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Abstract. Anonymous routing is one of the most fundamental online
privacy problems and has been studied extensively for decades. Almost
all known approaches for anonymous routing (e.g., mix-nets, DC-nets,
and others) rely on multiple servers or routers to engage in some interac-
tive protocol; and anonymity is guaranteed in the threshold model, i.e.,
if one or more of the servers/routers behave honestly.

Departing from all prior approaches, we propose a novel non-interactive
abstraction called a Non-Interactive Anonymous Router (NIAR), which
works even with a single untrusted router. In a NIAR scheme, suppose
that n senders each want to talk to a distinct receiver. A one-time trusted
setup is performed such that each sender obtains a sending key, each
receiver obtains a receiving key, and the router receives a token that
“encrypts” the permutation mapping the senders to receivers. In every
time step, each sender can encrypt its message using its sender key, and
the router can use its token to convert the n ciphertexts received from
the senders to n transformed ciphertexts. Each transformed ciphertext
is delivered to the corresponding receiver, and the receiver can decrypt
the message using its receiver key. Imprecisely speaking, security requires
that the untrusted router, even when colluding with a subset of corrupt
senders and/or receivers, should not be able to compromise the privacy of
honest parties, including who is talking to who, and the message contents.

We show how to construct a communication-efficient NIAR scheme with
provable security guarantees based on the standard Decision Linear as-
sumption in suitable bilinear groups. We show that a compelling applica-
tion of NIAR is to realize a Non-Interactive Anonymous Shuffler (NIAS),
where an untrusted server or data analyst can only decrypt a permuted
version of the messages coming from n senders where the permutation
is hidden. NIAS can be adopted to construct privacy-preserving surveys,
differentially private protocols in the shuffle model, and pseudonymous
bulletin boards.

Besides this main result, we also describe a variant that achieves fault
tolerance when a subset of the senders may crash. Finally, we further ex-
plore a paranoid notion of security called full insider protection, and show
that if we additionally assume sub-exponentially secure Indistinguisha-
bility Obfuscation and as sub-exponentially secure one-way functions,
one can construct a NIAR scheme with paranoid security.

? A full version of the paper can be found online [68].
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1 Introduction

The Internet has become a platform that billions of users rely on in their
daily lives, and protecting users’ online privacy is a significant challenge we
face. Anonymous communication systems provide a way for users to communi-
cate without leaking their identities or message contents. There has been sev-
eral decades of work dedicated to the design, implementation, and deployment
of anonymous communication systems [8, 18, 34, 35, 38, 39, 42, 50, 64, 70, 71, 74],
and numerous abstractions and techniques have been explored, including mix-
nets [8, 18, 34], the Dining Cryptographers’ nets [9, 35, 39], onion routing [29,
41, 42, 50], multi-party-computation-based approaches [13], multi-server PIR-
write [38, 48, 60], as well as variants/improvements of the above [70, 71, 74]. We
refer the readers to several excellent surveys on this rich line of work [40,44,69].

To the best of our knowledge, almost all known anonymous routing schemes
rely on multiple routers or servers to engage in an interactive protocol, and more-
over, security is guaranteed in the threshold model, i.e., assuming that one or
more of the routers remain honest. For example, the mix-net family of schemes
typically require each router along the way to shuffle the input ciphertexts and
remove a layer of encryption; the DC-net family of schemes require multiple
parties to engage in a cryptographic protocol, and so on.

Departing from all prior approaches which are interactive and rely on some
form of threshold cryptography, we ask the following natural question:

Can we achieve anonymous routing non-interactively on a single untrusted
router?

1.1 Defining Non-Interactive Anonymous Router (NIAR)

Our first contribution is a conceptual one: we formulate a new abstraction called
a non-interactive anonymous router (NIAR). The abstraction is in fact quite
natural, and in hindsight, it may even be a little surprising why it has not been
considered before.

Non-interactive anonymous router. Imagine that there are n senders and
n receivers, and each sender wishes to speak with a distinct receiver. Henceforth
let π denote the permutation that maps each sender to its intended receiver,
i.e., each sender i ∈ [n] wants to speak to receiver π(i). A NIAR scheme has the
following syntax:

– ({eki, rki}i∈[n], tk)← Setup(1κ, n, π): First, we run a one-time trusted setup
procedure that takes the security parameter 1κ, the number of senders/receivers
n, and the routing permutation π, and produces a sender key eki for each
sender i ∈ [n], and a receiver key rki for each receiver i ∈ [n]. Moreover, the
setup procedure also produces a token tk for the router which encodes the
secret permutation π. Note that the trusted setup can be decentralized using
standard multi-party computation techniques.
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– cti,t ← Enc(eki, xi,t, t): With this one-time setup, we can allow the n senders
to anonymously send T number of packets to their intended receivers. In
every time step t ∈ [T ], each sender i ∈ [n] encrypts its message xi,t using its
secret key eki by calling Enc(eki, xi,t, t), and sends the resulting ciphertext
cti,t to the router.

– {ct′i,t}i∈[n] ← Rte(tk, {cti,t}i∈[n]): The untrusted router uses its token to con-
vert the n ciphertexts collected from the senders into n transformed cipher-
texts. This is accomplished by calling Rte(tk, {cti,t}i∈[n]). The router then
forwards each transformed ciphertext ct′i,t to the corresponding recipient i.

– xi ← Dec(rki, ct
′
i,t): Finally, the recipients use their respective secret keys to

decrypt the plaintexts by calling Dec(rki, ct
′
i,t).

At a very high level, we want that the untrusted router learns no information
about the routing permutation π as well as the messages exchanged. Moreover,
the scheme should offer robustness even when a (potentially majority) subset of
the senders and/or receivers collude with the untrusted router. It turns out that
defining robustness under collusion is non-trivial and the security requirements
can vary from application to application — we will discuss the security definitions
in more detail later.

Communication efficiency. The first näıve idea is to let each sender-receiver
pair share a freshly and randomly chosen secret key during the setup. During
each time step, each sender encrypts its messages using its secret key, and sends
the ciphertext to the router. The router then forwards all n ciphertexts to each
of the n receivers; and each receiver’s secret key allows it to decrypt exactly one
among the n ciphertexts received. This scheme protects the plaintext messages
as well as the routing permutation π from the untrusted router; unfortunately,
it incurs quadratic communication overhead in each time step1.

Throughout the rest of the paper, we will require that the NIAR scheme
preserve communication efficiency, that is, the communication blowup relative
to sending the messages in the clear must be upper bounded by poly(κ) where κ is
the security parameter. In other words, suppose, without loss of generality, that
in each time step, each sender has one bit to send, then the total communication
(among all senders and receivers) per time step must be upper bounded by
O(n) · poly(κ).

Non-interactive anonymous shuffler. One important application and special
case of NIAR is to realize a non-interactive anonymous shuffler (NIAS). To
understand what is a non-interactive anonymous shuffler, it helps to think of
the following application. Suppose that during a pandemic, University X wants
to implement a privacy-preserving daily check mechanism, where students and
faculty each send a short message to report their health conditions every day, and
whether they could have been exposed to the virus. To protect each individual’s

1 Furthermore, while this näıve scheme works for a private-messaging scenario, and
does not work for the non-interactive anonymous shuffler application to be described
later, due to the fact that a receiver colluding with the router can learn which sender
it is paired with. We will elaborate on this point when we define security.
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privacy, we want to shuffle the messages according to some randomly chosen
permutation π, such that the history of an individual’s reports is pseudonymous.
In this scenario, we can employ a NIAR scheme, and give the data analyst the
token tk as well as all n receiver keys. This ensures that the data analyst can
decrypt only a shuffled list of the plaintexts, and moreover the permutation is
hidden from the data analyst.

In other words, a Non-Interactive Anonymous Shuffler (NIAS) is a special
case of NIAR where the router and all the receivers are a single party. In Sec-
tion 1.4, we will present numerous applications of NIAR and NIAS. We point
out that the NIAS special case in fact imposes some extra security requirements
on top of our basic security notion for NIAR, in the sense that even a receiver
cannot know which sender it is paired up with — we will discuss how to define
security next.

1.2 Defining Security Requirements

If all receivers were fully trusted, then another näıve idea would be to have
every sender encrypt its message along with its respective destination using
a Fully Homomorphic Encryption (FHE) scheme. In this way, the untrusted
router can accomplish the routing through homomorphic evaluation. However, all
receivers must be given the FHE’s secret key to decrypt the messages. Therefore,
if even a single receiver colludes with the untrusted router, then all other honest
players’ anonymity would be broken. This is clearly unacceptable since in most
applications of anonymous routing, anyone can become a sender or a receiver,
including the owner of the router. Approaches that construct special-purpose
homomorphic encryption schemes optimized for shuffling suffer from the same
drawback [11].

We therefore require a security notion that provides robustness even when
a subset of the senders and receivers can be corrupt, and potentially colluding
with the untrusted router. It turns out that how to define robustness against
collusion requires some careful thinking, since the security requirements can
vary from application to application.

Basic notion. Our basic security notion is motivated by a private-messaging
scenario, e.g., members of a secret society wish to send private emails without
revealing their identities and their correspondence to the public. In this case,
each player (i.e., either sender or receiver) knows who it is talking to. Therefore,
if the adversary who controls the router additionally corrupts a subset of the
senders and receivers, the adversary can learn who the corrupt senders and re-
ceivers are paired up with, as well as the messages received by corrupt receivers
(from honest senders) in every time step. Our basic security notion requires that
besides this natural leakage, the adversary should not learn any additional infor-
mation. Observe that our communication-inefficient näıve solution that forwards
all ciphertexts to every receiver would satisfy this basic notion.

Receiver-insider protection. The basic security notion, however, turns out to
be insufficient for the NIAS application. In the NIAS application, a single entity
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acts as the router and all n receivers — for example, in our earlier “anonymous
daily check-in” application, the data analyst has all receiver keys {rki}i∈[n] as
well as the token tk. To protect the users’ pseudonymity, it is important that the
data analyst does not learn which decrypted report corresponds to which user.
In Section 1.4, we present more applications for NIAS, and all of them have the
same security requirement.

We therefore propose a strengthened security notion, called receiver-insider
protection, that is suitable and sufficient for NIAS-type applications. Here, we
require that even a receiver does not learn which sender it is speaking with;
however, a sender may learn which receiver it is speaking with. Now, if the
adversary who controls the router additionally corrupts a subset of the senders
and receivers, the adversary can learn the corrupt-to-∗ part2 of the permutation
π as well as the messages received by corrupt receivers in every time step. Besides
this natural leakage, the adversary should not learn anything else.

Full insider protection. While receiver-insider protection seems sufficient for
most applications including NIAS, we additionally explore a paranoid notion of
security. Here, we want that every player has no idea who it is speaking with,
including both senders and receivers. Nonetheless, the corrupt-to-corrupt part of
the permutation is inherently leaked to the adversary and this leakage cannot
be avoided: since a corrupt sender can always try encrypting some message and
check whether any corrupt receiver received the corresponding message. There-
fore, our most paranoid notion, which we call full insider protection, requires
that an adversary controlling the router and a subset of corrupt senders and
receivers learns only the corrupt-to-corrupt part of the permutation π, as well as
the messages received by corrupt receivers in every time step, but nothing else.

In Section 1.4, we describe more applications of NIAR and NIAS, and at that
point, the reader can see how different applications require different notions. Of
course, one can always go for the most paranoid notion; but the weaker notions
suffice for a wide range of natural applications. Therefore, differentiating between
these notions can lead to more efficient constructions.

Equivalence between simulation- and indistinguishability-based no-
tions. Later in the paper, we shall formalize the above security notions using
two definitional approaches: simulation-based notions and indistinguishability-
based notions. We then prove that in fact, each simulation-based notion (without
insider protection, with receiver-insider protection, or with full insider protec-
tion) is equivalent to the corresponding indistinguishability-based notion. While
the simulation-based notion more naturally captures the security requirements
we want to express, the indistinguishability-based notions are often easier to
work with in proofs.

Remark 1 (NIAR/NIAS requires no network-layer anonymity protection). We
point out that whenever a NIAR or NIAS scheme is deployed, one advantage
is that we would no longer need any network-layer anonymity protection (e.g.,

2 Here, ∗ denotes a wildcard; thus the corrupt-to-∗ part of the permutation includes
who every corrupt sender is speaking with.
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Tor [42] or DC nets [35]). This is in contrast to a vast line of works that lever-
age cryptographic techniques such as zero-knowledge proofs for anonymity pro-
tection, e.g., E-Cash [32, 33], e-voting [10, 62], anonymous credentials [14, 20],
ZCash [21], and others [53, 54] — in these cases, an Internet Service Provider
controlling the network routers can completely break anonymity despite the
cryptographic techniques employed.

1.3 Our Results

Main Construction: NIAR with Receiver-Insider Protection and NIAS
To situate our results in context, it helps to first think of the following näıve
construction based on a virtual-blackbox (VBB) obfuscator. During setup, we
publish the public key pk of a public-key encryption (PKE) scheme, and more-
over, we give each sender-receiver pair a symmetric encryption key. During each
routing step, each sender uses its symmetric key to encrypt its respective mes-
sage, resulting what we henceforth call an inner ciphertext. The sender then
encrypts the inner ciphertext with the public key encryption scheme, resulting
in an outer ciphertext. During the setup, we give the router a VBB obfuscation of
the following program: use the PKE’s secret key to decrypt each sender’s outer
ciphertext, obtain a list of n inner ciphertexts, and then apply the permutation
π to the n inner ciphertexts and output the result. Now, during each routing
step, the router can simply apply its VBB obfuscated program to the list of
n outer ciphertexts collected from the senders, and the result would be n per-
muted inner ciphertexts. The i-th inner ciphertext is then forwarded to the i-th
receiver where i ∈ [n]. Note that in this VBB-based solution, the program obfus-
cation hides the secret key of the PKE scheme as well as the secret permutation
π. One can verify that indeed, this VBB-based construction satisfies security
with receiver-insider protection; but it does not provide full insider protection.
Specifically, a corrupt sender i∗ ∈ [n] colluding with the router can simply plant
a random inner ciphertext c, and see which of the receivers receives c at the end
— this must be the receiver i∗ is speaking with3.

The drawback with this näıve solution is obvious: it is well-known that VBB
obfuscation is impossible to attain for general functions if one-way functions
exist [17]. We therefore ask,

Can we construct a NIAR scheme from standard cryptographic assumptions?

We construct a NIAR scheme that achieves security with receiver-insider pro-
tection, relying on the Decisional Linear assumption in suitable bilinear groups.
Our scheme satisfies communication efficiency: in each time step, each player
sends or receives only poly(κ) bits of data (assuming, without loss of generality,
that each sender wants to send one bit during each time step). Furthermore, the

3 In general, achieving full insider security appears much more challenging than our
basic notion or receiver-only insider protection. Indeed, we will discuss this in further
detail later on.

6



public and secret key sizes are poly(n, κ); and yet the scheme can support an
unbounded number of time steps.

At a high level, in our construction, each sender creates an inner encryption
of its message using a symmetric key shared with its receiver, and then encrypts
the inner ciphertext again using a special outer encryption scheme. With an
appropriately constructed token, the router can output a permuted list of inner
ciphertexts. We state the aforementioned result in the following theorem:

Theorem 1 (NIAR with receiver-insider protection). Assume that the
Decisional Linear assumption holds in certain bilinear groups. Then, there exists
a NIAR scheme with receiver-insider protection, where the public key and secret
key sizes are at most poly(n, κ) bits, and the per-player communication cost in
each routing step is only poly(κ) assuming that each sender has one bit to send
per time step. Further, the scheme supports an unbounded number of time steps.

The above theorem also implies a NIAS scheme with the same performance
bounds. Although our work should primarily be viewed as an initial exploration
of NIAR, the constructions that led to Theorem 1 is potentially implementable.

NIAR with Full Insider Protection The receiver-insider protection achieved
by Theorem 1 is sufficient for most application scenarios including NIAS. Nonethe-
less, it is interesting to ask whether one can achieve full insider protection. As
mentioned, full insider protection is the strongest security notion one can hope
for in the context of NIAR, since here we leak only the inevitable. Achieving full
insider security, however, appears much more challenging. The reason is that
we do not even want a corrupt sender to learn which honest receiver it is talk-
ing to. However, in our schemes so far (even the aforementioned VBB-based
construction), a corrupt sender i∗ ∈ [n] colluding with the router can choose a
random inner ciphertext c and just check which receiver receives c. In this way,
the adversary can learn the corrupt-to-∗ part of the permutation π.

Again, it is instructive to first consider how to achieve full insider protection
using VBB obfuscation. To achieve such paranoid security, one way is to modify
the previous VBB-based scheme such that inside the VBB, we decrypt the n
input ciphertexts, permute them, and then reencrypt them under the receivers’
keys, respectively. To defeat the aforementioned attack, it is important that
the reencryption step produces random transformed ciphertexts. In fact, one
useful insight we can draw here is that for any scheme that provides full insider
protection, if the adversary controlling a corrupt sender ĩ ∈ [n] switches ĩ’s input
ciphertext, the transformed ciphertexts corresponding to all receivers output by
the Rte procedure must all change.

We show how to achieve full insider protection by additionally relying on
sub-exponentially secure indistinguishability obfuscation and sub-exponentially
secure one-way functions.

Theorem 2 (NIAR with full insider protection). Assume the existence of
sub-exponentially secure indistinguishability obfuscator, sub-exponentially secure
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one-way functions, and that the Decisional Linear assumption (with standard
polynomial security) holds in certain bilinear groups. Then, there exists a NIAR
scheme with full insider protection, and whose key sizes and communication cost
match those of Theorem 1.

Notably, a flurry of very recent works [27,47,56,73] show that sub-exponentially
secure indistinguishability obfuscator can be constructed under a variety of as-
sumptions some of which are considered well-founded.

Extension: Fault-Tolerant NIAR Similar to the line of work on Multi-Client
Functional Encryption (MCFE) [2, 37, 37, 51, 66], a drawback with the present
formulation is that a single crashed sender can hamper liveness. Basically, the
router must collect ciphertexts from all senders in each time step to successfully
evaluate the Rte procedure. To the best of our knowledge, fault tolerance has
been little investigated in this line of work.

We therefore formulate a variation of our basic NIAR abstraction, called
fault-tolerant NIAR. In a fault-tolerant NIAR, if a subset of the senders have
crashed, the remaining set of senders can encrypt their messages in a way that
is aware of the set of senders who are known to be still online (henceforth de-
noted O). Similarly, the router will perform the Rte procedure in a way that
is aware of O, too. In this way, the router can continue to perform the rout-
ing, without being stalled by the crashed senders. Similar to our basic notion,
we define receiver-insider protection and full-insider protection for our fault-
tolerant NIAR abstraction, and show that the most natural simulation-based
and indistinguishability-based notions are equivalent.

We show that our previous NIAR constructions of Theorem 1 and Theorem 2
can be extended to the fault-tolerant setting, and the result is stated in the
following theorem.

Theorem 3 (Informal: fault-tolerant NIAR). Suppose that the Decisional
Linear assumption holds in suitable bilinear groups. Then, there exists a fault-
tolerant NIAR scheme that leaks only the (corrupt+crashed)-to-∗ part of the
permutation as well as messages received by corrupt receivers, but nothing else
(see the the online full version [68] for formal security definitions).

Suppose that the Decisional Linear assumption (with standard polynomial
security) holds in suitable bilinear groups, and assume the existence of sub-
exponentially secure indistinguishability obfuscation and one-way functions. Then,
there there exists a fault-tolerant NIAR scheme that leaks only the inherent leak-
age, that is, the (corrupt+crashed)-to-corrupt part of the permutation as well as
messages received by corrupt receivers, but nothing else (see the the online full
version [68] for formal security definitions).

Furthermore, both schemes achieve the same key sizes and communication
efficiency as in Theorem 1.
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1.4 Applications of NIAR and NIAS

NIAR adds to the existing suite of primitives [8,18,34,35,38,39,42,50,70,71,74]
that enable anonymous routing. In comparison with prior works, NIAR adopts a
different trust model since it does not rely on threshold cryptography. Arguably
it also has a somewhat simpler abstraction than most existing primitives, partly
due to the non-interactive nature.

We discuss two flavors of applications for NIAR, including 1) using NIAR in
private messaging, which is the more classical type of application; and 2) using
NIAR as a non-interactive anonymous shuffler (NIAS). We will use these appli-
cations to motivate the need for the different security notions, without insider
protection, with receiver-insider protection, or with full insider protection. We
shall begin with NIAS-type applications since some of these applications are of
emerging interest.

Using NIAR as a Non-Interactive Anonymous Shuffler NIAR can serve
as a non-interactive anonymous shuffler (NIAS), which shuffles n senders’ mes-
sages in a non-interactive manner, such that the messages become unlinkable to
their senders. This allows the senders to publish messages under a pseudonym,
and the pseudonymity does not have to rely on the network layer being anony-
mous. In a non-interactive shuffler type of application, typically a single entity
acts as the router and all n receiver — therefore, typically these applications re-
quire receiver-insider protection. To understand what is a non-interactive anony-
mous shuffler, it is most instructive to look at some example applications.

Anonymous bulletin board or forum. Imagine that a group of users want to post
messages pseudonymously to a website every day, e.g., to discuss some sensitive
issues. The users act as the NIAR senders and encrypt their messages every day.
The server, which acts as both the router and all the receivers in NIAR, decrypts
a permuted list of the messages and posts them on the website. In this way,
the untrusted server can mix the n senders’ messages, and the pseudonymity
guarantee need not rely on additional network-layer anonymity protection. In
other words, even a powerful attacker controlling all routers in the world as well
as the server cannot break the pseudonymity guarantees.

Since the server takes the role of the router and all n receivers, we would
need a NIAR scheme that provides receiver-insider protection. This way, even
when all the receivers are in the control of the adversary, the adversary cannot
deanonymize honest senders.

Distributed differential privacy in the shuffle model. There has been a growing
appetite for large-scale, privacy-preserving federated learning, especially due to
interest and investment from big players such as Google and Facebook. Unlike
the classical “central model” where we have a trusted database curator [43], in
a federated learning scenario, the data collector is not trusted, and yet it wants
to learn interesting statistics and patterns over data collected by multiple users’
mobile phones, web browsers, and so on. This model is often referred to the
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“local model”. It is understood that without any additional assumptions and
without cryptographic hardness, mechanisms in the local model incur a utility
loss [19, 31, 67] that is significantly worse than the central model (given a fixed
privacy budget).

Recently, an elegant line of work [15, 16, 23, 36, 45, 49] emerged, and showed
that if there exists a shuffler that randomly shuffles the users’ input data, then we
can design (information-theoretic) distributed differential privacy mechanisms
that are often competitive to the central model. This is commonly referred to as
the “shuffle model”.

NIAR can be potentially employed to implement a shuffler for the shuffle
model. In particular, it is suited for a setting like Google’s RAPPOR project [46],
where data was repeatedly collected from the users’ Chrome browsers on a daily
basis. In this scenario, the data collector acts as the NIAR router and all the
receivers too; therefore, we also need the NIAR scheme to satisfy receiver-insider
protection. Again, we do not need network-level anonymity protection.

Privacy-preserving “daily check” during a pandemic. This application was de-
scribed earlier in this section. We additionally point out an interesting variation
of the same application: we can create the inner layer of encryption using not
symmetric-key encryption, but rather, a predicate encryption scheme [7, 25, 26,
52, 61, 65]. In this way, a data analyst can be granted special tokens that would
permit her to decrypt the data, only if some predicate is satisfied over the user’s
encrypted daily report (e.g., the user has come in contact with an infected person
and needs to be quarantined).

Pseudonymous survey systems. Another application is to build a pseudonymous
survey system. For example, we can allow students to pseudonymously and reg-
ularly post course feedback to an instructor throughout the semester, or ask
questions that they would otherwise feel embarrassed to ask. We can also cre-
ate periodic surveys and allow members of an underrepresented minority group
to pseudonymously report if they have been the victims of discrimination or
harassment. Similar applications have been considered and implemented in the
past [10, 54]. However, in such existing mechanisms [10, 54], the cryptographic
protection alone is insufficient, and one must additionally rely on the network
layer to be anonymous too. By contrast, with NIAR, we no longer need the
network layer to provide anonymity protection.

Other applications. Besides these aforementioned applications, it is also known
that a shuffler can lend to the design of light-weight multi-party computation
(MPC) protocols [55].

Private Messaging NIAR can also be used to enable private messaging, which
is the more traditional application of anonymous routing. We give a few scenarios
to motivate the different security requirements.

In the first scenario, we may imagine that members of a secret society wish to
send private messages or emails to one another without identified. To do so, pairs
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of members that wish to communicate regularly can join a NIAR group. In this
scenario, each pair of communicating parties know each other’s identities, and
therefore we only need the basic security notion, i.e., without insider protection.

Another application is to build an anonymous mentor-mentee system, or an
anonymous buddy or mutual-support system. For example, some scientists have
relied on Slack to provide such functionalities [1], where members can anony-
mously post questions, and others can anonymously provide advice. Currently,
the anonymity guarantee is provided solely by the Slack server. However, one
can easily imagine scenarios where trusting a centralized party for anonymity is
undesirable. In these cases, we can rely on NIAR to build an anonymous buddy
system. Each pair of buddies can regularly engage in conversations to provide
mutual support, and the untrusted router (e.g., Slack) cannot learn the communi-
cation pattern or the messages being exchanged. Like the earlier mentor-mentee
scenario, the buddies themselves may not wish to reveal their identities to each
other. Therefore, in this scenario, we would need the NIAR scheme to provide
full insider protection.

1.5 Open Questions

Partly, our work makes a conceptual contribution since we are the first to define
the NIAR and NIAS abstractions. Our work should be viewed as an initial explo-
ration of these natural abstractions, inspired by a fundamental and long-standing
online privacy problem. Many open questions arise given our new abstractions,
and our work lays the groundwork for further exploring exciting future direc-
tions. We present a list of open questions in the the online full version [68].

1.6 Technical Highlight

Why existing approaches fail. A first strawman attempt is to rely on a
Multi-Client Functional Encryption (MCFE) scheme for inner products, also
known as Multi-Client Inner-Product Encryption (MCIPE) [2, 4, 37, 51]. In a
Multi-Client Inner-Product Encryption scheme, each of the n clients obtains a
secret encryption key during a setup phase. During every time step t, each client
i uses its secret encryption key to encrypt a message xi,t — henceforth the i-th
ciphertext is denoted cti,t for i ∈ [n], and moreover, let xt := (x1,t, . . . , xn,t).
An authority with a master secret key can generate a functional key sky for a
vector y whose length is also n. Given the collection of ciphertexts {cti,t}i∈[n]

and the functional key sky, one can evaluate the function 〈xt,y〉 of the encrypted
plaintexts but nothing else is revealed.

Our idea is to express the permutation π as n selection vectors, and each is
used to select what one receiver would receive from the vector of input messages.
The router receives one functional key for each selection vector. A selection vector
y has exactly one coordinate that is set to 1, whereas all other coordinates are set
to 0. In this way, the inner product of xt and y selects exactly one coordinate of
xt. In our NIAR construction, the input messages xt to the MCFE-for-selection
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scheme will be inner ciphertexts encrypted under keys shared between each pair
of sender and receiver, such that the router cannot see to the plaintext message.

At first sight, an MCFE scheme for inner products may seem like a good
match for our problem, but upon more careful examination, all known MCFE
schemes, including those based on program obfuscation, fail in our context. To
the best of our knowledge, all existing MCFE schemes (for evaluating any func-
tion, not just inner products) are NOT function-hiding. In our context, this
means that the functional key sky is allowed to reveal the selection vector y.
This unfortunately means that the token could leak the routing permutation
π and thus violate anonymity. Not only so, in fact, it appears that no prior
work has attempted to define or construct function-hiding MCFE [2,4,37,57,66],
likely because we currently lack techniques to get function privacy for MCFE
schemes, even allowing RO and program obfuscation [51]. The known techniques
for upgrading Functional Encryption and Multi-Input Functional Encryption to
have function privacy [5,22,58,59,63] do not apply to MCFE, because they are
fundamentally incompatible with the scenario where some clients can be corrupt.

Finally, we point out that a related line of work called Multi-Input Inner-
Product Encryption [5,6,28,51] also fails to solve our problem, because its secu-
rity definition is too permissive: specifically, mix-and-matching ciphertexts from
multiple time steps is allowed during evaluation, and this could be exploited by
an adversary to break anonymity in our context.

Key insights and roadmap. We are the first to define function-hiding MCFE,
and demonstrate a construction for a meaningful functionality, i.e., selection.
Selection is a special case of inner product computation, and is structurally
simpler than inner product. Leveraging this structural simplicity, we develop
new construction and proof techniques that allow us to prove function-hiding
security even when some of the clients can be corrupted. We use the resulting
“function-hiding MCFE for selection” as a core building block to realize NIAR.

At a very high level, the structural simplicity of selection helps us in the
following way. First, in a more general MCIPE scheme, even without function
privacy, one must prevent mix-and-match attacks — in other words, the ad-
versary should not be able to take clients’ ciphertext from different time steps
and combine them in the same inner-product evaluation. When it comes to the
special case of selection, however, we can defer the handling of such mix-and-
match attacks. Specifically, if we were not concerned about function privacy, then
mix-and-match attacks turned out to be a non-issue in an MCFE-for-selection
scheme. With this observation, we first construct a conceptually simple MCFE-
for-selection scheme without function privacy. Essentially, the construction runs
n independent instances of semantically secure public-key encryption (PKE), one
for each client. The functional key for selecting one client’s plaintext is simply
the corresponding PKE’s secret key.

Next, we perform a function-privacy upgrade — during this function-privacy
upgrade, we do need to take care and prevent the aforementioned mix-and-match
attacks. The function-privacy upgrade is technically much more involved, and
we will give an informal overview in Section 3. What lends to the function-
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privacy upgrade is the fact that the underlying MCFE scheme (without function
privacy) is essentially “decomposable” into n independent components. This
is an important reason why we can accomplish the function privacy upgrade
even when some of the clients can be corrupted. In comparison, prior MCFE
schemes for general inner-products [2, 4, 37] need more structurally complicated
techniques to prevent mix-and-match, even without function privacy. For this
reason, our techniques in the current form are not capable of getting a function-
private MCFE scheme for general inner-products — this remains a challenging
open question.

Once we construct a function-hiding MCFE-for-selection scheme, we then
use it to construct two NIAR schemes: one with receiver-insider protection, and
one with full insider protection. The scheme with receiver-insider protection can
be constructed without introducing additional assumptions — and this notion
of security suffices for most applications including NIAS. As explained in Sec-
tion 1.3, full insider protection seems much more challenging and a natural class
of approaches fail. To get a paranoid construction with full insider protection,
we additionally rely on sub-exponentially secure indistinguishability obfuscation
and sub-exponentially one-way functions.

2 New Definitions: Non-Interactive Anonymous Router

We now define the syntax and security requirements of NIAR. Since our ap-
proach relies on a single untrusted router and is non-interactive, both the syntax
and security definitions are incomparable to the formal definitions of anonymous
routing in prior works, all of which involve multiple routers and interactive pro-
tocols [13,29,41].

2.1 Syntax

Suppose that there are n senders and n receivers, and each sender wants to talk
to a distinct receiver. They would like to route their messages anonymously to
hide who is talking to who. The routing is performed by a single router non-
interactively.

Let Perm([n]) denote the set of all permutations on the set [n]. Let π ∈
Perm([n]) be a permutation that represents the mapping between the sender
and the receivers. For example, π(1) = 3 means that sender 1 wants to talk to
receiver 3.

A Non-Interactive Anonymous Router (NIAR) is a cryptographic scheme
consisting of the following, possibly randomized algorithms:

– ({eki}i∈[n], {rki}i∈[n], tk) ← Setup(1κ, n, π): the trusted Setup algorithm
takes the security parameter 1κ, the number of senders/receivers n, and a
permuation π ∈ Perm([n]) that represents the mapping between the senders
and the receivers. The Setup algorithm outputs a sender key for each sender
denoted {eki}i∈[n], a receiver key for each receiver denoted {rki}i∈[n], and a
token for the router denoted tk.
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– cti,t ← Enc(eki, xi,t, t): sender i uses its sender key eki to encrypt the message
xi,t where t ∈ N denotes the current time step. The Enc algorithm produces
a ciphertext cti,t.

– (ct′1,t, ct
′
2,t, . . . , ct

′
n,t) ← Rte(tk, ct1,t, ct2,t, . . . , ctn,t): the routing algorithm

Rte takes its token tk (which encodes some permutation π), and n cipher-
texts received from the n senders denoted ct1,t, ct2,t, . . . , ctn,t, and produces
transformed ciphertexts ct′1,t, ct

′
2,t, . . . , ct

′
n,t where ct′i,t is destined for the re-

ceiver i ∈ [n].

– x← Dec(rki, ct
′
i,t): the decryption algorithm Dec takes a receiver key rki, a

transformed ciphertext ct′i,t, and outputs a decrypted message x.

In our formulation above, the permutation π is known a-priori at Setup time.
Once Setup has been run, the senders can communicate with the receivers over
multiple time steps t.

Correctness. Without loss of generality, we may assume that each plaintext
message is a single bit — if the plaintext contains multiple bits, we can always
split it bit by bit and encrypt it over multiple time steps. Correctness requires
that with probability 1, the following holds for any κ ∈ N, any (x1, x2, . . ., xn) ∈
{0, 1}n and any t ∈ N: let ({eki}i∈[n], {rki}i∈[n], tk)← Setup(1κ, n, π), let cti,t ←
Enc(eki, xi, t) for i ∈ [n], let (ct′1,t, ct

′
2,t, . . . , ct

′
n,t)← Rte(tk, ct1,t, ct2,t, . . . , ctn,t),

and let x′i ← Dec(rki, ct
′
i,t) for i ∈ [n]; it must be that

x′π(i) = xi for every i ∈ [n].

Communication compactness. We require our NIAR scheme to have compact
communication, that is, the total communication cost per time step should be
upper bounded by poly(κ) ·O(n). Furthermore, we would like that the token tk,
and every sender and receiver’s secret key eki and rki respectively, are all upper
bounded by a fixed polynomial in n.

2.2 Simulation-Based Security

We consider static corruption where the set of corrupt players are chosen prior
to the Setup algorithm.

Real-world experiment RealA(1κ). The real-world experiment is described
below where KS ⊆ [n] denotes the set of corrupt senders, and KR ⊆ [n] denotes
the set of corrupt receivers. Let HS = [n] \ KS be the set of honest senders and
HR = [n] \ KR be the set of honest receivers. Let A be a stateful adversary:

– n, π,KS ,KR ← A(1κ)

– ({eki}i∈[n], {rki}i∈[n], tk)← Setup(1κ, n, π)

– For t = 1, 2, . . .:
• if t = 1 then {xi,t}i∈HS

← A(tk, {eki}i∈KS
, {rki}i∈KR

); else {xi,t}i∈HS
←

A({cti,t−1}i∈HS
);

• for i ∈ HS , cti,t ← Enc(eki, xi,t, t)
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Ideal-world experiment IdealA,Sim(1κ). The ideal-world experiment involves
not just A, but also a p.p.t. (stateful) simulator denoted Sim, who is in charge of
simulating A’s view knowing essentially only what corrupt senders and receivers
know. Further, the IdealA,Sim(1κ) experiment is parametrized by a leakage func-
tion denoted Leak to be defined later. Henceforth for C ⊆ [n], we use π(C) to
denote the set {π(i) : i ∈ C}.

– n, π,KS ,KR ← A(1κ)

– ({eki}i∈[n], {rki}i∈[n], tk)← Sim(1κ, n,KS ,KR, Leak(π,KS ,KR))

– For t = 1, 2, . . .:
• if t = 1 then {xi,t}i∈HS

← A(tk, {eki}i∈KS
, {rki}i∈KR

); else {xi,t}i∈HS
←

A({cti,t−1}i∈HS
);

• {cti,t}i∈HS
← Sim

(
{∀i ∈ KR ∩ π(HS) : (i, xj,t) for j = π−1(i)}

)
. In other

words, the simulator Sim is allowed to see for each corrupt receiver talking
to an honest sender, what message it receives.

Defining the insider information Leak(π,KS ,KR) known to corrupt play-
ers. We require that when no sender or receiver is corrupt, the adversary should
not learn anything about the routing permutation π. When some senders and
receivers are corrupt, the adversary may learn the insider information about π
known to the corrupt players, but nothing else. We use the function Leak(π,KS ,KR)
to describe the insider information known to corrupt senders and receivers about
the routing permutation π. We define three natural notions of insider informa-
tion:

1. Every player knows who it is talking to. The first natural notion is to assume
that each sender or receiver knows whom the player itself is talking to, but
it is not aware who others are talking to. By corrupting some senders and
receivers, the adversary should not learn more about the routing permutation
π beyond what the corrupt senders and receivers know. In other words, the
part of the permutation π containing “corrupt → ∗” and “∗ → corrupt” is
leaked. More formally, we can define leakage as below:

LeakSR(π,KS ,KR) := {∀i ∈ KS : (i, π(i))} ∪ {∀i ∈ KR : (π−1(i), i)}

2. Every sender knows who it is talking to. Another natural notion is when a
sender knows which receiver it is talking to, but a receiver may not know
who it is receiving from. By corrupting a subset of the senders and receivers,
the adversary should not learn more than what those corrupt players know.
In other words, the “corrupt → ∗” part of the permutation π is leaked. More
formally, we can formally define leakage as below:

LeakS(π,KS ,KR) := {∀i ∈ KS : (i, π(i))}

3. Inherent leakage. The least possible leakage is when only the “corrupt →
corrupt” part of the permutation π is leaked. Note that this leakage is inherent
because a corrupt sender can always encrypt multiple random messages in
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the same time slot, and observe whether any corrupt receiver received this
message. In the minimum, inherent leakage scenario, we require that only
this is leaked about the permutation π and nothing else. More formally, we
can formally define leakage as below:

Leakmin(π,KS ,KR) := {∀i ∈ KS ∩ π−1(KR) : (i, π(i))}

Remark 2. Note that even in the minimum, inherent leakage scenario, knowing
the leaked information Leakmin(π,KS ,KR) := {∀i ∈ KS ∩π−1(KR) : (i, π(i))} as
well as KR, one can efficiently compute the set KR∩π(HS). Therefore, during the
encryption phase, by learning {∀i ∈ KR ∩ π(HS) : (i, xj) for j = π−1(i)}, i.e.,
the set of leaked messages received by corrupt receivers from honest senders,
the simulator Sim does not learn anything extra about the routing permu-
tation π beyond what it already learned earlier in the experiment, that is,
Leakmin(π,KS ,KR).

Definition 1 (NIAR simulation security). We define simulation security
of a NIAR scheme as below depending on which leakage function is used in the
IdealA,Sim experiment:

1. We say that a Non-Interactive Anonymous Routing (NIAR) scheme is SIM-
secure iff the following holds when using Leak := LeakSR in the IdealA,Sim

experiment: there exists a p.p.t. simulator Sim such that for any non-uniform
p.p.t. adversary A, A’s view in RealA(1κ) and IdealA,Sim(1κ) are computa-
tionally indistinguishable.

2. We say that a NIAR scheme is SIM-secure with receiver-insider protection,
iff the above holds when using Leak := LeakS in the IdealA,Sim experiment.

3. We say that a NIAR scheme is SIM-secure with full insider protection, iff
the above holds when using Leak := Leakmin in the IdealA,Sim experiment.

2.3 Equivalence to Indistinguishability-Based Security

In our online full version [68], we define an alternative, indistinguishability-based
security notion, and prove that it is equivalent to the simulation-based notion.

3 Informal Overview of Our Construction

We now give an informal overview of our constructions.

3.1 Notations and Building Block

We will concretely instantiate a scheme using a cyclic group G of prime order q.
Therefore, we introduce some notations for group elements and group operations.
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Group notation and implicit notation for group exponentiation. Throughout the
paper, we use the notation JxK to denote a group element gx ∈ G where g ∈ G
is the generator of an appropriate cyclic group of prime order q where x ∈ Zq.
Similarly, JxK denotes a vector of group elements where x ∈ Z|x|q is the exponent
vector. If we know JxK ∈ G and y ∈ Zp, we can compute JxyK ∈ G. Therefore,
whenever an algorithm needs to compute JxyK, it only needs to know one of the
exponents x or y. The same implicit notation is used for vectors too.

Correlated pseudorandom functions. We will need a building block which we
call a correlated pseudorandom function, denoted CPRF. A CPRF scheme has
the following possibly randomized algorithms:

– (K1,K2, . . . ,Kn) ← Gen(1κ, n, q): takes a security parameter 1κ and the
number of users n, some prime q, and outputs the user secret key Ki for each
i ∈ [n].

– v ← Eval(Ki, x): given a user secret key Ki and an input x ∈ {0, 1}κ, output
an evaluation result v ∈ Zq.

For correctness, we require that the following always holds if {Ki}i∈[n] is in
the support of Gen(1κ, n, q):∑

i∈[n]

CPRF.Eval(Ki, x) = 0 mod q (1)

For security, we require that even when a subset of the keys K ⊂ [n] can be
corrupted by the adversary, it must be that for every fresh x, all honest eval-
uations {CPRF.Eval(Ki, x)i/∈K} are computationally indistinguishable from ran-
dom terms subject to the constraint

∑
i/∈K CPRF.Eval(Ki, x) = −

∑
i∈K CPRF.Eval(Ki, x)

mod q — note that the adversary can compute the right-hand-side of the equa-
tion.

Intuitively, such a correlated PRF guarantees that even when some players’
keys can be corrupt, honest players’ evaluations for any fresh input x must
appear random, except that they are subject to the constraint in Equation 1. A
couple earlier works [2,24] showed how to construct such a CPRF from ordinary
PRFs. We will present more formal definitions and construction in the the online
full version [68].

3.2 A Simple, Function-Revealing MCFE Scheme for Selection

Multi-client functional encryption for summation was first suggested by Shi et
al. [66] (coined “private stream aggregation” in their paper). Later, Goldwasser
et al. [51] defined multi-client functional encryption for general functions, and
constructed a scheme assuming indistinguishable obfuscation, random oracles,
and other assumptions. Subsequently, a line of work focused on constructing
MCFE schemes for inner-products.

We consider MCFE for “selection”, which can be viewed as a special case
of inner-product computation. An MCFE-for-selection scheme has four possibly
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randomized algorithms (Setup, KGen, Enc, Dec) — in our definition below,
we allow each client to encrypt a vector xi,t ∈ {0, 1}m of length m, and the
selection vector y ∈ {0, 1}mn selects exactly one coordinate from one client’s
plaintext vector4:

– The Setup(1κ,m, n) algorithm5 outputs a secret key for each of the n clients
where the i-th client’s key is denoted eki, and a master public- and secret-key
pair (mpk,msk).

– The KGen(mpk,msk,y) algorithm takes the master public-key mpk and the
master secret-key msk, and outputs a functional key sky for the selection
vector y ∈ {0, 1}mn. It is promised that the input y has only one coordinate
set to 1, and the rest are set to 0.

– The Enc(mpk, eki,xi,t, t) algorithm lets client i ∈ [n] use its secret key eki to
encrypt a plaintext xi,t ∈ {0, 1}m for the time step t.

– Finally, given the n ciphertexts ct1, . . . , ctn collected from all clients pertain-
ing to the same time step, as well as the functional key sky, one can call
Dec(mpk, sky, {cti}i∈[n]) to evaluate the selection outcome 〈x,y〉 where x
denotes the concatenation of the plaintexts encrypted under ct1, . . . , ctn.

If we did not care about function privacy, it turns out that we can construct
a very simple MCFE-for-selection scheme as follows. Basically, for each of the n
clients, there is a separate symmetric-key encryption instance. During Setup,
client i obtains the secret keys ski,1, . . . , ski,m corresponding to m independent
encryption instances. For client i to encrypt a message of m bits during some
time step t, it simply encrypts each bit j ∈ [m] using ski,j , and output the
union of the ciphertexts. To generate a functional key for selection vector y that
selects the j-th coordinate of the client i’s message, simply output (y, ski,j), and
decryption can be completed, i.e., using ski,j to decrypt the coordinate in the
ciphertext that is being selected.

3.3 Preparing the MCFE Scheme for Function Privacy Upgrade

The next challenge is how to upgrade the above MCFE-for-selection scheme to
have function privacy. Function privacy in inner-product functional encryption
(FE) was first studied by Shen, Shi, and Waters [63], who considered single-
input FE and a weaker notion of function privacy than what we will need.
Subsequent works have generalized and improved the techniques of Shen, Shi,
and Waters [63] to achieve stronger notions of function privacy [58], and have
extended the techniques to a multi-input FE context [5].

4 Our scheme can support the case where each coordinate of the plaintext vector xi,t

comes from a polynomially sized space, but we simply assume each coordinate is a
bit for simplicity.

5 In our subsequent formal sections, for notational reasons needed to make our presen-
tation formal, we shall separate the Setup algorithm into a parameter generation
algorithm Gen and a Setup algorithm, respectively.
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Our function privacy upgrade techniques are inspired by these earlier works [5,
58, 63], but we need non-trivial new techniques to make it work in our context.
Specifically, previous function privacy techniques assume the encryptor to be
trusted, and thus they are not directly applicable to the MCFE setting in which
some of the clients may be corrupted, and their secret keys become known to
the adversary.

To enable the function-private upgrade, let us first understand where the
above MCFE-for-selection scheme in Section 3.2 leaks information about the
selection vector y. First, the scheme blantantly embeds the selection vector y
in cleartext in the functional key sky. Second, the decryption process itself also
reveals y because decryption works on only the coordinate being selected. To
fix the above problems, we would like to first modify the idea in Section 3.2 to
satisfy the following two requirements:

1. We change the decryption process such that decryption involves all coordi-
nates, and not just the coordinate being selected.

2. Further, we want to randomize the partial decryption outcome corresponding
to every client such that from the partial decryptions alone, one cannot tell
which coordinate is being selected.

We can instantiate an MCFE-for-selection scheme satisfying the above re-
quirements in a cyclic group G of prime order q. The resulting scheme is still
function-revealing — at this point, we have merely “prepared” the scheme for the
function privacy upgrade described later in Section 3.4. We describe this scheme
below where we use CPRF(Ki, t) as an abbreviation for CPRF.Eval(Ki, t):

MCFE: function-revealing MCFE for selection, w/ randomized
partial decryptions

mpk = JwK, msk = {Si, ai}i∈[n], eki = (Ki, ai) where each Si ∈ Zm×2
q

Ciphertext for t where each xi,t ∈ {0, 1}m:

∀i ∈ [n] :

(
Jxi,t + SiriK, JriK, JCPRF(Ki, t) + aiwµiK, JwµiK

)
where ri and µi are chosen at random

Functional key for y := (y1, . . . ,yn) where each yi ∈ {0, 1}m:

∀i ∈ [n] :

(
yi, −S>i yi, ρ, −ρai

)
where ρ is chosen at random

Henceforth, we will name Jci,1K := Jxi,t + SiriK, Jci,2K := JriK, and Jc̃K :=

JCPRF(Ki, t) + aiwµi, wµiK. Additionally, let ki,1 := yi, ki,2 := S>i yi, and k̃i :=
(ρ,−ρai).

For the above scheme to be a correct function-revealing MCFE-for-selection,
we only need the first two terms of the ciphertext and functional keys, i.e.,
(Jci,1K, Jci,2K) and (ki,1, ki,2). Essentially, these terms can be viewed as a concrete
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instantiation of the ideas mentioned in Section 3.2: the j-th row of Si is used to
encrypt the j-th coordinate of xi,t; further, to compute a functional key for y
which is selecting the j-th coordinate of the i-th client’s message, simply output y
and the j-th row of Si (which is equal to S>i yi). Security of the encryption follows
from the Decisional Linear assumption. The extra terms in the ciphertexts and
functional keys, denoted c̃i and k̃i are randomizing terms added to satisfy the
aforementioned randomized partial decryption requirement as we explain below.

We now explain how decryption works. Given a ciphertext vector for n all
clients JcK :=

(
(Jc1,1K, Jc1,2K, Jc̃1K), . . . , (Jcn,1K, Jcn,2K, Jc̃nK)

)
, and a key vector

k :=
(
(k1,1, k1,2, k̃1), . . . , (kn,1,kn,2, k̃n)

)
, decryption computes the “inner-

product-in-the-exponent” of the ciphertext vector and the token vector, i.e.,

J〈c,k〉K =
∏
i∈[n]

(
J〈ci,1,ki,1〉K · J〈ci,2,ki,2〉K · J〈c̃i, k̃i〉K

)
.

Finally, we output the discrete logarithm of the above expression as the de-
crypted message6.

The decryption can alternatively be viewed as computing the partial decryp-
tion of each client and then multiplying the partial decryptions together. Hence-
forth, let MCFE.Deci denote the function that computes the partial decryption
corresponding to client i, and let pi,t denote the i-th partial decryption:

pi,t := MCFE.Deci(ski, cti,t) =
(
J〈ci,1,ki,1〉K · J〈ci,2, ci,2〉K · J〈c̃i, k̃i〉K

)
,

and then multiplying all the randomized partially decrypted results. Note that
the partial decryption function MCFE.Deci(ski, cti,t) also evaluates an inner-
product in the exponent. One can verify the following: let xi,t := (xi,1,t, . . . , xi,m,t)
be the plaintext message encrypted under cti,t, we have that

pi,t =

{
JCPRF(Ki, t) · ρK if client i’s vector is not being selected

Jxi,j,t + CPRF(Ki, t) · ρK if the j-th coordinate of the i-th client is being selected

Thus, the above decryption indeed involves all coordinates, and moreover, the
partial decryption results {pi,t}i∈[n] are randomized due to the use of the CPRF.

Remark 3 (Technical condition needed for the function privacy upgrade). Infor-
mally speaking, we want the following (necessary but not sufficient) condition
to hold for our function privacy upgrade to work. Let H ⊆ [n] be the set of
honest clients. Assume that the Decisional Linear assumption holds. We want
that even after having seen the public key, honest ciphertexts in all time steps
other than t, honest ciphertexts in time step t, i.e., {cti,t}i∈H, as well as JρK
for a fresh random ρ ∈ Zq, the terms {JCPRF(Ki, t) · ρK}i∈H must be compu-
tationally indistinguishable from random, except that their product is equal to
some fixed term known to the adversary. This condition is needed in the proof
of a key lemma in the function privacy upgrade proof (see our the online full
version [68]).
6 Note that because decryption involves computing a discrete logarithm, we require

the plaintext space to be small.
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3.4 Function Privacy Upgrade

Since we do not want the functional key to leak the selection vector y, we want to
encrypt the functional key sky; but how can we use the encrypted sky for correct
decryption? Inspired by earlier works [5, 58], our idea is to adopt n instances
(single-input) functional encryption henceforth denoted FE, such that the i-th
client obtains the master secret key of the i-th instance, henceforth denoted mski.
During KGen, we encrypt the the i-th coordinate of sky using the i-th FE, and

let the result be ski. To encrypt its message xi,t, the i-th client first encrypts
xi,t using the MCFE-for-selection scheme and obtains the ciphertext cti,t; then
it calls cti,t := FE.KGen(mski, f

cti,t) to transform cti,t into an FE token for the
function f cti,t(?) := MCFE.Deci(?, cti,t). Recall that MCFE.Deci computes the
MCFE’s partial decryption for the i-th coordinate. In this way, an evaluator can
invoke FE.Dec on the pair cti,t and ski to obtain the i-th partial decryption.

To make this idea work, in fact, we do not even need FE for general circuits.
Recall that in our MCFE-for-selection scheme above, each partial decryption
function MCFE.Deci computes an inner-product in the exponent. We therefore
only need an FE scheme capable of computing an inner-product in the expo-
nent. Several earlier works [3, 12, 72] showed how to construct inner-product
function encryption based on the DDH assumption. By slightly modifying these
constructions, one can construct an FE scheme for evaluating “inner-product-
in-the-exponent” as long as the Decisional Linear assumption holds in certain
bilinear groups. For completeness, we shall present this special FE scheme for
computing “inner-product-in-the-exponent” in the the online full version [68].

From weak to full function privacy. Although intuitively, the above idea
seems like it should work, it turns out for technical reasons, we can only prove
that it satisfies a weak form of function privacy henceforth called weak function
hiding. We defer its detailed technical definition to the the online full version [68].
Fortunately, we can borrow a two-slot trick from various prior works on Func-
tional Encryption [5, 22, 63] and Indistinguishability Obfuscation [58, 59], and
upgrade a weakly function-hiding MCFE-for-selection scheme to a fully function-
hiding one. At a very high level, to achieve this, instead of having each client
i ∈ [n] encrypt its plaintext xi ∈ {0, 1}m, we have each client i encrypt the
expanded vector (xi,0) instead where 0 is also of length m. Similarly, the selec-
tion vector’s length will need to be doubled accordingly too, i.e., to compute a
functional key for y = (y1, . . . ,yn) where each yi ∈ {0, 1}m, we instead compute
a functional key for the expanded vector ((y1,0), . . . , (yn,0)).

By expanding the plaintext and selection vectors, we gain some spare slots
which can serve as “wiggle room” during our security proofs. This way, in our
security proofs, we can make incremental modifications in every step of the
hybrid sequence and make progress with the proof.

Our exposition above is geared towards understandability and is sometimes
informal. The actual details and proofs are somewhat more involved and we refer
the reader to the the online full version [68] for a formal exposition.

Summarizing the above, we can construct an MCFE-for-selection scheme
with (full) function privacy, henceforth denoted MCFEffh, presented more for-
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mally below. In the description below, MCFE is the aforementioned function-
revealing MCFE for selection, augmented to have randomized partial decryp-
tions; FE is a single-input functional encryption scheme for computing inner-
products in exponents, formally defined in the the online full version [68].

MCFEffh: function-hiding MCFE for selection

– Gen(1κ): Sample a suitable prime q, and generate a suitable bilinear
group of order q, with the pairing function e : G1 × G2 → GT . Let
H : {0, 1}∗ → G1 be a random oracle. The public parameter pp contains
the prime q, and the description of the bilinear group; the parameters pp′

contains a description of G1, its order q, and a description of H.

– Setup(pp,m, n): Call (mpk′,msk′, {ek′i}i∈[n])← MCFE.Setup(pp′, 2m,n).
For i ∈ [n], call (mpki, mski) ← FE.Setup(pp, 2m+ 2). Output:

mpk := (pp,mpk′, {mpki}i∈[n]), msk := (msk′, {mski, eki}i∈[n]),

∀i ∈ [n] : eki := (mski, ek
′
i)

– Enc(mpk, eki,x, t):
1. Let ct := MCFE.Enc(mpk′, ek′i, (x,0), t) ∈ G2m+2

1 .

2. Let ct := FE.KGen(mski, ct).

3. Output CT := (ct, ct).

– KGen(mpk,msk,y):
1. Parse y := (y1, . . . ,yn) where each yi ∈ {0, 1}m.

2. Let ỹ = ((y1,0), . . . , (yn,0)) ∈ {0, 1}2mn.

3. Call (k1, . . . ,kn) := MCFE.KGen(mpk′, msk′, ỹ) where each ki ∈
Z2m+2
q for i ∈ [n].

4. For i ∈ [n], call ki := FE.Enc(mpki,ki).

5. Output sky := (k1, . . . ,kn).

– Dec(mpk, sky, {CTi}i∈[n]): Parse each CTi := (cti, cti). Parse sky :=

(k1, . . . ,kn). For i ∈ [n], call vi := FE.Dec(cti, cti,ki). Output log(
∏n
i=1 vi).

Our MCFEffh scheme will be at the core of both our NIAR schemes, the one
with receiver-insider protection, and the one with full insider protection.

Proof roadmap for MCFEffh. To prove our MCFEffh scheme secure, a critical
stepping stone is to prove that it satisfies a weak notion of function privacy —
afterwards we can rely on known techniques [5, 22, 58, 59] to prove full function
privacy. Roughly speaking, we say that an MCFE scheme for selection satisfies
weak function privacy iff no p.p.t.admissible adversary A can distinguish two
worlds indexed by b ∈ {0, 1}. In world b:

– the adversary A first specifies a set of corrupt clients, and obtains the public
parameters as well as secret keys for corrupt clients;

– the adversary A now submits multiple KGen queries, each time specifying
y(0) and y(1); and the challenger computes and returns tokens for y(b);
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– then A makes Enc queries for each time step t by specifying {x(0)
i,t }i∈H and

{x(1)
i,t }i∈H where H ⊆ [n] denotes the set of honest clients; and the challenger

computes and returns encryptions for {x(b)
i,t }i∈H.

Moreover, an admissible adversary A must respect the following constraints:

1. for i ∈ [n]\H, y
(0)
i = y

(1)
i .

2. for any {x(0)
i,t ,x

(1)
i,t }i∈H submitted in an Enc query,〈

(x
(0)
i,t )i∈H, (y

(0)
i )i∈H

〉
=
〈

(x
(1)
i,t )i∈H, (y

(0)
i )i∈H

〉
=
〈

(x
(1)
i,t )i∈H, (y

(1)
i )i∈H

〉
In our proof, we start from world 0, and through a sequence of hybrids,

we switch to world 1; and every adjacent pair of hybrids are computationally
indistinguishable. First, we use the function-revealing privacy of the underlying

MCFE scheme to switch the encrypted vectors from {x(0)
i,t }i∈H to {x(1)

i,t }i∈H —
this step is possible due to the aforementioned admissibility rule A must respect.
Next, we want to switch to using y(1) in each KGen query. To accomplish
this, we rely on a hybrid sequence over the multiple KGen queries one by one.
Essentially, in the `-th hybrid, the first ` KGen queries are answered with y(1),
and the rest of the KGen queries are answered using y(0). It suffices to argue that
the (`− 1)-th hybrid and the `-th hybrid are computationally indistinguishable,
and this turns out to be the most subtle step in our proof. To achieve this, let
us consider the following modification of the (` − 1)-th hybrid. Henceforth the
`-th KGen query is also called the challenge KGen query, and the two vectors

submitted during this query are denoted y
(0)
∗ and y

(1)
∗ respectively:

1. During the `-th KGen quer, for computing components of the key corre-
sponding to honest players, the challenger switches the FE.Enc inside the
challenge KGen query to a simulated encryption which does not use the un-
derlying MCFE’s functional key as input. Corrupt players’ key components
are still computed honestly.
Correspondingly, in every time step, the challenger answers Enc queries by
calling the a simulated FE.KGen for every honest client i’s ciphertext compo-
nent: the i-th simulated FE.KGen embeds the i-th partial decryption when

paired with the challenge key for y
(0)
∗ of the underlying MCFE scheme. This

step relies on the 1-SEL-SIM security of the single-input FE scheme (defined
in the the online full version [68]).

2. At this moment, due to the randomizing terms, and the aforementioned ad-
missibility rule, we argue that during each Enc query, instead of encoding in
the simulated FE.KGen the partial decryptions when paired with the chal-

lenge key for y
(0)
∗ of the underlying MCFE scheme, we could use y

(1)
∗ instead.

This step is more involved and requires the technical condition in Remark 3.

From this point onwards, we can use a symmetric argument to switch all the
way to the aforementioned `-th hybrid, in which the first ` KGen queries are
answered with y(1), and the remaining answered with y(0). We defer the detailed
proof to the subsequent formal sections.
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3.5 Constructing NIAR with Receiver-Insider Protection

Construction. With a function-hiding MCFE-for-selection scheme henceforth
denoted MCFEffh, we can construct a NIAR scheme in a natural fashion infor-
mally described below:

– Setup: The idea is to use the MCFEffh scheme to generate functional keys
for n selection vectors, denoted tk1, . . . , tkn, where tki is for selecting the
message received by receiver i ∈ [n]. The colletion {tki}i∈[n] is given to the

router as the token. The MCFEffh also generates n secret encryption keys
denoted {eki}i∈[n], one for each sender. Finally, the setup procedure generates
n symmetric encryption keys, one for each sender-receiver pair.

– Enc: During each time step t, to encrypt a message xi,t, the i-th sender
first encrypts xi,t with its symmetric key shared with its receiver — let ci,t
denote the resulting ciphertext. Now, call cti,t := MCFEffh.Enc(mpk, eki, ci,t)
to further encrypt ci,t and obtain a final ciphertext cti,t. Here, we abuse

notation slightly and use MCFEffh.Enc(mpk, eki, ci,t) to mean encrypting ci,t
bit by bit with the MCFEffh scheme.

– Rte: Using the n functional keys {tki}i∈[n], a router can call MCFEffh.Dec
to obtain the n inner ciphertexts encrypted under the symmetric keys, and
send the corresponding inner ciphertext to each receiver.

– Dec: Finally, each receiver uses its symmetric key to decrypt the final out-
come.

Proof roadmap. In the the online full version [68], we shall prove that as
long as MCFEffh satisfies function-hiding security and the symmetric-key en-
cryption scheme employed is secure, then, the above NIAR construction satisfies
receiver-insider protection. To prove this, we use the indistinguishability security
notion for NIAR, which is shown to be equivalent to the simulation-based notion.
Rouhgly speaking, the indistinguishability game for NIAR, denoted NIAR-Exptb

is indexed by a bit b ∈ {0, 1}: imagine the adversary A chooses two permutations

π(0) and π(1), and specifies two sets of messages {x(0)
i,t }i∈HS

and {x(1)
i,t }i∈HS

to

query in each time step t. The challenger gives A a token for π(b), and cipher-

texts for {x(b)
i,t }i∈HS

in each time step t. An admissible adversary must choose
the permutations and messages such that the leakage in the two worlds are
the same, where the leakage contains the corrupt-to-∗ part of the permutation
and the messages received by corrupt receivers in every time step. We want to
prove that any efficient, admissible A cannot distinguish whether it is playing
NIAR-Expt0 or NIAR-Expt1.

To prove this, we first modify NIAR-Exptb slightly to obtain a hybrid Hybb for
b ∈ {0, 1}: in Hybb, we replace the inner symmetric-key encryption from honest
senders to honest receivers with simulated ciphertexts. We can easily show that
Hybb is computationally indistinguishable from NIAR-Exptb by reducing to the
security of the symmetric encryption scheme.
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To complete the proof, the more challenging step is to show that Hyb0 is com-
putationally indistinguishable from Hyb1 for any efficient, admissible adversary
A. Here, we want to leverage A to create an efficient reduction B that breaks the
function-hiding security of the underlying MCFEffh scheme. The subtlety is to
make sure that B indeed respects the MCFEffh’s admissibility rules. In our formal
proofs, we fix the randomness ψ consumed by the SE instances corresponding
to each receiver in the set π(0)(HS) = π(1)(HS), and prove that the two exper-
iments are indistinguishability for every choice of fixed ψ. We then define the
reduction B in a natural manner, and make a careful argument that if A satisfies
the NIAR game’s admissibility rule (for the receiver-insider protection notion),
then B will indeed respect the admissibility rules of the underlying MCFEffh.

We defer the formal description and proofs to the the online full version [68].

3.6 Achieving Full Insider Protection

To upgrade our NIAR scheme to have full insider protection turns out to be
more involved. As explained earlier in Section 1.3, for such a scheme to work, all
the transformed ciphertexts output by Rte must change when a single sender’s
input ciphertext changes.

Construction (sketch). To accomplish this, we leverage a indistinguishability
obfuscator for probabilistic circuits (piO) whose existence is implied by sub-
exponentially secure indistinguishability obfuscation and sub-exponentially se-
cure one-way functions [30].

– Setup: during the trusted setup, each receiver i receives the secret key of
a PKE scheme (with special properties mentioned later); and each sender
receives the encryption key generated by an MCFEffh scheme.
The router’s token tk is a piO which encodes the MCFEffh scheme’s functional
keys for all n selection vectors. Inside the piO, the following probabilistic
program is evaluated:
1. first, use the MCFEffh functional keys to decrypt the messages that each

receiver should receive;

2. next, encrypt the messages under each receiver’s respective public keys,
and output the encrypted ciphertexts — note that the encryption scheme
is randomized.

– Enc: in every time step, senders encrypt their messages using MCFEffh.
– Rte: in each time step, the router applies its token tk, which is an obfuscated

program, to the n ciphertexts collected from senders. The outcome will be n
transformed ciphertexts.

– Dec: When a receiver receives a transformed ciphertext, it simply uses its
secret key to decrypt it.

Observe that in this construction, indeed, if a single sender’s input ciphertext
changes, all transformed ciphertexts output by the Rte procedure will change.

Proof roadmap and subtleties. We encounter some more subtleties when
we attempt to prove the above construction secure. First, it turns out that for
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technical reasons, to prove the above scheme secure, we need the public-key
encryption (PKE) scheme used by the piO to reencrypt output messages to
satisfy a special property: the PKE must be a special trapdoor mode in which
encryptions of 0 and 1 are identically distributed. Obviously, the trapdoor mode
loses information and cannot support correct decryption. In fact, in the real
world, we will never use the trapdoor mode — it is used only inside our security
proofs. We henceforth call a PKE scheme with this special property a perfectly
hiding trapdoor encryption (tPKE). Such a tPKE scheme can be constructed
assuming DDH [30].

Informally, our proof strategy is the following: First, we modify the real-world

experiment (in which π(0) and x
(0)
i,t are used), and switch the tPKE instances cor-

responding to honest receivers’ to use a trapdoor setup. This step can be reduced
to the tPKE’s security, since the adversary does not have the tPKE instances’ se-
cret keys corresponding to honest receivers. Next, we modify the obfuscated pro-
gram to no longer use the functional keys corresponding to the honest receivers;
instead, the obfuscated program will simply output encryptions of 0 under the
trapdoor public keys for honest receivers. For corrupt receivers, the obfuscated
program still behaves like the real world: use the MCFEffh scheme’s Dec pro-
cedure to decrypt the messages they ought to receive, and output encryptions
of these messages under each corrupt receiver’s public keys, respectively. This
step relies on the security of the piO and the fact that the modified program
is “distributionally equivalent” to the original program. At this moment, the
obfuscated program no longer uses the functional keys for honest receivers, and
only at this point can we rely on the MCFEffh’s security and switch from using

π(0) in the setup and encrypting x
(0)
i,t to using π(1) in the setup and encrypting

x
(1)
i,t . The remaining hybrids are symmetric to the above, such that eventually we

arrive at an experiment that is the same as the real-world experiment in which

π(1) and x
(1)
i,t are used by the challenger.

Notice that in our construction, we use the piO to obfuscate the MCFEffh

scheme’s Dec procedure using all n functional keys. One natural question is
why we did not directly use the piO to obfuscate a program that calls the Rte
procedure of our earlier NIAR scheme (with receiver-insider protection) and then
encrypts the n outcomes using n instances of tPKE. It turns out that our proof
strategy would not have worked for the latter, exactly because in our proofs,
we needed an intermediate hybrid to completely stop using functional keys for
honest receivers — intuitively, this is how we can prove the privacy of messages
received by honest receivers. This explains why in our construction and proofs,
we need to open up the NIAR scheme and directly manipulate the functional
keys of the underlying MCFEffh.

3.7 Achieving Fault Tolerance

So far in our constructions, unless all senders send their encryption during a
certain time step, the router would fail to perform the Rte operation. Such a
scheme relies all senders to be online all the time, and thus is not fault-tolerant.
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We modify our earlier NIAR abstraction to one that is fault-tolerant. The
idea is to let Enc and Rte take an extra parameter O ⊆ [n] which denotes the set
of senders that remain online. Additionally, Rte now takes in only ciphertexts
from those in O. In fact, our fault-tolerant NIAR abstraction can be viewed as
a generalization of the non-fault-tolerant version.

To achieve fault tolerance, we observe that the underlying CPRF construction
we use has a nice fault-tolerance property. In fact, we can modify the CPRF’s
evaluation function to take in O, such that the following is satisfied:

∀t ∈ N :
∑
i∈O

CPRF.Eval(Ki, t,O) = 0

This way, for every receiver whose corresponding sender is in the online set O,
the router can correctly perform the MCFEffh’s decryption procedure using only
ciphertexts from those in O. Note that the recent elegant work of Bonawitz et
al. [24] also made a similar observation of the fault-tolerance of the CPRF, and
leveraged it to enable fault-tolerant, privacy-preserving federated learning —
this is not explicitly stated in their paper but implicit in their constructions.

If a receiver i’s corresponding sender is no longer online, however, then the
MCFEffh’s decryption procedure will output an inner ciphertext of 0 for receiver
i. Since receiver i cannot decrypt the 0 ciphertext using its symmetric key, it will
simply output ⊥— this is inevitable since the corresponding sender is no longer
around. However, the router can also observe that receiver i received an inner-
ciphertext 0. In this way, if the adversary is able to drop the senders one by one
and check which receiver starts to receive an inner ciphertext of 0, it can learn
the receivers paired up with crashed senders. In our subsequent formal sections,
we shall prove that in this fault-tolerant NIAR scheme, indeed the adversary can
learn only the (corrupt+crashed)-to-∗ part of the permutation π, as well as the
messages received by corrupt receivers every time step, and nothing else.

Finally, using techniques similar to those sketched in Section 3.6, we can
upgrade the security of the above fault-tolerant scheme to full insider protection,
i.e., only the (corrupt + crashed)-to-corrupt part of the permutation is leaked as
well as the messages received by corrupt receivers, but nothing else. As mentioned
earlier, this leakage is inherent and unavoidable for any fault-tolerant NIAR
scheme, since the adversary can always make the senders crash one by one and
check which corrupt receiver now starts to receive ⊥.

Of course, the above description is a gross simplification omitting various
subtleties both in definitions and constructions. We refer the reader to the the
online full version [68] for the detailed definitions, constructions, and proofs.

Deferred contents. Due to lack of space, the formal definitions, constructions
and proofs can be found in our online full version [68].
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