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Abstract. Efficient Reed-Solomon code reconstruction algorithms, for
example, by Guruswami and Wootters (STOC–2016), translate into local
leakage attacks on Shamir secret-sharing schemes over characteristic-2
fields. However, Benhamouda, Degwekar, Ishai, and Rabin (CRYPTO–
2018) showed that the Shamir secret sharing scheme over prime-fields is
leakage resilient to one-bit local leakage if the reconstruction threshold
is roughly 0.87 times the total number of parties. In several applica-
tion scenarios, like secure multi-party multiplication, the reconstruction
threshold must be at most half the number of parties. Furthermore, the
number of leakage bits that the Shamir secret sharing scheme is resilient
to is also unclear.
Towards this objective, we study the Shamir secret-sharing scheme’s
leakage-resilience over a prime-field F . The parties’ secret-shares, which
are elements in the finite field F , are naturally represented as λ-bit bi-
nary strings representing the elements {0, 1, . . . , p − 1}. In our leakage
model, the adversary can independently probe m bit-locations from each
secret share. The inspiration for considering this leakage model stems
from the impact that the study of oblivious transfer combiners had on
general correlation extraction algorithms, and the significant influence of
protecting circuits from probing attacks has on leakage-resilient secure
computation.
Consider arbitrary reconstruction threshold k > 2, physical bit-leakage
parameter m > 1, and the number of parties n > 1. We prove that
Shamir’s secret-sharing scheme with random evaluation places is leakage-
resilient with high probability when the order of the field F is sufficiently
large; ignoring polylogarithmic factors, one needs to ensure that log |F | >
n/k. Our result, excluding polylogarithmic factors, states that Shamir’s
scheme is secure as long as the total amount of leakage m ·n is less than
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the entropy k · λ introduced by the Shamir secret-sharing scheme. Note
that our result holds even for small constant values of the reconstruction
threshold k, which is essential to several application scenarios.
To complement this positive result, we present a physical-bit leakage
attack for m = 1 physical bit-leakage from n = k secret shares and any
prime-field F satisfying |F | = 1 mod k. In particular, there are (roughly)
|F |n−k+1 such vulnerable choices for the n-tuple of evaluation places.
We lower-bound the advantage of this attack for small values of the
reconstruction threshold, like k = 2 and k = 3, and any |F | = 1 mod k.
In general, we present a formula calculating our attack’s advantage for
every k as |F | → ∞.
Technically, our positive result relies on Fourier analysis, analytic prop-
erties of proper rank-r generalized arithmetic progressions, and Bézout’s
theorem to bound the number of solutions to an equation over finite
fields. The analysis of our attack relies on determining the “discrepancy”
of the Irwin-Hall distribution. A probability distribution’s discrepancy
is a new property of distributions that our work introduces, which is of
potential independent interest.

Keywords: Random Punctured Reed-Solomon Codes, Physical-bit Leakage,
Local Leakage Resilience, Discrete Fourier Analysis, Exponential Sums, Rank-r
Generalized Arithmetic Progression, Bézout’s Theorem, Irwin-Hall Distribution.

1 Introduction

In the presence of an increasing number of side-channel attacks on cryptographic
protocols, theoretical cryptography research has been revisiting its implicit as-
sumptions in modeling secure cryptographic protocols. For example, results in
reconstructing Reed-Solomon codes [15, 16, 11] imply that leaking even (m = 1)
bit from the secret shares of Shamir’s secret-sharing scheme over characteristic-
2 finite field F renders this secret sharing scheme insecure. That is, there exist
two secrets s(0), s(1) ∈ F that an adversary can distinguish by leaking only
(m = 1)-bit local leakage from every secret share. We emphasize that in lo-
cally leakage-resilient secret-sharing schemes,3 the entire secret’s reconstruction
is not necessary to qualify as a successful attack. It suffices to achieve a non-
negligible advantage in distinguishing any two secrets s(0), s(1) ∈ F of adversary’s
choice. Since secret-sharing schemes (typically, packed [13] Massey secret-sharing
schemes [35] corresponding to linear error-correcting codes with “good” proper-
ties) are fundamental cryptographic primitives underlying nearly all of conceiv-
able cryptography, such innovative side-channel attacks threaten the security of
most cryptographic protocols.

The recent ground-breaking work of Benhamouda, Degwekar, Ishai, and Ra-
bin [3] identified several scenarios where Shamir’s secret-sharing scheme and

3 The term “ local” in local leakage-resilience refers to the fact that the adversary
performs arbitrary leakage on each secret-share independently.
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the additive secret-sharing scheme are resilient to such local leakage attacks;4
thus, laying to rest the devastating possibility of side-channel attacks breaking all
secret-sharing schemes. Recently, [37] propose even more sophisticated local leak-
age attacks on secret-sharing schemes. Since the work of Benhamouda et al. [3],
several works [1, 41, 2, 29, 6, 22, 9, 34] have introduced transformations to
convert existing secret-sharing schemes into leakage-resilient versions. It seems
insurmountable to replace every deployed secret-sharing scheme with its leakage-
resilient version. Furthermore, the leakage-resilient versions of these secret-sharing
schemes introduce encoding overheads that noticeably reduce these secret-sharing
schemes’ information-rate,5 adversely affecting the applications’ efficiency. To-
wards the objective of retaining the efficiency of existing secret-sharing schemes
with minimal changes, other works [21, 7, 30, 33] analyze the resilience of ex-
isting secret-sharing schemes or ensembles of secret-sharing schemes with good
properties (for example, packed Massey secret-sharing schemes corresponding to
(nearly) maximum distance separable linear error-correcting codes) that are al-
ready locally leakage-resilient. Currently, our understanding of the local leakage-
resilience of existing secret-sharing schemes typically used in cryptography is still
in a nascent state. The exact loss in the achievable parameters and information-
rate to additionally ensure local leakage-resilience is even less clear. These losses
in the feasible parameter regions and information-rate even render secret-sharing
schemes unusable for various application scenarios.

For example, Benhamouda et al. [3] proved that if Shamir’s secret-sharing
scheme, one of the most widely used secret-sharing schemes, has a reconstruc-
tion threshold k > 0.867n, where n is the total number of parties, then it is
leakage-resilient to (m = 1)-bit local leakage. Observe that using a large recon-
struction threshold k introduces inefficiencies, which may not be necessary for
various applications. Additionally, an even more concerning fact is that some
cryptographic constructions crucially rely on the reconstruction threshold being
low. For example, the secure computation of the multiplication of two (already
secret-shared) secrets requires the reconstruction threshold k < n/2 even against
honest-but-curious parties.

Summary of our work: problem statement and results. Our work
contributes to this research thrust on characterizing the local leakage-resilience
of secret-sharing schemes. As a stepping-stone, our work considers the scenario
where each party stores their secret-share in its natural λ-bit binary represen-
tation, and the adversary may (independently) probe arbitrary m physical-bits
from each secret-share. The particular choice of the physical-bit leakage draws
inspiration from, for instance, the crucial role of the studies on oblivious transfer
combiners [20, 36, 19, 25, 8] in furthering the state-of-the-art of general correla-
tion extractors [24, 5, 4], and the techniques in protecting circuits against probing

4 Leakage-resilient secret-sharing was also, independently, introduced by [14] as an
intermediate primitive.

5 The information-rate of a secret-sharing scheme is the ratio on the size of the secret
to the largest size of the secret-share that a party receives.
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attacks [27, 26, 12] impacting the study of leakage-resilient secure computation
(refer to the excellent recent survey [28]).

We present both feasibility and hardness of computation results. Roughly,
our results prove that Shamir’s secret-sharing scheme with n random evaluation
places, for any reconstruction threshold k > 2, is locally leakage-resilient. The
adversary can leak m physical-bits from each secret-share if the total amount of
leakagem·n is less than the total entropy k·λ in the secret-sharing scheme, except
with an exponentially small probability in λ. To complement this result, we also
present new local physical-bit leakage attacks demonstrating several sets of bad
evaluation places where Shamir’s secret-sharing scheme is not leakage-resilient
even when m = 1 and n = k. Technically, our positive result’s analysis proceeds
by discrete Fourier analysis relying on the analytical properties of exponential
sums involving rank-r generalized arithmetic progressions, and Bézout’s theorem
to upper-bound the number of solutions to a system of equations over finite fields.
On the other hand, our attack’s analysis is equivalent to the “discrepancy” of
the Irwin-Hall distribution [23, 18], a new mathematical property of probability
distributions that we introduce.

1.1 Our Contribution

This section, first, introduces some informal notations to facilitate the introduc-
tion of our results and discussion on them. Let λ represent the security param-
eter. Consider a prime-field F of order p such that 2λ−1 6 p < 2λ. That is,
every element in the finite field (when equivalently interpreted as elements of
the set {0, 1, . . . , p−1}) has a λ-bit binary representation. The parameter k ∈ N
represents the reconstruction threshold, and n ∈ N represents the total number
of parties.

Shamir Secret-sharing Scheme. Suppose the secret is s ∈ F , and the tu-
ple of distinct evaluation places is ~X := (X1, X2, . . . , Xn) ∈ (F ∗)

n, such that
i 6= j implies Xi 6= Xj .6 Shamir’s secret-sharing scheme with threshold k ∈ N,
represented by ShamirSS(n, k, ~X), picks a random secret-sharing polynomial
P (X) ∈ F [X]/Xk conditioned on the fact that P (0) = s. The secret-shares
for parties 1, 2, . . . , n are s1 = P (X1), s2 = P (X2), . . . , sn = P (Xn), respec-
tively. Observe that, in a Shamir secret-sharing scheme, it is implicit that the
number of parties satisfies n < p.

Physical Bit-leakage. Our work represents all the secret shares s1, . . . , sn ∈ F
with the parties as λ-bit binary representation. An m-bit local physical-bit leak-
6 We assume this for the ease of presentation for now, while our results do not require
such restrictions. When there are two identical evaluation places, leaking one bit
from each share is equivalent to leaking two bits from one of those shares. Since our
results naturally extend to leaking multiple bits from each share, we do not need
the restriction that all the evaluation places are distinct. Furthermore, when all the
evaluation places are chosen independently randomly (at most a polynomial in the
security parameter), the probability that there are two identical evaluation places
are exponentially small (by the birthday bound) since the field size is exponentially
large in the security parameter.
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age function specifies probing locations {`i,j} 16i6n
16j6m

such that `i,j ∈ {1, 2, . . . , λ}

for each of the n secret shares. The output of the leakage function provides the
`i,j-th bit7 in the i-th secret-share si, for all 1 6 i 6 n and 1 6 j 6 m. For
a fixed secret s ∈ F , the output of the leakage function is a distribution over
the sample space {0, 1}mn induced by the random choice of the secret-sharing
polynomial P (X) above.

Local Leakage-resilience against Physical Bit-leakage. ShamirSS(n, k, ~X) is
(1−ε)-secure against local physical-bit leakages if, for any two secrets s(0), s(1) ∈
F and an m-bit local physical-bit leakage function, the statistical distance be-
tween the leakage distributions is at most ε.8

Result I: Feasibility. Suppose we are given as input the number of parties
n ∈ N, the reconstruction threshold 2 6 k ∈ N, the length of the binary repre-
sentations λ ∈ N, the insecurity tolerance ε = 2−t, and the number of leakage
bits m from each secret-share. Our experiment picks distinct evaluation places
~X uniformly at random from the set F ∗. Given a fixed tuple of distinct evalu-
ation places ~X, one tests whether ShamirSS(n, k, ~X) is resilient to m-bit local
physical-bit leakage resilient or not.

We prove that the ShamirSS(n, k, ~X) scheme is (1 − ε)-secure (except with
an exponentially small probability in (k − 1) · λ over the random choices of the
evaluation places ~X), if the following conditions are satisfied.

1. The number of bits λ satisfies λ/ log2 λ > Θ(t/k) , and
2. The total leakage mn satisfies mn 6 kλ/ log2 λ.

This result is the summarized in Theorem 4 and Corollary 4.
The constants in the asymptotic notations are all universal positive con-

stants. Given n, k, F parameters, note that one can choose the random evalu-
ation places once (using a trusted setup, e.g., common random string) for all
future instantiations of Shamir secret-sharing scheme. The probability that the
instantiation is not (1− ε)-secure is exponentially small. We emphasize that the
result above holds for any k > 2, which is the best possible result. Therefore,
for every n, k,m, ε, our result proves that Shamir secret-sharing scheme for all
large-enough prime fields F is leakage-resilient.

A Concrete Example. As a representative example, consider the following
scenario. Suppose the reconstruction threshold is k = 2, the number of bits leaked
is m = 1, and the number of parties n = 10, 100, and 1000. Assume we wish
to achieve insecurity ε = 2−50 and succeed in picking a set of good evaluation
places with probability (at least) 1 − 2−50. Our Theorem 3 states that picking
7 For instance, let λ = 5 and p = 19. The element 5 ∈ F = {0, 1, . . . , 18} is represented
as 00101. The first bit is 1, second bit is 0, third bit is 1, and the fourth and the
fifth bits are both 0.

8 One can simulate the leakage joint distribution as follows. The simulator shall fix
an arbitrary secret (say, 0), generate its secret shares, and output the evaluation of
the leakage function on the respective secret shares. The simulation error for this
strategy is a two-approximation of the indistinguishability advantage by the triangle
inequality.
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a prime number p with more than 430, 4800, and 62000 bits, respectively, in its
binary representation suffices. Intuitively, it scales (roughly) linearly with n. As
k increases, even smaller primes suffice. The estimates above correspond to the
most difficult case for security.

Reinterpretation: Randomly Punctured Reed-Solomon Code. Given a Reed-
Solomon code of dimension k over a prime-field F , one punctures (p − 1) − n
columns among the columns numbered {1, 2, . . . , p − 1}. Suppose the columns
numbered (0, X1, . . . , Xn) survive the puncturing operations. The Massey secret-
sharing scheme [35] corresponding to this resulting [n + 1, k]F linear error-
correcting code is identical to the ShamirSS(n, k, ~X) secret-sharing scheme men-
tioned above. Consequently, our result proves that all puncturing operations
(except an exponentially small fraction of them) result in an (1 − ε)-secure
leakage-resilient scheme.

Result II: Hardness of Computation. We present an attack strategy for
any k > 2, n > k, m > 1, and p = 1 mod k. For a fixed k > 2, there are
infinitely many primes satisfying p = 1 mod k due to Dirichlet’s theorem [39].
Our attack leaks only the least-significant bit of the secret-shares, and has a
constant advantage in distinguishing two secrets based on this leakage. For given
values of k, n, p satisfying the conditions above, there are (roughly) nkpn−k · (p−
1)/k vulnerable tuples of evaluation places where our attack succeeds.

For k = 2, 3 (and any p), we calculate the exact advantage of our attack.
Next, for any k > 2, as p → ∞, we show that the quality of our attack is
lower-bounded by the “discrepancy” of the Irwin-Hall distribution [23, 18] (with
parameter (k−1), represented by Ik−1). The “discrepancy” of a distribution (see
Definition 9) is a new property of probability distributions that we introduce,
which is of potential independent interest. We explicitly calculate the discrepancy
of the Irwin-Hall distribution for (k − 1) ∈ {2, 3, . . . , 24}, and Figure 2 provides
the details. If the discrepancy of the Irwin-Hall distribution Ik−1 is non-zero, then
the discrepancy is at least 1/k!. However, based on our numerical experiments,
we conjecture that the discrepancy of Irwin-Hall distribution (with parameter
k) behaves as > exp(−Θ (k)), which is not negligible for k = O (log λ). We
emphasize that, given a fixed k, the conjectured distinguishing advantage of this
attack depends only on k, independent of the security parameter. Intuitively,
increasing the size of the prime should only make the scheme more secure, and
the conjecture above considers p→∞.

Reinterpretation: Attack on additive secret-sharing scheme. Our physical bit
leakage attack on the Shamir secret-sharing scheme directly translates into phys-
ical bit leakage attacks on the additive secret-sharing scheme. If the number of
shares in the additive secret sharing scheme is O (log λ) then, our conjecture
above, states that the advantage of our attack is 1/poly(λ).

Benhamouda et al. [3] proposed a general leakage attack on additive secret-
sharing scheme. Their attack tests whether each share is smaller than p/2k and
has an advantage of (roughly) 1/kk. In comparison, our attack employs a simpler
leakage function, i.e., physical-bit leakage, and will achieve similar advantage if
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our conjecture holds. Since the leakage function is simpler, the threat it poses is
even more significant.

1.2 Technical Overview

Let λ be the security parameter. Let F be a prime field of order p such that
p needs λ bits in its binary representation. That is, we have p ∈ {2λ−1, 2λ−1 +
1, . . . , 2λ − 1}.

For a secret s ∈ F , assume that Shamir’s secret sharing scheme uses a
random polynomial P (X) of degree < k = poly(λ) conditioned on P (0) = s
to share a secret among n = poly (λ) parties. Let the evaluation places be
~X = (X1, X2, . . . , Xn) ∈ (F ∗)n such that i 6= j =⇒ Xi 6= Xj (i.e., all
evaluation places are distinct). The share of party i is the evaluation of the
polynomial P (X) at the evaluation place Xi. ShamirSS(n, k, ~X) represents this
secret-sharing scheme.

Fix the local leakage function ~τ that leaks m physical-bits from the binary
representation of the secret-shares of the n parties. Furthermore, ~τ

(
Share

~X(s)
)

represents the joint distribution of the leakage conditioned on the fact that the
secret is s ∈ F . If this joint distribution of the leakage is independent of the
secret, then the secret-sharing scheme is locally leakage-resilient to physical bit
leakages.

Our objective is to prove that Shamir secret-sharing scheme is locally leakage-
resilient for most evaluation places ~X, when ~X is chosen uniformly at random
from the set (F ∗)n under the constraint that i 6= j =⇒ Xi 6= Xj . Theorem 3
formally states this result. To simplify the presentation of key technical ideas, it
is instructive to use m = 1. The analysis for larger m is analogous.

Reduction 1. Fix any two secrets s(0), s(1) ∈ F . We prove the following two
bounds. First, by standard Fourier techniques, we prove

SD
(
~τ
(
Share

~X(s(0))
)
, ~τ
(
Share

~X(s(1))
))

6
∑

~̀∈{0,1}n

∑
~α∈C⊥

~X
\{0}

(
n∏
i=1

∣∣∣1̂`i(αi)∣∣∣
)
.

Here, 1`i is the indicator function of the set {x : Li(x) = `i}; C ~X is the (punc-
tured) Reed-Solomon code that corresponds to Shamir’s secret-sharing with eval-
uation places ~X; C⊥~X is the dual code of C ~X .

Next, we show that it suffices to prove that, over randomly chosen evaluation
places ~X ∈ (F ∗)n (under the constraint that i 6= j =⇒ Xi 6= Xj), this upper
bound is small. That is,

E
~X

 ∑
~̀∈{0,1}n

∑
~α∈C⊥

~X
\{0}

(
n∏
i=1

∣∣∣1̂`i(αi)∣∣∣
) 6 exp(−Θ(λ)).

This bound above is sufficient for our objective. One could use a union bound
on the leakage function to conclude that most evaluation places yield a locally
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leakage-resilient Shamir secret-sharing scheme. After that, a Markov inequal-
ity yields random evaluation places, except an exponentially small fraction of
the evaluation places, result in a locally leakage-resilient Shamir secret-sharing
scheme. Note that we avoid the union bound over secrets since the upper bound
is insensitive to the secret. The above argument can be found in Section 5.2.

Reduction 2. We employ Fourier analysis to estimate the following bound

E
~X

 ∑
~̀∈{0,1}n

∑
~α∈C⊥

~X
\{0}

(
n∏
i=1

∣∣∣1̂`i(αi)∣∣∣
) .

The analysis in Section 5.4 reduces this estimation to two problems, Problems
A and B below.

Problem A. For simplicity of presenting the main technical ideas, assume that
the parties’ secret-shares are elements from the set {0, 1}λ. The Fourier analysis
above relies on bounding certain exponential sums over the subset of elements
that agree with an apriori fixed m-bit leakage. In particular, these elements will
have m bits identical to the leakage, and all remaining (λ−m) bits may either
be zero or one. The abstraction of generalized arithmetic progressions (refer to
Section 3.1) is adequate to capture the analytic properties of such subsets.

We import an estimate of the exponential sum mentioned in Imported The-
orem 1. For the particular case of m = 1, we present a tight estimate of the con-
stant in the above imported theorem (refer to Theorem 2). This tight estimate of
the constant translates into near-optimal bounds on the local leakage-resilience
of Shamir secret-sharing scheme.

A subtlety in the argument above is that the set of binary representations of
a party’s secret-share is not the set {0, 1}λ. It is, in fact, the set of the binary
representations of {0, 1, . . . , p− 1}. However, this subset can be partitioned into
(at most) λ subsets such that each set is an MSB-fixing set, a set whose most
significant bits are fixed and the least significant bits are uniformly random (for
formal definition and examples, refer to Section 4). This notion of MSB-fixing
sets introduced by us helps perform the simplified analysis mentioned above in
the context of our problem.

Problem B. Once problem A is solved, the Fourier analysis requires another
bound. Fix any ~α ∈ Fn. Next, consider the following equation.

X1 X2 · · · Xn

X2
1 X2

2 · · · X2
n

...
...

. . .
...

Xk−1
1 Xk−1

2 · · · Xk−1
n

 ·

α1

α2

...
αn

 =


0
0
...
0

 .

How many solutions ~X ∈ (F ∗)n exist of the equation above, such that i 6= j =⇒
Xi 6= Xj?

Consider the simplification when ~α = ~1. Fix any distinct values ofXk+1, . . . , Xn ∈
F ∗. If a solution X1, . . . , Xk exists (where each X1, . . . , Xn are distinct as well)

8



then every permutation of X1, . . . , Xk is also a solution. Consequently, the num-
ber of solutions of the equation above is at least min{0, k!}.

We rely on Bézout’s theorem (in particular, a form that has an easy-to-verify
analytic test, refer to Imported Theorem 2) to claim that the number of solutions
is, in fact, at most k!. Consequently, overall, the number of solutions ~X ∈ (F ∗)n

is O
(
k! · pn−k

)
. This bound holds for any ~α, in general, and not just for ~α = ~1.

Resolving the problems A and B completes the proof of Theorem 3. Corol-
lary 2 is an easy-to-use corollary of this theorem demonstrating that when
n = poly (λ), k = O

(
t
λ + log λ

λ · n
)

suffices to ensure that 1 − exp(−Θ (λ))

fraction of the evaluation places yield a Shamir secret-sharing scheme that is
locally leakage-resilient to m = 1 physical-bit leakage with insecurity 6 2−t.

Generalization to m-bit leakage from each share. Observe that one can
directly consider the leaking m-bit leakage from the secret-shares of the Shamir
secret-sharing scheme. Towards this objective, one needs to consider MSB-fixing
sets that are consistent with an apriori fixed leakage, which are proper rank-
(m+1) generalized arithmetic progressions. However, the constant in Imported
Theorem 1 for rank-(m + 1) generalized arithmetic progressions is not explicit.
Moreover, without an explicit constant, one can not provide concrete bound on
the insecurity of the secret-sharing scheme. Consequently, our work relies on a
different approach.

We consider secret-sharing scheme where each share of the Shamir secret-
sharing scheme is duplicated m-times, and the adversary leaks one physical bit
from each secret share. This technique allows using our Theorem 2 that has an
explicit and tight constant, which is specifically tailored for our problem. The
remainder of the technical analysis proceeds similar to the presentation above.
The general result is summarized as Theorem 4.

New physical-bit attack. For reconstruction threshold k, consider the
number of parties n = k, and the prime p = 1 mod k. Let F be the finite
field of order p. Let

{
α, α2, . . . , αk = 1

}
⊆ F ∗ be the set of all solutions to the

equation Zk − 1 = 0. Consider n = k evaluation places X1 = α, X2 = α2, . . . ,
and Xk = αk. Let f(X) ∈ F [X]/Xk be an arbitrary polynomial with f(0) = s,
for some secret s ∈ F. Observe that f(X1) + f(X2) +· · ·+ f(Xk) = ks.

To present the primary technical ideas, consider k = 3. Let s1 be the secret
share of party one. Over the random choice of the polynomial f(X), the secret
share s1 is uniformly random over F . Similarly, the choice of s2, the secret
share of party two, is independent and uniformly random over F . However, the
secret share of the k-th party satisfies the constraint sk = ks −

∑k−1
i=1 si, i.e.,

s3 = 3s− (s1 + s2).

Our leakage functions shall leak the least significant digit of the shares s1, s2,
and s3 to construct a test that predicts the least significant digit of ks with
constant advantage, for an appropriate s ∈ F . For a random secret, our test has
(statistically close to) zero advantage. So, our test distinguishes, by an averaging
argument, two secrets with a constant advantage.

Our New Test. Let S1, S2, S3 ∈ {0, 1, . . . , p − 1} ⊆ N0 := {0, 1, 2, . . . } repre-
sent the whole numbers corresponding to the secret shares s1, s2, s3. Our test
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predicts the least significant digit of ks as the parity of the least significant digits
of S1, S2, S3. Observe that (the addition in the equation below is over the set of
whole numbers N0, and (ks) ∈ F is interpreted as an element of {0, 1, . . . , p−1})

S1 + S2 + S3 = pZ+ (ks).

Therefore, if S1 + S2 + S3 = ip + ks, for an even integer i, then the parity of
the least significant digits of S1, S2, S3 correctly predicts the least significant
digit of ks. On the other hand, if S1 + S2 + S3 = ip + ks, for an odd integer
i, then the parity of the least significant digits of S1, S2, S3 incorrectly predicts
the least significant digit of ks. Our objective is to prove that there exists s ∈ F
such that the absolute value of the difference between the correct and incorrect
prediction probabilities is a constant. Equivalently, the objective is to prove that
there exists s ∈ F such that the probability of correct prediction probability is
a constant larger than 1/2 or a constant smaller than 1/2.

So, for independent and uniformly random S1, S2 ∈ {0, 1, . . . , p − 1}, our
objective is to compute the probability that

S1 + S2 + S3 = ip+ (ks),

where i is even and S3 ∈ {0, 1, . . . , p − 1}. Equivalently, for independent and
uniformly random S1, S2 ∈ {0, 1, . . . , p − 1}, our objective is to compute the
probability that

S1+S2 ∈ 2pZ+(ks)−{0, 1, . . . , p−1} = N0∩
⋃
i∈Z
i odd

[ip+ (ks) + 1, (i+ 1)p+ (ks)] .

For k = 3, we can show that this probability is < 0.25 by choosing ks = (p−1)/2.
Extensions. Note that our attack naturally extends to that the evaluation

places form an arbitrary coset in F ∗/{α, . . . , αk = 1}. For n > k, one can choose
the remainder of the evaluation places arbitrarily. Consequently, there are a total
of ∼ nk · pn−k · (p− 1)/k evaluation places where our attack works.

For a fixed k, and prime p→∞, Section 6.1 shows that the advantage of our
test tends to disc(Ik−1), where Ik−1 is the Irwin-Hall distribution for parameter
(k − 1), and Definition 9 defines the discrepancy of a probability distribution
disc(·). Figure 1 shows this discrepancy for (k− 1) = 4 and (k− 1) = 5. Figure 2
shows the conjectured bound for discrepancy for (k − 1) ∈ {2, 3, . . . , 24}.

2 Preliminaries

In this work, λ represents the security parameter. Let p be a prime whose binary
representation has λ bits. Or, equivalently, the prime satisfies 2λ−1 6 p < 2λ.
For any positive integer a and i > 1, [a]i denotes the ith least significant bit
in the binary representation of a. For example, let λ = 5 and p = 19, the field
element 5 ∈ F = {0, 1, ..., 18} is binary represented as 00101. Its least significant

10



0 1 2 3 4
0

0.2

0.4

0.6

0 2 4
0

0.2

0.4

0.6

Fig. 1. Plot of the Irwin-Hall distribution for parameters (k − 1) = 4 and (k − 1) = 5.
The black intervals have width 1, each black interval is separated from the next nearest
black interval by distance 1, and the central mass of probability distribution is captured
by a black interval. The discrepancy of the respective distributions is the difference
between the probability mass inside the black bands and the total probability mass
outside the black bands. For (k − 1) = 4 and (k − 1) = 5, the discrepancies are 5/24
and 2/15, respectively.

bit is [5]1 = 1, second least significant bit is [5]2 = 0, and so on. Using our
notations, the binary representation of p is [p]λ [p]λ−1 · · · [p]1.

For any set S, 1S denotes its indicator function. That is, 1S(x) = 1 if x ∈ S,
and 1S(x) = 0, otherwise.

For any two distributions A and B (over a countable sample space), the sta-
tistical distance between two distributions, represented by SD(A,B), is defined
as 1

2

∑
x |Pr[A = x ]− Pr[B = x ]|.

We shall use f(λ) ∼ g(λ) if f(λ) = (1 + o(1)) g(λ). Additionally, we write
f(λ) . g(λ) if f(λ) 6 (1 + o(1)) g(λ).

2.1 Secret Sharing Schemes

Definition 1 ((n, k)F -Secret Sharing Scheme). For any two positive integer
k < n, an (n, k)F -secret-sharing scheme over a finite field F consists of two
functions Share and Rec. Share is a randomized function that takes a secret s ∈ F
and outputs Share(s) = (Share(s)1, . . . ,Share(s)n) ∈ Fn. The pair of function
(Share,Rec) satisfies the following requirements.

– Correctness. For any secret s ∈ F and a set of parties {i1, i2, . . . , it} ⊆
{1, 2, . . . , n} such that t > k, we have

Pr[Rec(Share(s)i1 , . . . ,Share(s)it) = s] = 1.

– Privacy.9 For any two secret s0, s1 ∈ F and a set of parties {i1, i2, . . . , it} ⊆
{1, 2, . . . , n} such that t < k, we have

SD
((

Share(s0)i1 , . . . ,Share(s0)it

)
,
(
Share(s1)i1 , . . . ,Share(s1)it

))
= 0.

9 The definition considers perfect privacy. For secret-sharing schemes based on
Massey’s construction [35] from linear error-correcting codes, the shares of any set

11
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Fig. 2. Plot of − ln disc(Ik−1) versus (k − 1) for (k − 1) ∈ {2, 3, . . . , 24}.

Definition 2 ((n, k, ~X)F -Shamir Secret-sharing). Let F be a prime field.
For any positive integer k 6 n and evaluation places ~X = (X1, . . . , Xn) the
following conditions are satisfied. (1) For all 1 6 i 6 n, Xi ∈ F ∗, and (2) for all
1 6 i < j 6 n, Xi 6= Xj. The corresponding (n, k, ~X)F -Shamir secret sharing is
defined as follows.

– Given secret s ∈ F , Share ~X(s) independently samples a random ai ∈ F , for
all 1 6 i < k. The ith share of Share ~X(s) is

Share
~X(s)i := s+ a1Xi + a2X

2
i + · · ·+ ak−1X

k−1
i .

– Given shares
(
Share

~X(s)i1 , . . . ,Share
~X(s)it

)
, Rec ~X interpolates to obtain the

unique polynomial f ∈ F [X]/Xk such that f(Xij ) = Share
~X(s)ij for all

1 6 j 6 t, and outputs f(0) to be the reconstructred secret.

2.2 Physical-bit Leakage Function

In this paper, we study the physical-bit leakage. Let F be the prime field of order
p. Recall that 2λ−1 6 p < 2λ. For every element a ∈ F , we let a be an element
in the set {0, 1, . . . , p − 1}. We shall use λ bits for the binary representation of
a, i.e., [a]λ [a]λ−1 · · · [a]1. In particular, we pad with a sufficient number of 0s if
a < 2λ−1. For example, when λ = 5 the binary representation of a = 6 is 00110.

of parties either witness perfect privacy, or the set of shares suffices to reconstruct
the secret. A statistical notion of privacy is relevant when using non-linear codes
instead. However, in our work we shall primarily study secret-sharing schemes based
on Massey’s construction from linear error-correcting codes. Consequently, we define
perfect privacy only.

12



Definition 3. Anm-bit physical-bit leakage function ~τ = (τ1, . . . , τn) on (n, k)F -
secret sharing, leaksm bits from every share locally. This leakage function is spec-
ified by indices u(i)1 , . . . , u

(i)
m , for all 1 6 i 6 n. Given the indices u(i)1 , . . . , u

(i)
m ,

the leakage on the ith share is the joint distribution

τi(Share(s)i) :=
(
[Share(s)i]u(i)

1
, [Share(s)i]u(i)

2
, . . . , [Share(s)i]u(i)

m

)
.

Furthermore, ~τ (Share(s)) denotes the collection of leakage from every share

(τ1(Share(s)1), τ2(Share(s)2), . . . , τn(Share(s)n)) .

2.3 Local Leakage-resilient Secret Sharing Scheme against
Physical-bit Leakage

Definition 4 (Jn, k,m, εKF -LLRSS). An (n, k)F -secret sharing scheme (Share,Rec)
is an Jn, k,m, εKF -local leakage-resilient secret sharing scheme againstm physical-
bit leakage (tersely represented as Jn, k,m, εKF -LLRSS), if it provides the fol-
lowing guarantee. For any two secrets s0, s1 ∈ F and any physical-bit leakage
function ~τ that leaks m physical bits from every share locally, we have

SD (~τ(Share(s0)) , ~τ(Share(s1))) 6 ε.

2.4 Generalized Reed-Solomon Code

Definition 5 ((n, k, ~X, ~α)F -GRS). A generalized Reed-Solomon code over prime
field F with message length k and block length n consists of an encoding function
Enc : F k → Fn and decoding function Dec : Fn → F k. It is specified by the eval-
uation places ~X = (X1, . . . , Xn), such that for all 1 6 i 6 j 6 n, Xi 6= Xj, and
a scaling vector ~α = (α1, . . . , αn) such that for all 1 6 i 6 n, αi ∈ F ∗. Given ~X
and ~α, the encoding function is

Enc(m1, . . . ,mk) := (α1 · f(X1), . . . , αn · f(Xn)) ,

where f(X) := m1 +m2X + · · ·+mkX
k−1.

In particular, the generator matrix of the linear (n, k, ~X, ~α)F -GRS code is
the matrix 

α1 · 1 α2 · 1 · · · αn · 1
α1 ·X1 α2 ·X2 · · · αn ·Xn

...
...

. . .
...

α1 ·Xk−1
1 α2 ·Xk−1

2 · · · αn ·Xk−1
n

 .

Observation 1 The joint distribution of the secret-shares of an (n, k, ~X)F -
Shamir secret sharing with secret s = 0 is identical to the uniform distribution
over the codewords in the (n, k − 1, ~X, ~X)F -GRS code.

The following standard properties of generalized Reed-Solomon codes shall
be helpful.

13



Theorem 1 (Properties of GRS).
1. The distance of the (n, k, ~X, ~α)F -GRS is (n− k + 1) (i.e., the linear code is

maximum distance separable [32]).
2. The dual code of (n, k, ~X, ~α)F -GRS is identical to the (n, n−k, ~X, ~β)F -GRS,

where for all 1 6 i 6 n,

βi :=

αi n∏
j=1
j 6=i

(Xi −Xj)


−1

.

The βi’s are the scalars from Lagrange interpolation. A proof for this theorem
can be found in, for example, [31, 17].

2.5 Fourier Analysis Basics

In this paper, we shall use Fourier analysis on prime field F of order p. We follow
the notation of [38]. Define ω := exp(2πı/p). For any functions f, g : F → C,
define

〈f, g〉 := 1

p

∑
x∈F

f(x) · g(x),

where z is the complex conjugate of z ∈ C. For z ∈ C, |z| :=
√
zz. For any

α ∈ F , define the function f̂ : F → C as follows.

f̂(α) :=
1

p

∑
x∈F

f(x) · ω−αx.

The Fourier transform maps the function f to the function f̂ . This transfor-
mation is a full-rank linear mapping, i.e., only the zero function has zero Fourier.
In particular, it satisfies the following identities.

Lemma 1 (Fourier Inversion Formula). f(x) =
∑
α∈F f̂(α) · ωαx.

Lemma 2 (Parseval’s Identity). 1
p

∑
x∈F |f(x)|

2
=
∑
α∈F

∣∣∣f̂(α)∣∣∣2.
3 Imported Theorems

3.1 Generalized Arithmetic Progressions

Our first imported theorem is on the `1-norm of the Fourier-coefficients of the
indicator function of a generalized arithmetic progression.

Definition 6 (r-GAP). Let F be a finite field. A subset S ⊆ F is a generalized
arithmetic progression of rank r (i.e., an r-GAP) if

S = {a0 + a1h1 + a2h2 + · · ·+ arhr : 0 6 hi < Hi for every 1 6 i 6 r} ,

where a0, . . . , ar ∈ F and 2 6 H1, . . . ,Hr 6 |F |.
Furthermore, the set S is proper if |S| = H1H2 · · ·Hr.

14



Intuitively, in a proper GAP every element in the set has a unique decomposition.
Shao [40] proved that for any proper r-GAP S, the `1-norm of the Fourier-

coefficients of its indicator function 1S is small.

Imported Theorem 1 (Theorem 3.1 of [40])10 For every natural number r,
there exists a constant Cr > 0 such that the following bounds holds for any proper
r-GAP S ⊆ F . ∑

α∈F

∣∣∣1̂S(α)∣∣∣ 6 Cr · log(H1) · · · log(Hr).

Shao [40] proved this result for vector spaces over F as well. However, we are
importing the minimum result sufficient for our derivations.

In our setting, we are interested in a special type of proper 2-GAPs satisfying
a1 = 1 and a2 = 2H1. We carefully calculate the constant D2 for this special
case because a tight estimate itranslates into tight bounds on the insecurity of
the cryptographic constructions. Our results are summarized in Theorem 2.

3.2 Number of Isolated Solutions of a Square Polynomial System

Our next imported theorem is regarding the number of the solutions of a square
polynomial system. The specific version of Bézout’s theorem that we are using
is due to Wooley [42]. Before we present Wooley’s theorem, let us introduce the
minimal necessary definitions. For this part of the presentation, we follow the
notations introduced by [10].

Definition 7 (Degree, Formal Derivative, Determinant, and Jacobian).
1. Let F be a prime field. The degree of a monomial Xi1

1 X
i2
2 · · ·Xin

n is
∑n
`=1 i`.

For a polynomial f ∈ F [X1, X2, . . . , Xn], the degree of f is the largest degree
of its monomial.

2. Suppose
f = gtX

t
i + gt−1X

t−1
i + · · ·+ g1Xi + g0,

where g0, . . . , gt ∈ F [X1, . . . , Xi−1, Xi+1, . . . , Xn]. Then, the formal deriva-
tive of f with respect to Xi is the polynomial in F [X1, X2, . . . , Xn] defined
below.

∂f

∂Xi
:= (t · gt)Xt−1

i + ((t− 1) · gt−1)Xt−2
i + · · ·+ (2 · g2)Xi + g1.

3. For a square matrix M ∈
(
F [X1, X2, . . . , Xn]

)k×k
, det(M) denotes the de-

terminant of M defined as follows.

det(M) :=
∑

σ : {1,2,...,k}→{1,2,...,k}
σ is a permutation

sgn(σ) ·
k∏
i=1

Mi,σ(i),

10 Note that, in the definition of [40], the Fourier coefficients are scaled by the field size
compared to our definition.
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where sgn(σ) represents the {+1,−1} sign of the permutation σ.11 Note that
det(M) ∈ F [X1, X2, . . . , Xn].

4. For polynomials f1, . . . , fk ∈ F [X1, X2, . . . , Xn], their Jacobian is

J(f1, . . . , fk) :=


∂f1
∂X1

∂f2
∂X1

· · · ∂fk∂X1
∂f1
∂X2

∂f2
∂X2

· · · ∂fk∂X2

...
...

. . .
...

∂f1
∂Xn

∂f2
∂Xn

· · · ∂fk∂Xn

 .

Intuitively, the Jacobian encodes information pertinent to the independence of
a system of polynomials.

A square polynomial system has equal number of polynomials and the number
of variables. That is, in the presentation above, we have n = k. The following
theorem bounds the number of isolated solutions of a square polynomial system.

Imported Theorem 2 (Consequence of [42]) Let F be a prime order field.
Let f1, . . . , fk ∈ F [X1, . . . , Xk] such that the degree of fi is di. The number of
(x1, . . . , xk) ∈ F k satisfying

∀1 6 i 6 k, fi(x1, . . . , xk) = 0 and

det
(
J(f1, . . . , fk)

)
(x1, . . . , xk) 6= 0.

is at most (d1d2 · · · dk).

Wooley’s theorem covers the case of polynomial congruence equations mod ps,
where s > 1. However, we import the result that suffices for our derivations.

Intuitively, a root with high multiplicity also occurs as a root of the Jacobian.
On the other hand, the isolated roots occur only in the polynomials but not in
the Jacobian. This theorem presented above, provides an easy-to-verify test to
count the isolated roots of a square polynomial system.

4 Physical-bit Witness Set as A Small Number of
2-GAPs

Let 1 6 u 6 λ be an arbitrary index. Let b ∈ {0, 1} be an arbitrary bit. We are
interested in

Au,b := {a ∈ F | [a]u = b}.

We shall prove that for any u and b, Au,b is the disjoint union of (at most) λ
number of 2-GAPs.

We first show that the prime field F can be partitioned as λ number of
most-significant-bit-fixing sets, which is defined as follows.
11 The sign of a permutation is +1 is an even number of swaps transform the permu-

tation into the identity-permutation. Otherwise, the sign is −1.
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Definition 8 (Most-significant-bit-fixing Set). A set S ⊆ F is called most-
significant-bit-fixing set (MSB-fixing set) if there exists an index 1 6 i∗ 6 λ and
a fixing aλ, aλ−1, . . . , ai∗ such that S is identical to the following set.{

b ∈ {0, 1}λ
∣∣∣ ∀i∗ 6 i 6 λ, [b]i = ai

}
.

For example, when λ = 5, the set S = 01{0, 1}3 (i.e., the bit-strings correspond-
ing to the elements in the set {8, 9, 10, . . . , 15}) is an MSB-fixing set.

procedure Partition(F )
Let index = λ.
∀i ∈ {1, 2, . . . , λ}, let ai = ⊥.
while index > 1 do

if ∃b ∈ F such that (1) ∀index + 1 6 j 6 λ, [b]j = aj AND (2) [b]index = 1
then

Findex :=
{
b
∣∣∣ ∀index+ 1 6 j 6 λ, [b]j = aj and [b]index = 0

}
aindex = 1

else
Findex := ∅
aindex = 0

end if
index = index− 1

end while
Until this point, aλ, aλ−1, . . . , a2 are fixed. a1 is still undetermined.
Let a(0) be the integer whose binary representation is aλ, aλ−1, . . . , a2, 0.
Let a(1) be the integer whose binary representation is aλ, aλ−1, . . . , a2, 1.
if a(1) 6 p− 1 then

F1 := {a(0), a(1)}
else

F1 := {a(0)}
end if
return Fλ, Fλ−1, . . . , F1

end procedure

Fig. 3. Given a finite field F , this procedure partitions F into MSB-fixing sets
Fλ, Fλ−1, . . . , F1.

Given a prime field F , Figure 3 demonstrates how to partition it as most
significant bit-fixing sets. Easily, one can verify that Fλ, Fλ−1, . . . , F1 are all
MSB-fixing sets. For example, when λ = 5 and p = 29, the binary representa-
tions of the elements in {0, 1, . . . , 28} partitions into subsets 0{0, 1}4, 10{0, 1}3,
110{0, 1}2, and {11100}.

Now, given Au,b, for 0 6 i 6 λ, define

Ai := Au,b ∩ Fi.
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One can verify that Ai consists of all bit-strings such that the following condi-
tions hold simutaneously. (1) Some of most significant bits are fixed, (2) the uth
least significant bit is fixed to b, and (3) finally, all the remaining positions are
uniformly random. Continuing with the example above, the set S2,0 is the subset
of elements in S with their 2-nd LSB fixed to 0. That is, S2,0 = 01{0, 1}0{0, 1},
the binary representation of elements in the set {8, 9, 12, 13}. Therefore, one can
write Ai as

Ai = {a0 + h1 + a2h2 : 0 6 hi < Hi for i = 1, 2 } ,

for some a0, a2, H1, and H2 such that a2 = 2H1 and a2H2 < p. For example, the
elements whose binary representation are in the set S2,0 above can be expressed
as the proper 2-GAP 8+{0, 1}+{0, 4}. We have the following theorem regarding
the `1-norm of the Fourier coefficient of such special type of 2-GAP sets.

Theorem 2. Let p be a prime and

S = {a0 + h1 + a2h2 : 0 6 hi < Hi for i = 1, 2} ,

for some a0, a2, H1, and H2 such that a2 = 2H1 and a2H2 < p. Then

∑
α∈F

∣∣∣1̂S(α)∣∣∣ 6 (1 + o(1)) ·
(
2

π

)2

· log(H1) log(H2).

We defer the proof of this theorem to the full version. This theorem immediately
implies the following corollary.

Corollary 1. For any index 1 6 u 6 λ and bit b ∈ {0, 1},∑
α∈F

∣∣∣1̂Au,b
(α)
∣∣∣ 6 (1 + o(1)) · 1

π2
· (log p)2 · λ.

Proof. We have

∑
α∈F

∣∣∣1̂Au,b

∣∣∣ 6 ∑
α∈F

λ∑
i=1

∣∣∣1̂Ai

∣∣∣ (Triangle inequality)

=

λ∑
i=1

∑
α∈F

∣∣∣1̂Ai

∣∣∣
6

λ∑
i=1

(1 + o(1)) ·
(
2

π

)2

· log(H1) log(H2) (Theorem 2)

= (1 + o(1)) ·
(
2

π

)2

· log(H1) log(H2) · λ

6 (1 + o(1)) ·
(
2

π

)2

·
(
log(H1) + log(H2)

2

)2

· λ

(AM-GM inequality)
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< (1 + o(1)) · 1

π2
· (log p)2 · λ

The last inequality uses the fact that H1 ·H2 < p.

5 Physical-bit leakage on Shamir Secret Sharing

In this section, we prove the following theorems.

Theorem 3. For any ε > 0, the following bound holds.

Pr
~X

[
ShamirSS(n, k, ~X) is not an Jn, k, 1, εKF -LLRSS

]
.

1

ε
·2
n · (log p)3n · λn · (k − 1)!

π2n · (p− n)k−1
.

We emphasize that ~X is the uniform distribution over the set of all n-tuple of
unique evaluation places in F ∗.

Before we present the proof of this theorem, let us first interpret it through
various parameter settings.

Corollary 2. Let 0 < d < ln 2 be an arbitrary constant. There exists a (slightly)
super-linear function P (·, ·) such that the following holds. For any number of
parties n ∈ N, reconstruction threshold 2 6 k ∈ N, and insecurity tolerance
ε = 2−t, if the number of bits λ needed to represent the order of the prime-field
F satisfies λ > P (n/k, t/k), then ShamirSS(n, k, ~X) is an Jn, k, 1, εKF -LLRSS
with probability (at least) 1− exp(−d · (k − 1)λ).

In particular, the (slightly super-linear) function P (n/k, t/k) = d′ ·
(
n
k + t

k

)
·

log2
(
n
k + t

k

)
suffices, for an appropriate universal positive constant d′.

In fact, our result can be generalized to multiple-bit physical leakage, which
is summarized as follows.

Theorem 4. For any ε > 0, for any positive integer m, the following bound
holds.

Pr
~X

[
ShamirSS(n, k, ~X) is not an Jn, k,m, εKF -LLRSS

]
.

1

ε
·
(
log p

m

)n
· 2

mn · (log p)2mn · λmn · (k − 1)!

π2n · (p− n)k−1
.

We remark that this result extends to the setting thatmi bits are leaked from the
ith share for i ∈ {1, 2, . . . , n}. In this case, the probability that ShamirSS(n, k, ~X)
is not leakage resilient is bounded by

1

ε
·
(
log p

m1

)(
log p

m2

)
· · ·
(
log p

mn

)
· 2

M · (log p)2M · λM · (k − 1)!

π2n · (p− n)k−1
,

where M =
∑n
i=1mi.

The proof of Theorem 4 is analogous to the proof of Theorem 3. Hence, we
omit the proof of Theorem 4 and refer the reader to the full version for details.

Similarly, we interpret Theorem 4 as follows.
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Corollary 3. Let 0 < d < ln 2 be an arbitrary constant. There exists a (slightly)
super-linear function P (·, ·) such that the following holds. For any number of par-
ties n ∈ N, reconstruction threshold 2 6 k ∈ N, number of bits leaked from each
share m ∈ N, and insecurity tolerance ε = 2−t, there exists λ0 = P (mn/k, t/k)
such that if the number of bits λ needed to represent the order of the prime-
field F satisfies λ > λ0, then ShamirSS(n, k, ~X) is an Jn, k,m, εKF -LLRSS with
probability (at least) 1− exp(−d · (k − 1)λ).

In particular, function P (mn/k, t/k) = d′ ·
(
mn
k + t

k

)
· log2

(
mn
k + t

k

)
, for an

appropriate universal positive constant d′, suffices.

On the other hand, one can also interpret Theorem 4 as follows.

Corollary 4. Let 0 < d < ln 2 be an arbitrary constant. For any number of
parties n ∈ N, reconstruction threshold 2 6 k ∈ N, and insecurity tolerance
ε = 2−t, there exists λ0 = (t/k) · log (t/k) such that if the number of bits λ
needed to represent the order of the prime-field F satisfies λ > λ0, then for all
m such that

m 6
kλ

n log2 λ
,

it holds that ShamirSS(n, k, ~X) is an Jn, k,m, εKF -LLRSS with probability (at
least) 1− exp(−d · (k − 1)λ).

5.1 Claims needed to prove Theorem 3

We prove Theorem 3 by proving the following claims.
In the first claim, we prove an upper bound on the statistical distance between

the leakage of secrets s0 and s1. We emphasize that this upper bound is not
sensitive to the actually secrets, but only sensitive to the leakage function ~τ and
evaluation places ~X.

Claim 1 Let (Share ~X ,Rec ~X) be an (n, k, ~X) Shamir secret sharing. Let C ~X be
the set of all possible secret shares of the secret 0.12 Let C⊥~X be the dual code
of C ~X . For every 1-bit physical leakage function family ~τ = (τ1, τ2, . . . , τn), for
every leakage ~̀ ∈ {0, 1}n, and for every pair of secrets s0 and s1, the following
inequality holds.

SD
(
~τ
(
Share

~X(s0)
)
, ~τ
(
Share

~X(s1)
))

6
∑

~̀∈{0,1}n

∑
~α∈C⊥

~X
\{0}

(
n∏
i=1

∣∣∣1̂`i(αi)∣∣∣
)
.

12 By Observation 1, C ~X is an (n, k − 1, ~X, ~X)-GRS with generator matrix
X1 X2 · · · Xn
X2

1 X2
2 · · · X2

n

...
...

. . .
...

Xk−1
1 Xk−1

2 · · · Xk−1
n

 .

20



Here, we abuse the notation and use 1`i to stand for the indicator function
1τ−1

i (`i)
. That is, 1`i(si) = 1 if τi(si) = `i and 1`i(si) = 0 otherwise.

Our next claim states that the average of the upper bound proven in Claim 1
over all evaluation places ~X is sufficiently small.

Claim 2 Let (Share
~X ,Rec

~X) be an (n, k, ~X) Shamir secret sharing. For every
1-bit physical leakage function family ~τ = (τ1, τ2, . . . , τn), the following inequality
holds.

E
~X

 ∑
~̀∈{0,1}n

∑
~α∈C⊥

~X
\{0}

(
n∏
i=1

∣∣∣1̂`i(αi)∣∣∣
) .

2n · (log p)2n · λn · (k − 1)!

π2n · (p− n)k−1
.

We defer the proofs to Section 5.3 and Section 5.4. We shall first present why
these claims imply Theorem 3.

5.2 Proof of Theorem 3 using Claim 1 and Claim 2

By definition, we have

Pr
~X

[
ShamirSS(n, k, ~X) is not an Jn, k, 1, εKF -LLRSS

]
= Pr

~X

[
∃s0, s1, ~τ s.t. SD

(
~τ(Share

~X(s0)) , ~τ(Share
~X(s1)

)
> ε
]

6 Pr
~X

∃s0, s1, ~τ s.t.
∑

~̀∈{0,1}n

∑
~α∈C⊥

~X
\{0}

(
n∏
i=1

∣∣∣1̂`i(αi)∣∣∣
)

> ε

 (Claim 1)

= Pr
~X

∃~τ s.t.
∑

~̀∈{0,1}n

∑
~α∈C⊥

~X
\{0}

(
n∏
i=1

∣∣∣1̂`i(αi)∣∣∣
)

> ε


6
∑
~τ

Pr
~X

 ∑
~̀∈{0,1}n

∑
~α∈C⊥

~X
\{0}

(
n∏
i=1

∣∣∣1̂`i(αi)∣∣∣
)

> ε

 (Union bound)

.
∑
~τ

1

ε
· 2

n · (log p)2n · λn · (k − 1)!

π2n · (p− n)k−1
(Markov’s Inequality and Claim 2)

= (log p)n · 1
ε
· 2

n · (log p)2n · λn · (k − 1)!

π2n · (p− n)k−1

. (log p)n · 1
ε
· 2

n · (log p)2n · λn · k!
π2n · pk−1

∼ k!

ε
·
(
2λ(log p)3

π2

)n
· 1

2λ(k−1)
.13
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This completes the proof of Theorem 3.

5.3 Proof of Claim 1

We start with the following calculation, which can be proven using standard
techniques in Fourier analysis. We refer the readers to the full version for a
proof.

Claim 3 For any leakage ~̀ ∈ {0, 1}n, we have

Pr
~s←Share

~X(s)

[
~τ(~s) = ~̀

]
=
∑
~α∈C⊥

~X

(
n∏
i=1

1̂`i(αi)

)
ωs(α1+···+αn).

Now, given Claim 3, Claim 1 can be proven as follows.

SD
(
~τ
(
Share

~X(s0)
)
, ~τ
(
Share

~X(s1)
))

=
1

2

∑
~̀∈{0,1}n

∣∣∣∣∣ Pr
~s←Share

~X(s0)

[
~τ(~s) = ~̀

]
− Pr
~s←Share

~X(s1)

[
~τ(~s) = ~̀

]∣∣∣∣∣
=

1

2

∑
~̀∈{0,1}n

∣∣∣∣∣∣∣
∑

~α∈C⊥
~X
\{0}

(
n∏
i=1

1̂`i(αi)

)(
ωs0(α1+···+αn) − ωs1(α1+···+αn)

)∣∣∣∣∣∣∣
(Claim 3)

6
1

2

∑
~̀∈{0,1}n

∑
~α∈C⊥

~X
\{0}

(
n∏
i=1

∣∣∣1̂`i(αi)∣∣∣
) ∣∣∣ωs0(α1+···+αn) − ωs1(α1+···+αn)

∣∣∣
(Triangle inequality)

6
1

2

∑
~̀∈{0,1}n

∑
~α∈C⊥

~X
\{0}

(
n∏
i=1

∣∣∣1̂`i(αi)∣∣∣
)
· 2

=
∑

~̀∈{0,1}n

∑
~α∈C⊥

~X
\{0}

(
n∏
i=1

∣∣∣1̂`i(αi)∣∣∣
)

5.4 Proof of Claim 2

The proof of Claim 2 crucially relies on the following claim, which bounds the
number of solutions to a polynomial system. We state and prove this claim first.

13 We note that the λ = log2 p. However, in Theorem 2, the logrithm is natural log.
Hence, we did not merge λ with log p.
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Claim 4 Let ~α = (α1, α2, . . . , αn) be a non-zero vector in Fn. Then the number
of solutions ~X = (X1, X2, . . . , Xn) ∈ (F ∗)n of the equation G ~X · ~α

T = ~0 such
that Xi 6= Xj for every 1 6 i < j 6 n is at most (p− 1)(p− 2) · · · (p− (n− k +
1)) · (k − 1)!. Here, G ~X stands for the generator matrix of C ~X , which is

G ~X =


X1 X2 · · · Xn

X2
1 X2

2 · · · X2
n

...
...

. . .
...

Xk−1
1 Xk−1

2 · · · Xk−1
n

 .

Proof. Note that G ~X · ~α
T = ~0 implies that ~α ∈ C⊥~X . By Theorem 1, we know C⊥~X

has distance k, which implies that there are at least k non-zero coordinates in
~α. Therefore, without loss of generality, assume αi 6= 0 for every 1 6 i 6 k − 1.
Now, for i = k, . . . , n, we fix Xi to be arbitrary distinct non-zero values . Note
that there are (p−1)(p−2) . . . (p−(n−k+1)) possible ways of doing this fixing.
Let ci :=

∑n
j=k+1 αjX

i
j for i = 1, 2, . . . , k − 1. We can rewrite the equation

G ~X · ~α
T = ~0 as a system of polynomial equations as follows.

f1(X1, X2, . . . , Xk−1) := α1X1 + α2X2 + . . .+ αk−1Xk−1 + c1 = 0

f2(X1, X2, . . . , Xk−1) := α1X
2
1 + α2X

2
2 + . . .+ αk−1X

2
k−1 + c2 = 0

...

fk−1(X1, X2, . . . , Xk−1) := α1X
k−1
1 + α2X

k−1
2 + . . .+ αk−1X

k−1
k−1 + ck−1 = 0

Since αi 6= 0, it is a square polynomials system with deg(fi) = i, for every
1 6 i 6 k − 1. Next, to apply Imported Theorem 2, we shall show that

det
(
J(f1, f2, . . . , fk−1)

)
(X1, X2, . . . , Xk−1) 6= 0 if Xi 6= Xj for every i 6= j.

We have

J
(
f1, f2, . . . , fk−1

)
(X1, X2, . . . , Xk−1) =


α1 2α1X1 · · · (k − 1)α1X

k−2
1

α2 2α2X2 · · · (k − 1)α2X
k−2
2

...
...

. . .
...

αk−1 2αk−1Xk−1 · · · (k − 1)αk−1X
k−2
k−1


By the properties of determinant,

det
(
J (f1, f2, . . . , fk−1)

)
(X1, X2, . . . , Xk−1)

=

(
k−1∏
i=1

αi

)
· det


1 2X1 · · · (k − 1)Xk−2

1

1 2X2 · · · (k − 1)Xk−2
2

...
...

. . .
...

1 2Xk−1 · · · (k − 1)Xk−2
k−1
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=

(
k−1∏
i=1

αi

)
(k − 1)! · det


1 X1 · · · Xk−1

1

1 X2 · · · Xk−1
2

...
...

. . .
...

1 Xk−1 · · · Xk−1
k−1


6= 0,

since αi are non-zeros and the Vandermonde matrix is full-rank. By Imported
Theorem 2, there are at most (k− 1)! solutions for the above square polynomial
system. Since there are total (p− 1)(p− 2) . . . (p− (n− k+ 1)) possible ways of
fixing Xk, Xk+1, . . . , Xn, the number of solutions of the equation G ~X · ~α

T = ~0 is
at most (p− 1)(p− 2) . . . (p− (n− k + 1)) · (k − 1)!, which completes the proof
of Claim 4.

Given Claim 4, we are ready to prove Claim 2 as follows.

E
~X

 ∑
~̀∈{0,1}n

∑
~α∈C⊥

~X
\{0}

(
n∏
i=1

∣∣∣1̂`i(αi)∣∣∣
)

=
∑

~̀∈{0,1}n
E
~X

 ∑
~α∈C⊥

~X
\{0}

(
n∏
i=1

∣∣∣1̂`i(αi)∣∣∣
)

=
∑

~̀∈{0,1}n

∑
~α∈Fn\{0}

(
n∏
i=1

∣∣∣1̂`i(αi)∣∣∣
)
· Pr
~X

[
~α ∈ C⊥~X

]
(Linearity of expectation)

6
∑

~̀∈{0,1}n

∑
~α∈Fn\{0}

(
n∏
i=1

∣∣∣1̂`i(αi)∣∣∣
)
· (p− 1)(p− 2) · · · (p− (n− k + 1)) · (k − 1)!

(p− 1)(p− 2) · · · (p− n)

(Claim 4)

6
∑

~̀∈{0,1}n

n∏
i=1

(∑
αi∈F

∣∣∣1̂`i(αi)∣∣∣
)
· (k − 1)!

(p− (n− k + 2)) · · · (p− n)

6
∑

~̀∈{0,1}n

(
(1 + o(1)) · 1

π2
· (log p)2 · λ

)n
· (k − 1)!

(p− (n− k + 2)) · · · (p− n)

(Corollary 1)

. 2n · (log p)
2n · λn · (k − 1)!

π2n · (p− n)k−1
.

This gives us the desired upper bound.
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6 Physical-bit leakage Attack on Shamir Secret-sharing
Scheme

Consider the Shamir secret-sharing scheme with < k degree polynomials, where
k ∈ {2, 3}, for n parties over a prime field F of order p > 2. Fix a secret s ∈ F .
Suppose the random polynomial used for secret-sharing is f(X) ∈ F [X]/Xk

such that P (0) = s.
Suppose p = 1 mod k, that is there exists a solution of the equation Zk−1 =

0 in the multiplicative group F ∗. Let α ∈ F be such that E := {α, α2, . . . , αk−1,
αk = 1} ⊆ F ∗ be the multiplicative sub-group of order k containing all k solu-
tions of the equation Zk − 1 = 0.

Suppose n > k, and the evaluation places for the first k parties be {1, α, α2, . . . ,
αk−1} ⊆ F ∗, respectively. Remaining evaluation places are inconsequential as we
shall leak only one bit from the shares of only the first k parties.

Define si := f(αi), for 1 6 i 6 k, to be the secret-share of party i. Observe
that we have the following properties

1. The secret shares s1, . . . , sk−1 are independently and uniformly random over
the set F , and

2. The secret share sk = ks− (s1 +· · ·+ sk−1).

Let 0 6 S1, S2, . . . , Sk 6 p−1 be the whole numbers (i.e., the set N0 := {0, 1, 2, . . . })
corresponding to the elements s1, s2, . . . , sk ∈ F . Note that

E[S1 + S2 +· · ·+ Sk−1 ] = µ := (k − 1)(p− 1)/2 ∈ N.

Define Ik,∆ := {∆+ 1, ∆+ 2, . . . ,∆+ p}, where ∆ := µ− (p− 1)/2− 1. For
k ∈ {2, 3}, we note that

Pr

[
k−1∑
i=1

Si ∈ Ik,∆

]
> 0.75.14

Express ∆ = u · p + δ, where u ∈ N0 (the set of all whole numbers), and
δ ∈ {0, 1, . . . , p− 1}. Define the secret s := k−1δ ∈ F .

Following technical claim, which holds for any secret s ∈ F , is key to our
attack strategy.

Claim (Parity of the “Parity of Shares”). Let P ∈ {0, 1} represent the LSB (or,
equivalently, the parity) of ks when expressed as a whole number. For 1 6 i 6 k,
let Pi ∈ {0, 1} represent the LSB (or, equivalently, the parity) of the secret share
Si. Define the following subsets of whole numbers

Ssame := N0 ∩
⋃
i∈Z
i odd

[ip+ ks+ 1, (i+ 1)p+ ks]

14 One can explicit calculate the probability. When k = 2, Pr[S1 ∈ I2,∆ ] = 1. When
k = 3, Pr[S1 + S2 ∈ I3,∆ ] = 3

4

(
1 + 1

p
− 1

p2

)
.
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Sdiff := N0 ∩
⋃
i∈Z
i even

[ip+ ks+ 1, (i+ 1)p+ ks] .

If S1 + S2 + · · · + Sk−1 ∈ Ssame, then P1 ⊕ P2 ⊕· · · ⊕ Pk = P . Otherwise, if
S1 + S2 +· · ·+ Sk−1 ∈ Sdiff , then P1 ⊕ P2 ⊕· · · ⊕ Pk = 1⊕ P .

Proof. Since s1 + s2 + · · ·+ sk = ks, we have

S1 + S2 + · · ·+ Sk = ks+ ip,

for some i ∈ N0.
Observe that P1 ⊕ P2 ⊕ · · · ⊕ Pk is the parity of S1 + S2 + · · ·+ Sk, which is

identical to the parity of ks (i.e., P ) if and only if i is even.
Finally, since Sk ∈ {0, 1, . . . , p−1}, the constraint “S1+S2+· · ·+Sk = ks+ip

for some even i” is equivalent to

S1 + S2 +· · ·+ Sk−1 ∈ Ssame.

The above claim gives us an attack for the case k = 3 because of the following
argument.

Fix k = 3, the parity of ks is exactly the parity (LSB) of secret s. Observe
that if u is odd, then Ik,∆ ⊆ Ssame. In this case, the parity P1 ⊕ P2 ⊕· · · ⊕ Pk is
identical to the LSB of the secret with probability > 0.75. Otherwise, if u is even
then Ik,∆ ⊆ Sdiff . In this case, the parity P1 ⊕ P2 ⊕· · · ⊕ Pk is the opposite to
the LSB of the secret with probability > 0.75. In any case, since the adversary
knows u, she can predict the LSB of the secret with probability > 0.75.

For a randomly chosen secret, on the other hand, one can predict the LSB
(using the strategy above) only with probability (statistically close to) 0.5.

Remark 1. Let ρ ∈ F be the primitive root of the equation Zp − 1 = 0. That is,
ρ is a generator for of the multiplicative group F ∗. The discussion above holds
for all evaluation places of the form{

ρi · α, ρi · α2, . . . , ρi · αk
}
,

where i ∈ {0, 1, . . . , (p− 1)/3}. More generally, let G ⊆ F ∗ be the multiplicative
subgroup formed by the roots of the equation Zk − 1 = 0. Any coset F ∗/G
suffices for our purposes.

Consequently, there is not just one k-tuple of evaluation places that witnesses
our attack. There are, in fact, k! · (p− 1)/k such tuples that witness our attack.

Therefore, the following result holds.

Theorem 5. Let F be a prime field of order p > 2. Consider any natural number
n such that p > n > k = 3 and p = 1 mod k. There exist distinct secrets
s(0), s(1) ∈ F , distinct evaluation places X1, . . . , Xn ∈ F ∗, and one physical-
bit local leakage function ~τ such that, based on the leakage, an adversary can
efficiently distinguish the secret being s(0) or s(1) with advantage > 2 · (0.75 −
0.5) = 0.5.
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Remark 2. We emphasize that our attacker leaks one bit from the first k shares
and tries to predict the secret based solely on this. In particular, we do not rely
on the information regarding the remaining n − k shares. Asymptotically, this
approach is doomed to fail as k grows. As Benhamouda et al. [3] prove that,
Shamir secret sharing is resilient to arbitrary one-bit leakage from each share,
as long as k > n − nc for some small constant c > 0. Therefore, to find more
devastating attacks, one has to utilize the fact that n is larger than k and we
are leaking from every share.

6.1 Our Attack and Discrepancy of Irwin-Hall distribution

Consider any 2 6 k ∈ N and prime p = 1 mod k. The following analysis is for
the case when p→∞.

Observe that Si is uniformly random over the set {0, 1, . . . , p−1}. Instead of
Si, we normalize this random variable and consider Ŝi that is uniformly random
over the set [0, 1) ⊂ R. Now, the random variable S1 + · · · + Sk−1 over whole
numbers corresponds to the normalized distribution Ŝ1 +· · ·+ Ŝk−1 over the set
[0, k− 1) ⊂ R. It is well-known that the sum of (k− 1) independent and uniform
distributions over the unit interval [0, 1) is the Irwin-Hall distribution [23, 18]
with parameter (k − 1), represented by Ik−1.

Let δ ∈ [0, 1) be an offset. Define the intervals (as a function of δ)

Ŝsame = (1 + δ, 2 + δ] ∪ (3 + δ, 4 + δ] ∪ (5 + δ, 6 + δ] ∪· · · , and

Ŝdiff = (δ, 1 + δ] ∪ (2 + δ, 3 + δ] ∪ (4 + δ, 5 + δ] ∪· · · .

Intuitively, these two sets correspond to the normalized Ssame and Sdiff sets de-
fined above. The attack above corresponds to finding the offset

δ∗ := argmax
δ∈[0,1)

∣∣∣Pr[Ik−1 ∈ Ŝsame

]
− Pr

[
Ik−1 ∈ Ŝdiff

]∣∣∣ ,
and the advantage corresponding to that attack is

ε∗ := max
δ∈[0,1)

∣∣∣Pr[Ik−1 ∈ Ŝsame

]
− Pr

[
Ik−1 ∈ Ŝdiff

]∣∣∣ .
Intuitively, this offset δ∗ witnesses the largest discrepancy and, in turn, deter-
mines the most vulnerable secret.

Definition 9 (Discrepancy of a Probability Distribution). Let X be a
real-valued random variable. The discrepancy of the random variable X, repre-
sented by disc(X), is

disc(X) := max
δ∈[0,1)

|2 · Pr[X ∈ I(δ)]− 1| ,

where I(δ) is the set δ + 2Z+ (0, 1].

Then, disc(Ik−1) represents the advantage of our attack presented above, as
p→∞.
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