
Round-Optimal Blind Signatures in the Plain
Model from Classical and Quantum Standard

Assumptions

Shuichi Katsumata1, Ryo Nishimaki2, Shota Yamada1, and Takashi Yamakawa2

1 AIST, Tokyo, Japan
{shuichi.katsumata,yamada-shota}@aist.go.jp

2 NTT Secure Platform Laboratories, Tokyo, Japan
{ryo.nishimaki.zk, takashi.yamakawa.ga}@hco.ntt.co.jp

Abstract. Blind signatures, introduced by Chaum (Crypto’82), allows
a user to obtain a signature on a message without revealing the message
itself to the signer. Thus far, all existing constructions of round-optimal
blind signatures are known to require one of the following: a trusted
setup, an interactive assumption, or complexity leveraging. This state-of-
the-affair is somewhat justified by the few known impossibility results
on constructions of round-optimal blind signatures in the plain model
(i.e., without trusted setup) from standard assumptions. However, since
all of these impossibility results only hold under some conditions, fully
(dis)proving the existence of such round-optimal blind signatures has
remained open.
In this work, we provide an affirmative answer to this problem and
construct the first round-optimal blind signature scheme in the plain
model from standard polynomial-time assumptions. Our construction
is based on various standard cryptographic primitives and also on new
primitives that we introduce in this work, all of which are instantiable
from classical and post-quantum standard polynomial-time assumptions.
The main building block of our scheme is a new primitive called a
blind-signature-conforming zero-knowledge (ZK) argument system. The
distinguishing feature is that the ZK property holds by using a quantum
polynomial-time simulator against non-uniform classical polynomial-time
adversaries. Syntactically one can view this as a delayed-input three-move
ZK argument with a reusable first message, and we believe it would be
of independent interest.

1 Introduction

1.1 Background

Blind signatures enable users to obtain a signature without revealing a message
to be signed to a signer. More precisely, a blind signature scheme is a two-party
computation between a signer and a user. The signer has a pair of keys called
verification-key and signing-key, and the user takes as input a message and the
verification-key. They interact with each other, and the user obtains a signature
for the message after the interaction. There are two security requirements on

blind signatures: (1) users cannot forge a signature for a new message (unforge-
ability), and (2) the signer cannot obtain information about the signed messages
(blindness).

Chaum introduced the notion of blind signatures and provided a concrete
instantiation, while also showing an application to e-cash systems [Cha82]. After
its invention, blind signatures have been used as a crucial building block for
various other privacy-preserving crypto-systems such as e-voting [FOO93,Cha88],
anonymous credential [CL01], and direct anonymous attestation [BCC04].

Round-complexity. One of the main performance measures for blind signatures is
round-complexity. A round-optimal blind signature is a blind signature with only
2-moves3, where the user and signer sends one message to each other. We focus
on round-optimal blind signatures in this study since a high round-complexity
is one of the main bottlenecks in cryptographic systems. Another advantage is
that round-optimal blind signatures are automatically secure in the concurrent
setting [Lin08,HKKL07].

Round-optimal scheme in the plain model from standard assumptions. From a the-
oretical point of view, using less and weaker assumptions is much better. However,
all existing round-optimal blind signature schemes require either (1) a trusted
setup [Fis06,AO12,AFG+16,BFPV11,BPV12,MSF10,SC12,Bol03,BNPS02], (2)
an interactive assumption [FHS15,FHKS16,Gha17,BNPS02,Bol03], or (3) com-
plexity leveraging [GRS+11,GG14]. We briefly discuss each item. In the trusted
setup model, if an authority set a backdoor, we can no longer guarantee any
security. Interactive assumptions are non-standard compared to standard non-
interactive ones since an adversary can interact with the challenger.4 Complexity
leveraging uses a gap between the computational power of an adversary and
the reduction algorithm in security proofs. To create this gap, we require super-
polynomial-time assumptions5 and large parameters, which hurt the overall
efficiency. In fact, there are a few impossibility results on constructing round-
optimal blind signatures in the plain model (i.e., without any trusted setup)
from standard assumptions under some conditions [Lin08,FS10,Pas11]. So far,
constructing a round-optimal blind signature scheme in the plain model from
standard polynomial-time assumptions has proven to be elusive.

Thus, a natural and long-standing open question is the following:

Can we achieve a round-optimal blind signature scheme in the plain model from
standard polynomial-time assumptions?

3 We count one move when an entity sends information to the other entity.
4 An adversary may have the flexibility to choose a problem instance or obtain auxiliary
information related to a problem instance.

5 A super-polynomial-time assumption means that a hard problem cannot be bro-
ken even by super-polynomial-time adversaries. This is stronger than a standard
polynomial-time assumption, where adversaries are restricted to run in polynomial-
time.

We affirmatively answer this open question in this study. Hereafter, we call
blind signatures that satisfy all the above conditions as a blind signature with
desired properties.

1.2 Our Result

We present a round-optimal blind signature scheme with desired properties. Our
construction relies on various standard cryptographic primitives such as oblivious
transfer and also new primitives that we introduce in this study, all of which are
instantiable from classical and quantum standard polynomial-time assumptions.6

Our construction is based on the idea by Kalai and Khurana [KK19] that
we can replace complexity leveraging with classical and quantum assumptions.
However, our technique is not a simple application of their idea. There are several
technical hurdles to avoid complexity leveraging in blind signatures, even if we
use classical and quantum assumptions. We provide further details in Section 1.3.

The main building block of our scheme is a blind-signature-conforming zero-
knowledge (ZK) argument system, which we introduce in this study. It is a 2-move
ZK argument system in the reusable public key model where the ZK property
holds by using a quantum polynomial-time simulator against non-uniform classical
polynomial-time adversaries, and parties have access to a reusable public key
(possibly maliciously) generated by a prover. We construct a blind-signature-
conforming ZK argument for any NP language from standard classical and
quantum assumptions. We give an overview of our technique in Section 1.3.

Although our scheme satisfies desirable features in the theoretical sense, it is
not quite practical since we rely on general cryptographic tools such as garbled
circuits. We believe our scheme opens the possibility of practical round-optimal
blind signatures with the desired properties. We leave this question as an open
problem.

1.3 Technical Overview

Here, we provide an overview of our construction.

Blind signature scheme by Garg et al. Our starting point is the blind signature
scheme by Garg, Rao, Sahai, Schröder, and Unruh [GRS+11]. Their scheme is
round-optimal and in the plain model, but the security proof requires complexity
leveraging. Our goal is to remove the complexity leveraging and base the security
on classical and quantum polynomial assumptions.

Here, we recall their construction. In their protocol, a signer publishes a
verification key of a digital signature scheme as its public key and keeps the
6 The learning with errors (LWE) assumption against quantum polynomial time adver-
saries and one of the following assumptions against (non-uniform) classical polynomial
time adversaries: quadratic residuosity (QR), decisional composite residuosity (DCR),
symmetric external Diffie-Hellman (SXDH) over pairing group, or decisional linear
(DLIN) over pairing groups.

corresponding signing key secret. To blindly sign on a message, the signer and the
user run secure function evaluation (SFE) protocol where the signer plays the role
of the sender and the user plays the role of the receiver. In more detail, the user’s
input is the message to be signed, and the signer holds a circuit corresponding
to the signing algorithm of the digital signature scheme where the signing key is
hardwired. At the end of the protocol, only the user receives the output signature.
To prevent malicious behaviors of the signer, such as using arbitrarily chosen
randomness for the signing algorithm to break the blindness, they make the
signing algorithm deterministic by using a PRF and include the perfectly binding
commitment of the signing key into the public key. Furthermore, they have the
signer prove that it honestly follows the SFE protocol using a zero-knowledge
argument system.

The blindness of the protocol follows from the receiver’s security of the SFE
and from the fact that the signer cannot deviate from the honest execution
of the protocol due to the soundness of the zero-knowledge argument system
and the binding property of the commitment scheme. On the other hand, the
unforgeability follows from the combination of the zero-knowledge property of
the zero-knowledge argument system, the sender’s security of the SFE protocol,
and the unforgeability of the digital signature scheme. The former two properties
intuitively imply that the user cannot obtain anything beyond the signatures
corresponding to the messages it chooses. The final property implies that it cannot
forge a new signature. While intuitively correct, there are two problems with
this approach. The first problem is with the reduction algorithm that reduces
the unforgeability of the blind signature scheme to that of the underlying digital
signature scheme. The reduction algorithm has to simulate the signer and extract
the message to be signed from the first message of the user. However, this should
not be possible because of the receiver’s security of the SFE. The second problem
is that we need a 2-move zero-knowledge argument system to obtain round-
optimal blind signatures. However, it is known that a 2-move zero-knowledge
argument system is impossible [GO94].

To resolve these problems, they assume super-polynomial security for the
underlying (plain) signature scheme and allow the corresponding reduction
algorithm to run in super-polynomial time. Then, the first issue can be resolved
by letting the reduction algorithm break the receiver’s security of the SFE
scheme and extract the message to be signed using its super polynomial power.
Furthermore, allowing the reduction algorithm to run in super-polynomial time
also enables them to sidestep the impossibility result mentioned above. They
use a 2-move zero-knowledge argument system with a super-polynomial time
simulator by Pass [Pas03] and run the super-polynomial time simulator in the
reduction algorithm for unforgeability.7 This also resolves the second issue above.

Our first step towards the goal is to replace the super-polynomial time reduc-
tion algorithm in their security proof with a quantum-polynomial time (QPT)

7 Though Garg et al. [GRS+11] does not explicitly state that they use the zero-
knowledge argument of [Pas03], we observe that their construction can be viewed in
this way.

algorithm, which is inspired by Kalai and Khurana [KK19]. To make this work,
we replace primitives with super-polynomial security with quantumly secure ones
and the primitives broken by the super-polynomial time algorithm with quan-
tumly insecure and classically secure ones. However, simple replacement of the
underlying primitives does not work, because their security proof uses complexity
leveraging twice, which requires three levels of security for the underlying primi-
tives, while the combination of classical and quantum polynomial hardness can
offer only two levels of security.8 In particular, the above idea necessitates 2-move
zero-knowledge arguments with QPT simulation, which cannot be obtained by a
simple modification of the construction by Pass [Pas03]. As we elaborate in the
following, we relax the notion of zero-knowledge argument system so that it still
implies blind signatures and provides a construction that satisfies the notion by
adding many modifications to the original zero-knowledge argument system by
Pass [Pas03].

Zero-Knowledge argument system by Pass. To see the problem more closely, we
review the zero-knowledge argument system by Pass [Pas03], which is used in
the construction of round-optimal blind signatures by Garg et al. [GRS+11].
Their starting point is ZAP for NP languages [DN00,DN07]. Recall that ZAP
is a 2-move public coin witness indistinguishable proof system without setup,
where the first message can be reused. To make it zero-knowledge, they use the
“OR-proof trick" by Feige, Lapidot, and Shamir [FLS90,FLS99]. This technique
converts a witness indistinguishable proof into a zero-knowledge proof in the
context of non-interactive proof systems by adding a trapdoor branch for the
relation to be proven so that the zero-knowledge simulator can use the branch.
In more detail, the protocol proceeds as follows.

1. In the first round of the protocol, the verifier sends the first round message
rzap of the ZAP system along with a random image z = f(y) of a one-way
permutation (OWP) f : {0, 1}` → {0, 1}`.9

2. Given the message, the prover who proves x ∈ L, where L is some NP
language specified by a relation R, proceeds as follows. It first commits the
string 0` by a non-interactive commitment with perfect biding to obtain
com = Com(0`; rcom) using randomness rcom. It then proves that there is
witness (w′, y′, r′com) such that(

(x,w′) ∈ R
)
∨
(

com = Com(y′; r′com) ∧ f(y′) = z
)

8 A reader might consider starting from the blind signature scheme by Garg and
Gupta [GG14] instead since their security proof uses complexity leveraging only once.
However, their construction may not be compatible with our idea of using quantum
simulation since it is heavily dependent on a specific structure of the Groth-Sahai
proofs [GS08], which is quantumly insecure.

9 Though one-way functions with efficiently decidable images suffice, we use OWP
in this overview for simplicity. In our construction, we rely on a slightly generalized
notion of hard problem generators which we introduce in Section 3.1.

by the proving algorithm of the ZAP system to obtain a proof πzap and sends
π = (com, πzap) to the verifier. Note that in the honest execution, the prover
sets (w′, y′, r′com) = (w,⊥,⊥).

3. Given the proof from the prover, the verifier parses π → (com, πzap) and
verifies the proof πzap for the above statement by the verification algorithm
of the ZAP system.

We then discuss the security of the system. Let us start with the zero-knowledge
property. As mentioned, the simulator will run in super-polynomial time, say
T . Given (rzap, z), the simulator uses its super-polynomial power to invert the
permutation to compute y = f−1(z). It then computes a commitment com =
Com(y; rcom) and uses the witness (w′, y′, r′com) = (⊥, y, rcom) to generate a proof.
Due to the witness indistinguishability of the underlying ZAP and the hiding
property of the commitment, the simulated proof is indistinguishable from the
real one. The proof for soundness is a bit more complicated. Let us assume an
adversary that can generate an accepting proof for a false statement x 6∈ L.
By the statistical soundness of ZAP and by the fact that x 6∈ L, the output
(com∗, π∗) of the successful adversary should satisfy the trapdoor branch of the
relation. Namely, com∗ should be a commitment of y = f−1(z). Intuitively, this
contradicts the one-wayness of f , and thus the system is sound since generating
such a commitment seems to require the knowledge of y. However, to turn this
intuition into a formal argument, we have to construct a reduction algorithm
(i.e., inverter for the OWP) that outputs y = f−1(z) in the clear, instead of the
commitment of y. To do so, they turn to complexity leveraging. Namely, they
consider an inversion algorithm that runs in super-polynomial time, say T ′, and
have the algorithm extract y from com∗ using its super-polynomial power. If we
assume f is hard to invert in time T ′ and the commitment is broken in time T ′,
we can derive the contradiction as desired.

We observe that the two super-polynomial functions T and T ′ should satisfy
T � T ′, since f should be invertible in time T for the zero-knowledge simulator
to work, while f should be hard to invert in time T ′ for the above reduction to
make sense. This seems to be incompatible with our approach of replacing T -time
simulator with QPT simulator, since this requires hardness that lies between QPT
hardness and classical polynomial hardness to replace T ′-time secure primitives
with something. However, we do not know how to do this without turning to
complexity leveraging.

Replacing the commitment with encryption. As we observed above, the main
technical hurdle to our goal is that there is no efficient way to extract the
message from the commitment for the reduction algorithm that inverts the
OWP. However, extraction should not be possible efficiently, since otherwise the
commitment cannot be hiding and thus harms the zero-knowledge property. To
satisfy these contradicting requirements, we switch to the non-uniform setting and
use the standard trick of leveraging the gap between the information available for
algorithms in the real-world and non-uniform reduction algorithms. As observed
by Garg et al. [GRS+11], non-uniform algorithms can be regarded as two-stage

algorithms. The pre-computation phase of the algorithm takes the security
parameter as input and computes an advice string of polynomial length using
unbounded computational power. Then, the online phase of the algorithm takes
the problem instance along with the advice string as input and tries to solve the
problem in polynomial time. In our context, the non-uniform reduction algorithm
will use this advice string to efficiently extract the message from the commitment.
On the other hand, this advice string is not available for the real world algorithms
and hence does not harm the hiding property of the commitment.

To implement this idea, we replace the commitment with public key encryption
(PKE) and change the protocol so that the prover encrypts 0` using a public
key pkP chosen by itself, instead of computing a commitment of 0`. The advice
string in our context is the secret key corresponding to pkP . Using the secret
key, one can efficiently decrypt the ciphertext and extract the message as desired.
Subtle yet, the important point is that the prover should choose the public key
pkP before the protocol is run and use the same public key for every invocation
of the protocol. Then, the non-uniform reduction algorithm can find the secret
key corresponding to pkP in the pre-computation phase using its unbounded
computational power, since pkP is chosen before the problem instance z = f(y)
of the OWP is chosen. This is not possible if the prover chooses a fresh public
key for every encryption because the problem instance z and the public key are
chosen at the same time in this case. It is not possible to off-load the task of
finding the secret key to the pre-computation phase.

In fact, with the above modification, the argument system is no longer in the
plain model, since we allow the prover to choose a long-term public key. However,
since the syntax of round optimal blind signatures allows the signer to have a
long-term public parameter, this modification does not affect the application to
blind signatures.

Dealing with maliciously generated public keys. While the above idea may seem
to work at first sight, there is still an issue. The problem is that a malicious
prover may choose an ill-formed public key for the PKE, for which there are no
corresponding secret keys. In this case, we may not be able to extract the message
from the ciphertext even with unbounded computational power. We should
consider this kind of attack since a malicious signer against blind signatures may
maliciously choose a public key. A simple countermeasure against this attack
would be to use a PKE scheme such that one can efficiently decide whether the
public key is honestly generated or not and have the verifier reject provers with
ill-formed public keys. However, we cannot adopt this simple solution because we
do not know how to instantiate such a PKE. In particular, we require the PKE
to have security against QPT adversaries in addition to the above property due
to a technical reason,10 but there are no known PKE schemes satisfying these
properties simultaneously.
10 We need security against QPT adversaries for the PKE scheme because its security

is used to prove zero-knowledge property, where the simulator is a QPT algorithm.
Recall that the simulator needs quantum power to invert the OWP. One may try
to show that non-uniform security instead of quantum security is enough for the

To resolve the issue, we further change the protocol. Our first attempt is to
let the verifier choose a public key pkV of PKE and have the prover encrypt 0`
under pkV in addition to the long-term public key pkP . Furthermore, we have
the prover prove that it has valid witness w for x or it encrypts y under pkP and
pkV . With this change, the reduction algorithm can extract the message from the
ciphertext corresponding to pkV even if pkP is maliciously generated since pkV
is under the control of the reduction algorithm and honestly generated. However,
this modification harms the zero-knowledge property. In particular, since the
verifier has secret key corresponding to pkV , it can know whether the proof is
generated from the honest execution of the protocol or not by simply decrypting
the ciphertext.

The reason why the above idea fails is that we allow too much flexibility for
the verifier in the sense that it can choose a public key that enables the extraction
even if the prover behaves honestly. What we really need is a mechanism where the
verifier can extract the message only when the prover cheats. For this purpose,
we use lossy encryption. Recall that lossy encryption [PVW08,BHY09] is an
extension of PKE where we have an additional lossy key generation algorithm.
While the normal key generation algorithm outputs a public key and secret key,
the lossy key generation algorithm only outputs a public key. For lossy encryption,
we require the lossiness property, which stipulates that the ciphertext generated
under the lossy key does not carry any information of the message. As for security,
we require that the lossy key and the normal key are indistinguishable. We then
would like to change the protocol so that the verifier is restricted to choose the
lossy public key in the honest execution of the protocol and can choose normal
public key that allows the extraction only when the prover chooses an ill-formed
public key. To restrict the behavior of the verifier, we have the verifier prove the
following statement:

(pkV is chosen from the lossy key generation)∨(pkP is an ill-formed public key) .
(1)

The former branch of the statement is used in the honest execution and the latter
is for simulation. The proof is generated by running another instance of the ZAP
system, where the roles of the prover and the verifier are swapped. To avoid
increasing the round of the overall protocol, we put the first round message of the
ZAP system into the public parameter of the prover and have the verifier generate
the proof with respect to it and send the proof along with pkV to the prover in
the first round. Note that it is not clear how to prove the above statement by
the ZAP system, since it is not necessarily in NP. In particular, we do not know
of a general way of providing an NP witness for proving the ill-formedness of a
public key. We skip this issue and simply assume that it is possible for the time
being. We will get back to the issue at the end of the overview. The protocol now
proceeds as follows.

PKE by using the pre-computation trick we mentioned. However, this does not seem
possible because the inversion should be done after the public key is chosen.

1. The prover runs the key generation algorithm of the PKE to obtain a public
key pkP and chooses the first message r′zap of the ZAP system. It then sets
the long-term public parameter as pp = (pkP , r′zap).

2. In the first round of the protocol, the verifier chooses the first round message
rzap of the ZAP system and a random image z = f(y) of the OWP f :
{0, 1}` → {0, 1}`. It then runs lossy key generation of the lossy encryption to
obtain a public key pkV . It then proves statement (1) with respect to r′zap by
using the randomness for the lossy key generation as a witness to obtain a
proof π′zap. Finally, it sends (rzap, pkV , π′zap) to the prover.

3. Given the message, the prover verifies π′zap for statement (1) and aborts the
protocol if it is not valid. Otherwise, it encrypts the string 0` under pkP
and pkV to obtain ctP = PKE.EncpkP

(0`; rP) and ctV = LE.EncpkV
(0`; rV),

where LE stands for “lossy encryption". It then proves that there is a witness
(w′, y′, r′P , r′V) such that(

(x,w′) ∈ R
)
∨
(

ctP = PKE.EncpkP
(y′; r′P)∧ctV = LE.EncpkV

(y′; r′V)∧f(y′) = z
)

(2)
with respect to rzap to obtain a proof πzap. Note that in the honest exe-
cution, the prover sets (w′, y′, r′P , r′V) = (w,⊥,⊥,⊥). It then sends π =
(ctP , ctV , πzap) to the verifier.

4. Given the proof from the prover, the verifier parses π → (ctP , ctV , πzap) and
verifies the proof πzap with respect to statement (2).

First attempt of the security proof. We now try to prove the security of the
scheme. We first prove the zero-knowledge property with a QPT simulator. To do
so, we start from the real game where a malicious verifier interacts with an honest
prover and gradually change the prover into a zero-knowledge simulator through
game hops. In the first step, we change the prover to be a quantum algorithm,
which inverts the OWP to recover y = f−1(z) from the first round message by
the verifier. We then change the game so that the prover encrypts y instead of 0`
when it generates the ciphertext ctP . Due to the security of PKE against QPT
adversaries, this game is indistinguishable from the real game. In the next step,
we replace the ciphertext ctV with the encryption of y instead of 0`. We show
that this game is indistinguishable from the previous game by combining the
soundness of the ZAP system and the lossiness of the lossy encryption. Without
loss of generality, we can assume that the prover does not abort the interaction,
since otherwise the malicious verifier cannot obtain any information. However, if
the prover does not reject the malicious verifier, this means that statement (1)
holds by the soundness of the ZAP. Since pkP is honestly chosen, pkV should
be a lossy key. Then, by the lossiness of the lossy encryption, we conclude that
ctV does not carry any information about the message, and the change does not
alter the distribution of ctV . Finally, we change the game so that the prover
uses the latter branch of statement (2) to generate πzap. Due to the witness
indistinguishability of the ZAP, this game is indistinguishable from the previous
game. Notice that the prover in the final game does not use the witness w for

the statement x to generate the proof and thus constitutes a zero-knowledge
simulator.

We then proceed to the proof of the soundness. The proof will be by case
analysis. In both cases, we construct a non-uniform reduction algorithm that
inverts the OWP. First, we consider the case where the malicious prover chooses
honestly generated pkP . In this case, the reduction algorithm receives pkP from
the malicious prover and finds the corresponding secret key skP in the pre-
computation phase using its unbounded computational power. Then, in the
online phase, it receives the problem instance z = f(y) of the OWP and embeds
it into the first-round message from the verifier to the prover. If the malicious
prover manages to generate an accepting proof for x 6∈ L, this should satisfy the
trapdoor branch of statement (2) by the soundness of the ZAP. In particular,
ctP should be an encryption of y = f−1(z) under the public key pkP and thus
the reduction algorithm can successfully extract y from ctP by using skP .

We next consider the other case where pkP is ill-formed. In this case, we need
a game hop. In the first step, we change the verifier to be a non-uniform algorithm
and have it compute the NP witness for the ill-formedness of pkP . Then, the
verifier generates the proof using the latter branch of statement (1). This game
is indistinguishable from the previous game by the witness indistinguishability
of the ZAP. In the next step, we change the game so that the verifier generates
pkV by the normal key generation algorithm rather than the lossy key generation
algorithm. This game is indistinguishable from the previous game by the security
of the lossy encryption. Note that this game hop is possible because the verifier
no longer needs the witness that proves pkV is generated from the lossy key
generation due to the change introduced in the previous game. We are now ready
to construct the inverter for OWP. Similarly to the case where pkP is honestly
generated, the soundness of the ZAP implies that an accepting proof for x 6∈ L
satisfies the latter branch of statement (1). This time, the inverter extracts y
from ctV , which is possible because pkV is now changed to be a normal public
key rather than a lossy one.

While the above proof sketch is almost correct, there is still a subtle issue.
In particular, the proof of the soundness for the case of ill-formed pkP is not
correct. The problem is that we cannot prove that the winning probability of the
malicious prover is changed only negligibly through the game changes because
we cannot construct a corresponding reduction algorithm that establishes this.
For example, we try to construct a reduction algorithm that breaks the witness
indistinguishability of the ZAP by assuming a malicious prover whose success
probability in the second game is non-negligibly different from that in the first
game. A natural way to do so is to let the reduction algorithm output 1 only when
the malicious prover successfully breaks the soundness of our argument system.
However, this is not possible since the reduction algorithm cannot efficiently
decide whether the output (x∗, π∗) of the malicious prover violates the soundness
or not. In particular, even if the malicious prover outputs an accepting pair of a
statement x∗ and a proof π∗, x∗ may be in L and the reduction algorithm cannot

detect it, since L may be hard to decide language. To address this problem, we
further change the protocol.

Making the winning condition efficiently checkable. As we observed above, the
only reason why the winning condition is not efficiently checkable is that the
language L is not efficiently decidable in general. To resolve the problem, we
change the protocol so that the prover explicitly includes an encrypted version of
witness w in the proof. In more details, we change the protocol so that we add a
public key p̂kP of another instance of PKE to the public parameter of the prover
and change the prover so that it outputs ĉtP = PKE.Encp̂kP

(w; r̂P) along with
ctP and ctV and proves that there is a witness (w′, r̂′KeyGen, r̂

′
P , y

′, r′P , r
′
V) such

that(
(x,w′) ∈ R ∧

(
p̂kP is generated by PKE.KeyGen(1κ; r̂′KeyGen)

)
∧ ĉtP = PKE.Encp̂kP

(w′; r̂′P)
)

∨(
ctP = PKE.EncpkP

(y′; r′P) ∧ ctV = LE.EncpkV
(y′; r′V) ∧ f(y′) = z

)
, (3)

where the former branch is used in the honest execution of the protocol and the
latter is for the simulation and is not changed from the previous construction.
Note that to prove the former branch, the prover needs randomness r̂KeyGen used
in the key generation of p̂kP and thus it has to keep the randomness as a secret
parameter. This needs to change the syntax of the zero-knowledge argument
system again. However, it does not affect the application to blind signatures,
since the syntax of the latter allows the prover to have a secret key.

We then explain how the above change helps. In our proof for the soundness,
we relax the winning condition so that the adversary is said to semi-win the game
if it outputs an accepting proof π∗ = (ct∗P , ct∗V , ĉt∗P , π∗zap) for x∗ and p̂kP is not in
the range of the key generation algorithm or ĉt∗P is not an encryption of a witness
w∗ such that R(x∗, w∗) = 1. We observe that to check this modified winning
condition, it is unnecessary to perform the membership test of the language
L. The modified winning condition is efficiently checkable for the non-uniform
reduction algorithm as follows. It first checks whether p̂kP is honestly generated
or not in the pre-computation phase and find the corresponding secret key by
brute-force search if it is so. Then, in the online phase, it decrypts the ciphertext
ĉt∗P using the secret key to see if the decryption result w∗ satisfies R(x∗, w∗) = 1
or not. We note that since we relaxed the winning condition, the adversary is
regarded as (semi-)winning the game even when it outputs an accepting proof for
x∗ ∈ L if it chooses ill-formed p̂kP or ĉt∗P that does not encrypt the witness for
x∗. However, these events happen only with negligible probability and thus can
be ignored, since these events imply that the soundness of the ZAP is violated.

Certifying invalid public keys. Now, the only remaining problem is how to
prove the statement that pkP is an ill-formed public key. We show that it is
possible to provide an NP witness for this statement if we use Regev’s PKE
scheme [Reg05,Reg09]. In Regev’s PKE scheme, a public key consists of descrip-
tion of a basis of a lattice L and a vector v. The secret key is the vector in L

closest to v. For an honestly generated public key, the distance dist(L,v) between
L and v is close, while for a maliciously generated key, the distance may be far.
Therefore, our goal is to provide a proof that v is far from L. For this purpose, we
use the result by Aharonov and Regev [AR04,AR05], who showed that a language
consisting of a pair of a lattice and a vector whose distance is far constitutes
an NP language. The subtle point is that their proof is for “gap language" in
the sense that they cannot give an NP witness for the pair of a lattice and
a vector whose distance is neither far enough nor close enough. Translated to
our setting, this means that a malicious prover in our zero-knowledge argument
system may choose a public key that is not in the support of the honest key
generation algorithm without being caught, if the lattice and the vector are not
very much far. We show that we can still define a secret key for such a public key
that enables the extraction of the message from the ciphertext, which is sufficient
for our purpose.

2 Preliminaries

Notation. For a positive integer n, [n] denotes a set {1, ..., n}. For a bit string x,
|x| denotes its bit-length. For a set S, we write s $← S to denote the operation of
sampling a random s from the uniform distribution over S. For a (probabilistic
classical or quantum) algorithm A, we write y $← A(x) to mean that we run A on
input x and the output is y. For a probabilistic classical algorithm A, we write
A(x; r) to mean the output of A on input x and randomness r. Moreover, by a
slight abuse of notation, we write y $← A(x; r) to mean that we uniformly pick r
from the randomness space of A and then set y := A(x; r). For a probabilistic
classical algorithm A that takes as input x and randomness r, “y ∈ A(x)" means
Prr[y′ = y : y′ ← A(x; r)] > 0. We use PPT and QPT to mean (classical)
probabilistic polynomial time and quantum polynomial time.

A Convention on Non-Uniform Adversaries. When we consider the security of
cryptographic primitives against non-uniform classical adversaries, we say that
an adversary A = (A0,A1) is non-uniform PPT if A0 is a (possibly randomized)
unbounded-time algorithm that takes as input the security parameter 1κ and
outputs a string of length poly(κ) and A1 is PPT. Typically, A0 and A1 can
be understood respectively as a “pre-computation phase” that outputs a non-
uniform advice and an “online phase” that takes as input the advice and a
problem instance and outputs a solution. We note that the randomness of A does
not increase the computational power of A since A0 can find the best randomness
by using its unbounded computational power. We allow A to be randomized just
for convenience for describing the reductions.

Definitions of standard cryptographic primitives, including non-interactive
commitment, public key encryption, lossy encryption, ZAP, and digital signatures,
can be found in the full version.

2.1 Secure Function Evaluation

A secure function evaluation (SFE) is a 2-move protocol between a sender who
holds a (classical) circuit C and a receiver who holds x, where the goal is
for the receiver to compute C(x) without revealing the inputs to each other.
Specifically, SFE consists of PPT algorithms ΠSFE = (Receiver,Sender,Derive)
with the following syntax:

Receiver(1κ, x)→ (sfe1, sfest): This is an algorithm supposed to be run by a
receiver that takes the security parameter 1κ and x as input and outputs a
first message sfe1 and a receiver’s state sfest.

Sender(1κ, sfe1, C)→ sfe2: This is an algorithm supposed to be run by a sender
that takes the security parameter 1κ, a first message sfe1 sent from a receiver
and a description of a classical circuit C as input and outputs a second
message sfe2.

Derive(sfest, sfe2)→ y: This is an algorithm supposed to be run by a receiver
that takes a receiver’s state sfest and a second message sfe2 as input and
outputs a string y.

Correctness. For any κ ∈ N, C, and x, we have

Pr[Derive(sfest, sfe2) = C(x) : (sfe1, sfest) $← Receiver(1κ, x), sfe2
$← Sender(1κ, sfe1, C)] = 1.

Security requirements are essentially the same as those in [GRS+11] except
that we require the extraction algorithm to run in QPT instead of classical
super-polynomial time. Specifically, we require the following two security notions.

Receiver’s Security against Non-Uniform PPT Adversary. For any pair of inputs
(x0, x1) and non-uniform PPT adversary A = (A0,A1), we have∣∣∣∣∣Pr

[
A1(st, sfe1) = 1 : st $← A0(1κ)

(sfe1, sfest) $← Receiver(1κ, x0)

]

−Pr
[
A1(st, sfe1) = 1 : st $← A0(1κ)

(sfe1, sfest) $← Receiver(1κ, x1)

]∣∣∣∣∣ ≤ negl(κ).

Quantum-Extraction Sender’s Security against QPT Adversary. There exists a
QPT algorithm SFEExt and a PPT algorithm SFESim that satisfy the following:
For any QPT adversary A = (A0,A1), we have∣∣∣∣Pr

[
A1(stA, sfe2) = 1 : (sfe1, C, stA) $←

A0(1κ),
sfe2

$← Sender(1κ, sfe1, C)

]

− Pr

A1(stA, sfe2) = 1 :
(sfe1, C, stA) $← A0(1κ),
x

$← SFEExt(sfe1),
sfe2

$← SFESim(1κ, sfe1, C(x))

∣∣∣∣∣∣∣ ≤ negl(κ).

An SFE protocol that satisfies these security notions can be constructed
based on either of the DDH, QR, or decisional composite residuosity (DCR)
assumptions against non-uniform PPT adversaries and LWE assumption against
QPT adversaries. Namely, we can construct it based on Yao’s 2PC protocol
instantiated with secure garbled circuit against quantum adversaries (which can
be instantiated based on OWF against quantum adversaries) and non-uniform
classical-receiver-secure but quantumly receiver-insecure and statistically sender-
private OT (which can be instantiated based on the non-uniform PPT hardness
of DDH [NP01], QR, or DCR [HK12]). See the full version for details.

2.2 Blind Signatures

Here, we give a definition of blind signatures. For simplicity, we give a definition fo-
cusing on round-optimal blind signatures. A round-optimal blind signature scheme
with a message spaceM consists of PPT algorithms (BSGen,U1,S2,Uder,BSVerify).

BSGen(1κ)→ (pk, sk): The key generation algorithm takes as input the security
parameter 1κ and outputs a public key pk and a signing key sk.

U1(pk,m)→ (µ, stU): This is the user’s first message generation algorithm that
takes as input a public key pk and a message m ∈ M and outputs a first
message µ and a state stU .

S2(sk, µ)→ ρ: This is the signer’s second message generation algorithm that
takes as input a signing key sk and a first message µ as input and outputs a
second message ρ.

Uder(stU , ρ)→ σ: This is the user’s signature derivation algorithm that takes as
input a state stU and a second message ρ as input and outputs a signature σ.

BSVerify(pk,m, σ)→ > or ⊥: This is a deterministic verification algorithm that
takes as input a public key pk, a message m ∈ M, and a signature σ, and
outputs > to indicate acceptance or ⊥ to indicate rejection.

Correctness. For any κ ∈ N, m ∈M,

Pr

BSVerify(pk,m, σ) = ⊥ :

(pk, sk) $← BSGen(1κ)
(µ, stU) $← U1(pk,m)
ρ

$← S2(sk, µ)
σ

$← Uder(stU , ρ)

 = negl(κ).

Unforgeability against PPT Adversary. For any q = poly(κ) and PPT adversary
A that makes at most q queries, we have

Pr
[

BSVerify(pk,mi, σi) = > for all i ∈ [q + 1]
∧ {mi}i∈[q+1] is pairwise distinct : (pk, sk) $← BSGen(1κ)

{(mi, σi)}i∈[q+1]
$← AS2(sk,·)(pk)

]
= negl(κ)

where we say that {mi}i∈[q+1] is pairwise distinct if we have mi 6= mj for all
i 6= j.

Blindness against PPT Adversary. For defining blindness, we consider the fol-
lowing game between an adversary A and a challenger.

Setup. A is given as input the security parameter 1κ, and sends a public key pk
and a pair of messages (m0,m1) to the challenger.

First Message. The challenger generates (µb, stU,b)
$← U1(pk,mb) for each

b ∈ {0, 1}, picks coin $← {0, 1}, and gives (µcoin, µ1−coin) to A.
Second Message. The adversary sends (ρcoin, ρ1−coin) to the challenger.
Signature Derivation. The challenger generates σb

$← Uder(stU,b, ρb) for each
b ∈ {0, 1}. If σ0 = ⊥ or σ1 = ⊥, then the challenger gives (⊥,⊥) to A.
Otherwise, it gives (σ0, σ1) to A.

Guess. A outputs its guess coin′

We say that A wins if coin = coin′. We say that a blind signature scheme satisfies
blindness if for any PPT adversary A, we have∣∣∣∣Pr[A wins]− 1

2

∣∣∣∣ = negl(κ).

Remark 2.1. In a definition of blindness for general (not necessarily round-
optimal) blind signatures, A can schedule interactions with two sessions of
a user in an arbitrary order. However, as observed in [GRS+11], the order can
be fixed as above without loss of generality when we consider round-optimal
schemes.

Remark 2.2. The above definition only requires security against uniform PPT
adversaries. We can achieve security against non-uniform PPT adversaries if we
assume all assumptions used in this paper hold against non-uniform adversaries.
We primarily consider security against uniform adversaries to clarify which
assumptions should hold against non-uniform adversaries even if our goal is to
prove security against uniform PPT adversaries.

3 Preparations

In this section, we introduce two new primitives used in our construction of
blind-signature-conforming zero-knowledge argument in Section 4.

3.1 Classical-Hard Quantum-Solvable Hard Problem Generator

A hard problem generator consists of algorithmsΠHPG = (ProbGen,VerProb,Solve,VerSol).

ProbGen(1κ)→ prob : The problem generation algorithm is a PPT algorithm
that is given the security parameter 1κ as input and outputs a problem
prob ∈ {0, 1}∗.

VerProb(1κ, prob)→ > or ⊥ : The problem verification algorithm is a determin-
istic classical polynomial-time algorithm that is given the security parameter
1κ and a problem prob and returns > if it accepts and ⊥ if it rejects.

Solve(prob)→ sol : The solving algorithm is a QPT algorithm that is given a
problem prob and returns a solution sol.

VerSol(prob, sol)→ > or ⊥ : The solution verification algorithm is a determinis-
tic classical polynomial-time algorithm that is given an problem prob and a
solution sol, and returns > if it accepts and ⊥ if it rejects.

We say that ΠHPG is non-uniform-classical-hard quantum-solvable if it satisfies
the following properties.
Quantum Solvability. For any prob ∈ {0, 1}∗ such that VerProb(1κ, prob) = >,
we have

Pr[VerSol(prob, sol) = ⊥ : sol $← Solve(prob)] = negl(κ).

Validity of Honestly Generated Problem. For all κ ∈ N, we have

Pr[VerProb(1κ, prob) = > : prob $← ProbGen(1κ)] = 1.

Non-Uniform Classical Hardness. For any non-uniform PPT adversary A =
(A0,A1), we have

Pr[VerSol(prob, sol) = > : st $← A0(1κ), prob $← ProbGen(1κ), sol $← A1(st, prob)] = negl(κ).

Remark 3.1. HPG can be trivially constructed based on any OWF with an
efficiently recognizable range that is uninvertible by non-uniform PPT adversaries
and invertible in QPT by considering an image of the function as prob and its
preimage as sol. The efficient recognizability of the range is needed since otherwise
we cannot implement VerProb that verifies the existence of a solution. Such an
OWF with an efficiently recognizable range can be constructed from the RSA
assumption or the discrete logarithm assumption over Zp for a prime p of a
special form as shown by Goldreich, Levin, and Nisan [GLN11]. (Indeed, their
construction is length-preserving and injective and thus any bit-string is in the
range of the function.) On the other hand, to the best of our knowledge, there is
no known construction of such an OWF from the hardness of factoring or DL
over more general groups. This is why we introduce the notion of classical-hard
quantum-solvable HPG, which can be seen as a relaxed notion of a OWF with
an efficiently recognizable range that is secure against non-uniform classical
adversaries and invertible in QPT.

Lemma 3.1. Assuming the non-uniform classical hardness of factoring or dis-
crete logarithm over an efficiently recognizable cyclic group, there exists classical-
hard quantum-solvable hard problem generator.

This is an easy consequence of Shor’s algorithm [Sho94] that solves factoring
and discrete logarithm in QPT. A full proof can be found in the full version.

3.2 Public Key Encryption with Invalid Key Certifiability.

We introduce a new notion for PKE which we call invalid key certifiability.
Roughly speaking, it requires that for any (malformed) encryption key ekikc,
there exists a witness for the invalidness of ekikc or otherwise there must exist a
corresponding decryption key that can decrypt ciphertexts under ekikc.

More precisely, a PKE scheme ΠIKC = (IKC.KeyGen, IKC.Enc, IKC.Dec) has
invalid key certifiability if it additionally has a deterministic classical polynomial-
time algorithm IKC.InvalidVerf with the following syntax and properties:

IKC.InvalidVerf(1κ, ekikc,witinvalid)→ > or ⊥: This algorithm takes the security
parameter 1κ, an encryption key ekikc and a witness witinvalid ∈ {0, 1}` as
input where `(κ) = poly(κ) is a parameter fixed by the scheme, and outputs
> or ⊥.

We require the following two properties:

1. For any κ ∈ N and (ekikc, dkikc)
$← IKC.KeyGen(1κ), there does not exist

witinvalid ∈ {0, 1}` such that IKC.InvalidVerf(1κ, ekikc,witinvalid) = >.
2. For any κ ∈ N and (possibly malformed) ekikc, if there does not exist witinvalid ∈
{0, 1}` such that IKC.InvalidVerf(1κ, ekikc,witinvalid) = >, then there exists
dkikc such that for any m, we have

Pr[IKC.Dec(dkikc, IKC.Enc(ekikc,m)) = m] = 1.

We call such dkikc a corresponding decryption key to ekikc. We say that ekikc
is undecryptable if there does not exist a corresponding decryption key to
ekikc.

Remark 3.2. Remark that we do not require the converse of Item 2, i.e., we do not
require that “if there exists witinvalid ∈ {0, 1}` such that IKC.InvalidVerf(1κ, ekikc,
witinvalid) = >, then ekikc is undecryptable”. That is, even if ekikc has a correspond-
ing decryption key, it may also have a witness for the invalidness.

Remark 3.3. All dense PKE schemes, in which any string can be a valid en-
cryption key, satisfy invalid key certifiability since all bit strings can be a valid
encryption key that has a corresponding decryption key. However, a PKE scheme
with invalid key certifiability may not be dense. We note that there is no known
candidate of a dense PKE scheme against quantum adversaries.

Lemma 3.2. There exists a PKE scheme that satisfies the CPA security against
QPT adversaries and invalid key certifiability under the quantum hardness of
LWE problem.

The construction is almost identical to the Regev’s PKE scheme [Reg09]
(modulo some tweak in the parameter). To show the invalid key certifiability
property, we rely on the result that the (approximated) gap closest vector
(GapCVP) problem lies in NP ∩CoNP [AR05]. In particular, witinvalid will be a

witness to a NO instance of the GapCVP problem. Then, Item 1 follows since a
valid public key of Regev’s PKE scheme can be seen as an YES instance to the
GapCVP problem and there will exist no witness to prove otherwise (i.e., witinvalid
does not exist). On the other hand, to show Item 2, we rely on the fact that
if the public key is not a NO instance to the GapCVP problem, then it is still
a public key that admits a “good enough” decryption key (i.e., a short vector
slightly larger than an honestly generated one). We refer the full details to the
full version.

4 Blind-Signature-Conforming Zero-Knowledge
Argument

In this section, we define blind-signature-conforming zero-knowledge arguments
that are sufficient to construct round-optimal blind signatures and construct it
based on standard assumptions. Roughly speaking, a blind-signature-conforming
zero-knowledge argument is an interactive argument protocol that satisfies the
following properties:

1. publicly verifiable11 and 2-move with reusable setup by the prover,12

2. adaptive soundness with untrusted setup against classical prover, and
3. reusable quantum-simulation zero-knowledge against classical verifier.

4.1 Definition

Let L be an NP language and R be the corresponding relation. A blind-signature-
conforming zero-knowledge argument for L has the following syntax:

Setup(1κ)→ (pp, sp): This is a setup algorithm (supposed to be run by a prover)
that takes as input the security parameter 1κ and outputs a public parameter
pp and a secret parameter sp.

V1(pp)→ ch: This is the verifier’s first message generation algorithm that takes
as input a public parameter pp and outputs a first message ch referred to as
a challenge.

P2(sp, ch, x, w)→ resp: This is the prover’s second message generation algorithm
that takes as input a secret parameter sp, a challenge ch, a statement x, and
a witness w, and outputs a second message resp referred to as a response.

Vout(pp, ch, x, resp)→ > or ⊥: This is the verification algorithm that takes a
public parameter pp, a challenge ch, a statement x, and a response resp, and
outputs > to indicate acceptance or ⊥ to indicate rejection.

It should satisfy the following properties:
11 Actually, the public verifiability is not needed in the construction of our blind

signatures. We only require this because our construction satisfies this.
12 We can also view it as a three-move protocol by considering the setup as the prover’s

first message. However, since the first message is reusable, we view the protocol as a
two-move protocol with reusable setup.

Completeness. For any (x,w) ∈ R, we have

Pr[Vout(pp, ch, x, resp) = > : (pp, sp) $← Setup(1κ), ch $← V1(pp), resp $← P2(sp, ch, x, w)] = 1.

Adaptive Soundness with Untrusted Setup against Non-Uniform PPT Adversary.
For any non-uniform PPT cheating prover P∗ = (P∗Setup,P∗2), we have

Pr

Vout(pp, ch, x∗, resp) = >
∧ x∗ /∈ L :

(pp, stP∗) $← P∗Setup(1κ),
ch $← V1(pp),
(x∗, resp) $← P∗2 (stP∗ , ch)

 ≤ negl(κ).

Reusable Quantum-Simulation Zero-Knowledge against PPT Adversary. Roughly
speaking, we require that there exists a QPT simulator that simulates a view of
a PPT cheating verifier that interacts with an honest prover even if the setup is
reused many times.

More precisely, there exists a QPT simulator S such that for any PPT
adversary A, we have

∣∣∣Pr
[
AOreal(pp) = 1 : (pp, sp) $← Setup(1κ)

]
− Pr

[
AOsim(pp) = 1 : (pp, sp) $← Setup(1κ)

]∣∣∣ ≤ negl(κ)

where oracles Oreal and Osim are defined as follows:
Oreal(ch, x, w)
If (x,w) ∈ R
Return resp $← P2(sp, ch, x, w)

Else
Return ⊥

Osim(ch, x, w)
If (x,w) ∈ R
Return resp $← S(pp, ch, x, 1|w|)

Else
Return ⊥

4.2 Construction

Let L be an NP language and R be its corresponding relation (i.e., x ∈ L if
and only if there exists w such that (x,w) ∈ R). We construct a blind-signature-
conforming zero-knowledge argument for L based on the following building
blocks.
– A PKE schemeΠPKE = (PKE.KeyGen,PKE.Enc,PKE.Dec) that is CPA secure

against QPT adversaries.
– A PKE scheme with invalid key certifiability ΠIKC = (IKC.KeyGen, IKC.Enc,

IKC.Dec, IKC.InvalidVerf) that is CPA secure against QPT adversaries.
– A lossy PKE scheme ΠLE = (LE.InjGen, LE.LossyGen, LE.Enc, LE.Dec) that

satisfies key indistinguishability against non-uniform PPT adversaries.
– A classical-hard quantum-solvable hard problem generator ΠHPG = (ProbGen,

VerProb,Solve,VerSol).
– A ZAP system Πzap = (ZAP.Prove,ZAP.Verify) for the NP language L̃ =
L̃1 ∪ L̃2 that satisfies completeness, adaptive statistical soundness, and adap-
tive computational witness indistinguishability against non-uniform PPT
adversaries where languages L̃1 and L̃2 are defined as follows.

1. (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle) ∈ L̃1 if there exists (w, dkpke, rpke-gen, rpke-enc)
such that

(x,w) ∈ L,

(ekpke, dkpke) = PKE.KeyGen(1κ; rpke-gen),

ctpke = PKE.Enc(ekpke, w; rpke-enc).

2. (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle) ∈ L̃2 if there exists (sol, rikc-enc, rle-enc)
such that

VerSol(prob, sol) = >,

ctikc = IKC.Enc(ekikc, sol; rikc-enc),

ctle = LE.Enc(ekle, sol; rle-enc).

– A ZAP system Π ′zap = (ZAP.Prove′,ZAP.Verify′) for the NP language L̃′ =
L̃′1 ∪ L̃′2 that satisfies completeness, adaptive statistical soundness, and adap-
tive computational witness indistinguishability against non-uniform PPT
adversaries where languages L̃′1 and L̃′2 are defined as follows.
1. (ekikc, ekle) ∈ L̃′1 if there exists rle-gen such that ekle = LE.LossyGen(1κ; rle-gen).
2. (ekikc, ekle) ∈ L̃′2 if there exists witinvalid such that IKC.InvalidVerf(ekikc,witinvalid)

= >.

We assume that the first message spaces of Πzap and Π ′zap are {0, 1}`, which
can be assumed without loss of generality by taking ` as an arbitrarily large
polynomial in κ. Then our blind-signature-conforming zero-knowledge argument
(Setup,V1,P2,Vout) is described as follows:

Setup(1κ): The setup algorithm is given the security parameter 1κ, and works
as follows.
1. Generate (ekpke, dkpke) := PKE.KeyGen(1κ; rpke-gen).
2. Generate (ekikc, dkikc)

$← IKC.KeyGen(1κ).
3. Generate r′zap

$← {0, 1}`
4. Output pp := (ekpke, ekikc, r

′
zap) and sp := (ekpke, ekikc, r

′
zap, dkpke, rpke-gen).

V1(pp): The verifier is given a public parameter pp = (ekpke, ekikc, r
′
zap), and

works as follows.
1. Generate rzap

$← {0, 1}`.
2. Generate prob $← ProbGen(1κ).
3. Generate ekle

$← LE.LossyGen(1κ; rle-gen).
4. Generate π′zap

$← ZAP.Prove′(r′zap, (ekikc, ekle), rle-gen).
5. Output ch := (rzap, prob, ekle, π

′
zap).

P2(sp, ch, x, w): The prover is given a secret parameter sp := (ekpke, ekikc, r
′
zap,

dkpke, rpke-gen), a challenge ch = (rzap, prob, ekle, π
′
zap), a statement x, and a

witness w, and works as follows.
1. Immediately abort and output ⊥ if VerProb(1κ, prob) = ⊥ or

ZAP.Verify′(r′zap, (ekikc, ekle), π′zap) = ⊥.
2. Generate ctikc

$← IKC.Enc(ekikc, 0|sol|) and ctle
$← LE.Enc(ekle, 0|sol|).

3. Generate ctpke
$← PKE.Enc(ekpke, w; rpke-enc).

4. Generate πzap
$← ZAP.Prove(rzap, (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle),

(w, dkpke, rpke-gen, rpke-enc)).
5. Output resp := (ctpke, ctikc, ctle, πzap).

Vout(pp, ch, x, resp): The verifier is given a public parameter pp = (ekpke, ekikc, r
′
zap),

a challenge ch = (rzap, prob, ekle, π
′
zap), a statement x, and a response resp =

(ctpke, ctikc, ctle, πzap), and works as follows.
1. Output ZAP.Verify(rzap, (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle), πzap).

The correctness of the scheme immediately follows from the correctness of
Πzap and Π ′zap and the validity of an honestly generated instance of ΠHPG.

4.3 Security

Here, we only give a proof sketch. A full proof can be found in the full version.

Adaptive Soundness with Untrusted Setup. Consider an interaction between
an honest verifier and a cheating prover P∗ (that may maliciously generate
pp). When P∗ succeeds in breaking soundness, we have x /∈ L, which implies
(x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle) /∈ L̃1. On the other hand, by soundness of
Πzap, if the verifier accepts, then we have (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle) ∈
L̃ = L̃1 ∪ L̃2 with overwhelming probability. Therefore, if P∗ wins with non-
negligible probability, we have (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle) ∈ L̃2. We
assume that this happens and construct a reduction algorithm that breaks
non-uniform PPT hardness of ΠHPG. We consider the following two cases:

1. When ekikc is decryptable (i.e., there is a corresponding decryption key dkikc
to ekikc): In this case, we can construct a reduction algorithm that finds
dkikc by brute-force and then extracts sol by decrypting ctikc to break ΠHPG.
We note that the brute-force search can be done before getting a problem
instance prob, and thus non-uniform PPT hardness suffices.

2. When ekikc is undecryptable: In this case, we consider several hybrids. In the
first hybrid, π′zap is generated by using a witness witinvalid instead of rle-gen.
We note that such a witness witinvalid of invalidness of ekikc must exist when
ekikc is undecryptable by the second property of invalid key certifiability. By
witness indistinguishability of π′zap, this only negligibly changes the cheating
prover’s winning probability.13 In the next hybrid, ekle is generated in the
injective mode instead of lossy mode. By key indistinguishability of ΠLE, this
only negligibly changes the cheating prover’s winning probability. At this
point, a reduction algorithm can generate ekle in the injective mode with its
corresponding decryption key, and thus it can extract sol by decrypting ctle to
break ΠHPG. Similarly to the previous case, the non-uniform PPT hardness
suffices even though the reduction algorithm runs a brute-force algorithm to
find witinvalid since this can be done before getting a problem instance prob.

13 Strictly speaking, since the event that the cheating prover wins is not efficiently
checkable, a more careful analysis is needed.

This contradicts non-uniform PPT hardness of ΠΠHPG . Therefore, the cheating
prover’s winning probability is negligible, and thus soundness holds.

Reusable Quantum-Simulation Zero-Knowledge. A QPT simulator S is described
as follows:

S(pp, ch, x, 1|w|): S is given pp = (ekpke, ekikc, r
′
zap), ch = (rzap, prob, ekle, π

′
zap), a

statement x, and a witness length 1|w| as input, and works as follows.
1. Return⊥ if VerProb(1κ, prob) = ⊥ or ZAP.Verify′(r′zap, (ekikc, ekle), π′zap) =
⊥.

2. Generate sol $← Solve(prob) (by using a QPT computation). If VerSol(prob, sol)
= ⊥, immediately return ⊥ and halt. Otherwise, generate ctikc

$←
Enc(sol; rikc-enc) and ctle

$← LE.Enc(ekle, sol; rle-enc).
3. Generate ctpke

$← PKE.Enc(ekpke, 0|w|).
4. Generate πzap

$← ZAP.Prove(rzap, (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle),
(sol, rikc-enc, rle-enc)).

5. Return resp = (ctpke, ctikc, ctle, πzap).

A response simulated by S is different from the real one in the following ways:

1. ctikc is an encryption of sol instead of 0|sol|, and
2. ctle is an encryption of sol instead of 0|sol|, and
3. πzap is generated by using a witness of L̃2 instead of L̃1, and
4. ctpke is an encryption of 0|w| instead of w.

Roughly, the first difference is indistinguishable by the CPA security of ΠIKC
against QPT adversaries. The second difference is indistinguishable due to the fol-
lowing reasons. (1) If ekle is a lossy key, encryptions of sol and 0|sol| are statistically
indistinguishable. (2) If ekle is not a lossy key, we have ZAP.Verify′(r′zap, (ekikc, ekle), π′zap) =
⊥ with overwhelming probability by the soundness of Π ′ZAP noting that ekikc is
honestly generated. In this case, ctle is not given to the adversary. The third
difference is indistinguishable by the witness indistinguishability of ΠZAP. The
fourth difference is indistinguishable by the CPA security of ΠPKE against QPT
adversaries after finishing the modification 3. We would be able to turn this
intuition into a formal proof in a straightforward manner if we assumed witness
indistinguishability against quantum adversaries. However, since we only assume
witness indistinguishability against non-uniform classical adversaries, we have
to be careful about the order of game hops.14 Namely, if we first make the
modifications 1 and 2 for all queries, then we cannot make the modification 3
since the game involves quantum computations in every query. To circumvent
this issue, we make the modifications 1, 2, and 3 for each query one-by-one
similarly to [GRS+11]. In this way, we can ensure that all quantum computations
can be done in pre-computation stage when making the modification 3 for each
query, and the proof goes through even with witness indistinguishability against
non-uniform PPT adversaries.
14 Note that there is no known ZAP with witness indistinguishability against QPT

adversaries based on (quantum) polynomial hardness of standard assumptions.

5 Round-Optimal Blind Signatures

In this section, we construct round-optimal blind signatures.

5.1 Construction

Building blocks. We construct a round-optimal blind signature scheme based on
the following building blocks.

– ΠSig = (SigGen,Sign,SigVerify) is a digital signature scheme that is EUF-
CMA against QPT adversaries. We assume that Sign is deterministic. This
can be assumed without loss of generality by derandomizing the signing
algorithm by using a quantumly secure PRF (which is only required to be
secure against QPT adversaries that just make classical queries).

– ΠSFE = (Receiver,Sender,Derive) is an SFE protocol that satisfies receiver’s se-
curity against non-uniform PPT adversaries and quantum-extraction sender’s
security against QPT adversaries.

– Com is a perfectly-binding non-interactive commitment with computational
hiding against QPT adversaries.

– ΠZK = (Setup,V1,P2,Vout) is blind-signature-conforming zero-knowledge ar-
guments for a language L, which is defined as follows: We have (com, sfe1, sfe2) ∈
L if there exists (ssk, rcom, rsfe) such that

com = Com(ssk; rcom)

sfe2 = Sender(1κ, sfe1,Sign(ssk, ·); rsfe)

Construction. Our construction of a round-optimal blind signature scheme
ΠBS = (BSGen,U1,S2,Uder,BSVerify) is described as follows.

BSGen(1κ): The key generation algorithm takes the security parameter 1κ as
input, and works as follows:
1. Generate (svk, ssk) $← SigGen(1κ).
2. Generate com $← Com(ssk; rcom).
3. Generate (pp, sp) $← Setup(1κ).
4. Output a public key pk := (svk, com, pp) and a signing key sk :=

(ssk, rcom, sp).
U1(pk,m): The user’s first message generation algorithm takes as input a public

key pk = (svk, com, pp) and a message m, and works as follows:
1. Generate (sfe1, sfest) $← Receiver(1κ,m).
2. Generate ch $← V1(pp).
3. Output a first message µ := (sfe1, ch) and a state stU := sfest.

S2(sk, µ): The signer’s second message generation algorithm takes as input a
signing key sk = (ssk, rcom, sp). and a first message µ = (sfe1, ch) and works
as follows:
1. Generate sfe2

$← Sender(1κ, sfe1,Sign(ssk, ·); rsfe).

2. Generate resp $← P2(sp, ch, (com, sfe1, sfe2), (ssk, rcom, rsfe)).
3. Output a second message ρ := (sfe2, resp).

Uder(stU , ρ): The user’s signature derivation algorithm takes as input a state
stU = sfest and a second message ρ = (sfe2, resp) as input, and works as
follows:
1. Output ⊥ if Vout(pp, ch, (com, sfe1, sfe2), resp) = ⊥
2. Otherwise generate σ $← Derive(sfest, sfe2) and output a signature σ.

BSVerify(pk,m, σ): The verification algorithm takes as input a public key pk =
(svk, com, pp), a messagem, and a signature σ as input, and outputs SigVerify(svk,
m, σ).
The correctness of the scheme immediately follows from the correctness of

ΠSig, ΠZK, and ΠSFE.

5.2 Security
In this section, we give security proofs for the above scheme.

Unforgeability.
Theorem 5.1. If ΠSig satisfies unforgeability against QPT adversaries, Com
satisfies computational hiding against QPT adversaries, ΠSFE satisfies quantum-
extraction sender’s security against QPT adversaries, and ΠZK satisfies reusable
quantum-simulation zero-knowledge against classical adversaries, then ΠBS satis-
fies unforgeability against classical adversaries.

Proof. We consider the following sequence of games between a PPT adversary A
and a challenger. We denote by Ei the event that Game i returns 1.
Game 1: This is the original unforgeability game. That is, this game proceeds as

follows.
1. The challenger generates (ssk, svk) $← SigGen(1κ), com $← Com(ssk; rcom),

and (pp, sp) $← Setup(1κ), and defines a public key pk := (svk, com, pp)
and a signing key sk := (ssk, rcom, sp), and sends pk to A.

2. A can make arbitrarily many signing queries. When it makes a signing
query µ = (sfe1, ch), the challenger generates sfe2

$← Sender(1κ, sfe1,

Sign(ssk, ·); rsfe) and resp $← P2(sp, ch, (com, sfe1, sfe2), (ssk, rcom, rsfe)),
and returns ρ := (sfe2, resp).

3. Finally, A returns {(mi, σi)}i∈[q+1] where q is the number of signing
queries made by A.

The game returns 1 if and only if A wins, i.e., {mi}i∈[q+1] is pairwise distinct
and SigVerify(svk,mi, σi) = > for all i ∈ [q + 1]. Our goal is to prove
Pr[E1] = negl(κ).

Game 2: This game is identical to the previous one except that resp is generated
as resp $← S(pp, ch, (com, sfe1, sfe2), 1|w|) when responding to each signing
query where S is the simulator of ΠZK and |w| denotes the bit-length of
(ssk, rcom, rsfe).
By a straightforward reduction to reusable quantum-simulation zero-knowledge
property of ΠZK, we have |Pr[E2]− Pr[E1]| = negl(κ).

Game 3: This game is identical to the previous one except that sfe2 is gener-
ated as m $← SFEExt(sfe1) and sfe2

$← SFESim(1κ, sfe1,Sign(ssk,m)) when
responding to each signing query.
Noting that rsfe is no longer used for generating resp due to the modifica-
tion made in Game 2, a straightforward reduction to quantum-extraction
sender’s security of ΠSFE gives |Pr[E3]− Pr[E2]| = negl(κ). We note that the
reduction works even though these games involve QPT computations (for S
and SFEExt) since we assume quantum-extraction sender’s security against
quantum adversaries.

Game 4: In this game, the challenger generates com as com $← Com(0|ssk|).
Noting that rcom is no longer used for generating resp due to the modification
made in Game 2, a straightforward reduction to computational hiding of
ΠSFE gives |Pr[E4]− Pr[E3]| = negl(κ). We note that the reduction works
even though these games involve QPT computations (for S and SFEExt) since
we assume computational hiding against quantum adversaries.

What is left is to prove Pr[E4] = negl(κ). We show this by considering the
following QPT adversary B against unforgeability of ΠSig.

BSign(ssk,·)(svk): It generates com $← Com(0|ssk|) and (pp, sp) $← Setup(1κ) and
gives a public key pk := (svk, com, pp) to A. When A makes a signing
query µ = (sfe1, ch), B computes m $← SFEExt(sfe1) and queries m to its
own signing oracle to obtain σ = Sign(ssk,m). Then B generates sfe2

$←
SFESim(1κ, sfe1, σ) and resp $← S(pp, ch, (com, sfe1, sfe2), 1|w|), and returns
ρ := (sfe2, resp) toA as a response from the signing oracle. Let {(mi, σi)}i∈[q+1]
be A’s final output. B finds i∗ ∈ [q+ 1] such that it has not queried mi∗ to its
own signing oracle and SigVerify(svk,mi∗ , σi∗) = >, and outputs (mi∗ , σi∗).
If there does not exist such i∗, B aborts.

It is easy to see that B perfectly simulates the environment of Game 4 to A,
and when A wins, B also wins (i.e., it succeeds in outputting (mi∗ , σi∗) such
that SigVerify(svk,mi∗ , σi∗) = > and B has not queried mi∗). Therefore, by
unforgeability of ΠSig, we have Pr[E4] = negl(κ). This completes the proof of
Theorem 5.1.

Blindness

Theorem 5.2. If Com satisfies perfect binding, ΠSFE satisfies receiver’s security
against non-uniform PPT adversaries, and ΠZK satisfies adaptive soundness
with untrusted setup against non-uniform PPT adversaries, then ΠBS satisfies
blindness against PPT adversaries.

Proof. We consider the following sequence of games between a PPT adversary A
against the blindness and a challenger. We denote by Ei the event that Game i
returns 1.

Game 1: This is the original blindness game. That is, this game proceeds as
follows:

1. A is given as input the security parameter 1κ, and sends a public key
pk = (svk, com, pp) and a pair (m0,m1) of messages to the challenger.

2. The challenger generates (sfe1,b, sfestb)
$← Receiver(1κ,mb) and chb

$←
V1(pp) and defines µb := (sfe1,b, chb) and stU,b := sfestb for each b ∈ {0, 1},
picks coin $← {0, 1}, and sends (µcoin, µ1−coin) to A.

3. A sends (ρcoin = (sfe2,coin, respcoin), ρ1−coin = (sfe2,1−coin, resp1−coin)) to
the challenger.

4. The challenger gives (⊥,⊥) toA if Vout(pp, chb, (com, sfe1,b, sfe2,b), resp) =
⊥ for either of b ∈ {0, 1}. Otherwise it generates σb

$← Derive(sfestb, sfe2,b)
for each b ∈ {0, 1} and gives (σ0, σ1) to A.

5. A outputs its guess coin′.
This game returns 1 if and only if coin = coin′. Our goal is to prove∣∣Pr[E1]− 1

2
∣∣ = negl(κ).

Game 2: This game is identical to the previous game except that we insert Step
1.5 between Step 1 and 2 and Step 4 is replaced with Step 4′ described below:
(Differences of Step 4’ from Step 4 are marked by red underlines.)
1.5.: The challenger finds (ssk, rcom) such that com = Com(ssk; rcom) by a

brute-force search. If such (ssk, rcom) does not exist, it sets (ssk, rcom) :=
(⊥,⊥).

4′.: The challenger gives (⊥,⊥) toA if Vout(pp, chb, (com, sfe1,b, sfe2,b), resp) =
⊥ for either of b ∈ {0, 1} or (ssk, rcom) = (⊥,⊥). Otherwise it generates
σb := Sign(ssk,mb) for each b ∈ {0, 1} and gives (σ0, σ1) to A.

In Lemma 5.1, we prove |Pr[E2]− Pr[E1]| = negl(κ).
Game 3: This game is identical to the previous game except that sfe1,b is gener-

ated as (sfe1,b, sfestb)
$← Receiver(1κ,m0) for both b ∈ {0, 1}.

In Lemma 5.2, we prove |Pr[E3]− Pr[E2]| = negl(κ).
Game 4: This game is identical to the previous game except that the challenger

gives (µ0, µ1) to A instead of (µcoin, µ1−coin) in Step 2.
Since the distributions of µ0 and µ1 are identical, we have Pr[E4] = Pr[E3].
Moreover, since no information on coin is given to A in this game, we have
Pr[E4] = 1

2 .

What is left is to prove the following lemmata.

Lemma 5.1. If Com satisfies perfect binding and ΠZK satisfies adaptive sound-
ness with untrusted setup against non-uniform PPT adversaries, then we have
|Pr[E2]− Pr[E1]| = negl(κ).

Proof. For each b ∈ {0, 1}, we define Badb as an event that we have Vout(pp, chb,
(com, sfe1,b, sfe2,b), respb) = > and
1. there does not exist (ssk, rcom) such that com = Com(ssk; rcom), or
2. there exists (ssk, rcom) such that com = Com(ssk; rcom) and Derive(sfestb, sfe2,b) 6=

Sign(ssk,mb).

Game 2 and Game 1 may be different only if Bad0 or Bad1 occurs. Therefore, it
suffices to prove Pr[Badb] = negl(κ) for each b ∈ {0, 1}. First, we prove Pr[Bad0] =
negl(κ) by considering a non-uniform PPT cheating prover P∗ = (P∗Setup,P∗2)
against adaptive soundness with adaptive setup of ΠZK as described below:

P∗Setup(1κ): It runs the first stage of A(1κ) to obtain pk = (svk, com, pp) and
(m0,m1). It finds (ssk, rcom) such that com = Com(ssk; rcom) by a brute-
force search. If such (ssk, rcom) does not exist, it sets (ssk, rcom) := (⊥,⊥).
It outputs pp and stP∗ := (pk,m0,m1, ssk, rcom, stA) where stA denotes the
snapshot of A at this point.

P∗2 (stP∗ , ch): It parses (pk,m0,m1, ssk, rcom, stA)← stP∗ , generates (sfe1,b, sfestb)
$←

Receiver(1κ,mb) for each b ∈ {0, 1} and ch1
$← V1(pp), sets ch0 := ch,

and defines µb := (sfe1,b, chb) for each b ∈ {0, 1}, picks coin $← {0, 1},
and sends (µcoin, µ1−coin) to A to run the second stage of A to obtain
(ρcoin = (sfe2,coin, respcoin), ρ1−coin = (sfe2,1−coin, resp1−coin)). If Bad0 occurs,
then P∗2 outputs (com, sfe1,0, sfe2,0) and resp0.

We can see that P∗ perfectly simulates Game 1 for A until the second stage of
A. Moreover, if Bad0 occurs, we have Vout(pp, ch0, (com, sfe1,0, sfe2,0), resp0) = >
and (com, sfe1,0, sfe2,0) /∈ L noting that Com is perfectly binding. Therefore,
by the adaptive soundness with untrusted setup of ΠZK, we have Pr[Bad0] =
negl(κ). We can prove Pr[Bad1] = negl(κ) analogously. This completes a proof of
Lemma 5.1.

Lemma 5.2. If ΠSFE satisfies receiver’s security against non-uniform PPT ad-
versaries, then we have |Pr[E3]− Pr[E2]| = negl(κ).

Proof. We prove this by considering a non-uniform PPT cheating adversary
B = (B0,B1) against receiver’s security of ΠSFE as described below:

B0(1κ): It runs the first stage ofA(1κ) to obtain pk = (svk, com, pp) and (m0,m1).
It finds (ssk, rcom) such that com = Com(ssk; rcom) by a brute-force search. If
such (ssk, rcom) does not exist, it sets (ssk, rcom) := (⊥,⊥). It outputs (m0,m1)
and stP∗ := (pk,m0,m1, ssk, rcom, stA) where stA denotes the snapshot of A
at this point.

B1(stB, sfe1): It sets sfe1,1 := sfe1, generates (sfe1,0, sfest0) $← Receiver(1κ,m0)
and chb

$← V1(pp) for b ∈ {0, 1}, defines µb := (sfe1,b, chb) for each b ∈ {0, 1},
picks coin $← {0, 1}, and sends (µcoin, µ1−coin) to A to run the second stage of
A to obtain (ρcoin = (sfe2,coin, respcoin), ρ1−coin = (sfe2,1−coin, resp1−coin)). Then
B1 gives (⊥,⊥) to A if Vout(pp, chb, (com, sfe1,b, sfe2,b), resp) = ⊥ for either of
b ∈ {0, 1} or (ssk, rcom) = (⊥,⊥). Otherwise it generates σb := Sign(ssk,mb)
for each b ∈ {0, 1} and gives (σ0, σ1) to A. Let coin′ be A’s final output. B1
outputs 1 if coin = coin′.

Clearly, B perfectly simulates Game 3 (resp. Game 2) if sfe1 is generated as
(sfe1, sfest) $← Receiver(1κ,m0) (resp. (sfe1, sfest) $← Receiver(1κ,m1)). Therefore,
by receiver’s security of ΠSFE, we have |Pr[E3]− Pr[E2]| = negl(κ).

Combining the above, Theorem 5.2 is proven.

Acknowledgement. We thank anonymous reviewers of Eurocrypt 2021 for their
helpful comments. The first and third authors were supported by JST CREST

Grant Number JPMJCR19F6. The third author is also supported by JSPS
KAKENHI Grant Number 19H01109.

References

AFG+16. Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and
Miyako Ohkubo. Structure-preserving signatures and commitments to group
elements. Journal of Cryptology, 29(2):363–421, April 2016. 2

AO12. Masayuki Abe and Miyako Ohkubo. A framework for universally composable
non-committing blind signatures. Int. J. Appl. Cryptogr., 2(3):229–249, 2012.
2

AR04. Dorit Aharonov and Oded Regev. Lattice problems in NP cap coNP. In 45th
FOCS, pages 362–371. IEEE Computer Society Press, October 2004. 12

AR05. Dorit Aharonov and Oded Regev. Lattice problems in NP cap conp. J. ACM,
52(5):749–765, 2005. 12, 17

BCC04. Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous
attestation. In Vijayalakshmi Atluri, Birgit Pfitzmann, and Patrick McDaniel,
editors, ACM CCS 2004, pages 132–145. ACM Press, October 2004. 2

BFPV11. Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud.
Signatures on randomizable ciphertexts. In Dario Catalano, Nelly Fazio,
Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011, volume 6571 of
LNCS, pages 403–422. Springer, Heidelberg, March 2011. 2

BHY09. Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility
results for encryption and commitment secure under selective opening. In
Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 1–35.
Springer, Heidelberg, April 2009. 8

BNPS02. Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael
Semanko. The power of RSA inversion oracles and the security of Chaum’s
RSA-based blind signature scheme. In Paul F. Syverson, editor, FC 2001,
volume 2339 of LNCS, pages 319–338. Springer, Heidelberg, February 2002.
2

Bol03. Alexandra Boldyreva. Threshold signatures, multisignatures and blind sig-
natures based on the gap-Diffie-Hellman-group signature scheme. In Yvo
Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 31–46. Springer,
Heidelberg, January 2003. 2

BPV12. Olivier Blazy, David Pointcheval, and Damien Vergnaud. Compact round-
optimal partially-blind signatures. In Ivan Visconti and Roberto De Prisco,
editors, SCN 12, volume 7485 of LNCS, pages 95–112. Springer, Heidelberg,
September 2012. 2

Cha82. David Chaum. Blind signatures for untraceable payments. In David Chaum,
Ronald L. Rivest, and Alan T. Sherman, editors, CRYPTO’82, pages 199–203.
Plenum Press, New York, USA, 1982. 2

Cha88. David Chaum. Elections with unconditionally-secret ballots and disruption
equivalent to breaking RSA. In C. G. Günther, editor, EUROCRYPT’88,
volume 330 of LNCS, pages 177–182. Springer, Heidelberg, May 1988. 2

CL01. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation.
In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS,
pages 93–118. Springer, Heidelberg, May 2001. 2

DN00. Cynthia Dwork and Moni Naor. Zaps and their applications. In 41st FOCS,
pages 283–293. IEEE Computer Society Press, November 2000. 5

DN07. Cynthia Dwork and Moni Naor. Zaps and their applications. SIAM J.
Comput., 36(6):1513–1543, 2007. 5

FHKS16. Georg Fuchsbauer, Christian Hanser, Chethan Kamath, and Daniel Slamanig.
Practical round-optimal blind signatures in the standard model from weaker
assumptions. In Vassilis Zikas and Roberto De Prisco, editors, SCN 16, vol-
ume 9841 of LNCS, pages 391–408. Springer, Heidelberg, August / September
2016. 2

FHS15. Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practical round-
optimal blind signatures in the standard model. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of
LNCS, pages 233–253. Springer, Heidelberg, August 2015. 2

Fis06. Marc Fischlin. Round-optimal composable blind signatures in the common
reference string model. In Cynthia Dwork, editor, CRYPTO 2006, volume
4117 of LNCS, pages 60–77. Springer, Heidelberg, August 2006. 2

FLS90. Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero
knowledge proofs based on a single random string (extended abstract). In
31st FOCS, pages 308–317. IEEE Computer Society Press, October 1990. 5

FLS99. Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero
knowledge proofs under general assumptions. SIAM J. Comput., 29(1):1–28,
1999. 5

FOO93. Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret
voting scheme for large scale elections. In Jennifer Seberry and Yuliang Zheng,
editors, AUSCRYPT’92, volume 718 of LNCS, pages 244–251. Springer,
Heidelberg, December 1993. 2

FS10. Marc Fischlin and Dominique Schröder. On the impossibility of three-move
blind signature schemes. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 197–215. Springer, Heidelberg, May / June
2010. 2

GG14. Sanjam Garg and Divya Gupta. Efficient round optimal blind signatures.
In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 477–495. Springer, Heidelberg, May 2014. 2, 5

Gha17. Essam Ghadafi. Efficient round-optimal blind signatures in the standard
model. In Aggelos Kiayias, editor, FC 2017, volume 10322 of LNCS, pages
455–473. Springer, Heidelberg, April 2017. 2

GLN11. Oded Goldreich, Leonid A. Levin, and Noam Nisan. On constructing 1-
1 one-way functions. In Oded Goldreich, editor, Studies in Complexity
and Cryptography. Miscellanea on the Interplay between Randomness and
Computation - In Collaboration with Lidor Avigad, Mihir Bellare, Zvika
Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam
Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi Wigderson,
David Zuckerman, volume 6650 of Lecture Notes in Computer Science, pages
13–25. Springer, 2011. 16

GO94. Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge
proof systems. Journal of Cryptology, 7(1):1–32, December 1994. 4

GRS+11. Sanjam Garg, Vanishree Rao, Amit Sahai, Dominique Schröder, and Do-
minique Unruh. Round optimal blind signatures. In Phillip Rogaway, editor,
CRYPTO 2011, volume 6841 of LNCS, pages 630–648. Springer, Heidelberg,
August 2011. 2, 3, 4, 5, 6, 13, 15, 22

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965
of LNCS, pages 415–432. Springer, Heidelberg, April 2008. 5

HK12. Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-
message oblivious transfer. Journal of Cryptology, 25(1):158–193, January
2012. 14

HKKL07. Carmit Hazay, Jonathan Katz, Chiu-Yuen Koo, and Yehuda Lindell.
Concurrently-secure blind signatures without random oracles or setup as-
sumptions. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS,
pages 323–341. Springer, Heidelberg, February 2007. 2

KK19. Yael Tauman Kalai and Dakshita Khurana. Non-interactive non-malleability
from quantum supremacy. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 552–582.
Springer, Heidelberg, August 2019. 3, 5

Lin08. Yehuda Lindell. Lower bounds and impossibility results for concurrent self
composition. Journal of Cryptology, 21(2):200–249, April 2008. 2

MSF10. Sarah Meiklejohn, Hovav Shacham, and David Mandell Freeman. Limitations
on transformations from composite-order to prime-order groups: The case of
round-optimal blind signatures. In Masayuki Abe, editor, ASIACRYPT 2010,
volume 6477 of LNCS, pages 519–538. Springer, Heidelberg, December 2010.
2

NP01. Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In
S. Rao Kosaraju, editor, 12th SODA, pages 448–457. ACM-SIAM, January
2001. 14

Pas03. Rafael Pass. Simulation in quasi-polynomial time, and its application to
protocol composition. In Eli Biham, editor, EUROCRYPT 2003, volume
2656 of LNCS, pages 160–176. Springer, Heidelberg, May 2003. 4, 5

Pas11. Rafael Pass. Limits of provable security from standard assumptions. In
Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 109–118.
ACM Press, June 2011. 2

PVW08. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework
for efficient and composable oblivious transfer. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 554–571. Springer, Heidelberg,
August 2008. 8

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM
STOC, pages 84–93. ACM Press, May 2005. 11

Reg09. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. J. ACM, 56(6):34:1–34:40, 2009. 11, 17

SC12. Jae Hong Seo and Jung Hee Cheon. Beyond the limitation of prime-order
bilinear groups, and round optimal blind signatures. In Ronald Cramer,
editor, TCC 2012, volume 7194 of LNCS, pages 133–150. Springer, Heidelberg,
March 2012. 2

Sho94. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th FOCS, pages 124–134. IEEE Computer Society Press,
November 1994. 16

	 Round-Optimal Blind Signatures in the Plain Model from Classical and Quantum Standard Assumptions
	Introduction
	Background
	Our Result
	Technical Overview

	Preliminaries
	Secure Function Evaluation
	Blind Signatures

	Preparations
	Classical-Hard Quantum-Solvable Hard Problem Generator
	Public Key Encryption with Invalid Key Certifiability.

	Blind-Signature-Conforming Zero-Knowledge Argument
	Definition
	Construction
	Security

	Round-Optimal Blind Signatures
	Construction
	Security

