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Abstract. It is well known that several cryptographic primitives cannot
be achieved without a common reference string (CRS). Those include,
for instance, non-interactive zero-knowledge for NP, or maliciously secure
computation in fewer than four rounds. The security of those primitives
heavily relies upon on the assumption that the trusted authority, who
generates the CRS, does not misuse the randomness used in the CRS
generation. However, we argue that there is no such thing as an uncondi-
tionally trusted authority and every authority must be held accountable
for any trust to be well-founded. Indeed, a malicious authority can, for
instance, recover private inputs of honest parties given transcripts of the
protocols executed with respect to the CRS it has generated.
While eliminating trust in the trusted authority may not be entirely
feasible, can we at least move towards achieving some notion of account-
ability? We propose a new notion in which, if the CRS authority releases
the private inputs of protocol executions to others, we can then provide
a publicly-verifiable proof that certifies that the authority misbehaved.
We study the feasibility of this notion in the context of non-interactive
zero knowledge and two-round secure two-party computation.

1 Introduction

Very broadly, cryptography can be seen as having two parallel lines of research:
one where the parties don’t trust anyone but themselves, and another where
security relies on some kind of trust assumption. Most notably, many works
have relied on the common reference string (CRS) model where a trusted party
chooses and publishes a public string. The advantage of relying on a CRS depends
upon the setting. For example, for ZK it is known that while in the CRS model,
a non-interaction solution can be achieved [9, 17] one needs at least 3 rounds
in the plain model [22]. For MPC, two rounds are sufficient in the CRS model
[8,21,29] while the best known constructions in the plain model require at least
4-rounds [1,4,10,15,27,28]. Furthermore, UC security is known to be impossible
to achieve in the plain model [11, 12] while this impossibility can be bypassed
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in the CRS model [11,13]. Thus, while one might prefer to obtain constructions
in the plain model, it seems unlikely that the CRS model will be abandoned
anytime soon.

Do There Really Exist Trusted Parties? We argue that in real life, there
is no such thing as an unconditional trusted party. We argue that the only
reason we trust a party is because the cost of cheating (if caught) for that party
would be much higher than the potential gains obtained by cheating successfully.
Indeed this applies everywhere in our society. We are more comfortable trusting
a large bank with our personal information compared to a small individual lender
only because a large bank will pay a much higher cost (loss of reputation and
potential future business) if it behaves maliciously. However if the cost to the
large bank was zero, the reasons for placing this trust would be unfounded. There
are multiple examples where even large entities systematically participated in
an activity which would be generally unacceptable only because they thought
the activity would not become public knowledge (e.g., Facebook selling data
to Cambridge Analytica, or Wells Fargo opening accounts without customer
knowledge).

Compared to real life, in cryptography, life is largely black and white: dishon-
est parties can be arbitrarily bad and trusted parties are unconditionally trusted.
For example, the party generating a CRS (referred to as the CRS authority from
hereon) in a NIZK system can potentially even recover your witness entirely and
sell it for profit. Similarly, in MPC, the CRS authority may recover your input
and pass it on to another party. Even if you detect that the authority is doing
that, it’s not clear how to prove it in a court of law and seek damages. You can
publicly blame the authority for doing that. But this is then indistinguishable
from a malicious party blaming an honest authority.

These concerns have motivated the study of weaker notions such as ZAPs [16]
and super-polynomial simulation security [30]. Groth and Ostrovsky studied the
so called multi-string model [25] where multiple authorities publish common
reference strings such that a majority of them are guaranteed to be honest.
Goyal and Katz [24], and later Garg et. al [20] studied UC security with an
unreliable CRS if the CRS turns out to be malicious, some other setup or an
honest majority can come to the rescue. Bellare et. al [7] studied NIZKs with
an untrusted CRS where even if the CRS is malicious, some weaker security
properties still hold.

In this work, we focus on a single CRS while providing some notion of ac-
countability towards the CRS generation authority. Our direction is orthogonal
to many of the works mentioned and, to our knowledge, largely unexplored.

Towards Accountability in CRS Generation: While eliminating trust in
the CRS authority entirely may not be feasible, can we at least move towards
achieving some notion of accountability? As an example, suppose you find out
that the CRS authority decrypted your input used in an execution of MPC
protocol and sold to another party for profit. Can you obtain a cryptographic
proof of this fact? Can you convince others that such an incident has happened?
Indeed there are limits on what can and cannot be achieved. For example, if
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the authority sells your input and you never find out, it’s unclear if something
can be done. But if the decrypted input indeed falls into your hand (e.g., the
person buying the input from the authority was your own agent), you know for
sure that the authority is dishonest (although you may not be able to prove it
to others).

In this work, we study if there is any meaningful notion of accountability
that can be achieved with respect to a CRS authority. We focus specifically on
the case of NIZK, and two-round MPC which are both known to be impossible
in the plain model and yet achievable with a CRS. Our work runs into several
novel technical challenges as we discuss later. We note that our study is far from
complete and leaves open various intriguing questions.

1.1 Our Results

In this work, we propose novel notions of accountability in the context of two
party secure computation protocols and NIZKs. We also accompany these defi-
nitions with constructions realizing these notions.

Secure Two-Party Computation (2PC). Our definition of malicious author-
ity security first requires the same security guarantees as in regular secure com-
putation, that is, if the CRS was honestly generated, then the protocol achieves
simulation security in the presence of a malicious adversary. To capture the set-
ting when the CRS authority is malicious, we require the following two security
properties:

– Accountability. Suppose the authority generated a CRS maliciously. At a
later point in time, it offers a service to recover the honest parties’ inputs
from the transcripts of protocol executions between these parties, using the
trapdoors it embedded in the CRS. The accountability property guarantees
that we can hold such a CRS authority accountable by producing a piece of
publicly verifiable evidence that incriminates this authority for its malprac-
tice. This evidence can then be presented in a court of law to penalize this
authority. We formalize this by defining an efficient extractor that can inter-
act5 with this malicious authority and outputs a piece of evidence (a string).
We associate with the scheme an algorithm Judge, which then determines
whether this evidence is valid or not.
The authority should not distinguish whether it interacts with the extractor
(who is trying to incriminate the authority) or with a real party (who is
trying to learn the inputs of the honest parties). Note that if the authority has
some auxiliary information about the honest party’s input, it can possibly
produce the input without using the CRS trapdoor at all. In that case,
it seems impossible to obtain incriminating evidence from the response of

5 We stress that this extractor interacts with the malicious authority online without
being able to rewind the authority. This is because, if we want to implicate the
authority in the real world then we would not have the ability to rewind such an
authority.
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the authority. To avoid this issue, we specify a distribution D such that the
inputs of the honest parties are sampled from this distribution in the security
experiment. We stress that this requirement is only for the accountability
security experiment. Our construction satisfies the usual definition of 2PC
(without requiring any distribution on the inputs) in case the CRS is honest.

– Defamation-free. Of course, accountability cannot stand by itself. This no-
tion opens up the possibility of falsely accusing even an honest CRS authority
(who never partakes in running the input recovery service mentioned above)
of malpractice. We complement the definition of accountability by defining
another property called defamation-free. Roughly speaking, this definition
states that just given an honestly generated CRS, it should be computation-
ally infeasible to come up with an evidence that would incriminate an honest
authority.

We study two variants of accountability. First, we study the scenario men-
tioned above in which two parties engage in a secure protocol. Then, one of
them comes to the authority after the fact and asks to open the honest party’s
input. That party has to provide to the authority its view, which includes its
own input and randomness. In the second (stronger) definition, we imagine the
authority will be more cautious and refuse to answer such queries. Instead, the
authority will insist on being involved from the beginning. In this model, the
authority completely controls one of the parties, actively participates in the pro-
tocol execution on behalf of this party, and finally recovers and provides to this
party the honest party’s input. We refer to these notions as weak and strong
accountability.

Impossibility Result. The first question is whether this new notion can be
realized at all. Unfortunately, we show that even the weak definition cannot be
realized for all functions. We show the following.

Theorem 1.1 (Informal). There exists a two-party functionality F such that
there does not exist any secure two-party computation protocol for F in the CRS
model satisfying both (weak) accountability and defamation-free properties.

Specifically, the class of functionalities for which the above impossibility result
hold are functionalities where given the output, we can efficiently recover the
inputs. Indeed, an impossibility result is easy to see in this case since the au-
thority can recover the input without even using any trapdoor related to the
CRS (and in fact, anyone can recover the input of any party). Since this class
of functionalities is somewhat trivial, and such functions are usually considered
as functions where secure computation is not necessary (a trivial protocol where
a party just gives its input suffices), this gives us hope that we can come up
with positive results for large class of interesting functionalities. We focus on
the setting of maliciously secure two-round two-party since that is known to be
impossible to achieve in the plain model.

Construction. We then study the following class of (asymmetric) two-party
functionalities F : the two-party functionality takes as input (x, y) and outputs
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g({xi}yi=1) to the second party (with input y) for some function g. That is, it
outputs g on only those bits of x that are indexed by the bits of y set to 1. This
class of functions includes for instance, oblivious transfer, private information
retrieval, subset sum, and more. We show the following:

Theorem 1.2 (Informal). Assuming SXDH (Symmetric External Diffie-Hellman)
on bilinear maps, there exists a two-round maliciously secure two-party com-
putation protocol for F satisfying both weak accountability (with respect to the
uniform distribution over the inputs) and defamation-free.

Indeed, obtaining such a construction turns out to be surprisingly non-trivial
and requires one to overcome novel technical challenges. We refer the reader to
Section 2 (Technical Overview) for a summary of techniques.

Strong accountability for Oblivious Transfer. As mentioned, we study
weak and strong accountability, depending on whether the malicious authority
actively participates in the protocol execution or not. We focus on the oblivious
transfer functionality and demonstrate that strong accountability is possible to
achieve, based on a (seemingly) stronger assumption.

Theorem 1.3 (Informal). Assuming indistinguishability obfuscation for P/poly
[5,19] and SXDH in bilinear groups, there exists a two-round maliciously secure
oblivious transfer protocol in the CRS model satisfying both strong accountability
and defamation-free properties, with respect to the uniform distribution over the
inputs.

The techniques developed in the above construction can potentially be extended
also for the class of functions in F for which Theorem 1.2 holds, although we
focused on oblivious transfer for simplicity.

Non-Interactive Zero-Knowledge (NIZK). Another basic cryptographic
primitive which relies on a CRS is NIZK. Indeed, CRS shows up in several cryp-
tographic constructions primarily because they use NIZK as a building block.
Similar to the 2PC case, we require the same guarantees as a regular NIZK
when the CRS is honestly generated, namely, completeness, soundness and zero-
knowledge. We associate with the proof system a Judge algorithm and require
accountability and defamation free properties:

– Accountability. For any CRS∗ that might be maliciously produced by the
CRS authority, if there exists an adversary that upon receiving pairs (x, π)
can recover the witness w, (where x is an instance, π is a proof that x is in
the associated language, and w is the secret witness), then there exists an
extractor that can create a piece of evidence τ that is accepted by Judge.
As before, our accountability property is parameterized by a distribution
D defined on the instance-witness pairs. Indeed this is necessary since if
the authority can guess the witness without using the CRS trapdoor, the
security guarantees we have in mind are impossible to achieve.

– Defamation-free. This states that no non-uniform probabilistic polynomial-
time adversary A upon receiving a CRS that was honestly generated can
come up with a piece of evidence τ that makes Judge accept.
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We consider a NP language L consisting of instances of the form (C, c1, . . . , cm, b)
such that C : {0, 1}m → {0, 1} is a boolean circuit, each ci is a commitment
of xi and moreover, C(x1, . . . , xn) = b. We note that we can reduce any NP-
complete language to this language based on the existence of rerandomizable
commitments. We show the following.

Theorem 1.4 (Informal). Assuming SXDH on bilinear maps, there exists a
NIZK for L in the CRS model satisfying both the accountability and the defamation-
free properties.

We can handle a class of distributions D with the only requirement being that a
distribution in this class computes the commitments using uniform randomness
while the circuit C and inputs (x1, . . . , xn) can be arbitrarily chosen.

Open Problems. We believe that a systematic study of the notions of ac-
countability in the CRS model is an exciting line of research. Our work leaves
open several natural questions. Can we broaden and characterize the class of
functionalities for which accountable 2PC can be achieved? Can we extend our
construction to more than two parties? While we focus on two rounds, obtaining
even three round constructions would be valuable since the best known construc-
tions in the plain model require at least four rounds.

One could also consider stronger notions where the authority only supplies
some information about the input (e.g. the first bit of the input) rather than
the entire input. In this setting, it seems the extractor would need to obtain
multiple responses from the authority and somehow combine them into a single
proof. Furthermore, while we focus on privacy (of the input in case of secure
computation, or the witness in case of NIZK) in this work, what if the authority
instead attacks correctness or soundness?

Another interesting direction is to consider other settings where CRS is used
such as obtaining UC security.

Related Works. Our notion is inspired, in part, by broadcast encryption with
traitor tracing [14] where, given a decryption box, there is a trace algorithm
(similar to our Judge algorithm) which identifies the cheating party. However
there are crucial differences. Our Judge algorithm does not have direct access
to the CRS authority and only gets to see a string produced by the extractor.
Furthermore, our extractor only gets to interact with the CRS authority online
and, in particular, does not get to rewind the CRS authority. In another related
line of research, Goyal [23] introduced what is known as accountable authority
(AA) identity-based encryption (IBE) where if the authority generating the IBE
public parameters is dishonest and releases a “decryption box”, the authority
can be implicated in a court. Our definition is also inspired by public verifiability
in covert security, introduced by Asharov and Orlandi [3]. This definition shows
how one can extract, given a transcript of the protocol, a piece of evidence show-
ing that there was a misbehavior in the execution. The definition also requires
defamation free, so that innocents cannot be implicated.

Another related notion of our work is subversion security, suggested by Bel-
lare, Fuchsbauer, and Scafuro [7] (see also [18]). The work studies the security
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of NIZKs in the presence of a maliciously chosen common reference string. It
shows that several security properties can still be preserved when the CRS is
maliciously generated. Nevertheless, it is shown that zero-knowledge cannot be
preserved simultaneously with soundness when the common reference string is
maliciously generated. Our work takes a different approach and seeks account-
ability when such misbehavior is detected. It will be intriguing to see how these
two notions can intertwine.

2 Technical Overview

We start by explaining the main idea that underpins the constructions of NIZK,
oblivious transfer and secure two-party computation with malicious authority
security. Realizing this insight will lead us to different challenges in the context
of designing each of the different primitives; we discuss the challenges for each
of these primitives separately.

Main Idea. Our main idea is to force the CRS authority to include a transcript
of execution of the protocol as part of the CRS, where the transcript has a
secret x embedded inside. In the context of NIZKs, we force the authority to
include a NIZK proof in the CRS where the witness contains the secret x. In the
case of oblivious transfer and secure two-party computation, the sender and the
receiver’s input in the transcript are generated as a function of x.

In the honest execution, the transcript in the CRS is ignored. However, to
argue accountability, the extractor will cleverly maul this transcript in the CRS
to generate another transcript in such a way that the mauled transcript now has
the embedded secret x⊕ y, where y is sampled by the extractor. The extractor
then sends this mauled transcript to the malicious CRS authority. Since this
authority offers a service to recover the inputs of the honest parties (or witness
in the context of NIZKs), it recovers x ⊕ y and outputs this. Note that the
authority was tricked into recovering an input that was in reality related to the
secret that it hardwired inside the CRS. Now, the extractor has x ⊕ y, and it
can easily recover x. It recovers x and presents it as evidence to implicate the
authority. The extractor could never recover x by itself without the “help” of
the malicious authority, which also implies defamation free.

While this initial idea sounds promising, its realization involves technical
challenges. We highlight some of them below.

– The first and foremost challenge is malleability. We hinged on the fact that
the extractor can maul the transcript in the CRS. It turns out that mal-
leability is a challenging problem. Malleability of transcripts has not been
studied in the context of interactive protocols before and moreover, even in
the setting of NIZKs, this has only been studied in the context of restricted
relations.

– Another challenge is to ensure that the malicious authority cannot distin-
guish whether it is interacting with an extractor, who is trying to incrimi-
nate it, or is it interacting with a malicious party who only intends to learn
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the inputs of the honest parties. In other words, we need an extractor who
can produce transcripts that are computationally indistinguishable from the
transcripts produced by real protocol executions (not the ones obtained by
mauling the CRS).

– We mentioned above that we force the authority to include a transcript
in the CRS. How do we ensure that the authority did indeed include a
valid transcript in the CRS? The standard solution to employ a NIZK proof
cannot work because the authority can violate soundness since it is the one
who generates the CRS.

– Finally, to prove the defamation-free property, we need to argue that any
probabilistic polynomial time adversary, (no matter how hard it tries) cannot
come up with an evidence to implicate an honest authority. In other words,
given the transcript in the CRS, it should be computationally infeasible to
recover the secret x.

We now show how to implement our main idea, to construct NIZKs, oblivious
transfer and secure 2PC with malicious authority security, and in the process we
also discuss how to address the above challenges.

2.1 Malicious Authority Security for NIZK

We start by describing the NP relation associated with the proof system.

NP relation. Every instance in this relation is of the form (C, c1, . . . , cm, b),
consisting of three components: (1) A boolean circuit C : {0, 1}m → {0, 1}; (2)
Committed input c = (c1, . . . , cm) hiding some bits (x1, . . . , xm) using decom-
mitments (r1, . . . , rm); (3) A bit b satisfying b = C(x1, . . . , xm). The witness is
therefore the bits (x1, . . . , xm) and their associated decommitments (r1, . . . , rm).
In particular, embedding the commitments in the language guarantees average
case hardness, as opposed to regular circuit satisfiability that might have only
worst case hardness.

Base proof system. We start with a NIZK proof system and then modify
this system to satisfy the desired properties. The proof system is obtained by
employing the standard FLS trick [17].

To prove an instance (C, c1, . . . , cm, b) using a witness x = (x1, . . . , xm) and
de-commitments r = (r1, . . . , rm), we simply use a NIWI proof system in which
the prover can show that either it knows the witness (x, r), or that it knows a
seed sin for some string y that appears in the CRS, i.e., y = PRG(sin). When
the CRS is honestly generated, with overwhelming probability, such a pre-image
does not exist, and thus the proof system is sound. Moreover, the simulator can
generate an indistinguishable CRS in which y = PRG(sin) for some trapdoor sin,
enabling it to provide proofs without knowing the witnesses.

Accountability. To achieve accountability, we need to provide more informa-
tion in the CRS. As a warmup, we will include the commitments c0 = Com(0; r0)
and c1 = Com(1; r1) for random r0, r1. To prove accountability, we define an ex-
tractor who first samples a circuit C and a string x = (x1 · · ·xn) according
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to the distribution of the honest prover, chooses a subset of the commitments
(cx1 , . . . , cxn), where cxi is a commitment of the bit xi and is taken from the
extra information in the CRS. Then, the extractor computes a proof π on the in-
stance (C, (cx1 , . . . , cxn), C(x)). The authority, given the instance and the proof,
will output the witness (x, rx1 , . . . , rxn). This witness itself serves as an evidence
that can be used to incriminate the authority; this is because it can be publicly
verified that (xi, r

xi) is a valid opening for cxi . Moreover, just given the CRS,
it is computationally infeasible to produce an opening; thus, defamation-free is
guaranteed as well.

There are four major issues with this approach. The first issue is the follow-
ing: the authority upon recovering the witness (x, rx1 , . . . , rxn), or even by just
viewing the instance (C, (cx1 , . . . , cxn), C(x)) to be opened, will realize that it
corresponds to the randomness associated with the commitments in the CRS.
So, it will be able to figure out that it is the extractor who submitted the proof.
The second issue is that it is unclear how the extractor will be able to produce
a valid proof on the instance (cx1 , . . . , cxn). Indeed, the binding property of the
commitment scheme and the soundness of the NIWI proof tell us that this should
not be possible. The third issue is that the authority is the one who generates
the public parameters of the commitment scheme, and might generate them as
computationally binding instead of perfectly binding. This means that even if
the authority opens the input, it might open cxi to 1 − xi. In this case, it is
unclear how to implicate the authority. Finally, the fourth issue is that we need
to verify that the malicious authority included commitments of 0 and 1 only.

– To get around the first issue, we use a rerandomizable commitment scheme.
Given commitment to a message m, we can rerandomize this commitment in
such a way that randomness of the new commitment information-theoretically
hides the randomness used in the old commitment. To see why this is useful,
note that the extractor can rerandomize the commitments (cx1 , . . . , cxn).
Now, the randomness recovered by the authority is identically distributed to
fresh commitments of (x1, ..., xn).

– To get around the second issue, we add to the language of our NIWI a third
branch: given a statement (C, c1, . . . , cm, b), the commitments (c1, . . . , cm)
were obtained as re-randomizations of the two commitments c0 and c1 in
the CRS, and the extractor has to provide the re-randomization informa-
tion. Thus, to generate an implicating transcript, the extractor chooses any
circuit C and input (x1, . . . , xm) according to the distribution of the honest
prover. Moreover, it evaluates C(x1, . . . , xm) = b, re-randomizes the com-
mitments cx1 , . . . , cxm to obtain (c1, . . . , cm). The extractor then gets an
instance (C, c1, . . . , cm, b) with a proof πNIWI.

– For the third issue, we show that it does not matter whether the commit-
ment cxi is opened to xi or 1 − xi. In particular we show that, using the
rerandomizability property of the commitment scheme, having either of the
two openings is sufficient to implicate the authority.

– Finally, to overcome the forth issue, the authority will provide four commit-
ments as part of the CRS,

(
(c00, c

0
1), (c10, c

1
1)
)
, and prove using a NIWI proof
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(which does not require CRS) that one of the branches (c00, c
0
1) or (c10, c

1
1)

consists of commitments to 0 and 1. Before participating in proving any
statement with respect to this CRS, one has to check using the proof pro-
vided in the CRS that the CRS is correctly computed, i.e., that there is a
method to implicate the authority if corrupted.

To argue accountability with the modified CRS, the extractor needs to pick
the correct branch to rerandomize. However, it does not know which is the right
branch. Instead it samples one of the branches uniformly at random and pro-
ceeds. If we had the guarantee that the authority recovered the witness with
non-negligible probability then we have the guarantee that the extractor still
succeeds in coming up with an incriminating evidence with non-negligible prob-
ability.

We can argue defamation-free using the witness-indistinguishability property
of the proof in the CRS in conjunction with the hiding property of the commit-
ment scheme.

2.2 Malicious Authority Security for Oblivious Transfer

We now focus our attention on secure two party computation protocols. To
gain better intuition and to understand the difficulties we cope with, we start
with studying a specific functionality — oblivious transfer. The solutions and
techniques developed in addressing this functionality will also be useful in un-
derstanding the general case.

As opposed to NIZK which consists of one message and only the prover has
some private input (the witness), in oblivious transfer both parties have private
inputs. We consider a parallel repetition of 1-out-of-2 bit oblivious transfer, in
which the receiver holds a string σ = (σ1, . . . , σn) ∈ {0, 1}n, and the sender
holds two messages m0 = (m0

1, . . . ,m
0
n), m1 = (m1

1, . . . ,m
1
n) ∈ {0, 1}n. Only

the receiver receives the output which is mσ1
1 , . . . ,mσn

n . A two-round protocol of
oblivious transfer in the CRS model consists CRS generation algorithm GenCRS
(run by the authority) that outputs CRSOT, and two algorithms OT1,OT2 for
generating the transcript. The receiver runs msgR = OT1(CRSOT,σ) to obtain
the message msgR from the receiver to the sender, followed by a message msgS =
OT2(CRSOT,m0,m1,msgR) from the sender to the receiver. The receiver then
makes some local computation to output mσ1

1 , . . . ,mσn
n .

As the functionality hides information for both the receiver (m1−σ1
1 , . . . ,

m1−σn
n ) and the sender (σ), both parties might come to the malicious authority

and ask to open the same transcript, while extracting different information from
it. We, therefore, have to discuss two different scenarios and show that in either
case, if the authority offers help to either of the two parties, it can be impli-
cated. In the first scenario, which we call malicious sender, the sender submits
its view to the authority and tries to learn the input of the receiver. We define
malicious receiver analogously. We follow the same oblivious transfer protocol
that is secure against malicious adversaries. As mentioned earlier in our discus-
sion, to achieve the protocol’s security, we cannot hope to prevent the malicious
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authority from making any trapdoors in CRSOT. Those trapdoors are essential
ingredients when proving the simulation security of the protocol. All we can do
is to prevent it from using that trapdoor, and specifically from divulging secrets
to others.

Dealing with a malicious sender. Following our general template, the author-
ity generates CRSOT. Moreover, it randomly samples a challenge σ = (σ1, . . . , σm),
for some sufficiently long m, and appends f(σ) to the CRS, where f is a
one-way function. Then, we want to embed σ in transcript of OT, i.e., add
msgσR = OT1(σ). Without knowing the receiver’s randomness, no one can learn
σ just from seeing the message OT1(σ), as guaranteed from the receiver’s se-
curity in the protocol against the malicious sender. This guarantees defamation
free. Yet, our goal is give the extractor the ability to maul those transcripts such
that if ever opened, we will have a piece of evidence to implicate the authority.

A natural idea is to just complete the transcript with any m0,m1 to obtain
msgS = OT2(CRSOT,m0,m1,msgσR). Then, to come up with the pair (msgS ,
msgR) to the authority. But, the authority will refuse to open such a transcript
– it can clearly identify that the receiver’s secret input is σ, i.e., the secret
challenge it generated! Moreover, it can identify that the message msgR in the
transcript is identical to the message it published in the CRS. We need a stronger
method that enables us to complete transcripts to any input of the sender and
to maul the receiver’s input and re-randomizes it.

To achieve that, we again successfully avoid the issue of malleability
using rerandomization and by adding more information in the CRS. Re-
call that the protocol is a parallel repetition of bit OT, i.e., OT1(σ) =
OTbit1 (σ1), . . . ,OTbit1 (σm), where (OTbit1 ,OTbit2 ) is the underlying bit OT pro-
tocol. The authority will have to generate for every bit two transcripts, αi,0 =

OTbit1 (σi ⊕ 0) and αi,1 = OTbit1 (σi ⊕ 1). This enables the extractor to obtain a
transcript for σ⊕∆ for the receiver for every ∆ = (∆1, . . . ,∆n) of its choice, and
any input (m0,m1) of the sender of its choice. That is, to generate OT1(σ⊕∆),
do the following:

OT1(σ ⊕∆) = (α1,∆1
, . . . , αn,∆n

) =
(
OTbit1 (σ1 ⊕∆1), . . . ,OTbit1 (σn ⊕∆n)

)
.

It re-randomizes each one of these messages, and completes it to full tran-
script with any messages m0,m1 of its choice. The authority receiving such a
transcript has no way to tell that this transcript was generated using the tran-
scripts it published in the CRS. By extracting the input of the receiver it discloses
itself.

Dealing with a malicious receiver. Following a similar approach, recall that
on input (m0,m1) for the sender and σ for the receiver, the oblivious transfer
functionality hides only (m1−σ1

1 , . . . ,m1−σn
n ) but reveals (mσ1

1 , . . . ,mσn
n ) to the

receiver. Therefore, it seems natural to embed the challenge in the hidden part
of the message. The authority chooses a new challenge x = (x1, . . . , xn) and
publishes f(x) in the CRS. Moreover, it creates transcripts that correspond to x
and enables the extractor to produce transcript for every input r = (r1, . . . , rn)
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of the receiver and “shift” ∆ = (∆1, . . . ,∆n), while embedding xi in position
1 − ri (which is not revealed), to obtain ((x1 ⊕ ∆1)1−r1 , . . . , (xn ⊕ ∆n)1−rn).
If the malicious authority ever opens the transcript, that is, it recovers ((x1 ⊕
∆1)1−r1 , . . . , (xn⊕∆n)1−rn), it can then extract x from this (since it knows the
“shift”) and implicate the authority. To do that, first observe that there are 8
possible transcripts for each bit OT: the input of the receiver is ri ∈ {0, 1} and

the input of the sender is (m0,m1) ∈ {0, 1}2. To enable the extractor to generate
any transcript it wishes, for every bit-OT i ∈ {1, . . . , n}, the CRS authority is
expected to produce (as part of the CRS generation) four values as follows: For
every µ,∆i ∈ {0, 1}:

βi0,µ,∆i
= OT(0, (µ, xi ⊕∆i)) and βi1,µ,∆i

= OT(1, (xi ⊕∆i, µ)) ,

while OT(σ, (m0,m1)) denotes a full transcript of a bit OT where the input of
the receiver is σ and the sender is (m0,m1), and we omit CRSOT for brevity.
Observe that for each i ∈ {1, . . . , n} of the bit-OTs provided in the CRS, the bit
xi is not revealed in the transcript, as it corresponds to the input of the sender
that is not revealed. On the other hand, the randomness and the input of the
receiver is given in the clear.

The extractor can now choose any message m = (m1, . . . ,mn) of its choice
and any ∆ = (∆1, . . . ,∆n), and for every input r = (r1, . . . , rn) of the receiver,
it can generate a transcript (β1

r1,m1,∆1
, . . . , βnrn,mn,∆n

), which embeds a masking
of x. The extractor rerandomizes this transcript and, if opened by the authority,
the extractor can easily recover x.

Finally, as the authority has to produce many transcripts that are correlated
with the challenge, it has to prove that it generated all of them as specified. Just
as in malicious authority security for NIZK, we double all the new information
in the CRS and ask it to prove using a NIWI that one of the branches was
generated as specified.

Re-randomizable oblivious transfer. As mentioned above, to allow this to
work, we must ensure that the oblivious transfer transcript is rerandomizable.
Informally, we say that an OT transcript is rerandomizable if given a transcript
of execution of OT, we should be able to transform into another transcript on
the same inputs. The rerandomization guarantee is that even given the secret
randomness and the input of both parties in the original transcript, a distin-
guisher receiving a view of one of the parties should not be able to figure out
whether the view comes from a new transcript (with the same inputs), or the
view was rerandomized. We show that the oblivious transfer protocol of Peikert,
Vaikuntanathan, and Waters [31] is a perfect fit for our needs: it is a two-round
oblivious transfer in the CRS model, and we augment the protocol with reran-
domization procedures.

Strong accountability. The protocol described above works when the mali-
cious authority does not participate actively in the protocol execution. To un-
derstand why, we first remark that for a malicious receiver, the authority provides
transcripts where the input and randomness of the receiver are in the clear (i.e.,
provides the complete view of the receiver).
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However, in strong accountability, the extractor now talks directly to the
adversary. It receives the first message in the protocol from the adversary, and it
cannot know the randomness and the private input of the adversary. Matching
the correct transcript from the CRS to the one just received by the adversary
is impossible, due to the receiver’s privacy. Specifically, to embed xi in position
1− ri, we have to know ri.

On the other hand, this problem does not occur for the malicious sender’s
case, as it sends the second message in the protocol. In fact, the above-described
method already achieves strong accountability against malicious sender.

Achieving strong accountability via indistinguishability obfuscation.
We first start with the following idea. As now the transcripts are given “on the
fly” to the extractor, we do not even try to embed the secret challenge into the
transcript. Instead, we generate an honestly generated transcript using random
messages m0,m1 that the extractor itself does not even know, and give it also
m0⊕m1⊕x. Now the bits (m1−r1

1 , . . . ,m1−rn
n ) are not known to the sender and

the receiver, and thus x is protected using one-time pad.

To implement this idea, we use indistinguishability obfuscation6. The au-
thority obfuscates a circuit C that on input msgR generates msgS on random
inputs m0,m1 and gives also m0 ⊕m1 ⊕ x. Crucially, the evaluator of the cir-
cuit (the extractor) does not know m0,m1. The messages m0,m1 are generated
using a pseudorandom key chosen by the CRS authority and was hardwired in
the circuit. Moreover, the defamation free proof is now rather involved as it re-
quires showing that the hardwired value x is not revealed even though it is also
hardwired in the circuit.

This description is too simplified and is not sound. If the extraction just
sends the message msgR as received from the obfuscated circuit, the authority
can clearly identify it as it had generated the obfuscated circuit. The extractor
therefore has to rerandomize the message it receives as output from the circuit.
But this still does not suffice, as the authority can also identify that two messages
m0,m1 were generated by the circuit, as those are pseudorandom and it knows
the key used to generate them. Therefore, we modify the circuit such that given
a message msgR it generates four different transcripts, i.e.,

βτ0,τ1 = OT2(m0 ⊕ τn0 ,m1 ⊕ τn1 ,msgR)

for every τ0, τ1 ∈ {0, 1}. This enables the extractor to pick any masking it wishes
to m0,m1, similarly to the case of weak accountability. Whenever the authority
opens such a message, the extractor recovers m0,m1 and thus also x.

6 An indistinguishability obfuscator [5, 19] is a compiler that on input circuit C out-

puts a functionally equivalent circuit Ĉ. Moreover, it gurantees that the obfuscations
of two functionally equivalent circuits (of the same size) are computationally indis-
tinguishable.
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2.3 Malicious Authority Security for Two Party Computation

We now focus our attention on general purpose secure two party computation
protocols. We first start with an overview that shows that it is not possible to
achieve general purpose secure computation protocols for all functions. We then
complement our negative result by identifying a class of functionalities (which
subsumes oblivious transfer functionalities) for which we can achieve a positive
result.

Impossibility result. When it comes to tackling the problem of designing se-
cure computation for general functionalities, we realize that we cannot simultane-
ously achieve accountability and defamation-free properties. Since the authority
recovers the inputs of the honest parties, it has to be the case that the output of
the functionality does not trivially leak the inputs, i.e., each party really needs
the help of the authority to recover the inputs of the honest parties. When con-
sidering functions that do not provide such secrecy, we show that there does not
exists a protocol that can address malicious authority security. Luckily, those
functions, at least intuitively, are the functions for which secure computation is
not necessary to begin with. We formalize this intuition and show that it is im-
possible to achieve secure two party computation for any functionality, as there
exists functions for which achieving malicious authority security is impossible.

Observe also that so far, both in the NIZK example and in oblivious transfer,
the functionality hides sufficient information (in NIZK this is the witness w; in
oblivious transfer these are the choice bits of the receiver and for the sender,
those are the bits in the input that were not selected by the receiver). This is
very intuitive: If the function is not hiding, then there is no need for help from
the authority to recover the private inputs.

Positive result. We therefore restrict our attention to a specific class of func-
tions F that is guaranteed to have some form of secrecy. We also focus on the
asymmetric case where only one of the parties (designated as the receiver) gets
an output. Specifically we look at functions in which the inputs of both parties
is sufficiently long, and for every input of the receiver, there exists at least λ
bits in the inputs of the sender that are not meaningful and do not affect the
output, where λ denotes the security parameter. Interesting functions that are
captured in this class are oblivious transfer, private information retrieval, subset
sum, and more.

We describe a two-round secure computation protocol for computing all the
functions in the family in the CRS model, and then show how to enhance its
security to achieve malicious authority security.

The base protocol is a standard two-round two-party secure computation pro-
tocol that combines two-round oblivious transfer with garbled circuits. Denoting
the sender’s input as x = (x1, . . . , x`) and the receiver’s input as y = (y1, . . . , y`),
the receiver’s first message is simply msgR = OT1(y). The second message of
the sender is a bit more involved, and this complication comes to accommodate
malicious authority security at a later stage. Given a circuit C for computing
the function F ∈ F , the sender generates a garbled circuit GC together with
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the labels K
(x)
i,0 ,K

(x)
i,1 for each input of the sender, and labels K

(y)
i,0 ,K

(y)
i,1 for each

input of the receiver. To receive the output on x,y, the receiver has to obtain

the labels K
(x)
i,xi

,K
(y)
i,yi

and output Eval(GC,K
(x)
i,xi

,K
(y)
i,yi

). To do that, the “classic”
approach is to instruct the sender to send the following message:

{K(x)
i,xi
}i∈[`], OT2

(
(K

(y)
i,0 )i∈[`], (K

(y)
i,1 )i∈`,msgR

)
, (1)

i.e., sending the labels that correspond to the sender’s input, and the labels
correspond to the receiver’s input are obtained using the oblivious transfer. For
the generation of the transcript by the extractor, it would be easier to send
the labels of the sender also in an OT message. We instead send the following
message:

OT2

(
(K

(x)
i,0 ‖ K

(y)
i,0 )i∈[`], (K

(x)
i,xi
‖K(y)

i,1 )i∈`, msgR

)
. (2)

That is, the receiver always receives labels that corresponds to its input, as
before. As for the labels that correspond to the input of the sender, in case

yi = 1, then the receiver obtains K
(x)
i,xi

, i.e., the “correct” label. On the other

hand, in case yi = 0 then the receiver obtains K
(x)
i,0 , regardless of what the input

of the sender is, i.e., it receives a label that corresponds to xi = 0. This still
guarantees correctness as in the case where yi = 0, the input xi does not affect
the output, and the evaluation of the circuit when xi = 0 and xi = 1 gives
the same result. Here we rely on the structure of functions that we compute.
Together with this OT2 message, the sender also sends a NIWI proof that it
either generated the message correctly as instructed, or it knows some trapdoor
in the CRS.

Enhancing to malicious authority security. Since the first message in the
protocol of the receiver is just OT1(y), this case reduces to the case of obtain-
ing malicious authority security in the case of a malicious receiver in oblivious
transfer.

For the case of malicious sender, we again follow our general template and
the CRS authority chooses a random challenge r = (r1, . . . , rλ) ∈ {0, 1}λ, and
gives out f(r). The goal now is to find what transcripts to provide such that
the extractor will be able to embed r to the input of the sender. If we would
have sent the keys as described in Eq. (1), then to let the extractor choose
inputs of the sender as a function of r, the authority would have to give both

keys K
(x)
i,ri
,K

(x)
i,1−ri . This implies that the extractor will be able to evaluate the

function on both values of ri, breaking defamation free. Embedding the changes
inside the OT2 message enables us to maul that message without giving away
any information about r. Specifically, we always maul the part that the receiver
did not ask for, similarly to the way it is done for oblivious transfer.

Organization. The remaining of the paper is organized as follows. We provide
the necessary preliminaries in Section 3. In Section 4 we formally define our
new notion. In Section 5 we provide the construction of NIZK. Due to lack of
space, the construction of oblivious transfer and the two-party computation are
deferred to the full version of this paper.
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3 Preliminaries

Notation and conventions. We let λ denote the security parameter. We let [n]
denote the set {1, . . . , n}. We use PPT as shorthand for probabilistic polynomial
time. A function µ is negligible if for every positive polynomial p(·) and all
sufficiently large λ’s, it holds that µ(λ) < 1/p(λ).

A probability ensemble X = {X(a, λ)}a∈{0,1}∗;λ∈N is an infinite sequence of
random variables indexed by a ∈ {0, 1}∗ and λ. In the context of zero knowledge,
the value a will represent the parties’ inputs and λ will represent the security
parameter. All parties are assumed to run in time that is polynomial in the
security parameter. Two probability ensembles X = {X(a, λ)}a∈{0,1}∗;λ∈N, Y =
{Y (a, λ)}a∈{0,1}∗;λ∈N are are said to be computationally indistinguishable, denoted
by X≈cY , if for every non-uniform polynomial-time algorithm D there exists a
negligible function µ such that for every a ∈ {0, 1}∗ and every λ ∈ N,

|Pr[D(X(a, λ)) = 1]− Pr[D(Y (a, λ)) = 1]| ≤ µ(λ)

We denote by x← D a sampling of an instance x according to the distribution
D.

We denote vectors using a bold font, e.g., α ∈ {0, 1}n, when it is usually
clear from context what is the vector size. We let α[i] denote the ith coordinate
of the vector.

3.1 Rerandomizable Commitment Scheme

Commitment scheme is a basic tool in cryptographic protocols. Informally, we
require the commitment scheme to satisfy two properties, the first is called perfect
binding, which means that the sets of all commitments to different values are
disjoint; for all x 6= x′ it holds that Com(x) ∩ Com(x′) = ∅ where Com(x) = {c |
∃r such that c = Com(x; r)} and Com(x′) = {c | ∃r such that c = Com(x′; r)}.
The second property is computational hiding; which means that the commitments
to different strings are computationally indistinguishable.

In addition to the perfect binding and computational hiding properties, we
also require the commitment scheme to be rerandomizable. The commitment
scheme C = (Setup,Com,Rerand, fcom) has the following syntax and properties:

– p← Setup(1λ): outputs some public parameters p. Let the message space be
M and the commitment space be C.

– c ← Com(p,m; r): The algorithm gets m ∈ M and outputs a commitment
c ∈ C. The opening of the commitment is simply r.

– c′ ← Rerand(p, c; s): On input parameters p, commitment c and randomness
s, Rerand outputs a randomized commitment c′ to the same value. More-
over, we require the existence of an efficient function fcom such that for any
randomness m, r, s the following holds:
• Rerand(p,Com(p,m; r); s) = Com(p,m, s′) where s′ = fcom(r, s).
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Moreover, it is required that for every fixed s, the function fcom(·, s) is bijec-
tion, and for every r, the function fcom(r, ·) is a bijection as well. In particular,
this means that given s′, s one can find r for which s′ = fcom(r, s).

Such a scheme can be constructed from the DLIN assumption, as showed in [26].
It’s rerandomization properties were discussed in [2].

3.2 Non-Interactive Zero Knowledge (NIZK)

Let L be an NP language and let RL be its associated relation. For (x,w) ∈ RL
we sometimes denote x the statement and w its associated witness.

Definition 3.1. Let L ∈ NP and let RL be the corresponding NP relation. A
triple of algorithms Π = (GenCRS,Prove,Verify) is called non interactive zero
knowledge (NIZK) argument for L if it satisfies:

– Perfect completeness: For all security parameters λ ∈ N and for all
(x,w) ∈ RL,

Pr
[
CRS← GenCRS(1λ); π ← Prove(CRS, x, w) : Verify(CRS, x, π) = 1

]
= 1

– Adaptive Soundness: For all prover P ∗, there exists a negligible function
µ such that for all λ:

Pr
[
CRS← GenCRS(1λ); (x, π)← P ∗(CRS) : Verify(CRS, x, π) ∧ x 6∈ L

]
≤ µ(λ)

When this probability is 0, we say that Π is perfectly sound.

– Adaptive Zero Knowledge: There exists a PPT simulator S = (S1,S2)
where S1(1λ) outputs (CRSS , τ) and S2(CRSS , τ, x) outputs πS such that for
all non-uniform PPT adversaries A,{

CRS← GenCRS(1λ) : AO1(CRS,·,·)(CRS)
}

≈c
{

(CRSS , τ)← S1(1λ) : AO2(CRS,τ,·,·)(CRSS)
}

where O1,O2 on input (x,w) first check that (x,w) ∈ RL, else output ⊥.
Otherwise, O1 outputs Prove(CRS, x, w) and O2 outputs S2(CRSS , τ, x).

3.3 Non-Interactive Witness Indistinguishability (NIWI)

One building block that we often use in our construction is non-interactive wit-
ness indistinguishability. It is useful for our purposes as it does not require a
common-reference string. NIWI in the plain model can be constructed based
on the DLIN assumption [26] and can be constructed assuming either trapdoor
permutations and derandomization assumptions [6].

Definition 3.2. A pair of PPT algorithms (Prove,Verify) is a NIWI for an NP
relation RL if it satisfies:
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1. Completeness: For every (x,w) ∈ RL,

Pr [Verify(x,w) = 1 : π ← Prove(x,w)] = 1 .

2. Soundness: There exists a negligible function µ such that for every x 6∈ L
and π ∈ {0, 1}∗:

Pr [Verify(x, π) = 1] ≤ µ(|x|) .
3. Witness indistinguishability: For any sequence {(x,w1, w2) : w1, w2 ∈

RL(x)} ∈ I:

{π1 : π1 ← Prove(x,w1)}(x,w1,w2)∈I ≈c {π2 : π2 ← Prove(x,w2)}(x,w1,w2)∈I .

4 Defining Malicious Authority Security

In this section, we define the notion of malicious authority security for cryp-
tographic protocols defined in the CRS model. There are two aspects to our
definition, depending on whether CRS is honestly generated or if its generated
by a malicious authority. In the first case, if the CRS is honestly generated, we
require that the protocol satisfies the same traditional security requirements de-
scribed in the literature. In the second case, suppose that the CRS is generated
by a malicious authority and specifically, if the malicious authority runs a ser-
vice that let the adversarial entities, participating in the protocol, to recover the
inputs of the honest parties. In this setting, we should be able to implicate the
malicious authority of its wrongdoing. Formally speaking, we define an extractor
that interacts with the malicious authority and comes up with an evidence τ that
can presented to a Judge, defined by a Judge algorithm, who verifies whether the
presented evidence is valid. At the same time, we require the property that no
efficiency adversary can present an evidence that can falsely accuse the honest
authority of running a service.

We first discuss the definition of malicious authority security for NIZK (Sec-
tion 4.1), and then extend the ideas to general secure two party computation
(Section 4.2).

4.1 Malicious Authority Security for NIZK

We start by defining malicious authority security in the context of non-interactive
zero-knowledge systems.

A NIZK system consists of a triplet of algorithms Π = (GenCRS,Prove,
Verify). In addition, we define a PPT algorithm Judge, which will be necessary
for malicious authority security.

– b ← Judge(CRS, τ) where b ∈ {honest, corrupted}: The algorithm receives as
input the (possibly corrupted) CRS and some transcript τ , and outputs a b,
indicating whether the τ proves that the CRS CRS is corrupted or not.

Definition 4.1. Let L ∈ NP and let RL be the corresponding NP relation.
We say that a NIZK system Π = (GenCRS,Prove,Verify, Judge) has malicious
authority security with respect to distribution D if:



Towards Accountability in CRS Generation 19

1. The system Π ′ = (GenCRS,Prove,Verify) is a NIZK proof system for L.

2. (Accountability:) We say that the NIZK scheme Π achieves accountability
with respect to distribution D if for all sufficiently large security parameter
λ ∈ N, any adversary A, if there exists a non-negligible function ε1(·) such
that

Pr[Acc.RealΠ,A,q(λ) = 1] ≥ ε1(λ)

then there exists a probabilistic polynomial time oracle-aided algorithm Ext
making at most q queries, and a non-negligible function ε2(·) such that:

Pr[Acc.Extπ,A,E,q(λ) = 1] ≥ ε2(λ)

where the random variables Acc.Realπ,A,E,q(λ) and Acc.Extπ,A,E,q(λ) are
defined below.

Acc.RealΠ,A,q(λ):

The adversary A(1λ) outputs some CRS∗, and we repeat the following for q
iterations:
– (xi, wi)← D and then πi ← Prove(CRS∗, (xi, wi)).
– If Verify(CRS∗, xi, πi) 6= 1 then abort and the output of the experiment is

0.
– A is given (xi, πi).
A outputs some (i, x′i, w

′
i) for i ∈ [q]. The output of the experiment is 1 if

xi = x′i and RL(xi, w
′
i) = 1.

Acc.Extπ,A,E,q(λ):

The adversary A(1λ) outputs some CRS∗, and we invoke the extractor E
on input (CRS∗). We run q iterations in which in each iteration E outputs
some (xi, πi) that is forwarded to A. After all iterations, A outputs some
(i, x′i, w

′
i) for some i ∈ [q]. The extractor E then outputs τ , and the output

of the experiment is 1 if Judge(CRS∗, τ) = corrupted.

3. (Defamation-free:) For every ppt adversary A, there exists a negligible
function µ(·), such that for all λ:

Pr [Judge(CRS,A(CRS)) = corrupted] ≤ µ(λ) ,

where CRS← GenCRS(1λ).

Discussion. We would like to highlight the following aspects of the above defi-
nition:

– Maliciously generated CRS∗: In the above definition, the adversary is
the one who is choosing the CRS∗ which might be maliciously generated.
Naturally, our aim is to capture the case where the maliciously generated
CRS∗ is indistinguishable from an honestly generated one, but the malicious
authority has some trapdoors that enable it to extract sensitive information.
However, the definition also has to capture the case where CRS∗ might be
far from an honestly generated CRS, to the extent where the scheme does
not even provide correctness with respect to that CRS∗. In that case, the
output of the real experiment is 0, and it is easy to implicate the adversary.
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– Oracle access to the adversary: We remark that the extractor only has
an oracle access to the authority and does not get the code of the authority.
Giving the code of the authority to the extractor is unrealistic - in real
life, the authority is an actual entity, and so the extractor will not have
access to its code. Moreover, we want to explicitly prevent the extractor
from “rewinding” the authority, as this is not realistic in the real world.

– The distribution of the queries of the extractor: The malicious au-
thority A is the same in both experiments, and as such its view, as generated
by the extractor, should be indistinguishable from the view in the real exe-
cution. In particular, this means that the malicious authority should receive
from E in each iteration a pair (xi, πi) where the marginal distribution on
xi is computationally indistinguishable from the marginal distribution on
xi sampled according to the distribution (xi, wi) ← D and then setting
πi = Prove(CRS∗, xi, wi).

4.2 Malicious Authority for Secure Two-Party Computation

We now extend the above definition to general two-party computation in the
CRS model. We again assume that the reader is familiar with the standard
(standalone) definition of secure computation, and refer to the full version for a
formal definition. We require that the protocol Π simulates some functionality
F in the CRS model. Then, we add the malicious authority capability. We first
provide the definition and then discuss its changes from the NIZK definition. We
define a judgement algorithm similarly to the NIZK case:

– b ← Judge(CRS, τ): It takes as input a common reference string CRS, a
certificate τ and outputs a bit b, indicating whether the common reference
string CRS is corrupted or not.

Definition 4.2. We say that a protocol Π = (π, Judge) has malicious authority
security for the functionality F with respect to the distribution D if the following
conditions hold:

1. Simulation security: π satisfies simulation security for the functionality F .

2. Accountability: We say that π satisfies security against malicious authority
with respect to the distribution D if the same conditions as in Definition 4.1
hold, where now the random variables Acc.Realπ,A,q(λ) and Acc.Extπ,A,E,q(λ)
are defined as follows.

Acc.Realπ,A,q(λ):

(a) A(1λ) is invoked and outputs a common reference string CRS∗.

(b) The protocol π is executed q number of times, where in the kth execution:

– The adversary A chooses some input x
(k)
i and randomness r

(k)
i for

Pi.

– The input x
(k)
j of the honest party is sampled according to D.
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– The protocol is run on these inputs; let transk be the resulting tran-
script.

– The adversary A receives transk.

(c) The adversary outputs (k, x
(k)
j ) for some k ∈ [q].

(d) The output of the experiment is 1 if the input of Pj in the kth execution

was x
(k)
j .

Acc.Extπ,A,E,q(λ):

(a) A(1λ) is invoked and output common reference string CRS∗.

(b) The following is run for q number of times:

– The adversary outputs some input x
(k)
i and randomness r

(k)
i for Pi.

– The extractor replies with transk.

(c) The A receives the q queries, it outputs
(
k, x

(k)
j

)
for some k ∈ [q]. The

extractor E then outputs τ .

(d) The experiment outputs 1 if Judge(CRS∗, τ) = corrupted.

3. Defamation free: Same as in Definition 4.1.

Comparison to the malicious authority security of NIZK. Malicious
authority security of NIZK is a special case of the above definition for two-
party computation. In NIZK, the functionality involves a prover and a verifier,
where the prover sends the functionality some (x,w). If (x,w) ∈ RL then the
functionality sends (x, yes) to the verifier and otherwise it sends (x, no). The
protocol in the CRS model consists of a single message from the Prover to the
Verifier. As we are interested in the privacy of the witness, we focus on the case
where the verifier is corrupted. As a result, the input of the honest party (the
prover) is chosen according to the distribution D and the input of the corrupted
party (the verifier) is chosen by the adversary, which is empty in the case of
NIZK. The adversary receives the transcript and at some point has to come up
with the input of the honest party, i.e., extract from (xi, πi) some (xi, wi).

4.3 Strong Accountability

So far, we considered adversaries that are passive - while they contribute the
input and randomness of the corrupted party in the protocol, the malicious
authority expects to get back a full transcript of the protocol, i.e., the adversary
is semi-malicious. Here, we model the case where the malicious authority is
part of the protocol and colludes with one of the parties. Recall that simulation
security is guaranteed only if the CRS authority honestly generated the CRS. If
it does not, then we just have accountability as defined next. Defamation free is
defined similarly to the previous definitions.

Definition 4.3. We say that π satisfies strong security against malicious
authority with respect to the distribution D if the conditions as in Defini-
tion 4.1 hold, where now the random variables StrongAcc.Realπ,A,q(λ) and
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StrongAcc.Extπ,A,E,q(λ) are defined as follows.

StrongAcc.Realπ,A,q(λ):

1. A(1λ) is invoked and outputs a common reference string CRS∗.

2. The protocol π is executed q number of times where in the kth execution:
– The adversary A participates in the protocol and corrupts party Pi.

– The input x
(k)
j of the honest party is sampled according to D.

3. The adversary outputs (k, x
(k)
j ) for some k ∈ [q] and j 6= i.

4. The output of the experiment is 1 if the input of Pj in the kth execution was

x
(k)
j .

StrongAcc.Extπ,A,E,q(λ):

1. A(1λ) is invoked and outputs a common reference string CRS∗.

2. A and E engage in q executions of a secure computation protocol, where the
party Pi is controlled by A.

3. After the q executions, A outputs (k, x
(k)
j ) for some k ∈ [q] and j 6= i. The

extractor E then outputs τ .

4. The experiment outputs 1 if Judge(CRS∗, τ) = corrupted.

5 Malicious Authority Security for NIZK

In this section we construct a NIZK satisfying malicious authority security for
the language of circuit satisfiability on committed inputs. The instance is a
circuit C : {0, 1}m → {0, 1}, some committed values c = (c1, . . . , cm) and the
output b. The claim is that c are commitments of bits x = (x1, . . . , xm), and
that C(x1, . . . , xm) = b. Formally:

Rp(L) =
{

(C, c1, . . . , cm, b) | ∃(x1, . . . , xm) ∈ {0, 1}m,

(r1, . . . , rm) ∈ {0, 1}poly(λ) s.t. C(x1, . . . , xm) = b

∧ ∀i ∈ [m] ci = Com(p, xi; ri)
}

The public parameters p associated with the commitment scheme are part of the
CRS. We let C be the set of all circuits that map m-bit input to 1 bit output.

Tools. The construction is based on the following components:

– A pseudorandom generator PRG : {0, 1}λ → {0, 1}poly(λ).
– A rerandomizable bit commitment scheme which is perfectly binding

and computationally hiding, denoted as C = (Setup,Com,Rerand), where
Setup(1λ) outputs some public parameters p, c ← Com(p,m; r) where m is
a bit and r is the de-commitment. c′ ← Rerand(p, c; s) takes a commitment
c and randomness s and outputs some commitment c′.
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It holds that Rerand(p,Com(p,m; r); s) = Com(p,m, s′) for some s′ =
fcom(r, s), and for every fixed s, r, the two functions fcom(·, s) and fcom(r, ·)
are bijections.

– Two non-interactive witness-indistinguishable proof systems (Prove,Verify),

denoted as Π
(1)
NIWI, Π

(2)
NIWI, associated with the languages L1 and L2, respec-

tively, which are defined as follows:
• The language L1:

Statement :
(
p, (c00, c

0
1), (c10, c

1
1)
)

Witness :
(
(r, r00, r

0
1), (r, r10, r

1
1)
)
,

such that one of the following conditions hold:
1. p = Setup(1λ; r) and (c00, c

0
1) = (Com(p, 0, r00),Com(p, 1, r01)), or

2. p = Setup(1λ; r) and (c10, c
1
1) = (Com(p, 0, r10),Com(p, 1, r11)).

• The language L2:

Statement :
(
CRS, C, {ci}i∈[m], b

)
Witness :

(
sin, {xi}i∈[m], {ri}i∈[m], σ, {si}i∈[m]

)
such that one of the following conditions hold:
1. PRG(sin) = sout, or,

2. C(x1, . . . , xm) = b, and ∀i ∈ [m] it holds that ci = Com(p, xi; ri).

3. C(x1, . . . , xm) = b, and ∀i ∈ [m] it holds that ci = Rerand(p, cσxi
; si).

where sout and (c00, c
0
1), (c01, c

1
1) are taken from the CRS as given in Step 5

of GenCRS in Construction 5.1.

Construction 5.1: NIZK with Malicious Authority Security

GenCRS
(
1λ
)
:

1. Compute p← Setup(1λ; r) for a random r.

2. Sample sout ← {0, 1}poly(λ)

3. For σ = 0 and σ = 1, do the following:
– Compute (cσ0 , c

σ
1 ) = (Com(p, 0, rσ0 ),Com(p, 1, rσ1 )), for rσ0 , r

σ
1 ←

{0, 1}poly(λ).
4. Compute π(1) ← Π

(1)
NIWI.Prove

((
(c00, c

0
1), (c10, c

1
1)
)
, (r, r00, r

0
1,⊥,⊥,⊥

)
.

5. Output CRS =
(
p, sout, (c00, c

0
1), (c10, c

1
1), π(1)

)
.

Prove(CRS, (C, c1, . . . , cm, b),w): On input CRS, circuit C : {0, 1}m → {0, 1},
commitments (c1, . . . , cm), output bit b ∈ {0, 1}, and witness w do the following:

1. Parse w = ((x1, . . . , xm), (r1, . . . , rm)) where xi ∈ {0, 1}, ri ∈ {0, 1}poly(λ)
for all i ∈ [m], and compute

π(2) ← Π
(2)
NIWI.Prove

(
(CRS, C, {ci}i∈[m], b), (⊥, {xi}i∈[m], {ri}i∈[m],⊥,⊥)

)
.
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Output π = π(2).

Verify(CRS, (C, c, b), π): On input CRS, instance (C, c, b), proof π,

1. Output the decision of Π
(2)
NIWI.Verify((CRS, C, c, b), π).

Judge(CRS∗, τ ) : On input (possibly maliciously generated) CRS∗ and a tran-
script τ , do the following:

1. Check that the CRS∗ is well formed. That is:
(a) Parse CRS∗ =

(
p, sout, (c00, c

0
1), (c10, c

1
1), π(1)

)
.

(b) Verify that Π
(1)
NIWI.Verify

((
p, (c00, c

0
1), (c10, c

1
1)
)
, π(1)

)
= 1.

If the verification fails then abort and output corrupted.

2. If τ = (open, σ, ρ, r), where σ, ρ ∈ {0, 1} and r ∈ {0, 1}poly(λ) then: If cσρ =
Com(p, ρ; r) then output corrupted.

3. If τ = (rerandomize, σ, ρ, r, c, s) where σ, ρ ∈ {0, 1} and r, s ∈ {0, 1}poly(λ),
and c is a commitment, then: If c = Rerand(p, cσρ ; s) and c = Com(p, 1− ρ; r)
then output corrupted.

4. Otherwise, output honest.

The distribution D(DC ,Dx). We define now the family of distributions D as-
sociated with the accountability property. We only place a restriction on the
generation of commitments; that is, the commitments need to be honestly gen-

erated, i.e., the randomness ri is uniformly distributed in {0, 1}poly(λ).
Formally, for any distribution over C (recall that C denotes the set of all

circuits with m-bit input and 1-bit output) and for any distribution Dx over
{0, 1}m, the distribution D(DC ,Dx) samples the input and witness as follows:

1. Sample a circuit C according to DC .
2. Sample the bits (x1, . . . , xm) according to Dx and evaluate b =
C(x1, . . . , xm).

3. For every i ∈ [m] ∪ {M} compute ci = C.Com(p, xi; ri) for a uniform ri.

4. Output (C, c1, . . . , cm, b) as the instance and (x1, . . . , xm), (r1, . . . , rm) as the
witness.

Theorem 5.2. For every DC ,Dx, Construction 5.1 is a NIZK proof system with
malicious authority security with respect to the distribution D(DC ,Dx), assuming

the security of PRG, ΠComm, Π
(1)
NIWI and Π

(2)
NIWI.

Proof. We show completeness, soundness, zero-knowledge, accountability and
defamation-free properties.

Completeness. The completeness property follows from the completeness prop-

erty of Π
(2)
NIWI.

Soundness. Let CRS ← GenCRS(1λ), and fix any ppt adversary (corrupted
prover) A and any (C, c, b) /∈ Rp(L). We show that the probability that the
adversary outputs a proof π such that Verify(CRS, (C, c, b), π) = 1 is negligible.
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We claim that (sout, C, c, b) /∈ L2. Once we prove this, it then follows from

the perfect soundness of Π
(2)
NIWI that the probability that the adversary outputs

a valid proof is negligible.
To show this, it suffices to argue that there does not exist any witness

(sin, (x1, . . . , xm), (r1, . . . , rm), σ, {si}i∈[m]) for the instance (sout, C, c, b).

1. Firstly, with overwhelming probability it holds that PRG(sin) 6= sout since
sout is sampled uniformly at random.

2. Since (C, c, b) 6∈ Rp(L), it holds that either C(x1, . . . , xm) 6= b, or there exists
some i ∈ [m] such that ci 6= Com(p, xi; ri).

3. Finally, we argue that there exists some i ∈ [m] such that Rerand(p, cσxi
; si) 6=

ci. Observe that if ci was obtained as a rerandomization of some cσxi
, then

still there exists a unique opening to xi (or no opening at all). This would
then violate (C, c, b) 6∈ Rp(L).

Zero-Knowledge. We describe a PPT simulator Sim. The simulator Sim runs
GenCRS, but compute sout as an output of PRG where the seed sin is sampled
uniformly at random from {0, 1}λ and stores the trapdoor sin. Then, whenever it
is given an instance (CRS, C, c, b) it uses (sin,⊥,⊥,⊥,⊥) as a witness to compute

the proof π
(2)
NIWI.

The computational indistinguishability of the real world and the ideal world

follows from the witness-indistinguishability of Π
(2)
NIWI, and the pesudorandom-

ness of PRG.

Accountability. We first describe the extractor E . On input (possibly mali-
ciously generated) CRS∗ generated by the malicious authority, it does the fol-
lowing:

1. It checks that CRS∗ is well formed, as described in Step 1 in Judge algorithm.
If CRS∗ is not well formed, then it halts and outputs τ = ⊥.

2. It chooses a branch σ ∈ {0, 1} uniformly at random and runs the following
for q iterations. For every j ∈ [q]:
(a) It samples a circuit C(j) = C according to the distribution DC .
(b) It samples an input x(j) = x = (x1, . . . , xm) according to the distribution
Dx.

(c) It evaluates b(j) = b = C(x1, . . . , xm).

(d) For every i ∈ [m], it generates the commitment ĉxi
= C.Rerand(p, cσxi

, si)

for a uniformly random s
(j)
i = si ∈ {0, 1}poly(λ).

Let ĉ(j) = ĉ = (ĉx1
, . . . , ĉxm

) be the sequence of all commitments.

(e) It generates π = π(2) ← Π
(2)
NIWI.Prove

(
(CRS, C, ĉ, b), (⊥,⊥,⊥, σ, {si}i∈[m])

)
.

(f) It sends ((C, ĉ, b), π) to the malicious authority.

3. After q iterations, the malicious authority might reply with some input
(j, (C, ĉ, b)) with witness {xi}i∈[m] and {ri}i∈[m] for which ĉi = Com(p, xi; ri)
for all i ∈ [m] and C(x1, . . . , xm) = b.
(a) If (x1, r1) satisfies cσx1

= Com(p, x1; r1) where cσx1
is taken from the CRS,

then output τ = (open, σ, x1, r1).
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(b) Otherwise, if it holds that c′ := Rerand(p, cσ1−x1
, s

(j)
1 ) = Com(p, x1, r1),

output τ = (rerandomize, σ, x1, r, c
′, s

(j)
1 ).

We claim that if the extractor chooses σ to be the “correct branch”, i.e., the one
for which π(1) from the CRS is correct, then the view of the malicious author-
ity is indistinguishable between Acc.Real and Acc.Ext. We then claim that the
extractor always outputs a transcript that is accepted by Judge if the malicious
authority outputs a valid witness (j, (C, ĉ, b)) for the j ∈ [q] iteration. To show
this, we need to argue that the view of the authority when interacting with the
real parties is computationally indistinguishable from the view of the authority
when interacting with the extractor.

Indistinguishability of views. Consider the following hybrids:

– H1: We change the way CRS is generated, such that sout is an output of
PRG where the seed sin is sampled uniformly at random from {0, 1}λ. The
output of the hybrid is 1 if the adversary succeeds to output π for which
Verify(CRS, (C, c, b), π) = 1.

– H2: This is the experiment Acc.RealΠ,A,q(λ).

– H3: This hybrid is inefficient. The prover in the real experiment works as
follows: It samples C ← DC and x ← Dx. Then, instead of directly com-
mitting to the x = (x1, . . . , xm) it takes cσx1

, . . . , cσxm
. It then rerandomizes

all the commitments to obtain rerandomized commitments ĉσx1
, . . . , ĉσxm

. It
then runs in exponential time and determines the randomness {ri}i∈[m] such
that ĉσxi

= Com(p, xi; ri). It uses (⊥, x, {ri}i∈[m],⊥,⊥) to compute the proof

π
(2)
NIWI for the instance (C, c̃, b), where b = C(x). The rest of the hybrid is the

same as before.

– H4: This is Acc.ExtΠ,A,q(λ) with branch σ.

From the security of PRG, it follows that the view of the adversary in H1 is
computational indistinguishale from the real view. The view of the adversary in
H2 and H3 is identical, which follows from the fact that the rerandomization
procedure of the commitment scheme generates commitments that are identically
distributed to fresh commitments.

The two hybrids H3 and H4 are computationally indistinguishable, follows

from the witness-indistinguishability of Π
(2)
NIWI. We consider a non-uniform reduc-

tion which gets as input the CRS and the decommitments of the commitments
in the CRS as non-uniform advice. Using this, the (efficient) reduction computes
and sends the instance (C, ĉ, b), where b = C(x), along with two witnesses to

the challenger of the WI game. The challenger then sends the proof π
(2)
NIWI to the

reduction, who forwards it to the adversary. If the adversary can distinguish
the hybrids H3 and H4 with non-negligible probability then the reduction can
break the witness-indistinguishability property with non-negligible probability,
a contradiction.

Once the authority gives a witness {xi}i∈[m] and {ri}i∈[m] for the jth execu-
tion, from inspection it is easy to see that the extractor outputs a transcript
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that implicates the authority. Thus, if the authority succeeds in Acc.Real with
some non-negligible probability ε1(λ) then the extractor succeeds with proba-
bility negligibly close to ε1(λ)/2, where the loss occurs from guessing σ and the
indistinguishability of the proof π.

Defamation-Free. For every ppt adversary A there exists a negligible func-
tion µ(·) such that: Pr [Judge(CRS,A(CRS)) = corrupted] ≤ µ(λ), where CRS←
GenCRS(1λ). First, since CRS is honestly generated, it always passes the verifi-
cation of Step 1 in the Judge algorithm. We now show that for every σ ∈ {0, 1},
no ppt adversary can output τ = (open, σ, ·) or τ = rerandomize, σ, ·, ·, ·, ·) with
non-negligible probability. For that, fix σ ∈ {0, 1}, and consider the following
sequence of hybrid experiments:

1. H1:
In this hybrid, the adversary receives CRS← GenCRS(1λ) and the output of
the hybrid is 1 if it outputs τ = (open, σ, ··) or τ = (rerandomize, σ, ·, ·, ·, ·)
that is accepted by Judge.

2. H2: We modify the way CRS is generated, such that for proving the instance

((c00, c
0
1), (c10, c

1
1)) using Π

(1)
NIWI, we use the witness of 1− σ. That is,

(a) If σ = 0 we prove π(1) using the witness (⊥,⊥,⊥, r, r10, r11).

(b) If σ = 1 we prove π(1) using the witness (r, r00, r
0
1,⊥,⊥).

Clearly, the views of the adversary in both the experiments are computationally

indistinguishable from the witness-indistinguishability property of Π
(1)
NIWI. Next,

we claim that the probability that the adversary outputs an accepted transcript
in H2 is negligible. At this point, the proof π(1) is independent of the randomness
used to create the commitments cσ0 , c

σ
1 . Outputting τ = (open, σ, ρ, r) is equiv-

alent to violating the hiding property of the commitment scheme. Outputting
τ = (rerandomize, σ, ·, ·, ·, ·) is impossible in case p is perfectly binding. In case
p just satisfies computational hiding, coming up with the rerandomization is
equivalent to violating the (computationally infeasible) “rerandomize and open”
property, as we formalize in the full version.

6 Malicious Authority Security for Oblivious Transfer

6.1 Oblivious Transfer with Weak Accountability

Due to lack of space, we just state our results and refer the reader to the full
version for further details. Our construction is based on a rerandomizable obliv-
ious transfer, which intuitively mean that a transcript of a given execution of
two-round oblivious transfer can be re-randomized, i.e., look like a fresh execu-
tion on the same inputs. We show that [31] achieves this notion. We denote by
n×OT the functionality of n parallel instance of 1-out-of-2 bit OT.

Theorem 6.1. Assuming one-way functions, non-interactive witness indistin-
guishability proof system, and two-round rerandomizable oblivious transfer for bit
OT, there exists a construction of two-round n×OT with (weak) malicious au-
thority with respect to the uniform distribution over the inputs for any n ∈ Ω(λ),
where λ is the security parameter.
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6.2 Oblivious Transfer with Strong Accountability

Moreover, we show that strong accountability is possible but we need stronger
assumptions:

Theorem 6.2. Assuming the security of one-way function, indistinguishability
obfuscator, non-interactive witness-indistinguishability proof system, and the ex-
istence of a rerandomizable oblivious transfer, there exists a construction that
achieves strong malicious authority security for the functionality n×OT with
respect to the uniform distribution over the inputs for any n ∈ Ω(λ), where λ is
the security parameter.

7 Malicious Authority Secure for Secure 2PC

In this section, we investigate malicious authority security for secure two party
computation. Due to lack of space, we just give the statements of the results and
refer the reader to the full version for more details.

Lemma 7.1. There exists a two-party functionality F such that for any se-
cure computation protocol for F between parties P1 and P2, the following events
cannot simultaneously hold:

– Pi, for some i ∈ {1, 2} receives the output of the protocol and,

– The following properties are satisfied: (i) defamation-free property and, (ii)
accountability holds when the malicious authority corrupts the party Pi.

Positive result - the class of functions. For ` > λ, we let F be a family of
all functions over F : {0, 1}` × Y → {0, 1}` such that

F ((x1, . . . , x`), (y1, . . . , y`)) = g ({xi}yi=1) ,

for some function g. Namely, whenever yi = 0, then the xi does not affect the
output. The set Y ⊂ {0, 1}` contains all elements with hamming weight at most
`− λ.

Theorem 7.2. For every function F ∈ F , there exists a construction that
achieves (weak) malicious authority security with respect to the uniform distribu-
tion over the inputs, assuming the existence of maliciously secure rerandomizable
oblivious transfer in the CRS model, non-interactive witness-indistinguishability
proofs, and pseudorandom generator.
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