-
outputs defining the paths from password-salt pairs of length r − 1 stay disjoint
and outside L is given by the bound displayed above. Thus, we pick up three
Pr[bad] terms in total. The probability that no other queries enter into these
paths is at most rm`T/N . The theorem follows by collecting terms. ut

We note our bound above does not involve birthday terms of the form T 2

or T · P , which would translate to salt sizes that are too large to be acceptable
in practice. We may now apply Theorem 11 to deduce that for any AI-KDF
adversary (D0,D1) that outputs at most S bits of auxiliary information and
places at most T queries to the primitive oracle, there is a simulator (namely
the simulator for the BF-KD notion) such that for any γ > 0

Advai-kdf
P,`,Gen,KDr ,S0,S1(D0,D1) ≤ S′T ′

P
+ 3P

(
rm`

N
+

rm`

K

)
+ · · · ,

where S′ := S+log γ−1 and T ′ := rm`+T and the omitted terms do not involve
P . For the optimal P , we set the two terms involving P to a common value and
obtain (up to constant factors) that

P =

√
S′T ′NK

3rm`(N +K)
.

Plugging this back into the bound we finally obtain that

Advai-kdf
P,`,Gen,KDr ,S0,S1(D0,D1) ≤ 6 ·

√
S′T ′NK

3rm`(N +K)
·
(
rm`

N
+

rm`

K

)
+

+
3m2`2

K
+

3r2m2`2 + (r + 1)m`T

N
+ γ .

23

Game ai-multi-GA0,A1
G,P,Gen,KD:

H←← Fun(D,R)
σ←← A0(H)
(b1, . . . , bm)←←{0, 1}m
(pw, z)←← P
for (i, j) ∈ [m]× [`] do

sa[i, j]←← Gen(i, j)
k[i, j]← KDH(pw[i], sa[i, j])

for i ∈ [m] do
(xi, sti)← G(ε; (k[i, 1], . . . ,

. . . ,k[i, `], bi, ri); ε)
b′←← AGame,Cor,H

1 (sa, x1, . . . , xm, σ, z)
return (b′ = ⊕m

i=1bi)

Proc. Game(i, x):
(y, sti)← G(x; (k[i, 1], . . . ,k[i, 1], bi, ri); sti)
return y

Proc. Cor(i):
return pw[i]

Proc. H(w):
return H(w)

Fig. 6. Security game for the password-based multi-instance extension of G in the pres-
ence of auxiliary information on H. States sti are initialized to ε and ri are independent
random coins of appropriate length. ` is the number of random strings that need to be
replaced in each instance of G.

6 KDF Security in Applications

Given a game G, as defined in Section 2, we consider a multi-instance extension
that runs a central adversary A1 with respect to m independent instances of G.
Let

Advsingle
G (A) := 2 · Pr

[
GA
]
− 1 ,

be the single-instance advantage. Suppose G uses randomness (k1, . . . , k`, b, r) for
some `. We are interested in replacing the values kj with those that are derived
from passwords through a KDF (see game ai-multi-G in Fig. 6). Let

Advai-multi
G,P,Gen,KD(A0,A1) := 2 · Pr

[
ai-multi-GA0,A1

G,P,Gen,KD

]
− 1 .

We show that if KDH is a secure KDF in the AI-RO model, this advantage can be
upper bounded by those in the single-instance game G and the salted guessing
game.

Theorem 13. Let G be a game with ` keys, P an m-sampler, KDH a key-
derivation function in the RO model, and Gen a salt generator. Then for any
adversary (A0,A1) in ai-multi-G with A0 outputting at most S bits of auxiliary
information, and A1 placing at most T queries to H and at most c queries to
Cor, there is a AI-KDF distinguisher (D0,D1) where D0 also outputs at most
S bits of auxiliary information and D1 places at most T queries to its Prim
oracle, and an adversary B against G in the single instance setting (with uniform
randomness) that uses S bits of non-uniformity and runs in time that of A1 plus
the time need to run m− 1 instances of G such that for any AI-KDF simulator

24

(S0,S1),

Advai-multi
G,P,Gen,KD(A0,A1) ≤ 2 ·Advai-kdf

P,`,Gen,KD,S0,S1(D0,D1)+

+ 2 ·Advsa-guess
P,`,Gen (T, c) +m ·Advsingle

G (B) .

Proof. The proof follows that of [BRT12, Theorem 3.4], except that we need to
deal with general games and also auxiliary information on H.

Let ai-multi-G0 be identical to ai-multi-G. Let (S0,S1) be the AI-KDF sim-
ulator. We modify ai-multi-G0 to a game ai-multi-G1 that uses random keys
instead of keys derived from passwords, and where σ and H are stimulated via
the AI-KDF simulator (S0,S1). This transition is justified using AI-KDF secu-
rity as the inputs and oracles provided in each of the two AI-KDF games (that
is, all passwords, real/random keys, and salts) are sufficient for an AI-KDF dis-
tinguisher D0,D1 to simulate ai-multi-G0 or ai-multi-G1. In this transition the
distinguisher also picks coins ri and bits bi. When A1 returns b′, the distinguisher
returns (b′ = ⊕mi=1bi). Thus,

Pr[ai-multi-G0]− Pr[ai-multi-G1] ≤ Advai-kdf
P,`,Gen,KD,S0,S1(D0,D1) .

We now modify ai-multi-G1 to ai-multi-G2 that sets flag bad and termi-
nates if the simulator queries all passwords to its Test oracle. The two games
are identical until bad. We can upper-bound the probability of bad by building a
sa-Guess adversary as follows. Run the initial simulator S0 to generate σ. (Note
that this step entails that the sa-Guess adversary that we build is potentially
unbounded.) Pick randomness (including keys) to simulate the m instances of
the games. The Cor oracle is simulated by relaying queries to and the corrup-
tion oracle provided in sa-Guess. For the Test query, use the Test oracle in
sa-Guess to get a set S of indices. If this set is non-empty, return the corre-
sponding set of keys k[S]; otherwise return ⊥. Whenever bad is set, sa-Guess
is won and thus

Pr[ai-multi-G1]− Pr[ai-multi-G2] ≤ Advsa-guess
P,`,Gen (T, c) .

We now bound the probability of winning ai-multi-G2 in terms of winning
a single instance of G with random keys. This is done via a simple guessing
argument. In game ai-multi-G2 at the onset an adversary B guesses an index i∗
among the m instances which won’t be corrupted. By the bad flag introduced
in the previous game, if an index remains uncorrupted, i∗ will be a good guess
with probability 1/m. For the reduction, B chooses σ, passwords, salts, and
randomness for all games except for the i∗-th game. All games except the i∗-
th instance are simulated using these values. The i∗-th instance is simulated
using the provided game G. If i∗ is corrupted, B returns a random bit. When
A1 terminates with b′, algorithm B returns b′ ⊕i 6=i∗ bi as its guess in the single
instance game. This guess is correct guess whenever b′ = bi∗ . Thus,

Pr[G] = 1/m · Pr[ai-multi-G2] + (1− 1/m) · 1/2 ,

25

and hence

Pr[ai-multi-G2]− 1/2 = m · (Pr[G]− 1/2) = m/2 ·Advsingle
G (B) .

The theorem follows by collecting the terms above and using the definitions
of the advantage functions. Note that B uses |σ| bits of non-uniformity in this
reduction. ut

Our result generalizes [BRT12, Theorem 3.4] to a larger class of games, which
among others includes IND-CPA security for symmetric encryption (as consid-
ered by BRT without auxiliary information), as well as other games such as AE
or CCA security for symmetric encryption, unforgeability for MACs, and may
others all in the presence of auxiliary information. We emphasize that this result
does not extend to games that access H (i.e., the random oracle in G and that
used by the KD are shared). Indeed, when attempting to prove such a result,
the initial two sequence of games above go through, but the last step fails: the
oracle access in instance i∗ cannot be simulated. (And indeed, attacks do exist.)
Despite this, if the domains of access for H are separated for G and KD such an
extension can be established.

Acknowledgments. Tessaro was partially supported by NSF grants CNS-
1930117 (CAREER), CNS-1926324, CNS-2026774, a Sloan Research Fellowship,
and a JP Morgan Faculty Award.

References

AS15. Joël Alwen and Vladimir Serbinenko. High parallel complexity graphs and
memory-hard functions. In Rocco A. Servedio and Ronitt Rubinfeld, edi-
tors, 47th ACM STOC, pages 595–603. ACM Press, June 2015.

BRT12. Mihir Bellare, Thomas Ristenpart, and Stefano Tessaro. Multi-instance se-
curity and its application to password-based cryptography. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of
LNCS, pages 312–329. Springer, Heidelberg, August 2012.

CDG18. Sandro Coretti, Yevgeniy Dodis, and Siyao Guo. Non-uniform bounds in
the random-permutation, ideal-cipher, and generic-group models. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume
10991 of LNCS, pages 693–721. Springer, Heidelberg, August 2018.

CDGS18. Sandro Coretti, Yevgeniy Dodis, Siyao Guo, and John P. Steinberger. Ran-
dom oracles and non-uniformity. In Jesper Buus Nielsen and Vincent Ri-
jmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages
227–258. Springer, Heidelberg, April / May 2018.

CDMP05. Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant
Puniya. Merkle-Damgård revisited: How to construct a hash function. In
Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 430–448.
Springer, Heidelberg, August 2005.

DGK17. Yevgeniy Dodis, Siyao Guo, and Jonathan Katz. Fixing cracks in the con-
crete: Random oracles with auxiliary input, revisited. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, vol-
ume 10211 of LNCS, pages 473–495. Springer, Heidelberg, April / May
2017.

26

DRST12. Yevgeniy Dodis, Thomas Ristenpart, John P. Steinberger, and Stefano Tes-
saro. To hash or not to hash again? (In)differentiability results for H2 and
HMAC. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 348–366. Springer, Heidelberg, August 2012.

DTT10. Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs
for attacks against one-way functions and PRGs. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 649–665. Springer, Heidelberg,
August 2010.

GT00. Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of
generic cryptographic constructions. In 41st FOCS, pages 305–313. IEEE
Computer Society Press, November 2000.

Kal00. Burt Kaliski. Pkcs# 5: Password-based cryptography specification version
2.0. 2000.

MRH04. Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentia-
bility, impossibility results on reductions, and applications to the random
oracle methodology. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS,
pages 21–39. Springer, Heidelberg, February 2004.

Oec03. Philippe Oechslin. Making a faster cryptanalytic time-memory trade-off. In
Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 617–630.
Springer, Heidelberg, August 2003.

PJ16. C. Percival and S. Josefsson. The scrypt Password-Based Key Derivation
Function. RFC 7914 (Informational), August 2016.

PM99. Niels Provos and David Mazières. A future-adaptable password scheme.
In Proceedings of the FREENIX Track: 1999 USENIX Annual Technical
Conference, June 6-11, 1999, Monterey, California, USA, pages 81–91.
USENIX, 1999.

Unr07. Dominique Unruh. Random oracles and auxiliary input. In Alfred Menezes,
editor, CRYPTO 2007, volume 4622 of LNCS, pages 205–223. Springer,
Heidelberg, August 2007.

Wee05. Hoeteck Wee. On obfuscating point functions. In Harold N. Gabow and
Ronald Fagin, editors, 37th ACM STOC, pages 523–532. ACM Press, May
2005.

A Multi-Instance Hellman

We present a simple adaptation of Hellman’s space-time trade-off algorithm for
inverting random permutations. Consider the cycle graph of the permutation
π : [N]→ [N]. We pick S points that are roughly equidistant on the graph. We
store each such point together with a pointer to a point T/m steps behind. Now
given π(x) = y, where x is within distance T/m from one of the S points on the
cycle graph, we can successfully recover x in T steps: We apply π iteratively to
y until we reach one of the S points. We then jump backwards by T/m steps
(following the stored pointer), and apply π until we reach x. This process takes
exactly T/m evaluations of π. (This is as in the single-instance case except for
the T/m instead of T .)

Now, in the multi-instance setting with m points x1, . . . , xm, if all of the
xi’s land within distance T/m from one of the S points, we can recover each
xi by evaluating π for T/m times, and thus in the worst case we make at most

27

m · T/m = T queries. The probability that this happens is (ST/mN)m. With c
corruptions, we first reduce m to m− c. Thus, for uniform passwords in [N],

Advai-rec
[N]m,`,⊥,π(S, T, c) ≥

(
ST

(m− c)N

)m−c
.

With no corruptions, if we have sufficiently large side information, we may
well need time T = mN/S. In particular, this means that we have a direct sum
situation (without introducing salts). That is, the time to break m instances
scales linearly with m.

28

	Password Hashing and Preprocessing
	Introduction
	Guessing games
	Unrecoverability bounds
	AI-KDF security of iteration
	Structure of the paper

	Preliminaries
	Unguessability
	Unrecoverability
	Main theorems

	Iterated Hashing
	KDF Security in Applications
	Multi-Instance Hellman

