Multiparty Reusable Non-Interactive Secure Computation from LWE

Fabrice Benhamouda¹, Aayush Jain²³, Ilan Komargodski³⁴, and Huijia Lin⁵

 Algorand Foundation, New York, USA fabrice.benhamouda@gmail.com,
² UCLA, Los Angeles, CA 90095, USA aayushjain@cs.ucla.edu,
³ NTT Research, Sunnyvale, CA 94085, USA
⁴ Hebrew University of Jerusalem, 91904 Jerusalem, Israel ilank@cs.huji.ac.il,
⁵ University of Washington, Seattle, WA 98195, USA rachel@cs.washington.edu

Abstract. Motivated by the goal of designing versatile and flexible secure computation protocols that at the same time require as little interaction as possible, we present new multiparty reusable Non-Interactive Secure Computation (mrNISC) protocols. This notion, recently introduced by Benhamouda and Lin (TCC 2020), is essentially two-round Multi-Party Computation (MPC) protocols where the first round of messages serves as a reusable commitment to the private inputs of participating parties. Using these commitments, any subset of parties can later compute any function of their choice on their respective inputs by just sending a single message to a stateless evaluator, conveying the result of the computation but nothing else. Importantly, the input commitments can be computed without knowing anything about other participating parties (neither their identities nor their number) and they are reusable across any number of desired computations.

We give a construction of mrNISC that achieves standard simulation security, as classical multi-round MPC protocols achieve. Our construction relies on the Learning With Errors (LWE) assumption with polynomial modulus, and on the existence of a pseudorandom function (PRF) in NC^1 . We achieve semi-malicious security in the plain model and malicious security by further relying on trusted setup (which is unavoidable for mrNISC). In comparison, the only previously known constructions of mrNISC were either using bilinear maps or using strong primitives such as program obfuscation.

We use our mrNISC to obtain new Multi-Key FHE (MKFHE) schemes with threshold decryption:

- In the CRS model, we obtain threshold MKFHE for NC¹ based on LWE with only *polynomial* modulus and PRFs in NC¹, whereas all previous constructions rely on LWE with super-polynomial modulusto-noise ratio.
- In the plain model, we obtain threshold levelled MKFHE for P based on LWE with *polynomial* modulus, PRF in NC¹, and NTRU, and another scheme for constant number of parties from LWE with

sub-exponential modulus-to-noise ratio. The only known prior construction of threshold MKFHE (Ananth et al., TCC 2020) in the plain model restricts the set of parties who can compute together at the onset.

1 Introduction

 $\mathbf{2}$

Much of the research in secure multiparty computation (MPC) is driven by the goal of minimizing interaction as much as possible. This is first motivated by the fact that network latency is often a major bottleneck to efficiency. Futhermore, having many communication rounds requires participating parties to be stateful and on-line for a long time which is difficult if not possible in some scenarios, especially when the number of participants is large. Soon after the invention of MPC [19, 33, 48], a large body of works investigated constant-round MPC protocols, or even completely non-interactive ones.

The vision of non-interactive MPC is extremely fascinating. Ideally, it would allow any set of parties to jointly compute an arbitrary function of their respective secret inputs, without any prior interaction or input-dependent setup, by each sending a single message to a public bulletin board, enabling an external evaluator to compute the output of the function based only on these messages.⁶ Unfortunately, it is known that such non-interactive protocols cannot satisfy the standard simulation security notion, as they are inherently susceptible to the so called residual-function attack. Therefore, at least another round of communication is necessary.

MrNISC. In a recent work, Benhamouda and Lin [22] introduced a hybrid model between non-interactive MPC and two-round MPC which they called *multiparty reusable Non-Interactive Secure Computation (mrNISC)*. To motivate the model, it is useful to consider the following scenario: users across the world wish to publish an encryption of their DNA on a public bulletin board, once and for all. At a later stage, for the purposes of medical analysis, a subset of them wants to compute some function on their DNAs by sending just a single public message to a doctor, who should be able to compute this function, but nothing else. Furthermore, a user may participate in an unbounded number of medical analyses, reusing the same encryption of DNA, with the same or other subsets of parties on the same or different functions.

More formally, in the mrNISC model, parties publish encodings of their private inputs x_i on a public bulletin board, once and for all, independently of each other and even independently of the total number of parties. Later, any subset I of them can compute *on-the-fly* a function f on their inputs $x_I = \{x_i\}_{i \in I}$ by just sending a single public message to a stateless evaluator, conveying the result

⁶The reconstruction of the output is "public" in the sense that it does not require any secrets. It is w.l.o.g. to consider public output reconstruction, as one can always consider the evaluator as a participant of MPC with a dummy input and uses the all zero string as its random tape.

 $f(\boldsymbol{x}_I)$ and nothing else. Importantly, the input encodings are reusable across any number of computation sessions, and are generated independently of any information of later computation sessions — each later computation can evaluate any polynomial-time function, among any polynomial-size subset of participants. The security guarantee is that an adversary corrupting a subset of parties, chosen statically at the beginning, learns no information about the private inputs of honest parties, beyond the outputs of the computations they participated in. This holds for any polynomial number of computation sessions. Throughout, each party's input, and the function and participants of each computation session are chosen adaptively by the adversary.

The work of Benhamouda and Lin [22] presents a general-purpose mrNISC for computing polynomial-sized circuits, whose security is based on the SXDH assumption in asymmetric bilinear groups. It is in the plain model (without any trusted setup), and satisfies semi-malicious security.⁷ For malicious security, the use of some setup is inevitable; they rely on a CRS. To date, this is the only mrNISC construction in the plain model, based on well-established assumptions. Prior plain-model 2-round MPC protocols either rely on strong primitives like indistinguishability obfuscation or general-purpose witness encryption [29, 35, 39, 42, 50] which have complex constructions from less well-established assumptions, or have first messages that are not reusable [6, 7, 21, 40, 41, 43, 44, 60], or only reusable among a fixed set of parties [8, 17]. Another line of works leading to two-round MPC, using multi-key fully-homomorphic encryption (MKFHE) [10, 12, 25, 27, 34, 56, 58], could possibly be made an mrNISC, but even then all known constructions rely on trusted setup even for semi-honest security.

1.1 Our Results

New mrNISC from LWE. Our main result is a new construction of an mrNISC. Our construction is based on the standard Learning-With-Errors (LWE) assumption with polynomial modulus as well as on a PRF in NC¹. The construction is in the plain model, and satisfies semi-malicious security.

Theorem 1.1 (mrNISC from LWE). Assuming LWE with polynomial modulus and a PRF in NC^1 , there exists a mrNISC protocol for all polynomial-size functions. The construction is in the plain model (without any trusted setup), and satisfies semi-malicious security. For malicious security, we need to further rely on a CRS.⁸

We emphasize that our construction requires only LWE with polynomial modulus. This is important both for efficiency as well as for security. First, having a polynomial modulus makes the sizes of keys and ciphertexts shorter. Second, for

⁷Semi-malicious security is a strengthening of the semi-honest security wherein the adversary is allowed to choose its random tape arbitrarily. [10] showed that any protocol satisfying semi-malicious security can be made maliciously secure by additionally using Non-Interactive Zero-Knowledge proofs (NIZKs).

⁸The CRS is needed for NIZK which exists from LWE with polynomial modulus [59].

4

security, it is known that LWE with polynomial ratio between modulus and noise (which is our case) is at least as hard as (classical) GapSVP with polynomial approximation factor [26, 53, 54, 57, 61].

Unfortunately, it is not known whether PRF in NC^1 can be based on LWE with polynomial modulus-to-noise ratio, as all known constructions require superpolynomial modulus-to-noise ratio [15, 16, 23]. Therefore, the above theorem can also be instantiated using a single assumption of LWE with super-polynomial modulus-to-noise ratio, which is independent of the depths of computations.

New threshold multi-key FHE schemes. We observe that mrNISC can be used to generically boost any multi-key FHE with an "unstructured" decryption function that takes as input the secret key of all participating parties, into a threshold multi-key FHE scheme by just decentralizing the decryption function.

This observation gives us new constructions of threshold multi-key FHE by instantiating the base multi-key FHE scheme with different known constructions. Specifically, we obtain the following three threshold multi-key FHE instantiations.

Theorem 1.2 (Threshold multi-key FHE in the CRS model). There exists a threshold multi-key FHE scheme in the CRS model for NC^1 circuits assuming LWE with polynomial modulus and a PRF in NC^1 .

The above theorem follows from the multi-key FHE schemes of [34, 56], which require LWE with polynomial modulus for evaluating NC¹ circuits. Here, we rely additionally on a PRF in NC¹. In comparison, all previous constructions of threshold multi-key FHE even for NC¹ require LWE with super-polynomial modulus-to-noise ratio. Since the latter readily implies a PRF in NC¹, our assumption is weaker.

Theorem 1.3 (Threshold multi-key FHE in the plain model). Let $d = d(\lambda)$ and $N = N(\lambda)$ be arbitrary polynomial functions of the security parameter.

- There exists a threshold multi-key FHE scheme in the plain model for polynomial-size depth-d circuits and supporting N keys. The scheme is secure assuming LWE with polynomial modulus, a PRF in NC¹, and the DPSR assumption.⁹
- 2. There exists a threshold multi-key FHE scheme in the plain model for polynomial-size depth-d circuits and supporting arbitrary constant number of keys. The scheme is secure assuming LWE with sub-exponential modulus-to-noise ratio.

The first bullet is obtained by using the multi-key FHE scheme of [52]. Recently, Ananth et al. [9] obtained a similar result except that their threshold multi-key FHE definition is somewhat weak in the sense that the set of public-keys under which each evaluation is performed is fixed once and for all. On the other hand, the original vision for multi-key FHE was to support "on-the-fly" computation [52] on

⁹DSPR stands for the *decision small polynomial ratio* assumption [52] which is used to prove the security of the NTRU encryption scheme.

ciphertext encrypted any subset of public-keys. All other multi-key FHE schemes were not in the plain model.

The second bullet is obtained by relying on the folklore multi-key FHE scheme obtained by nesting a constant number of FHE schemes. There was no previously-known scheme supporting constant-many keys without setup just from LWE.

Technical highlight and an open problem. Our construction is obtained in few modular steps. We first identify a "two-party" NISC protocol (denoted 2rNISC henceforth) for a particular functionality that we call "functional OT". This protocol still supports arbitrary polynomially-many parties, but only the function to be computed is specific and involves just two parties. More specifically, the two parties, acting as the OT sender and receiver, respectively, wish to compute OT with two sender's strings $(\ell_0, \ell_1) = g_1(x_1)$ computed from sender's private input x_1 , and a receiver's choice bit $c = g_2(x_2)$ computed from the receiver's private input x_2 , where g_1, g_2 are arbitrary public polynomial-size circuits that are different for each computation. 2rNISC enables computing ℓ_c with the sender and receiver sending a single message each. We then show that this can be generically turned into a general-purpose mrNISC. We believe that 2rNISC for the functional OT functionality is an interesting primitive that may find other applications.

Lastly, we show a construction of a 2rNISC for the functional OT functionality, from LWE with polynomial modulus-to-noise ratio and PRFs in NC¹. Our construction draws techniques from homomorphic commitments/signatures [49] and 2-message statistically sender-private OT [24] based on LWE. At its core is a weak version of witness encryption for verifying the decommitments of homomorphic commitments, where the decommitments satisfy zero-knowledge property. This partially answers a question left open by the work of [22].

We believe that the above modular approach is a contribution of independent interest, as new constructions of our 2rNISC for the functional OT functionality directly yield new constructions of mrNISC. One intriguing open problem is whether it is possible to base mrNISC on DDH or even CDH. Our reduction shows that, for this purpose, it suffices to build a 2rNISC for a specific functionality from DDH/CDH.

1.2 Related Works

While mrNISC is a new concept that was recently introduced by Benhamouda and Lin [22], it is related to (but differs from) many previously-defined variants of minimal-interaction MPC protocols. We refer to [22] for a comprehensive comparison and merely mention some of the most related notions. mrNISC can be viewed as a generalization of the notion of reusable NISC of Ishai et al. [51] (see also [1, 11, 14, 30, 32]) from two parties to multiple parties. mrNISC differs from various completely non-interactive notions such as non-interactive MPC (NIMPC) [18] and Private Simultaneous Messages (PSM) [38,47] which inherently achieve weaker security guarantees or restrict the corruption pattern.

F. Benhamouda, A. Jain, I. Komargodski, and H. Lin

Apart from Benhamouda and Lin's [22] recent mrNISC construction from bilinear maps, all other 2-message MPC protocols either rely on strong primitives like indistinguishability obfuscation or general-purpose witness encryption [39,50], or fall short of being an mrNISC. For instance, the works of Garg and Srinivasan and Benhamouda and Lin [21,44] constructed 2-round MPC protocols from any 2-round Oblivious Transfer (OT). However, both constructions are not reusable in their first message. This was recently solved by Ananth et al. [8] and Bartusek et al. [17] who constructed a 2-round MPC where the first message is reusable across polynomially-many sessions. The construction of [8] relies on LWE and the construction of [17] relies on DDH. However, both construction requires all computation sessions to be carried out by a fixed set of parties.

The concept of threshold multi-key FHE is very related to mrNISC. It is plausible that threshold multi-key FHE that are used to get 2-round MPC [10,13,34,56], could also be used to get mrNISC. However, proving it is not straightforward. For instance, as pointed out in [22], the current definitions of threshold decryption, e.g., [10,13,34,56] are insufficient for constructing mrNISC, as simulatability only ensures that a single partial decryption can be simulated (hence this definition does not allow to re-use ciphertexts). Even if the proof works out, it would only yield a mrNISC in the CRS model even for semi-honest security.

1.3 Organization of the Paper

6

We start by a technical overview in Section 2. After recalling preliminaries in Section 3, we show how to construct a 2rNISC for Functional OT in Section 4. We then present our transformation from such a 2rNISC to an mrNISC for any polynomial-time functionality in Section 5. Finally, we formally show applications in the full version [20].

2 Technical Overivew

We now give an overview of our construction of mrNISC protocols in the plain model from LWE with polynomial modulus and PRF in NC¹.

2.1 Review of Definition of mrNISC Protocols

Towards constructing mrNISC protocols, the work of [22] defined the notion of mrNISC schemes, with a game-based security definition. Furthermore, they showed that a mrNISC scheme immediately yields a mrNISC protocol that UC-implements an ideal mrNISC functionality that allows for any number of computations over any subsets of inputs registered by parties. Thus, in this work, we focus on implementing mrNISC schemes for polynomial-size circuits.

mrNISC Scheme. An *n*-party functionality \mathcal{U} is a represented by a Boolean circuit that takes a public input *z* and *n* private inputs. If \mathcal{U} is a universal circuit and *z* specifies the actual function to be computed, then this formalism allows the parties of the mrNISC to compute any function on their private inputs. An mrNISC scheme for \mathcal{U} , consists the following three algorithms:

- Input Encoding: A party P_i encodes its private input x_i by invoking $(\hat{x}_i, s_i) \leftarrow \overline{\mathsf{Com}(1^\lambda, x_i)}$. It then publishes the encoding \hat{x}_i and keeps the secret state s_i .
- <u>Computation</u>: In order for a subset of parties $\{P_i\}_{i \in I}$ to compute the functionality \mathcal{U} on their private inputs \boldsymbol{x}_I and a public input z, each party in Igenerates a computation encoding $\alpha_i \leftarrow \mathsf{Encode}(z, \{\hat{x}_j\}_{j \in I}, s_i)$ and sends it to the evaluator.
- <u>Output:</u> The evaluator reconstructs the output $y = \mathsf{Eval}(z, \{\hat{x}_i\}_{i \in I}, \{\alpha_i\}_{i \in I})$. (Note that reconstruction is *public* as the evaluator has no secret state.) Correctness requires that $y = \mathcal{U}(z, \{x_i\}_{i \in I})$ when everything is honestly computed.

Simulation-security requires that the view of an adversary corrupting the evaluator and a subset of parties, can be simulated using just the outputs of the computations.¹⁰ Following [22], we consider static corruptions and semi-malicious security. Static corruptions restrict the adversary to corrupt a fixed subset C of parties chosen at the very beginning, and semi-malicious security [10] restricts the corrupted parties $\{P_i\}_{i \in C}$ to follow the protocol specification, but allows the adversary to choose their inputs and randomness $\{x_i, r_i\}_{i \in C}$ arbitrarily. During an execution of the mrNISC scheme for \mathcal{U} , honest and corrupted parties P_i can register their inputs by posting input encodings \hat{x}_i . Multiple computations, each specified by (z^k, I^k) , can be carried out as follows: each P_i for $i \in I^k$ sends the corresponding computation encoding α_i^k , which together reveal $y^k = \mathcal{U}(z^k, \{x_i\}_{i \in I^k})$. All the messages from the honest parties, including $\{\hat{x}_i\}_{i \notin C}$ and $\{\alpha_i^k\}_{k, i \in I^k \setminus C}$, must be simulatable from the outputs $\{y^k\}_k$, the public information of the computations $\{z^k, I^k\}_k$, and the input and randomness of the corrupted parties $\{x_i, r_i\}_{i \in C}$. Furthermore, simulation must hold in the adaptive setting, where the input and computation encodings are interleaved and all x_i and (z^k, I^k) are chosen adaptively by the adversary.

2.2 Step 1: Reusable Functional OT from LWE

We identify a complete 2-party function, called *functional OT* \mathcal{U}_{fOT} , and show 1) how to construct a 2-party reusable NISC scheme for computing \mathcal{U}_{fOT} in the plain model, and 2) how to bootstrap from \mathcal{U}_{fOT} to general mrNISC scheme for any circuit $\mathcal{U} \in P$.

Functional OT. \mathcal{U}_{fOT} takes three inputs: A public input consisting of two functions $g_1: \{0,1\}^{n_1} \to \{0,1\}^{\lambda} \times \{0,1\}^{\lambda}$ and $g_2: \{0,1\}^{n_2} \to \{0,1\}$ represented as Boolean circuits, a private input $x_1 \in \{0,1\}^{n_1}$ from a party P_1 acting as the \mathcal{U}_{fOT} sender $x_2 \in \{0,1\}^{n_2}$ from a party P_2 acting as the \mathcal{U}_{fOT} receiver, and

¹⁰It suffices to simulate only these computations that involve at least one honest party. Computations involving only corrupted parties can be viewed as part of the internal computation of the adversary.

computes

 $\begin{aligned} \mathcal{U}_{\rm fOT}((g_1,g_2),x_1,x_2) \; : \; \text{compute sender's strings } (\ell_0,\ell_1) &= g_1(x_1), \\ & \; \text{compute receiver's choice } c &= g_2(x_2), \\ & \; \text{output } \; y = (c,\ell_c) \end{aligned}$

The name functional OT comes from the fact that both the OT sender's strings ℓ_0, ℓ_1 and receiver's choice bit c are functions on sender's and receiver's private inputs x_1 and x_2 .

A 2rNISC scheme for computing \mathcal{U}_{fOT} provides a way to encode the private input x_i of any party P_i , so that later any two parties P_i and P_j can securely compute \mathcal{U}_{fOT} (acting as sender and receiver respectively) to reveal only (c, ℓ_c) computed according to arbitrarily chosen functions (g_1, g_2) and their private inputs x_i and x_j , by each sending a single message. Importantly, the encoding \hat{x}_i of P_i is reusable in any number of \mathcal{U}_{fOT} computations with different parties and different functions. Note that different from classical OT where (c, ℓ_c) is private to the receiver, a 2rNISC scheme allows to reconstruct (c, ℓ_c) publicly given all messages sent. Jumping ahead, this feature serves exactly the purpose of achieving the public reconstruction property of mrNISC.

Constructing 2rNISC for \mathcal{U}_{fOT} . We construct 2rNISC for \mathcal{U}_{fOT} in the plain model from LWE with just *polynomial modulus* and PRF in NC¹ in two steps: We start with designing a scheme $\Pi_{\text{fOT}} = (\text{Com}, \text{Encode}, \text{Eval})$ that handles only circuits g_2 with bounded logarithmic depth $O(\log \lambda)$ (whereas the depth of g_1 is unrestricted), and then bootstrap Π to 2rNISC that handles g_2 with unbounded polynomial depth.

<u>GSW ENCRYPTION AS HOMOMORPHIC COMMITMENTS.</u> Our 2rNISC makes use of the GSW homomorphic encryption scheme [46], which can be turned into a homomorphic commitment scheme (or homomorphic trapdoor functions) as done in [49]. It enables us to commit to a string $\boldsymbol{x} \in \{0,1\}^n$ in a commitment \mathbf{C} , and then homomorphically evaluate any circuit f on \mathbf{C} to obtain a commitment \mathbf{C}_f to $f(\boldsymbol{x})$. More concretely, the scheme publishes a CRS $\operatorname{crs} = \mathbf{A}$ containing a matrix of dimension $N \times M$ for $M = \Omega(N \cdot \log q)$; the matrix $\mathbf{A} = [\mathbf{B}^\top | \boldsymbol{b}_1^\top | \dots | \boldsymbol{b}_k^\top]^\top$ consists of a random submatrix $\mathbf{B} \leftarrow \mathbb{Z}_q^{(N-k)\times M}$, together with k LWE samples $\{b_l = \boldsymbol{t}_l \mathbf{B} + \boldsymbol{e}_l\}_{l \in [k]}$ w.r.t. independently sampled secret \boldsymbol{t}_l and noise \boldsymbol{e}_l , where \boldsymbol{e}_1 is sampled from a *truncated* discrete Gaussian distribution and always bounded by $|\boldsymbol{e}_l|_{\infty} \leq B$. Committing to a binary string \boldsymbol{x} simply involves encrypting each bit x_i using GSW encryption and public key \mathbf{A} , and the encryption randomness is the decommitment.

Commitment to \boldsymbol{x} : { $\mathbf{C}_i = \mathbf{A}\mathbf{R}_i + x_i\mathbf{G}$ } Decommitment: { \mathbf{R}_i } where $\mathbf{R}_i \leftarrow \{-1, 1\}^{M \times N \cdot \lceil \log q \rceil}$, **G** the gadget matrix.

We note two important details: First, the matrix **A** corresponds to the public key in GSW encryption; here, we insist on it containing k > 1 LWE samples, where k is a parameter that scales with the input length of the parties. Second,

8

when **A** is sampled honestly at random, it satisfies the following well-formedness with overwhelming probability: 1) it is generated as above using some **B**, t_l , and *B*-bounded e_l 's, and 2) vectors e_l 's are linearly independent over the integers. Observe that the well-formedness can be verified efficiently given the random coins used to sample **A**. For any **A** satisfying property 1), commitments w.r.t. **A** are statistical binding, and in fact even extractable using the secrets t_l 's. We shall see how property 2) is helpful later.

The homomorphism of GSW enables homomorphic evaluation over the commitments to obtain a commitment to $f(\mathbf{x})$ as follows

$$\begin{split} \mathsf{GSW}.\mathsf{Eval}(f,\{\mathbf{C}_i\}) &= \mathbf{C}_f = \mathbf{A}\mathbf{R}_f + f(\boldsymbol{x})\mathbf{G} \ , \\ & \text{where } \mathbf{R}_f = \mathsf{GSW}.\mathsf{RandEval}(f,\{\mathbf{R}_i\},\{\mathbf{C}_i\},\boldsymbol{x}) \ . \end{split}$$

The new decommitment \mathbf{R}_f can be evaluated directly from $\{\mathbf{R}_i\}, \{\mathbf{C}_i\}, x$ and in particular is linear in the original decommitments \mathbf{R}_i 's.

FROM HOMOMORPHIC COMMITMENTS TO 2RNISC. To construct 2rNISC for functional OT, our idea is letting each player P_i commit to its input \boldsymbol{x} as the input encoding, and keep the decommitment as its private state. Note that the homomorphic commitments require a CRS, but we wish to construct 2rNISC in the plain model. Thus, we let each player choose its own CRS.

$$\mathsf{Com}(1^{\lambda}, \boldsymbol{x}) : \ \widehat{\boldsymbol{x}} = (\mathbf{A}, \{\mathbf{C}_i = \mathbf{A}\mathbf{R}_i + x_i\mathbf{G}\}_i), \ \ s = \{\mathbf{R}_i\}_i$$

Later two parties, P_1 acting as the sender and P_2 acting as the receiver, wish to compute functional OT w.r.t. (g_1, g_2) on their private inputs denoted as \mathbf{x}_1 and \mathbf{x}_2 , and have encodings and secret states denoted as $(\hat{\mathbf{x}}_b = (\mathbf{A}_b, \{\mathbf{C}_{b,i}\}), s_b = \{\mathbf{R}_{b,i}\})$ with b = 1 for P_1 and b = 2 for P_2 . P_1 can privately compute sender's strings $(\ell_0, \ell_1) = g_1(\mathbf{x}_1)$, and P_2 the receiver's choice $c = g_2(\mathbf{x}_2)$. In addition, given $\hat{\mathbf{x}}_2$, both parties can homomorphically evaluate g_2 to obtain a commitment $\mathbf{C}_{g_2} = \mathbf{A}_2 \mathbf{R}_{g_2} + c\mathbf{G}$ to c, while P_2 additionally knows the decommitment \mathbf{R}_{g_2} .

At this point, we wish to have the following two components to enable computing ℓ_c non-interactively.

- Witness Encryption of Sender's Strings (ℓ_0, ℓ_1) : P_1 would like to witness encrypt ℓ_b w.r.t. the statement that, under CRS **A**, \mathbf{C}_{g_2} is a commitment to bit b, so that, ℓ_b is revealed given a witness that is a decommutiment to b, and is hidden if \mathbf{C}_{g_2} is a commitment to 1 - b. Then the sender's computation encoding is

$$\mathsf{Encode}((g_1, g_2), (\hat{x}_1, \hat{x}_2), s_1) : \alpha_1 = \{ w_b \leftarrow \mathsf{WEnc}((\mathbf{A}_2, \mathbf{C}_{g_2}, b), \ell_b) \}_{b \in \{0,1\}}$$

- Zero-Knowledge Decommitment to Receiver's Choice c: P_2 would like to open \mathbf{C}_{g_2} to c by sending a decommitment, in a zero-knowledge way that reveals only c and nothing more about \boldsymbol{x}_2 . Note that the basic decommitment \mathbf{R}_{g_2} is not zero-knowledge and may reveal information of \boldsymbol{x}_2 .

$$\mathsf{Encode}((g_1,g_2),(\widehat{x}_1,\widehat{x}_2),s_2=\{\mathbf{R}_i\}_i) \ : \ \alpha_2=(\mathbf{X}_{g_2}\leftarrow\mathsf{ZKDecom}(g_2,\mathbf{C}_{g_2},\mathbf{R}_{g_2})) \ ,$$

where ZKDecom produces a zero-knowledge decommitment \mathbf{X}_{q_2} .

An evaluator given (α_1, α_2) can witness decrypt to obtain ℓ_c as desired.

SEMI-MALICIOUS SECURITY AND "PROMISE" WE AND ZK DECOMMITMENTS. The main technical challenge is co-designing WE and ZK decommitments so that the latter can decrypt the former. For this we will draw techniques from previous works for constructing context-hiding homomorphic signatures [49] and 2-message statistically sender private OT [24]. At the same time, we crucially rely on the fact that our 2rNISC only need to be secure against semi-malicious adversaries to simplify the requirements on WE and ZK decommitments. The key observation is that a semi-malicious corrupted party P_2 must generate its input encoding $(\mathbf{A}_2, {\mathbf{C}_{2,i}}_i)$ using the honest algorithm, albeit using arbitrary randomness. This means that i A_2 must be well-formed and ii ${\mathbf{C}_{2,i}}_i$ must be a valid commitment ${\mathbf{A}_2\mathbf{R}_i + x_{2,i}\mathbf{G}}_i$ to some input \mathbf{x}_2 with a decommitment \mathbf{R}_i of 1/-1 values . As a result, $\mathbf{C}_{g_2} = \mathbf{A}_2\mathbf{R}_{g_2} + g_2(\mathbf{x}_2)\mathbf{G}$ must be a valid commitment to $g_2(\mathbf{x}_2) = 0/1$ with a decommitment \mathbf{R}_{g_2} of small magnitude¹¹.

Therefore, the correctness and security of WE and ZK decommitments only need to hold w.r.t. well-formed \mathbf{A} (i.e., \mathbf{A}_2) and valid commitment \mathbf{C} (i.e., \mathbf{C}_{g_2}) to 0/1 with small decommitment, and does not need to hold w.r.t. ill-formed \mathbf{A} or invalid commitment \mathbf{C} — we refer to this as the *promise* version of WE and ZK decommitments:

- Yes instances $(\mathbf{A}, \mathbf{C}, b)$ contain a well-formed \mathbf{A} and a valid commitment \mathbf{C} to bit b, and we require the ZK property of the decommitments and correctness of WE for them.
- No instances $(\mathbf{A}, \mathbf{C}, b)$ contain a well-formed \mathbf{A} and a valid commitment \mathbf{C} to bit 1 b, and we require the hiding property of WE for them.

Thanks to the fact that it suffices to focus on the promise version, we manage to give a relatively simple construction of WE and ZK decommitment. Next we proceed to their description; by default, all matrices \mathbf{A} 's are well-formed and commitments \mathbf{C} 's are valid 0/1 commitments.

<u>ZK DECOMMITMENT</u> The context-hiding homomorphic signature schemes of [49] provides a way to generate zero-knowledge decommtiments. If the committer wishes to open $\mathbf{C}_f = \mathbf{A}\mathbf{R}_f + f(\mathbf{x})\mathbf{G}$ to $f(\mathbf{x}) = b$ w.r.t. CRS **A**, it constructs the matrix

$$\mathbf{D}^{(b)} = [\mathbf{A} \mid \mathbf{C}_f + (1-b)\mathbf{G}] = [\mathbf{A} \mid \mathbf{A}\mathbf{R}_f \pm \mathbf{G}] \in \mathbb{Z}_q^{N \times M'}, \ M' = M + N \lceil \log q \rceil,$$

and uses \mathbf{R}_f as a right-trapdoor [2,31] of $\mathbf{D}^{(b)}$ to sample a short B'-bounded vector \boldsymbol{v} , for appropriately set B' such that, $\mathbf{D}^{(b)}\boldsymbol{v} = \boldsymbol{u}$, where \boldsymbol{u} is a random vector published additionally in the CRS. The vector \boldsymbol{v} is the new decommitment.¹² \boldsymbol{v} together with \mathbf{A} and the original commitment $\{\mathbf{C}_i\}$ to \boldsymbol{x} reveals no more information beyond that $f(\boldsymbol{x}) = b$, since they can be jointly simulated using only

¹¹The magnitude scales exponentially with the depth of g_2 , which is relatively small if we set the modulus to be sufficiently large.

 $^{^{12}\}mathrm{It}$ can be verified efficiently by checking whether it has small magnitude and $\mathbf{D}^{(b)} \boldsymbol{v} = \boldsymbol{u}$

(f, b), by sampling **A** at random with a trapdoor $\mathbf{T}_{\mathbf{A}}$ [2, 54], \mathbf{C}_i 's at random, and \boldsymbol{v} using $\mathbf{T}_{\mathbf{A}}$ as a left-trapdoor of $\mathbf{D}^{(b)}$. A random **A** is computationally indistinguishable from a well-formed **A** by LWE, and \boldsymbol{v} sampled using the left or the right trapdoor is statistically close.

However, we do not know how to construct a matching WE for verifying the above ZK decommitment and need to modify the decommitment as follows. The new decommitment of \mathbf{A}, \mathbf{C}_f to $f(\boldsymbol{x}) = b$ contains a short B'-bounded basis $\mathbf{X}_f \in \mathbb{Z}^{M' \times M'}$ of the lattice $\Lambda_q^{\perp}(\mathbf{D}^{(\mathbf{b})}) = \{\boldsymbol{z} \in \mathbb{Z}^{M'} : \mathbf{D}^{(\mathbf{b})}\boldsymbol{z} = \mathbf{0} \pmod{q}\}$ over the integers, that is, $\mathbf{D}^{(\mathbf{b})}\mathbf{X}_f = \mathbf{0}^{N \times M'}$ and is \mathbf{X}_f has full rank over the integers. Such a basis can be sampled again using \mathbf{R}_f as a right-trapdoor of $\mathbf{D}^{(b)}$, and can be simulated together with $\mathbf{A}, \{\mathbf{C}_i\}$ by sampling \mathbf{A} without a trapdoor $\mathbf{T}_{\mathbf{A}}$ and using it as a left-trapdoor of $\mathbf{D}^{(b)}$ to sample the basis. In summary, our ZK decommitment is generated as:

$$\mathsf{ZKDecom}(f, b, \mathbf{D}^{(b)}, \mathbf{R}_f) : \mathbf{X}_f \leftarrow \mathsf{SampleRight}(\mathbf{A}, \pm \mathbf{G}, \mathbf{R}_f, \mathbf{T}_G, \alpha)$$

where $\mathbf{T}_{\mathbf{G}}$ is a trapdoor of the gadget matrix \mathbf{G} and α controls the norm of the trapdoor.

<u>PROMISE WITNESS ENCRYPTION.</u> To design a compatible WE that can be decrypted using the above ZK decommitments. we crucially rely on the following fundamental properties of lattices defined by a matrix $\mathbf{D} \in \mathbb{Z}_q^{N \times M'}$.

- If the lattice $\Lambda_q^{\perp}(\mathbf{D}) = \{ \mathbf{z} \in \mathbb{Z}^{M'} : \mathbf{D}\mathbf{z} = \mathbf{0} \pmod{q} \}$ has a *B'*-bounded basis **X** over the integers, then vectors of form $\mathbf{s}\mathbf{D} + \mathbf{e}$ can be efficiently decoded using **X**, and **s** can be recovered, provided that the norm of **e** is sufficiently smaller than q/B'.
- On the other hand if the lattice $\Lambda_q(\mathbf{D}) = \{ \boldsymbol{y} \in \mathbb{Z}^{M'} : \boldsymbol{y} = s\mathbf{D} \pmod{q} \}$ contains k linearly independent vectors of norm $\ll q/B'$, then vectors of form $s\mathbf{D} + \boldsymbol{e}$ is *lossy* and \boldsymbol{s} has n bits of entropy, if k is sufficiently larger than n. This is essentially because the components of $s\mathbf{A}$ in the direction the short vectors are masked by \boldsymbol{e} .

The work of [24] relied on the above properties in their construction of two message statistically sender-private OT from LWE. We here rely on them to achieve respectively the correctness and hiding property of our promise WE. To encrypt a string ℓ_b , under a statement ($\mathbf{A}, \mathbf{C} = \mathbf{C}_f, b$), our WE does:

$$\begin{aligned} \mathsf{WEnc}((\mathbf{A},\mathbf{C},b),\ell_b) &: \ \mathbf{D}^{(b)} = [\mathbf{A} \mid \mathbf{C} - (1-b)\mathbf{G}], \ \boldsymbol{w}_b = \boldsymbol{s}_b \mathbf{D}^{(b)} + \boldsymbol{e}_b, \\ & \widehat{\ell}_b = \mathsf{Ext}(\mathsf{sd},\boldsymbol{s}_b) \oplus \ell_b \\ & \text{output} \ (\boldsymbol{w}_b,\mathsf{sd},\widehat{\ell}_b) \end{aligned}$$

where Ext is a strong seeded extractor and sd is a randomly sampled seed, s_b is a random secret from \mathbb{Z}_q^N , and e_b is from a truncated discrete Gaussian distribution with appropriate parameter.

- Correctness for Yes Instances: For a well-formed **A** and a valid commitment $\mathbf{C} = \mathbf{A}\mathbf{R} + b\mathbf{G}$ to b, the ZK decommitment **X** is exactly a short-basis of

12 F. Benhamouda, A. Jain, I. Komargodski, and H. Lin

 $\Lambda_q^{\perp}(\mathbf{D}^{(b)})$. Therefore, by the first lattice property, given **X**, the decryptor can efficiently decode w_b to obtain s_b and then recover ℓ_b .

- Hiding for No Instances: For a well-formed **A** and a valid commitment $\mathbf{C} = \mathbf{A}\mathbf{R} + (1-b)\mathbf{G}$ to 1-b, $\mathbf{D}^{(b)} = [\mathbf{A} \mid \mathbf{A}\mathbf{R}]$ and hence the lattice $\Lambda_q(\mathbf{D}^{(b)})$ contains at least k short vectors. This is because, by the structure of a well-formed **A**, for every $l \in [k]$, $(-t_l||1)\mathbf{D}^{(b)} = (e_l||e_l\mathbf{R})$ is short as e_l and **R** are. Moreover, these vectors are independent as long as e_l 's are (and $k < \dim(e_l) = M$), where the latter is guaranteed by the (second requirement of) well-formedness of **A**. Therefore, by the second lattice property, s_b has n bits of entropy conditioned on w_b and the output of the extractor information theoretically hides ℓ_b .

PUTTING PIECES TOGETHER. Combining the homomorphic commitment scheme with ZK decommitments and the witness encryption, we obtain 2rNISC for computing functional OT with semi-malicious security. Let's now examine the magnitude of the modulus, which we wish to be polynomial. Based on LWE, to support homomorphic evaluation of a circuit g_2 of depth d requires the modulus to grow exponentially in d. Therefore, only when d is a fixed logarithmic function in the security parameter λ , would the modulus be a fixed polynomial in λ as desired.

Following a technique used in [22], we can generically bootstrap to 2rNISC supporting circuits g_2 with unbounded polynomial depth, with the help of a PRF in NC¹ and Yao's garbled circuits. At a high-level, P_1 is going to hide the sender's string ℓ_b in a garbled circuit \hat{G}_{ℓ_b} for a function $G_{\ell_b}(\Lambda)$ that on input a randomized encoding Λ , outputs ℓ_b iff Λ evaluates to b. At evaluation time, the evaluator will obtain the set of labels $\{\bar{\ell}_j\}$ of \hat{G}_{ℓ_b} corresponding exactly to a randomized encoding Λ of (g_2, \boldsymbol{x}_2) generated using pseudorandom coins expanded via PRF on a key k_2 belong to the receiver P_2 . Then the evaluator can recover ℓ_b iff $g_2(\boldsymbol{x}_2) = b$. Crucially, the task for revealing the labels corresponding to Λ can exactly be accomplished using 2rNISC for logarithmic-depth receiver's circuits, as every bit of Λ can be computed by a logarithmic-depth circuit evaluated on (\boldsymbol{x}_2, k_2) if PRF \in NC¹. Correspondingly, every party now needs to commit to their private input \boldsymbol{x} and a PRF key k. This yields our final 2rNISC for functional OT from LWE with polynomial modulus and PRF in NC¹.

2.3 Step 2: 2rNISC for Functional OT to General mrNISC for P

We construct general mrNISC for polynomial-sized circuits from 2rNISC for functional OT following a similar approach as [22], which in turn is based on the round collapsing approach for constructing 2-round MPC protocols started in [39,50]. The *round-collapsing* approach collapses an inner MPC protocol with a polynomial L number of rounds into a 2-round outer MPC protocol, essentially by letting every party garble its next-step message function for computing the inner MPC messages. The challenge lies in how to enable the garbled circuits generated independently by different parties "talk" to each other: the output of one party's garbled circuit is the input of another party's garbled circuit. What is new in this

13

work is that we use 2rNISC for functional OT to enable this, which is weaker than the tools used in previous works. Specifically, the work of [22] proposed and constructed a primitive called Witness Encryption for NIZK of commitments, which is a witness encryption scheme for verifying NIZK proof of the correctness of deterministic computation over committed values. In comparison, 2rNISC is weaker (in particular, is implied by WE for NIZK of commitments) and has a simpler definition, thanks to which we manage to instantiate it from LWE and PRF in NC¹. Next, we give an overview of our mrNISC from 2rNISC for functional OT.

Round Collapsing via 2rNISC for Functional OT. In mrNISC, each party P_i uses 2rNISC for functional OT to encode its private input x_i and a PRF key fk_i , $((\hat{x}_i, fk\rho_i), s_i) \leftarrow Com(x_i, \rho_i)$. The PRF key will be used to expand pseudo-random coins for running the inner MPC protocol and generating garbled circuits described below.

A subset I of parties $\{P_i\}_{i \in I}$ wishes to compute $f(z, \{x_i\}_{i \in I})$. Assume that each party P_1 in the inner MPC broadcasts one message m_i^{ℓ} in each round ℓ ; but we now want to carry out this multi-round interaction non-interactively. To do so, each P_i sends one garbled circuit $\widehat{\mathsf{F}}_i^{\ell}$ per round $\ell \in [L]$ of the inner MPC protocol corresponding to the next message function F_i^{ℓ} of P_i . This garbled circuit takes as input all the messages $\boldsymbol{m}^{<\ell} = \{m_j^l\}_{l < \ell, j \in [n]}$ sent in previous rounds, and outputs the next message m_i^{ℓ} of P_i of the inner MPC (or the output for the last round $\ell = L$).

For an evaluator to compute the output from these garbled circuits $\{\widehat{\mathsf{F}}_i^\ell\}_{\ell \in [L], i \in [n]}$ we need a mechanism to reveal the labels of P_i 's garbled circuits $\widehat{\mathsf{F}}_i^\ell$ that correspond to the correct messages of the inner MPC. More specifically, let k_0, k_1 be two labels of P_i 's garbled circuit $\widehat{\mathsf{F}}_i^\ell$ for an input wire that takes in the *t*'th bit $y = m_{j,t}^l$ of a message from P_j . The goal is revealing only k_y , which can be accomplished using exactly 2rNISC for functional OT.

First, we let k_0, k_1 be expanded from P_i 's PRF key ρ_i , that is $(k_0, k_1) = g_1(x_i, \text{fk}_i)$ for some well-chosen g_1 . Second, $y = m_j^1$ is P_j 's inner MPC message computed from its input x_j and randomness expanded from ρ_j ; hence, $y = g_2(x_i, \rho)$ for some g_2 . Therefore, to reveal k_y , we can modify garbled circuits of P_i and P_j to additionally output the right 2rNISC computation encodings:

 $\begin{aligned} &- \widehat{\mathsf{F}}_{i}^{\ell-1} \text{ for round } \ell-1 \text{ additionally outputs } \alpha_{i} \leftarrow \mathsf{Encode}((g_{1},g_{2}),(\widehat{x}_{i},\widehat{\mathsf{fk}}_{i}),(\widehat{x}_{j},\widehat{\mathsf{fk}}_{j}),s_{i}). \\ &- \widehat{\mathsf{F}}_{j}^{l} \text{ for round } l \text{ where } P_{j} \text{ outputs } m_{j}^{l} \text{ additionally outputs } \alpha_{j} \leftarrow \mathsf{Encode}((g_{1},g_{2}),(\widehat{x}_{i},\widehat{\mathsf{fk}}_{i}),(\widehat{x}_{j},\widehat{\mathsf{fk}}_{j}),s_{j}). \end{aligned}$

By the correctness and security of 2rNISC, the evaluator can recover only k_y as desired.

We do not know however how to prove the above construction secure. The issue is that the PRF key fk_i is used to generate the labels of all the garbled circuits and our security hybrids switch garbled circuits to simulated ones, one by one. Concretely, to switch the garbled circuit for round ℓ into a simulated one, its input labels must first be switched to uniformly random ones (instead of being

PRF outputs). The usual solution for that is to use the pseudorandom property of the PRF. Unfortunately, we cannot do that, because the secret key fk_i of the PRF is an input of the 2rNISC for functional OT for the rounds after round ℓ . To solve this issue, our final scheme actually uses L + 1 PRF keys, one for the randomness of the inner MPC and one for the labels of the garbled circuit for each of the L rounds. To make sure that the input encodings do not depend on the parameters of computations later, we employ a constant round inner MPC protocol, that is, L = O(1).

3 Preliminaries

We denote the security parameter by λ . Let \mathbb{N} be the set of non-negative integers. A function negl: $\mathbb{N} \to \mathbb{N}$ is negligible if for any polynomial $p: \mathbb{N} \to \mathbb{N}$, for any large enough $\lambda \in \mathbb{N}$, negl(λ) < $1/p(\lambda)$.

We make use of garbled circuits, collision-resistant hash functions, and pseudorandom functions. A garbled circuit scheme GC is defined as a tuple of four polynomial-time algorithms GC = (GC.Gen, GC.Garble, GC.Eval, GC.Sim): i) key $\leftarrow_{\mathbb{R}} GC.Gen(1^{\lambda})$ generates labels or keys key = $\{key[i, b]\}_{i, b \in \{0,1\}}$, ii) $\widehat{C} \leftarrow_{\mathbb{R}} GC.Garble(key, C)$ garbles the circuit, iii) $y = GC.Eval(\widehat{C}, key')$ evaluates the garbled circuit on the input x corresponding to the selected labels $key' = \{key[i, x_i]\}_i$, iv) $(key', \widetilde{C}) \leftarrow_{\mathbb{R}} GC.Sim(1^{\lambda}, y)$ simulates a garbled circuit and the corresponding input labels from the output.

3.1 General Lattice Preliminaries

Lattices. An *m*-dimensional lattice \mathcal{L} is a discrete additive subgroup of \mathbb{R}^m . Given positive integers n, m, q and a matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, we let $\Lambda_q^{\perp}(\mathbf{A})$ denote the lattice $\{ \boldsymbol{x} \in \mathbb{Z}^m \mid \mathbf{A} \boldsymbol{x}^{\top} = \mathbf{0}^{\top} \mod q \}$.

Discrete Gaussians. Let σ be any positive real number. The Gaussian distribution \mathcal{D}_{σ} with parameter σ is defined by the probability distribution function $\rho_{\sigma}(\boldsymbol{x}) = \exp(-\pi ||\boldsymbol{x}||^2/\sigma^2)$. For any discrete set $\mathcal{L} \subseteq \mathcal{R}^m$, define $\rho_{\sigma}(\mathcal{L}) = \sum_{\boldsymbol{x} \in \mathcal{L}} \rho_{\sigma}(\boldsymbol{x})$. The discrete Gaussian distribution $\mathcal{D}_{\mathcal{L},\sigma}$ over \mathcal{L} with parameter σ is defined by the probability distribution function $\rho_{\mathcal{L},\sigma}(\boldsymbol{x}) = \rho_{\sigma}(\boldsymbol{x})/\rho_{\sigma}(\mathcal{L})$.

The following lemma (e.g., [55, Lemma 4.4]) shows that if the parameter σ of a discrete Gaussian distribution is small, then any vector drawn from this distribution will be short (with high probability).

Lemma 3.1. Let m, n, q be positive integers with m > n, q > 2. Let $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ be a matrix of dimensions $n \times m, \sigma \in \widetilde{\Omega}(n)$, and $\mathcal{L} = \Lambda_q^{\perp}(\mathbf{A})$. Then, there is a negligible function $\mathsf{negl}(\cdot)$ such that

$$\Pr_{\boldsymbol{x} \leftarrow \mathcal{D}_{\mathcal{L},\sigma}} \left[\|\boldsymbol{x}\| > \sqrt{m}\sigma \right] \le \mathsf{negl}(n),$$

where $\|\boldsymbol{x}\|$ denotes the ℓ_2 norm of \boldsymbol{x} .

15

Truncated Discrete Gaussians. The truncated discrete Gaussian distribution over \mathbb{Z}^m with parameter σ , denoted by $\widetilde{\mathcal{D}}_{\mathbb{Z}^m,\sigma}$, is the same as the discrete Gaussian distribution $\mathcal{D}_{\mathbb{Z}^m,\sigma}$ except that it outputs 0 whenever the ℓ_{∞} norm exceeds $\sqrt{m\sigma}$. By definition, we can say that $\widetilde{\mathcal{D}}_{\mathbb{Z}^m,\sigma}$ is $\sqrt{m\sigma}$ -bounded, where a family of distributions $\mathcal{D} = \{\mathcal{D}_\lambda\}_{\lambda \in \mathbb{N}}$ over the integers is *B*-bounded (for $B = B(\lambda) > 0$) if for every $\lambda \in \mathbb{N}$ it holds that $\Pr_{x \leftarrow \mathcal{D}_{\lambda}}[|x| \leq B(\lambda)] = 1$.

Also, by Lemma 3.1 we get that $\mathcal{D}_{\mathbb{Z}^m,\sigma}$ and $\mathcal{D}_{\mathbb{Z}^m,\sigma}$ are statistically indistinguishable. Therefore, in the preliminaries below, unless specified, the lemata will apply in the setting where by sampling from discrete Gaussian we mean sampling from truncated discrete Gaussian distribution.

3.2 Learning With Errors

The learning with errors (LWE) problem was defined by Regev [61]. The LWE_{n,m,q,χ} problem for parameters $n, m, q \in \mathbb{N}$ and for a distribution χ supported over \mathbb{Z} is to distinguish between the following pair of distributions

 $(\mathbf{A}, s\mathbf{A} + e \mod q)$ and (\mathbf{A}, u) ,

where $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$, $\mathbf{s} \leftarrow \mathbb{Z}_q^{1 \times n}$, $\mathbf{e} \leftarrow \chi^{1 \times n}$ and $\mathbf{u} \leftarrow \mathbb{Z}_q^{1 \times m}$. Similarly, we can define the matrix version of the problem, which is known to be hard, if the version above is hard. Specifically, let $k \in \mathsf{poly}(n, m)$, then in the matrix the task is to distinguish between the following two distributions

$$(\mathbf{A}, \mathbf{SA} + \mathbf{E} \mod q)$$
 and (\mathbf{A}, \mathbf{U}) ,

where $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$, $\mathbf{S} \leftarrow \mathbb{Z}_q^{k \times n}$, $\mathbf{E} \leftarrow \chi^{k \times n}$ and $\mathbf{U} \leftarrow \mathbb{Z}_q^{k \times m}$.

The gadget matrix [54]. Fix a dimension n and a modulus q. Define the gadget vector $\boldsymbol{g} = (1, 2, 4, \ldots, 2^{\log q-1})$ and the gadget function $g^{-1} \colon \mathbb{Z}_q \to \{0, 1\}^{\lceil \log q \rceil}$ to be the function that computes the $(\log q)$ th bit decomposition of an integer. For some integer z the function is defined as $g^{-1}(z) = \boldsymbol{v} = (v_1, \ldots, v_{\log q})$ where $v_i \in \{0, 1\}$ such that $z = \langle \boldsymbol{g}, \boldsymbol{v} \rangle$. By extension we define the augmented gadget function $G^{-1} \colon \mathbb{Z}_q^{n \times m} \to \{0, 1\}^{(n \cdot \lceil \log q \rceil) \times m}$ to be the function that computes the $(\log q)$ th bit decomposition of every integer in a matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, and arranges them as a binary matrix of dimension $(n \cdot \log q) \times k$ which we denote $\mathbf{G}^{-1}(\mathbf{A})$. Hence, $\mathbf{G}_n \cdot G^{-1}(\boldsymbol{z}) = \mathbf{Z}$, where the gadget matrix \mathbf{G}_n is $\mathbf{G}_n = \boldsymbol{g} \otimes \mathbf{I}_n \in \mathbb{Z}_q^{n \times (n \cdot \lceil \log q \rceil)}$. When n is clear from context, we denote \mathbf{G}_n simply by \mathbf{G} .

3.3 Review of Gentry-Sahai-Waters FHE Scheme

We now recall the Gentry-Sahai-Waters FHE scheme [46]. The scheme has the following overall structure:

GSW.Setup: The public key consists of a matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$. This matrix is typically generated by sampling a matrix $\mathbf{B} \in \mathbb{Z}_q^{n_1 \times m}$, a secret $\mathbf{S} \leftarrow \mathbb{Z}_q^{k \times n_1}$, errors $\mathbf{E} \leftarrow \chi^{k \times m}$, and finally setting $\mathbf{A} = [\mathbf{B}^\top | (\mathbf{SB} + \mathbf{E})^\top]^\top \in \mathbb{Z}_q^{n \times m}$ where $n = n_1 + k$ and $m \in \Omega(n \cdot \lceil \log q \rceil)$). The secret key is \mathbf{S} .

- 16 F. Benhamouda, A. Jain, I. Komargodski, and H. Lin
- **GSW.Encrypt:** To encrypt a message $\mu \in \{0, 1\}$, sample randomness $\mathbf{R} \in \{-1, 0, 1\}^{m \times (n \cdot \lceil \log q \rceil)}$ and finally setting $\mathbf{C} = \mathbf{A} \cdot \mathbf{R} + \mu \cdot \mathbf{G}$. Note that if **A** is generated in the manner above, μ is recoverable, and if it is generated at random, then μ is information theoretically lost.
- **GSW.Eval:** Let $f : \{0,1\}^{\kappa} \to \{0,1\}$ be a depth $d(\kappa)$ boolean circuit, then, given honestly generated ciphertexts $\mathbf{C}_i = \mathbf{A} \cdot \mathbf{R}_i + \mu_i \cdot \mathbf{G}$ for $i \in [\kappa]$. Then $\mathsf{GSW}.\mathsf{Eval}(f, \{\mathbf{C}_i\}_{i \in [\kappa]})$ computes the evaluated ciphetext $\widetilde{\mathbf{C}} = \mathbf{A} \cdot \widetilde{\mathbf{R}} + f(\mu_1, \dots, \mu_{\kappa}) \cdot \mathbf{G}$. There are two facts about this computation:
 - <u>Randomness Homomorphism</u>: There is a polynomial time algorithm GSW.RandEval that on input $\mathbf{A}, \{\mathbf{R}_i, \mu_i\}_{i \in [\kappa]}, \text{ and } f, \text{ computes } \widetilde{\mathbf{R}}.$
 - <u>Bounds</u>: If $f \in \mathsf{NC}^1$, then $\|\widetilde{\mathbf{R}}\|_{\infty} \leq O(4^d \cdot m)$ as shown in [28]. Otherwise, $\|\widetilde{\mathbf{R}}\|_{\infty} \leq O(m^d)$ [46].

3.4 Lattice Trapdoors

Definition 3.2 (Lattice trapdoors [4, 5, 45, 54]). There is an efficient randomized algorithm TrapGen $(1^n, 1^m, q)$ that given any integers $n \ge 1, q \ge 2$ and $m \in \Omega(n \log q)$, outputs a full-rank matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and a trapdoor matrix $\mathbf{T}_{\mathbf{A}} \in \mathbb{Z}^{m \times m}$ such that

- 1. $\mathbf{A} \cdot \mathbf{T}_{\mathbf{A}} = \mathbf{0}^{n \times m} \mod q$.
- 2. The distribution of \mathbf{A} is $\operatorname{negl}(n)$ -close to uniform.
- 3. $\mathbf{T}_{\mathbf{A}} \in \mathbb{Z}^{m \times m}$ is a short matrix with linearly independent columns over \mathbb{R} . More precisely, $\|\mathbf{T}_{\mathbf{A}}\|_{\mathsf{GS}} = O(\sqrt{n \cdot \log q})$, where for a matrix \mathbf{X} , $\|\mathbf{X}\|_{\mathsf{GS}}$ is the operator norm of the matrix obtained by performing Gram-Schmidt (GS) orthogonalization of \mathbf{X} .

The following lemma is standard and follows from the leftover hash lemma.

Lemma 3.3. For any $k \in \mathsf{poly}(n)$ and $m \in \Omega(n \log q)$, the following two distributions are $\mathsf{negl}(n)$ -close in statistical distance:

$$\{(\mathbf{A}, \mathbf{T}_{\mathbf{A}}, \mathbf{U}) \mid (\mathbf{A}, \mathbf{T}_{\mathbf{A}}) \leftarrow \mathsf{TrapGen}(1^n, 1^m, q), \ \mathbf{U} \leftarrow \mathbb{Z}_q^{n \times k}\}$$

and

$$\{(\mathbf{A}, \mathbf{T}_{\mathbf{A}}, \mathbf{A} \cdot \mathbf{R}) \mid (\mathbf{A}, \mathbf{T}_{\mathbf{A}}) \leftarrow \mathsf{TrapGen}(1^n, 1^m, q), \ \mathbf{R} \leftarrow \{-1, +1\}_a^{m \times k}\}.$$

We will use the following algorithms for sampling trapdoor matrices.

- Algorithm SampleLeft(A, B, T_A, α) \mapsto T_[A|B]: The sample left algorithm takes as input a full rank matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m_1}$, a matrix $\mathbf{B} \in \mathbb{Z}_q^{n \times m_2}$, a trapdoor T_A and it outputs a trapdoor T_[A|B] of [A | B].
- Algorithm SampleRight($\mathbf{A}, \mathbf{B}, \mathbf{R}, \mathbf{T}_{\mathbf{B}}, \alpha$) $\mapsto \mathbf{T}_{[\mathbf{A}|\mathbf{A}\mathbf{R}+\mathbf{B}]}$: The sample right algorithm takes as input a matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m_1}$, a full rank matrix $\mathbf{B} \in \mathbb{Z}_q^{n \times m_2}$ and its trapdoor $\mathbf{T}_{\mathbf{B}}$, along with $\mathbf{R} \in \mathbb{Z}_q^{m_1 \times m_2}$. It outputs a trapdoor $\mathbf{T}_{[\mathbf{A}|\mathbf{A}\cdot\mathbf{R}+\mathbf{B}]}$ of $[\mathbf{A}|\mathbf{A}\cdot\mathbf{R}+\mathbf{B}]$.

The following lemma says that the process of sampling from SampleLeft and SampleRight produce indistinguishable outputs, when executed on the appropriate inputs. The lemma follows from [2, 31].

Lemma 3.4 (Indistinguishability of SampleRight, SampleLeft). Let $\mathbf{A} \in \mathbb{Z}_q^{n \times m_1}$ be a full rank matrix with a trapdoor $\mathbf{T}_{\mathbf{A}}$. Let $\mathbf{B} \in \mathbb{Z}_q^{n \times m_2}$ be a full rank matrix with a trapdoor $\mathbf{T}_{\mathbf{B}}$. Let $\mathbf{R} \in \mathbb{Z}^{m_1 \times m_2}$. Let

$$\alpha > \max\left\{ \|\mathbf{T}_{\mathbf{A}}\|_{\mathsf{GS}} \cdot \omega(\sqrt{\log(m_1 + m_2)}), \|\mathbf{T}_{\mathbf{B}}\|_{\mathsf{GS}} \cdot \|\mathbf{R}\| \cdot \omega(\sqrt{\log(m_2)}) \right\}$$

Then, the following two distributions are statistically close (up to negligible in n distance):

$$\{\mathbf{X} \mid \mathbf{X} \leftarrow \mathsf{SampleLeft}(\mathbf{A}, \mathbf{A} \cdot \mathbf{R} + \mathbf{B}, \mathbf{T}_{\mathbf{A}}, \alpha)\}$$

and

{**X** | **X**
$$\leftarrow$$
 SampleRight(**A**, **B**, **R**, **T**_{**B**}, α)}

Further, $\|\mathbf{X}\| \in O(\sqrt{m_1 + m_2} \cdot \alpha)$.

3.5 Lossy Modes and Unique Decoding

For a given matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ we consider the function:

$$f_{\mathbf{A}}(\boldsymbol{s}, \boldsymbol{e}) = \boldsymbol{s} \cdot \mathbf{A} + \boldsymbol{e} \mod q,$$

where $s \in \mathbb{Z}_q^{1 \times n}$ and $e \in \mathbb{Z}_q^{1 \times m}$. We now consider two settings where in one f_A is invertible and in the other it is lossy.

Invertible mode. When we have a short trapdoor for \mathbf{A} , and if e is short, then s is recoverable. This is captured by the following lemma.

Lemma 3.5 ([54]). There exist a polynomial time (deterministic) algorithm RecoverSecret such that the following holds. Let $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ be any full rank matrix and $\mathbf{T}_{\mathbf{A}}$ be a corresponding trapdoor. Let $\mathbf{s} \in \mathbb{Z}_q^{1 \times n}$ and $\mathbf{e} \in \mathbb{Z}^{1 \times m}$ be arbitrary. Then, RecoverSecret $(\mathbf{A}, \mathbf{T}_{\mathbf{A}}, \mathbf{s}\mathbf{A} + \mathbf{e} \mod q) = \mathbf{s}$ whenever $q > \|\mathbf{T}_{\mathbf{A}}\| \cdot \|\mathbf{e}\|$.

Lossy Mode. In the other extreme when the row span of **A** has k linearly independent vectors of short norm, **s** is chosen at random from \mathbb{Z}_q^n , and $e \leftarrow \mathcal{D}_{\mathbb{Z}^m,\sigma}$ is sampled from a wide enough discrete Gaussian, then $sA + e \mod q$ hides s information theoretically. This is captured by the following lemma.

Lemma 3.6 (From Lemma 4.3 and Lemma 3.2 of [24]). Let $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ where $m \in \Omega(n \log q)$. Assume that there exist $k \leq n$ linearly independent vectors in the row span of \mathbf{A} , each with norm bounded by γ . Then,

$$\widetilde{H}_{\infty}\left(\boldsymbol{s} \mid (\boldsymbol{A}, \boldsymbol{s}\boldsymbol{A} + \boldsymbol{e} \mod q) \ge k \cdot \log \frac{\sigma}{\gamma} - 1,$$

where $\mathbf{s} \leftarrow \mathbb{Z}_q^{1 \times n}$ and $\mathbf{e} \leftarrow \mathcal{D}_{\mathbb{Z}^m,\sigma}$. (\widetilde{H}_{∞} denotes average-conditional min-entropy; see Definition 3.7.)

18 F. Benhamouda, A. Jain, I. Komargodski, and H. Lin

3.6 Other Preliminaries

Definition 3.7 (Average Conditional Min-Entropy). Let X be a randomvariable supported on a finite set X and Z be a possibly correlated random-variable supported on a finite set Z. The average conditional min-entropy:

$$\widetilde{H}_{\infty}(X|Z) = -\log\left(\mathbb{E}\left[\max_{x\in\mathcal{X}}\Pr\left[X=x\mid Z=z\right]\right]\right)$$

Definition 3.8 ((k, ϵ) -average case strong seeded extractor). A function Ext: $\{0, 1\}^{\ell_{\text{Ext}}} \times \mathcal{X} \to \{0, 1\}^{\ell}$ is called a seeded strong average-case extractor, if it holds that for all random variables X and Z defined on some domains with a finite support, if $\widetilde{H}_{\infty}(X|Z) \geq k$ then it holds that:

$$(s, \mathsf{Ext}(s, X), Z) \approx_{\epsilon} (s, U, Z)$$

where $s \leftarrow \{0,1\}^{\ell_{\mathsf{Ext}}}$ and $U \leftarrow \{0,1\}^{\ell}$.

There exists explicit polynomial-time constructions of seeded strong average-case $(\ell + O(\log(1/\epsilon)), \epsilon)$ extractors [36, 37].

Lemma 3.9 (Error vectors are linearly independent). Let $k, m \in \mathbb{N}$ such that k < m/2. Let $e_i \leftarrow \mathcal{D}_{\mathbb{Z}^m,\sigma}$ for $i \in [k]$, where $\sigma > m$. Except with $\mathsf{negl}(m)$ probability, the vectors $\{e_i\}_{i \in [k]}$ are linearly independent.

Proof. First observe that the column rank of the matrix $\mathbf{E} = [\mathbf{e}_1^\top | \dots | \mathbf{e}_k^\top]$ is at least as much as the column rank of the matrix $\mathbf{E} \mod 2$ (over the field \mathbb{Z}_2). Due to the smoothing lemma [55], it is known that the statistical distance between $\mathbf{e} \mod 2$ and \mathbb{Z}_2^m is at most $2^{-\Omega(m)}$ as $\sigma > m$. Finally, the claim holds since for a matrix $\mathbf{A} \leftarrow \mathbb{Z}_2^{k \times m}$ sampled uniformly at random

$$\Pr[\mathsf{rank}(\mathbf{A}) = k] > 1 - O(k \cdot 2^{k-m}).$$

4 Construction of 2rNISC

In this section, we give a construction of 2rNISC for the functionality:

$$\mathcal{U}_{\mathrm{fOT}} = {\mathcal{U}_{\mathrm{fOT},\lambda}}_{\lambda \in \mathbb{N}}$$

This functionality takes three inputs. The public input consists of two polynomial sized (in λ) functions $g_1: \{0, 1\}^{n_1} \to \{0, 1\}^{\lambda} \times \{0, 1\}^{\lambda}$ and $g_2: \{0, 1\}^{n_2} \to \{0, 1\}$. (We assume that functions are given in the form of Boolean circuits). The functionality is evaluated as in the specifications described in Figure 1.

We recall that a 2rNISC is a mrNISC where the functionality to be evaluated is restricted to 2 parties. A 2rNISC allows for an arbitrary number of parties to commit or encode their inputs. The notion of mrNISC was recalled in the overview (Section 2.1). A formal definition can be found in the full version [20].

The main result of this section is a semi-malicious 2rNISC scheme for $\mathcal{U}_{fOT,\lambda}$ assuming LWE and a PRF in NC^1 .

19

Functionality $\mathcal{U}_{\text{fOT},\lambda}$ Public Input: Polynomial-sized functions $g_1 \colon \{0,1\}^{n_1} \to \{0,1\}^{\lambda} \times \{0,1\}^{\lambda}$ and $g_1 \colon \{0,1\}^{n_2} \to \{0,1\}$. Input of the First Party: $x_1 \in \{0,1\}^{n_1}$. Input of the Second Party: $x_2 \in \{0,1\}^{n_2}$. Output to both Parties: Compute $(y_0, y_1) = g_1(x_1)$ where $y_0, y_1 \in \{0,1\}^{\lambda}$. Output $(g_2(x_2), y_{g_2(x_2)})$.

Fig. 1: The functionality $\mathcal{U}_{fOT,\lambda,d}$

Theorem 4.1. Assume LWE with polynomial modulus and a PRF in NC¹. Then, there exists a semi-malicious 2rNISC for U_{fOT} .

The construction that gives Theorem 4.1 is obtained in two modular steps. In the first step (see Section 4.1 and Theorem 4.2), we construct a 2rNISC for a subset of all functions in the functionality $\mathcal{U}_{fOT,\lambda}$. Specifically, we restrict the circuit depth of g_2 to be an a priori fixed $d = d(\lambda)$ and obtain a protocol based solely on LWE. In the next step (see Section 4.2 and Theorem 4.3), using standard bootstrapping techniques using randomized encodings, we obtain our final 2rNISC without any restriction on d. This step relies, in addition to LWE, on a PRF in NC¹.¹³

4.1 **2rNISC** for Depth-Bounded Functions

In this section, we give a construction of a semi-malicious 2rNISC for the restricted functionality, where g_2 has a priori bounded depth $d = d(\lambda)$. We denote this functionality by $\{\mathcal{U}_{fOT,\lambda,d}\}_{\lambda,d\in\mathbb{N}}$.

Theorem 4.2. Assuming LWE with polynomial modulus, there exists a semimalicious 2rNISC for $\mathcal{U}_{fOT,\lambda,d}$ for all (a priori) bounded $d \in O(\log \lambda)$. Further, assuming LWE assumption holds with modulus-to-noise ratio $2^{N^{\epsilon}}$ for any constant ϵ , where N is the dimension, the same protocol is a semi-malicious 2rNISC protocol for $\mathcal{U}_{fOT,\lambda,d}$ for any (a priori) bounded polynomial $d(\lambda)$.

Before presenting the protocol, we list various parameters used in the scheme. We will explain how to set these parameters to achieve correctness and security in the full version [20].

Parameters.

 $-\lambda$ is the security parameter,

¹³The common definition of a PRF in NC¹ is a PRF whose circuit representation is in NC¹ when viewed as a function of both the input and the seed. We actually need a slightly weaker condition, namely, that the circuit computing $F_x(\cdot) = \mathsf{PRF}.\mathsf{Eval}(\cdot, x)$ with the hardwired input x, as a function of the PRF key is in NC¹.

- $-n_i$ is the length of the input of party *i*,
- -d is the depth parameter,
- N_1 is a lattice dimension involved,
- -k is the number of secrets used to generate the commitment key,
- $N := N_1 + k,$
- -q is a modulus,
- $-M \in \Omega(N \cdot \log q)$ is a dimension involved,
- $-\sigma, \sigma'$ are discrete Gaussian parameters,
- $-\rho$ is a parameter for trapdoor sampling,
- $-\ell_{\mathsf{Ext}}$ is the seed length of an average-case strong-seeded extractor (Definition 3.8).

The protocol. We now describe the protocol which consists of three phases. The first phase is a commitment phase where any party can publish a commitment to its input. The second phase is when two parties decide to execute the functionality $\mathcal{U}_{\text{for},\lambda,d}$ with their respective commitments from the first phase. In this phase, one message is published from each of these parties. In the third and last phase, each party locally computes their output, given the public transcript. No communication is involved in this phase.

We present the protocol from the point of view of a given party which we call P. This party first commits to its input on a public board. Later, P can engage in a computation phase with some other party P', by each broadcasting just one message. For this phase, we distinguish between two cases: whether Pis the "first" or "second" party among P, P', where the ordering is given by the functionality. Lastly, each party can recover the output of the computation just from the public messages.

Commit on input $(1^{\lambda}, x)$: On input $x \in \{0, 1\}^*$ perform the following steps:

- Sample a matrix $\mathbf{B} \leftarrow \mathbb{Z}_q^{N_1 \times M}$ uniformly at random. Sample secrets $t_l \leftarrow \mathbb{Z}_q^{1 \times N_1}$ for $l \in [k]$.
- For $l \in [k]$, compute $\mathbf{b}_l = \mathbf{t}_l \cdot \mathbf{B} + \mathbf{e}_l$ where \mathbf{e}_l is sampled from \mathcal{D}_{σ}^M .
- Set flag = 0 if $\{e_l\}_{l \in [k]}$ are not linearly independent. Otherwise set flag = 1. Observe that due to Lemma 3.9, with overwhelming probability flag = 1.
- Denote $\mathbf{A} = [\mathbf{B}^\top | \mathbf{b}_1^\top | \dots | \mathbf{b}_k^\top]^\top \in \mathbb{Z}_q^{N \times M}$. Compute commitments of input x. Parse $x = (x_1, \dots, x_n)$, where n =|x|. Compute matrices $\mathbf{C}_{\ell} = \mathbf{A} \cdot \mathbf{R}_{\ell} + x_{\ell} \mathbf{G}$ for $\ell \in [n]$. Here $\mathbf{R}_{\ell} \leftarrow$ $\{-1,+1\}^{M \times (N \lceil \log q \rceil)}$ is chosen uniformly at random and $\mathbf{G} \in \mathbb{Z}_q^{N \times (N \lceil \log q \rceil)}$ is the gadget matrix.
- Output $\hat{x} = (\mathsf{flag}, \mathbf{A}, \{\mathbf{C}_{\ell}\}_{\ell \in [n]})$ as a public string and remember s = $({\mathbf{R}}_{\ell})_{\ell \in [n]}, x)$ as a private string.
- Encode: There are two cases, depending on the "order" of the parties involved, denoted P and P'. In both cases, the view of party P (or its query) consists of \hat{x}, \hat{x}', s and the view of P' consists of \hat{x}, \hat{x}', s' . The descriptions of q_1, q_2 are public. In both cases, party P first parses the public message of P' as follows:

- Parse $\widehat{x}' = (\mathsf{flag}', \mathbf{A}', \{\mathbf{C}'_{\ell}\}_{\ell \in [n']})$, where n' is the input length of party P'. If flag' = 0, output \perp . Otherwise, proceed.

Party P proceeds as follows, depending on whether it is the "first" party or the "second".

Case 1: Party *P* is the "first" party.

- Compute $(y_0, y_1) = g_1(x)$.
- Compute $\widetilde{\mathbf{C}}'_{q_2} = \mathsf{GSW}.\mathsf{Eval}(g_2, \{\mathbf{C}'_\ell\}_{\ell \in [n_i]}).$
- Sample two secrets $\boldsymbol{u}_0, \boldsymbol{u}_1 \leftarrow \mathbb{Z}_q^{1 \times N}$.
- Compute $\boldsymbol{w}_b = \boldsymbol{u}_b \cdot [\mathbf{A}' | \widetilde{\mathbf{C}}'_{g_2} (1-b) \cdot \mathbf{G}] + \widetilde{\boldsymbol{e}} \mod q$ for $b \in \{0, 1\}$. Here $\widetilde{\boldsymbol{e}}$ is sampled from $\mathcal{D}_{\sigma'}^{1 \times (M+N \lceil \log q \rceil)}$.
- Let Ext: $\{0,1\}^{\ell_{\mathsf{Ext}}} \times \{0,1\}^{N \log q} \to \{0,1\}^{\lambda}$ be a $(\lambda,2^{-\lambda})$ -strong seeded extractor. Sample a seed sd of the extractor. Output $\alpha = (sd, w_0, w_1, v_0)$ $\mathsf{Ext}(\mathsf{sd}, \boldsymbol{u}_0) \oplus y_0, v_1 = \mathsf{Ext}(\mathsf{sd}, \boldsymbol{u}_1) \oplus y_1).$

Case 2: Party *P* is the "second" party.

- Compute $\widetilde{\mathbf{C}}_{g_2} = \mathsf{GSW}.\mathsf{Eval}(g_2, {\mathbf{C}_{\ell}}_{\ell \in [n]}).$
- Compute GSW.RandEval($\mathbf{A}, \{\mathbf{R}_{\ell}, x_{\ell}\}_{\ell \in [n]}$) $\rightarrow \widetilde{\mathbf{R}}_{g_2}$ such that $\widetilde{\mathbf{C}}_{g_2} = \mathbf{A} \cdot$ $\mathbf{R}_{g_2} + g_2(x) \cdot \mathbf{G}.$
- Compute a matrix \mathbf{X}_{q_2} as:

$$\mathbf{X}_{g_2} = \begin{cases} \mathsf{SampleRight}(\mathbf{A}, -\mathbf{G}, \widetilde{\mathbf{R}}_{g_2}, \mathbf{T}_{\mathbf{G}}, \rho) \text{ when } g_2(x) = 0\\ \mathsf{SampleRight}(\mathbf{A}, \mathbf{G}, \widetilde{\mathbf{R}}_{g_2}, \mathbf{T}_{\mathbf{G}}, \rho) \text{ when } g_2(x) = 1 \end{cases}$$

Observe that \mathbf{X}_{g_2} is a trapdoor of $[\mathbf{A} \mid \widetilde{\mathbf{C}}_{g_2} - (1 - g_2(x))\mathbf{G}]$. - Output $\alpha = (g_2(x), \mathbf{X}_{g_2}).$

Eval on input $(z = (g_1, g_2), \hat{x}, \hat{x}', \alpha, \alpha')$: Let P be the first party and P' be the second party.

- Parse $\hat{x} = (\mathsf{flag}, \mathbf{A}, {\mathbf{C}_{\ell}}_{\ell \in [n]})$ and $\hat{x}' = (\mathsf{flag}', \mathbf{A}', {\mathbf{C}'_{\ell}}_{\ell \in [n']})$. If $\alpha = \bot$ or $\alpha' = \bot$, then output \bot . Otherwise,
- Parse $\alpha = (\mathsf{sd}, \boldsymbol{w}_0, \boldsymbol{w}_1, v_0, v_1)$ and $\alpha' = (\alpha'_1, \mathbf{X})$ where α'_1 is a bit.
- Compute $\boldsymbol{u} = \mathsf{RecoverSecret}([\mathbf{A}'|\widetilde{\mathbf{C}}'_{g_2} (1-\alpha'_1)\mathbf{G})], \ \mathbf{X}, \boldsymbol{w}_{\alpha'_1})$, where recall that $\widetilde{\mathbf{C}}'_{g_2} = \mathsf{GSW}.\mathsf{Eval}(g_2, \{\mathbf{C}'_\ell\}_{\ell \in [n]}).$ - Compute $\mathsf{out}_2 = \mathsf{Ext}(\mathsf{sd}, u) \oplus v_{\alpha'_1}.$ Set $\mathsf{out}_1 = \alpha'_1$
- Output $\mathsf{out} = (\mathsf{out}_1, \mathsf{out}_2)$.

In the full version, we derive a concrete setting of parameters with which we can instantiate the scheme as well as prove the correctness as well as the security.

4.2Bootstrapping **2rNISC** for all depths

In this section, we use a PRF in NC^1 to bootstrap a 2rNISC protocol for the functionality $\mathcal{U}_{\mathsf{fOT},\lambda,c\log\lambda}$ for some fixed large enough constant c to a 2rNISC for $\mathcal{U}_{fOT,\lambda}$, as required in Theorem 4.1. Namely, the theorem we prove is:

22 F. Benhamouda, A. Jain, I. Komargodski, and H. Lin

Theorem 4.3. Assuming a 2rNISC protocol for the functionality $\mathcal{U}_{fOT,\lambda,c \log \lambda}$ for a large enough constant c > 0, a PRF in NC¹, and a collision resistant hash function, there exist a 2rNISC for the functionality $\mathcal{U}_{fOT,\lambda}$.

By combining Theorems 4.2 and 4.2, and using the fact that LWE (with polynomial modulus) imply collision-resistant hash functions [3], imply Theorem 4.1.

We prove Theorem 4.3 in the full version [20]. An overview of the construction is provided at the end of Section 2.2.

5 Construction of mrNISC Schemes

Let us now show our construction of mrNISC schemes. We recall the mrNISC notion from the overview (Section 2.1) and the definition of Functional OT (\mathcal{U}_{fOT} , Fig. 1).

We have the following theorem.

Theorem 5.1. Assuming the existence of a semi-malicious 2rNISC for Functional OT there exists an mrNISC scheme for any polynomial-time functionality.

Our construction of mrNISC for a polynomial-time functionality \mathcal{U} uses the following building blocks:

- A 2rNISC 2rNISC = (Com', Encode', Eval') for Functional OT (fOT).
- A semi-malicious output-delayed simulatable *L*-round MPC protocol Π = (Next, Output) for f. Output-delayed simulatability was introduced in [22] and ensures that the transcript excluding the last messages can be simulated for all-but-one honest parties before knowing the output. Formal definitions and constructions from standard semi-malicious MPC are recalled in ??. We require the number of rounds L to be constant. The reason behind this requirement is that in an mrNISC protocol, only when all the honest parties agreed to provide a computation encoding, the adversary (and so the simulator) should be able to learn the output. Without loss of generality, we will assume that in each round ℓ of Π , each party P_i broadcasts a single message that depends on its input x_i , randomness r_i and on the messages $\mathsf{Msg}^{<\ell} = \{\mathsf{msg}_{j}^{\ell'}\}_{j \in [n], \ell' < \ell}$ that it received from all parties in all previous rounds such that $\mathsf{msg}_{i}^{\ell} = \mathsf{Next}_{j}(z, x_{j}, r_{j}, \mathsf{Msg}^{<\ell})$, where z is the public input. In other words, Next_i is the next message function that computes the message broadcast by P_i . In the last round L of Π anybody computes the public output $y = \mathsf{Output}(z, \mathsf{Msg}) = \mathcal{U}(z, \{x_i\}), \text{ from the messages } \mathsf{Msg} = \{\mathsf{msg}_j^\ell\}_{j \in [n], \ell \in [L]}, \ell \in [L]\}$ We denote by ν_r the number of bits of r_i and by ν_m the number of bits of messages msg_i^{ℓ} (without loss of generality, we suppose that these numbers are independent of i and ℓ , but they may depend on z and the security parameter). Next_i and Output implicitly take as input a unary representation of the security parameter 1^{λ} .
- A garbled circuit scheme GC = (GC.Gen, GC.Garble, GC.Eval, GC.Sim) for P. The keys (aka labels) of the garbled circuits have κ bits.

- A pseudorandom function PRF. Each party will generate L + 1 PRF keys fk_i^0, \ldots, fk_i^L . The key fk_i^0 is used to generate the randomness for the internal MPC (via $\mathsf{PRF}(fk_i, 0||z||\ldots)$), while the keys fk_i^1, \ldots, fk_i^L are used to encrypt (via a one-time pad) the labels of the used garbled circuits for rounds $1, \ldots, L$ respectively (via $\mathsf{PRF}(\mathsf{fk}_i, 1 \| z \| \dots)$).

Our mrNISC scheme is constructed as follows:

- Input: $(\hat{x}_i, s_i) \leftarrow \mathsf{Com}(1^\lambda, x_i)$ samples L + 1 PRF key $\mathsf{fk}_i^0, \dots, \mathsf{fk}_i^L \leftarrow_{\mathsf{R}}$ $\{0,1\}^{\lambda}$. For each $\ell \in L$, Com also generates 2rNISC input encodings and associated secret state for $x_i \| f \mathbf{k}_i^0 \| f \mathbf{k}_i^{\ell}$:

$$(\widehat{x}_i^\ell, s_i^\ell) \leftarrow_{\mathbf{R}} \mathsf{Com}'(x_i \| \mathrm{fk}_i^0 \| \mathrm{fk}_i^\ell) \ . \tag{1}$$

In other words, party P_i make L 2rNISC input encodings. When we need to differentiate these encodings, we say that the ℓ -th such input encoding is made by the virtual party P_i^{ℓ} . Finally, Com sets $\hat{x}_i := \{\hat{x}_i^{\ell}\}_{\ell \in [L]}$ and

- $s_{i} \coloneqq (x_{i}, \{\mathrm{fk}_{i}^{\ell}\}_{\ell \in [0,L]}, \{s_{i}^{\ell}\}_{\ell \in [L]}).$ $\underbrace{\mathrm{Computation of } \mathcal{U}(z, \star):}_{\bullet} \alpha_{i} \leftarrow \mathsf{Encode}(z, \{\widehat{x}_{j}\}_{j \in [n]}, s_{i}) \text{ proceeds as follows:}^{14}$ $\bullet \text{ For } \ell \in [L], \text{ generate input labels that will be used to garble the evaluation}$ circuit F_i^ℓ defined in Fig. 2:

$$(\mathbf{stateKey}_{i}^{\ell}, \{\mathbf{msgKey}_{i,j}^{\ell}\}_{i}) \leftarrow_{\mathrm{R}} \mathsf{GC}.\mathsf{Gen}(1^{\lambda})$$

For $\ell = 1$, all the input labels are empty, as F^1_i does not take any input. We also define $\mathbf{stateKey}_i^{L+1}$ and $\{\mathbf{msgKey}_{i,j}^{L+1}\}_j$ to be empty strings.

• For $\ell \in [L], j \in [n], k \in [\nu_m], b \in \{0, 1\}$, compute the following ciphertexts

$$\mathsf{ct}^{\ell}_{i,j,k,b} \leftarrow_{\mathsf{R}} \mathbf{msgKey}^{\ell+1}_{i,j}[k,b] \oplus \mathsf{PRF}(\mathsf{fk}^{\ell}_i, 1\|z\|j\|k\|b\|[\kappa]) \ . \tag{2}$$

If $\ell = L$, these ciphertexts are set to be empty strings.

• For $\ell \in [L]$, garble the evaluation circuit F_i^{ℓ} :

$$\widehat{\mathsf{F}}_i^\ell \leftarrow_{\scriptscriptstyle \mathrm{R}} \mathsf{GC}.\mathsf{Garble}((\mathbf{stateKey}_i^\ell, \ \{\mathbf{msgKey}_{i,j}^\ell\}_{j\in[n]}), \ \mathsf{F}_i^\ell) \ .$$

• Set $\alpha_i := (\{\widehat{\mathsf{F}}_i^\ell\}_{\ell \in [L]}, \{\mathsf{ct}_{i,j,k,b}^{\ell+1}\}_{j,k,b}).$ - <u>Output:</u> $y = \mathsf{Eval}(z, \{\widehat{x}_i\}_{i \in [n]}, \{\alpha_i\}_{i \in [n]})$ proceeds as follows in L iterations, for $\ell = 1, \ldots, L$:

• Evaluate the garbled circuits for round ℓ , for $i \in [n]$:

$$\begin{aligned} \left(\mathbf{stateKey}_i^{\ell+1}, \ \mathsf{msg}_i^{\ell}, \ \left\{ \alpha_{i,j,k,1}^{\ell} \right\}_{j,k}, \ \left\{ \alpha_{j,i,k,2}^{\ell} \right\}_{j,k} \right) \\ & \coloneqq \mathsf{GC}.\mathsf{Eval}(\widehat{\mathsf{F}}_i, \ \left(\mathbf{stateKey}_i^{\prime\ell}, \ \left\{ \mathbf{msgKey}_{i,j}^{\ell} [\mathsf{msg}_j^{\ell-1}] \right\}_{j \in [n]} \right)) \end{aligned}$$

We recall that for round $\ell = 1$, all the input labels are empty strings, so the evaluation can be performed.

¹⁴For simplicity, we suppose that the set of parties participating in the computation is I = [n].

- 24 F. Benhamouda, A. Jain, I. Komargodski, and H. Lin
 - If $\ell \neq L$, decrypt the input labels for the next round, for $i, j \in [n]$ and $k \in [\nu_m]$, define $g_{1,j,k}^{\ell}, g_{2,i,k}^{\ell}$ as in Fig. 2 and compute:

$$\begin{split} (_,K^{\ell}_{i,j,k}) \coloneqq \mathsf{Eval}'((g^{\ell}_{1,j,k},g^{\ell}_{2,j,k}),\,(\widehat{x}'_i,\widehat{x}'_j),\,(\alpha^{\ell}_{i,j,k,1},\alpha^{\ell}_{i,j,k,2})) \ ,\\ \mathbf{msgKey}^{\ell+1}_{i,j}[\mathsf{msg}^{\ell}_j] \coloneqq \{\mathsf{ct}^{\ell}_{i,j,k} \ \oplus \ K^{\ell}_{i,j,k}\}_{k \in [\nu_m]} \ , \end{split}$$

where _ just indicates that we ignore the output. At the end, Eval got the full transcript of the inner MPC $Msg = \{msg_j^\ell\}_{j \in [n], \ell \in [L]}$ and set $y \coloneqq \text{Output}(z, Msg)$.

The correctness of the mrNISC scheme is follows from the perfect correctness properties of the inner MPC protocol, of the garbled circuit scheme, and the following fact (if everything is generated as specified in the description above):

$$\begin{aligned} \mathsf{Eval}'((g_{1,j,k}^{\ell}, g_{2,j,k}^{\ell}), (\widehat{x}'_i, \widehat{x}'_j), (\alpha_{i,j,k,1}^{\ell}, \alpha_{i,j,k,2}^{\ell})) &= (\beta, y_{\beta}) \\ \text{where } \beta &= g_{2,j,k}^{\ell}(x_j \| \mathsf{fk}_j^0 \| \mathsf{fk}_j^\ell) = \text{the } k\text{-th bit of } \mathsf{msg}_j^\ell \\ \text{and } (y_0, y_1) &= g_{1,j,k}^{\ell}(x_i \| \mathsf{fk}_i^0 \| \mathsf{fk}_i^\ell) \end{aligned}$$

thus:

$$K_{i,j,k}^{\ell} = y_b = \mathsf{PRF}(\mathsf{fk}_j, 1 \| z \| j \| k \| \beta \| [\kappa])$$

The proof is similar to the security proof of the mrNISC in [22] and is formally presented in the full version [20].

Acknowledgments. Aayush Jain was supported by a Google PhD fellowship in the area of security and privacy (2018) and in part from DARPA SAFEWARE and SIEVE awards, NTT Research, NSF Frontier Award 1413955, and NSF grant 1619348, BSF grant 2012378, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. This material is based upon work supported by the Defense Advanced Research Projects Agency through Award HR00112020024 and the ARL under Contract W911NF-15-C- 0205.

Ilan Komargodski is supported in part by an Alon Young Faculty Fellowship and by an ISF grant (No. 1774/20).

Huijia Lin was supported by NSF grants CNS-1528178, CNS-1929901, CNS-1936825 (CAREER), CNS-2026774, a Hellman Fellowship, a JP Morgan AI Research Award, a Simons Collaboration grant on the Theory of Algorithmic Fairness, the Defense Advanced Research Projects Agency (DARPA) and Army Research Office (ARO) under Contract No. W911NF-15-C-0236, and a subcontract No. 2017-002 through Galois.

The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense, DARPA, the National Science Foundation, or the U.S. Government.

Circuit F_{i}^{ℓ} Hardwired Values: 1^{λ} , ℓ , i, z, $\{\hat{x}_j = \{\hat{x}_j^{\ell}\}_{\ell \in [L]}\}_{j \in [n]}$, S_i = $(x_i, \{\mathrm{fk}_i^\ell\}_{\ell \in [0,L]}, \{s_i^\ell\}_{\ell \in [L]}), \, \mathbf{stateKey}_i^{\ell+1}, \, \{\mathbf{msgKey}_{i,j}^{\ell+1}\}_{i \in [n]}^{\ell+1}$ Inputs: $(\mathsf{Msg}^{<\ell-1}, \mathsf{msg}^{\ell-1})$ where for $\ell > 1$: - The input messages $\mathsf{Msg}^{<\ell-1}$ are the messages of protocol Π of the first $\ell - 2$ rounds. Corresponding garble labels are denoted by stateKey $_{i}^{\ell}$. – The input messages $\mathbf{msg}^{\ell-1} := \{\mathbf{msg}_j^{\ell-1}\}_{j\in[n]}$ are the $\ell-1$ round messages of protocol Π . Corresponding garble labels are denoted by $\{ \mathbf{msgKey}_{i,j}^{\ell} \}_{j \in [n]}.$ Procedure: (for randomized algorithms, randomness is implicitly hardwired) 1. For $j \in [n]$, $k \in [\nu_m]$, and $b \in \{0, 1\}$, define the functions $g_{1,j,k}^{\ell}$ and $g_{2,j}^{\ell}$ by: $g_{1,i,k}^{\ell}(x \| \mathbf{fk}^0 \| \mathbf{fk}^{\ell}) \coloneqq \{ \mathsf{PRF}(\mathbf{fk}^{\ell}, 1 \| z \| j \| k \| b \| [\kappa]) \}_{b \in \{0,1\}} ,$ $g_{2,i}^{\ell}(x \| \mathrm{fk}^0 \| \mathrm{fk}^\ell) \coloneqq \mathsf{Next}_j(z, x, \mathsf{PRF}(\mathrm{fk}^0, 0 \| z \| [\nu_r]), \mathsf{Msg}^{<\ell-1}, \mathsf{msg}^{\ell-1})$ and define the functions $g_{2,j,k}^{\ell}$ to output the k'th bit of $g_{2,j}^{\ell}$, for $k \in [\nu_m].$ 2. Compute the ℓ -th round message $\mathsf{msg}_i^\ell = \mathsf{msg}_{i,1}^\ell \| \cdots \| \mathsf{msg}_{i,\nu_m}^\ell \coloneqq$ $g_{2i}^{\ell}(x_i \| \mathbf{fk}_i)$ of P_i in the inner protocol Π , and associated 2rNISC encodings, for $j \in [n], k \in [\nu_m]$ $\alpha_{i,j,k,1}^{\ell} \leftarrow_{\mathsf{R}} \mathsf{Encode}'((g_{1,j,k}^{\ell}, g_{2,j,k}^{\ell}), (\widehat{x}_{i}^{\ell}, \widehat{x}_{j}^{\ell}), s_{i}^{\ell})$ (3) $\alpha_{i\,i\,k\,2}^{\ell} \leftarrow_{\mathrm{R}} \mathsf{Encode}'((g_{1\,i\,k}^{\ell}, g_{2\,i\,k}^{\ell}), (\widehat{x}_{i}^{\ell}, \widehat{x}_{i}^{\ell}), s_{i}^{\ell})$ (4)3. Select the input labels stateKey_i^{ℓ +1}[Msg^{ℓ -1}][msg^{ℓ -1}] for the next round $(\ell + 1)$, corresponding to the messages $\mathsf{Msg}^{<\ell-1} || \mathsf{msg}^{\ell-1}$. If
$$\begin{split} \ell &= L, \text{ these values are set to be empty strings.} \\ \mathbf{Output: (stateKey_i^{\ell+1}[\mathsf{Msg}^{<\ell-1}||\mathsf{msg}^{\ell-1}], \ \mathsf{msg}_i^{\ell}, \ \{\alpha_{i,j,k,1}^{\ell}\}_{j,k}, \ \{\alpha_{j,i,k,2}^{\ell}\}_{j,k}). \end{split}$$

Fig. 2: Circuit F_i^ℓ for the construction of mrNISC in Section 5

References

- Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure computation based on cut-and-choose. In Phong Q. Nguyen and Elisabeth Oswald, editors, *EUROCRYPT 2014*, volume 8441 of *LNCS*, pages 387–404. Springer, Heidelberg, May 2014.
- Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model. In Henri Gilbert, editor, *EUROCRYPT 2010*, volume 6110 of *LNCS*, pages 553–572. Springer, Heidelberg, May / June 2010.
- Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In 28th ACM STOC, pages 99–108. ACM Press, May 1996.
- Miklós Ajtai. Generating hard instances of the short basis problem. In Jirí Wiedermann, Peter van Emde Boas, and Mogens Nielsen, editors, *ICALP 99*, volume 1644 of *LNCS*, pages 1–9. Springer, Heidelberg, July 1999.
- Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. In Susanne Albers and Jean-Yves Marion, editors, 26th International Symposium on Theoretical Aspects of Computer Science, STACS 2009, February 26-28, 2009, Freiburg, Germany, Proceedings, volume 3 of LIPIcs, pages 75–86. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2009.
- Prabhanjan Ananth, Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sahai. From FE combiners to secure MPC and back. In Dennis Hofheinz and Alon Rosen, editors, *TCC 2019, Part I*, volume 11891 of *LNCS*, pages 199–228. Springer, Heidelberg, December 2019.
- Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek Jain. Roundoptimal secure multiparty computation with honest majority. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 395–424. Springer, Heidelberg, August 2018.
- Prabhanjan Ananth, Abhishek Jain, and Zhengzhong Jin. Multiparty homomorphic encryption (or: On removing setup in multi-key FHE). *IACR Cryptol. ePrint Arch.*, 2020:169, 2020.
- Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta. Multikey fully-homomorphic encryption in the plain model. In *TCC*, pages 28–57, 2020.
- Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and Daniel Wichs. Multiparty computation with low communication, computation and interaction via threshold FHE. In David Pointcheval and Thomas Johansson, editors, *EUROCRYPT 2012*, volume 7237 of *LNCS*, pages 483–501. Springer, Heidelberg, April 2012.
- 11. Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay Wadia. Two-message witness indistinguishability and secure computation in the plain model from new assumptions. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 275–303. Springer, Heidelberg, December 2017.
- 12. Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sahai. Secure MPC: laziness leads to GOD. *IACR Cryptol. ePrint Arch.*, 2018:580, 2018.
- 13. Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sahai. Secure MPC: laziness leads to GOD. In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology - ASIACRYPT 2020 - 26th International Conference on the Theory and Application of Cryptology and Information Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part III, Lecture Notes in Computer Science, 2020.

- Saikrishna Badrinarayanan, Abhishek Jain, Rafail Ostrovsky, and Ivan Visconti. Non-interactive secure computation from one-way functions. In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part III, volume 11274 of LNCS, pages 118–138. Springer, Heidelberg, December 2018.
- Abhishek Banerjee and Chris Peikert. New and improved key-homomorphic pseudorandom functions. In Advances in Cryptology - CRYPTO, pages 353–370, 2014.
- Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In Advances in Cryptology–EUROCRYPT 2012, pages 719–737. Springer, 2012.
- James Bartusek, Sanjam Garg, Daniel Masny, and Pratyay Mukherjee. Reusable two-round MPC from DDH. In *Theory of Cryptography - TCC*, pages 320–348, 2020.
- Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, and Anat Paskin-Cherniavsky. Non-interactive secure multiparty computation. In Juan A. Garay and Rosario Gennaro, editors, *CRYPTO 2014, Part II*, volume 8617 of *LNCS*, pages 387–404. Springer, Heidelberg, August 2014.
- Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In 20th ACM STOC, pages 1–10. ACM Press, May 1988.
- 20. Fabrice Benhamouda, Aayush Jain, Ilan Komargodski, and Huijia Lin. Multiparty reusable non-interactive secure computation from lwe. *IACR Cryptol. ePrint Arch.*
- Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from kround oblivious transfer via garbled interactive circuits. In Jesper Buus Nielsen and Vincent Rijmen, editors, *EUROCRYPT 2018, Part II*, volume 10821 of *LNCS*, pages 500–532. Springer, Heidelberg, April / May 2018.
- Fabrice Benhamouda and Huijia Lin. Mr NISC: multiparty reusable non-interactive secure computation. In *Theory of Cryptography - TCC*, pages 349–378, 2020.
- 23. Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key homomorphic PRFs and their applications. In Ran Canetti and Juan A. Garay, editors, *CRYPTO 2013, Part I*, volume 8042 of *LNCS*, pages 410–428. Springer, Heidelberg, August 2013.
- Zvika Brakerski and Nico Döttling. Two-message statistically sender-private OT from LWE. In Amos Beimel and Stefan Dziembowski, editors, *TCC 2018, Part II*, volume 11240 of *LNCS*, pages 370–390. Springer, Heidelberg, November 2018.
- Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure computation without setup. In Yael Kalai and Leonid Reyzin, editors, *TCC 2017*, *Part I*, volume 10677 of *LNCS*, pages 645–677. Springer, Heidelberg, November 2017.
- Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages 575–584. ACM Press, June 2013.
- Zvika Brakerski and Renen Perlman. Lattice-based fully dynamic multi-key FHE with short ciphertexts. In Matthew Robshaw and Jonathan Katz, editors, *CRYPTO 2016, Part I*, volume 9814 of *LNCS*, pages 190–213. Springer, Heidelberg, August 2016.
- Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE. In Moni Naor, editor, *ITCS 2014*, pages 1–12. ACM, January 2014.
- 29. Ran Canetti, Shafi Goldwasser, and Oxana Poburinnaya. Adaptively secure twoparty computation from indistinguishability obfuscation. In Yevgeniy Dodis and

28 F. Benhamouda, A. Jain, I. Komargodski, and H. Lin

Jesper Buus Nielsen, editors, *TCC 2015, Part II*, volume 9015 of *LNCS*, pages 557–585. Springer, Heidelberg, March 2015.

- 30. Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with a global random oracle. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014, pages 597–608. ACM Press, November 2014.
- David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate a lattice basis. In Henri Gilbert, editor, *EUROCRYPT 2010*, volume 6110 of *LNCS*, pages 523–552. Springer, Heidelberg, May / June 2010.
- 32. Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel Kraschewski, Tianren Liu, Rafail Ostrovsky, and Vinod Vaikuntanathan. Reusable non-interactive secure computation. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 462–488. Springer, Heidelberg, August 2019.
- David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols (extended abstract). In 20th ACM STOC, pages 11–19. ACM Press, May 1988.
- Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled FHE from learning with errors. In Rosario Gennaro and Matthew J. B. Robshaw, editors, *CRYPTO 2015, Part II*, volume 9216 of *LNCS*, pages 630–656. Springer, Heidelberg, August 2015.
- 35. Dana Dachman-Soled, Jonathan Katz, and Vanishree Rao. Adaptively secure, universally composable, multiparty computation in constant rounds. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, *TCC 2015, Part II*, volume 9015 of *LNCS*, pages 586–613. Springer, Heidelberg, March 2015.
- 36. Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith. Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. *SIAM J. Comput.*, 38(1):97–139, 2008.
- 37. Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. In Christian Cachin and Jan Camenisch, editors, *EUROCRYPT 2004*, volume 3027 of *LNCS*, pages 523–540. Springer, Heidelberg, May 2004.
- Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation (extended abstract). In 26th ACM STOC, pages 554–563. ACM Press, May 1994.
- 39. Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure MPC from indistinguishability obfuscation. In Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 74–94. Springer, Heidelberg, February 2014.
- 40. Sanjam Garg, Yuval Ishai, and Akshayaram Srinivasan. Two-round MPC: Information-theoretic and black-box. In Amos Beimel and Stefan Dziembowski, editors, *TCC 2018, Part I*, volume 11239 of *LNCS*, pages 123–151. Springer, Heidelberg, November 2018.
- 41. Sanjam Garg, Peihan Miao, and Akshayaram Srinivasan. Two-round multiparty secure computation minimizing public key operations. In Hovav Shacham and Alexandra Boldyreva, editors, *CRYPTO 2018, Part III*, volume 10993 of *LNCS*, pages 273–301. Springer, Heidelberg, August 2018.
- Sanjam Garg and Antigoni Polychroniadou. Two-round adaptively secure MPC from indistinguishability obfuscation. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, *TCC 2015, Part II*, volume 9015 of *LNCS*, pages 614–637. Springer, Heidelberg, March 2015.
- 43. Sanjam Garg and Akshayaram Srinivasan. Garbled protocols and two-round MPC from bilinear maps. In Chris Umans, editor, 58th FOCS, pages 588–599. IEEE Computer Society Press, October 2017.

- 44. Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation from minimal assumptions. In Jesper Buus Nielsen and Vincent Rijmen, editors, *EUROCRYPT 2018, Part II*, volume 10821 of *LNCS*, pages 468–499. Springer, Heidelberg, April / May 2018.
- Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 197–206. ACM Press, May 2008.
- 46. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75–92. Springer, Heidelberg, August 2013.
- Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data privacy in private information retrieval schemes. In *30th ACM STOC*, pages 151–160. ACM Press, May 1998.
- 48. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May 1987.
- 49. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic signatures from standard lattices. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 469–477. ACM Press, June 2015.
- S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness and guarantee of output delivery. In Rosario Gennaro and Matthew J. B. Robshaw, editors, *CRYPTO 2015, Part II*, volume 9216 of *LNCS*, pages 63–82. Springer, Heidelberg, August 2015.
- Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai. Efficient non-interactive secure computation. In Kenneth G. Paterson, editor, *EUROCRYPT 2011*, volume 6632 of *LNCS*, pages 406–425. Springer, Heidelberg, May 2011.
- 52. Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In Howard J. Karloff and Toniann Pitassi, editors, 44th ACM STOC, pages 1219–1234. ACM Press, May 2012.
- 53. Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample complexity of LWE search-to-decision reductions. In Phillip Rogaway, editor, *CRYPTO 2011*, volume 6841 of *LNCS*, pages 465–484. Springer, Heidelberg, August 2011.
- Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In David Pointcheval and Thomas Johansson, editors, *EUROCRYPT 2012*, volume 7237 of *LNCS*, pages 700–718. Springer, Heidelberg, April 2012.
- Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaussian measures. In 45th FOCS, pages 372–381. IEEE Computer Society Press, October 2004.
- 56. Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multikey FHE. In Marc Fischlin and Jean-Sébastien Coron, editors, *EUROCRYPT 2016*, *Part II*, volume 9666 of *LNCS*, pages 735–763. Springer, Heidelberg, May 2016.
- 57. Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In Michael Mitzenmacher, editor, *Proceedings of the 41st Annual* ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 333–342. ACM, 2009.

- 30 F. Benhamouda, A. Jain, I. Komargodski, and H. Lin
- Chris Peikert and Sina Shiehian. Multi-key FHE from LWE, revisited. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 217–238. Springer, Heidelberg, October / November 2016.
- Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain) learning with errors. In Alexandra Boldyreva and Daniele Micciancio, editors, *CRYPTO 2019, Part I*, volume 11692 of *LNCS*, pages 89–114. Springer, Heidelberg, August 2019.
- Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation and applications. In Mikkel Thorup, editor, 59th FOCS, pages 859–870. IEEE Computer Society Press, October 2018.
- Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC, pages 84–93, 2005.