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Abstract. Motivated by the goal of designing versatile and flexible secure
computation protocols that at the same time require as little interaction
as possible, we present new multiparty reusable Non-Interactive Secure
Computation (mrNISC) protocols. This notion, recently introduced by
Benhamouda and Lin (TCC 2020), is essentially two-round Multi-Party
Computation (MPC) protocols where the first round of messages serves
as a reusable commitment to the private inputs of participating parties.
Using these commitments, any subset of parties can later compute any
function of their choice on their respective inputs by just sending a single
message to a stateless evaluator, conveying the result of the computation
but nothing else. Importantly, the input commitments can be computed
without knowing anything about other participating parties (neither their
identities nor their number) and they are reusable across any number of
desired computations.
We give a construction of mrNISC that achieves standard simulation
security, as classical multi-round MPC protocols achieve. Our construction
relies on the Learning With Errors (LWE) assumption with polynomial
modulus, and on the existence of a pseudorandom function (PRF) in
NC1. We achieve semi-malicious security in the plain model and malicious
security by further relying on trusted setup (which is unavoidable for
mrNISC). In comparison, the only previously known constructions of
mrNISC were either using bilinear maps or using strong primitives such
as program obfuscation.
We use our mrNISC to obtain new Multi-Key FHE (MKFHE) schemes
with threshold decryption:
– In the CRS model, we obtain threshold MKFHE for NC1 based on

LWE with only polynomial modulus and PRFs in NC1, whereas all
previous constructions rely on LWE with super-polynomial modulus-
to-noise ratio.

– In the plain model, we obtain threshold levelled MKFHE for P
based on LWE with polynomial modulus, PRF in NC1, and NTRU,
and another scheme for constant number of parties from LWE with
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sub-exponential modulus-to-noise ratio. The only known prior con-
struction of threshold MKFHE (Ananth et al., TCC 2020) in the
plain model restricts the set of parties who can compute together at
the onset.

1 Introduction

Much of the research in secure multiparty computation (MPC) is driven by the
goal of minimizing interaction as much as possible. This is first motivated by the
fact that network latency is often a major bottleneck to efficiency. Futhermore,
having many communication rounds requires participating parties to be stateful
and on-line for a long time which is difficult if not possible in some scenarios,
especially when the number of participants is large. Soon after the invention
of MPC [19, 33, 48], a large body of works investigated constant-round MPC
protocols, or even completely non-interactive ones.

The vision of non-interactive MPC is extremely fascinating. Ideally, it would
allow any set of parties to jointly compute an arbitrary function of their respective
secret inputs, without any prior interaction or input-dependent setup, by each
sending a single message to a public bulletin board, enabling an external evaluator
to compute the output of the function based only on these messages.6 Unfortu-
nately, it is known that such non-interactive protocols cannot satisfy the standard
simulation security notion, as they are inherently susceptible to the so called
residual-function attack. Therefore, at least another round of communication is
necessary.
MrNISC. In a recent work, Benhamouda and Lin [22] introduced a hybrid
model between non-interactive MPC and two-round MPC which they called
multiparty reusable Non-Interactive Secure Computation (mrNISC). To motivate
the model, it is useful to consider the following scenario: users across the world
wish to publish an encryption of their DNA on a public bulletin board, once and
for all. At a later stage, for the purposes of medical analysis, a subset of them
wants to compute some function on their DNAs by sending just a single public
message to a doctor, who should be able to compute this function, but nothing
else. Furthermore, a user may participate in an unbounded number of medical
analyses, reusing the same encryption of DNA, with the same or other subsets of
parties on the same or different functions.

More formally, in the mrNISC model, parties publish encodings of their private
inputs xi on a public bulletin board, once and for all, independently of each
other and even independently of the total number of parties. Later, any subset
I of them can compute on-the-fly a function f on their inputs xI = {xi}i∈I by
just sending a single public message to a stateless evaluator, conveying the result

6The reconstruction of the output is “public” in the sense that it does not require
any secrets. It is w.l.o.g. to consider public output reconstruction, as one can always
consider the evaluator as a participant of MPC with a dummy input and uses the all
zero string as its random tape.
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f(xI) and nothing else. Importantly, the input encodings are reusable across
any number of computation sessions, and are generated independently of any
information of later computation sessions — each later computation can evaluate
any polynomial-time function, among any polynomial-size subset of participants.
The security guarantee is that an adversary corrupting a subset of parties, chosen
statically at the beginning, learns no information about the private inputs of
honest parties, beyond the outputs of the computations they participated in.
This holds for any polynomial number of computation sessions. Throughout, each
party’s input, and the function and participants of each computation session are
chosen adaptively by the adversary.

The work of Benhamouda and Lin [22] presents a general-purpose mrNISC
for computing polynomial-sized circuits, whose security is based on the SXDH
assumption in asymmetric bilinear groups. It is in the plain model (without any
trusted setup), and satisfies semi-malicious security.7 For malicious security, the
use of some setup is inevitable; they rely on a CRS. To date, this is the only
mrNISC construction in the plain model, based on well-established assumptions.
Prior plain-model 2-round MPC protocols either rely on strong primitives like
indistinguishability obfuscation or general-purpose witness encryption [29, 35, 39,
42, 50] which have complex constructions from less well-established assumptions,
or have first messages that are not reusable [6, 7, 21, 40, 41, 43, 44, 60], or only
reusable among a fixed set of parties [8, 17]. Another line of works leading to
two-round MPC, using multi-key fully-homomorphic encryption (MKFHE) [10,
12,25,27,34,56,58], could possibly be made an mrNISC, but even then all known
constructions rely on trusted setup even for semi-honest security.

1.1 Our Results

New mrNISC from LWE. Our main result is a new construction of an mrNISC.
Our construction is based on the standard Learning-With-Errors (LWE) assump-
tion with polynomial modulus as well as on a PRF in NC1. The construction is
in the plain model, and satisfies semi-malicious security.

Theorem 1.1 (mrNISC from LWE). Assuming LWE with polynomial mod-
ulus and a PRF in NC1, there exists a mrNISC protocol for all polynomial-size
functions. The construction is in the plain model (without any trusted setup),
and satisfies semi-malicious security. For malicious security, we need to further
rely on a CRS.8

We emphasize that our construction requires only LWE with polynomial modulus.
This is important both for efficiency as well as for security. First, having a
polynomial modulus makes the sizes of keys and ciphertexts shorter. Second, for

7Semi-malicious security is a strengthening of the semi-honest security wherein the
adversary is allowed to choose its random tape arbitrarily. [10] showed that any protocol
satisfying semi-malicious security can be made maliciously secure by additionally using
Non-Interactive Zero-Knowledge proofs (NIZKs).

8The CRS is needed for NIZK which exists from LWE with polynomial modulus [59].
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security, it is known that LWE with polynomial ratio between modulus and noise
(which is our case) is at least as hard as (classical) GapSVP with polynomial
approximation factor [26,53,54,57,61].

Unfortunately, it is not known whether PRF in NC1 can be based on LWE
with polynomial modulus-to-noise ratio, as all known constructions require super-
polynomial modulus-to-noise ratio [15, 16, 23]. Therefore, the above theorem can
also be instantiated using a single assumption of LWE with super-polynomial
modulus-to-noise ratio, which is independent of the depths of computations.
New threshold multi-key FHE schemes. We observe that mrNISC can be
used to generically boost any multi-key FHE with an “unstructured” decryption
function that takes as input the secret key of all participating parties, into a
threshold multi-key FHE scheme by just decentralizing the decryption function.

This observation gives us new constructions of threshold multi-key FHE by
instantiating the base multi-key FHE scheme with different known constructions.
Specifically, we obtain the following three threshold multi-key FHE instantiations.

Theorem 1.2 (Threshold multi-key FHE in the CRS model). There
exists a threshold multi-key FHE scheme in the CRS model for NC1 circuits
assuming LWE with polynomial modulus and a PRF in NC1.

The above theorem follows from the multi-key FHE schemes of [34, 56], which
require LWE with polynomial modulus for evaluating NC1 circuits. Here, we
rely additionally on a PRF in NC1. In comparison, all previous constructions
of threshold multi-key FHE even for NC1 require LWE with super-polynomial
modulus-to-noise ratio. Since the latter readily implies a PRF in NC1, our
assumption is weaker.

Theorem 1.3 (Threshold multi-key FHE in the plain model). Let d =
d(λ) and N = N(λ) be arbitrary polynomial functions of the security parameter.

1. There exists a threshold multi-key FHE scheme in the plain model for
polynomial-size depth-d circuits and supporting N keys. The scheme is secure
assuming LWE with polynomial modulus, a PRF in NC1, and the DPSR
assumption.9

2. There exists a threshold multi-key FHE scheme in the plain model for
polynomial-size depth-d circuits and supporting arbitrary constant number of
keys. The scheme is secure assuming LWE with sub-exponential modulus-to-
noise ratio.

The first bullet is obtained by using the multi-key FHE scheme of [52]. Recently,
Ananth et al. [9] obtained a similar result except that their threshold multi-key
FHE definition is somewhat weak in the sense that the set of public-keys under
which each evaluation is performed is fixed once and for all. On the other hand, the
original vision for multi-key FHE was to support “on-the-fly” computation [52] on

9DSPR stands for the decision small polynomial ratio assumption [52] which is used
to prove the security of the NTRU encryption scheme.
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ciphertext encrypted any subset of public-keys. All other multi-key FHE schemes
were not in the plain model.

The second bullet is obtained by relying on the folklore multi-key FHE
scheme obtained by nesting a constant number of FHE schemes. There was no
previously-known scheme supporting constant-many keys without setup just from
LWE.
Technical highlight and an open problem. Our construction is obtained
in few modular steps. We first identify a “two-party” NISC protocol (denoted
2rNISC henceforth) for a particular functionality that we call “functional OT”.
This protocol still supports arbitrary polynomially-many parties, but only the
function to be computed is specific and involves just two parties. More specifically,
the two parties, acting as the OT sender and receiver, respectively, wish to
compute OT with two sender’s strings (`0, `1) = g1(x1) computed from sender’s
private input x1, and a receiver’s choice bit c = g2(x2) computed from the
receiver’s private input x2, where g1, g2 are arbitrary public polynomial-size
circuits that are different for each computation. 2rNISC enables computing `c
with the sender and receiver sending a single message each. We then show that
this can be generically turned into a general-purpose mrNISC. We believe that
2rNISC for the functional OT functionality is an interesting primitive that may
find other applications.

Lastly, we show a construction of a 2rNISC for the functional OT functionality,
from LWE with polynomial modulus-to-noise ratio and PRFs in NC1. Our
construction draws techniques from homomorphic commitments/signatures [49]
and 2-message statistically sender-private OT [24] based on LWE. At its core
is a weak version of witness encryption for verifying the decommitments of
homomorphic commitments, where the decommitments satisfy zero-knowledge
property. This partially answers a question left open by the work of [22].

We believe that the above modular approach is a contribution of independent
interest, as new constructions of our 2rNISC for the functional OT functionality
directly yield new constructions of mrNISC. One intriguing open problem is
whether it is possible to base mrNISC on DDH or even CDH. Our reduction shows
that, for this purpose, it suffices to build a 2rNISC for a specific functionality
from DDH/CDH.

1.2 Related Works

While mrNISC is a new concept that was recently introduced by Benhamouda
and Lin [22], it is related to (but differs from) many previously-defined variants
of minimal-interaction MPC protocols. We refer to [22] for a comprehensive
comparison and merely mention some of the most related notions. mrNISC can
be viewed as a generalization of the notion of reusable NISC of Ishai et al. [51]
(see also [1,11,14,30,32]) from two parties to multiple parties. mrNISC differs
from various completely non-interactive notions such as non-interactive MPC
(NIMPC) [18] and Private Simultaneous Messages (PSM) [38,47] which inherently
achieve weaker security guarantees or restrict the corruption pattern.
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Apart from Benhamouda and Lin’s [22] recent mrNISC construction from
bilinear maps, all other 2-message MPC protocols either rely on strong primitives
like indistinguishability obfuscation or general-purpose witness encryption [39,50],
or fall short of being an mrNISC. For instance, the works of Garg and Srinivasan
and Benhamouda and Lin [21, 44] constructed 2-round MPC protocols from any
2-round Oblivious Transfer (OT). However, both constructions are not reusable
in their first message. This was recently solved by Ananth et al. [8] and Bartusek
et al. [17] who constructed a 2-round MPC where the first message is reusable
across polynomially-many sessions. The construction of [8] relies on LWE and
the construction of [17] relies on DDH. However, both construction requires all
computation sessions to be carried out by a fixed set of parties.

The concept of threshold multi-key FHE is very related to mrNISC. It is plausi-
ble that threshold multi-key FHE that are used to get 2-round MPC [10,13,34,56],
could also be used to get mrNISC. However, proving it is not straightforward. For
instance, as pointed out in [22], the current definitions of threshold decryption,
e.g., [10,13,34,56] are insufficient for constructing mrNISC, as simulatability only
ensures that a single partial decryption can be simulated (hence this definition
does not allow to re-use ciphertexts). Even if the proof works out, it would only
yield a mrNISC in the CRS model even for semi-honest security.

1.3 Organization of the Paper

We start by a technical overview in Section 2. After recalling preliminaries in
Section 3, we show how to construct a 2rNISC for Functional OT in Section 4.
We then present our transformation from such a 2rNISC to an mrNISC for any
polynomial-time functionality in Section 5. Finally, we formally show applications
in the full version [20].

2 Technical Overivew

We now give an overview of our construction of mrNISC protocols in the plain
model from LWE with polynomial modulus and PRF in NC1.

2.1 Review of Definition of mrNISC Protocols

Towards constructing mrNISC protocols, the work of [22] defined the notion
of mrNISC schemes, with a game-based security definition. Furthermore, they
showed that a mrNISC scheme immediately yields a mrNISC protocol that
UC-implements an ideal mrNISC functionality that allows for any number of
computations over any subsets of inputs registered by parties. Thus, in this work,
we focus on implementing mrNISC schemes for polynomial-size circuits.
mrNISC Scheme. An n-party functionality U is a represented by a Boolean
circuit that takes a public input z and n private inputs. If U is a universal circuit
and z specifies the actual function to be computed, then this formalism allows
the parties of the mrNISC to compute any function on their private inputs. An
mrNISC scheme for U , consists the following three algorithms:
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– Input Encoding: A party Pi encodes its private input xi by invoking (x̂i, si)←
Com(1λ, xi). It then publishes the encoding x̂i and keeps the secret state si.

– Computation: In order for a subset of parties {Pi}i∈I to compute the func-
tionality U on their private inputs xI and a public input z, each party in I
generates a computation encoding αi ← Encode(z, {x̂j}j∈I , si) and sends it
to the evaluator.

– Output: The evaluator reconstructs the output y = Eval(z, {x̂i}i∈I , {αi}i∈I).
(Note that reconstruction is public as the evaluator has no secret state.)
Correctness requires that y = U(z, {xi}i∈I) when everything is honestly
computed.

Simulation-security requires that the view of an adversary corrupting the eval-
uator and a subset of parties, can be simulated using just the outputs of the
computations.10 Following [22], we consider static corruptions and semi-malicious
security. Static corruptions restrict the adversary to corrupt a fixed subset C of
parties chosen at the very beginning, and semi-malicious security [10] restricts
the corrupted parties {Pi}i∈C to follow the protocol specification, but allows the
adversary to choose their inputs and randomness {xi, ri}i∈C arbitrarily. During
an execution of the mrNISC scheme for U , honest and corrupted parties Pi can
register their inputs by posting input encodings x̂i. Multiple computations, each
specified by (zk, Ik), can be carried out as follows: each Pi for i ∈ Ik sends the cor-
responding computation encoding αki , which together reveal yk = U(zk, {xi}i∈Ik).
All the messages from the honest parties, including {x̂i}i6∈C and {αki }k,i∈Ik\C ,
must be simulatable from the outputs {yk}k, the public information of the com-
putations {zk, Ik}k, and the input and randomness of the corrupted parties
{xi, ri}i∈C . Furthermore, simulation must hold in the adaptive setting, where
the input and computation encodings are interleaved and all xi and (zk, Ik) are
chosen adaptively by the adversary.

2.2 Step 1: Reusable Functional OT from LWE

We identify a complete 2-party function, called functional OT UfOT, and show
1) how to construct a 2-party reusable NISC scheme for computing UfOT in the
plain model, and 2) how to bootstrap from UfOT to general mrNISC scheme for
any circuit U ∈ P.
Functional OT. UfOT takes three inputs: A public input consisting of two
functions g1 : {0, 1}n1 → {0, 1}λ × {0, 1}λ and g2 : {0, 1}n2 → {0, 1} represented
as Boolean circuits, a private input x1 ∈ {0, 1}n1 from a party P1 acting as
the UfOT sender x2 ∈ {0, 1}n2 from a party P2 acting as the UfOT receiver, and

10It suffices to simulate only these computations that involve at least one honest
party. Computations involving only corrupted parties can be viewed as part of the
internal computation of the adversary.
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computes

UfOT((g1, g2), x1, x2) : compute sender’s strings (`0, `1) = g1(x1),
compute receiver’s choice c = g2(x2),
output y = (c, `c)

The name functional OT comes from the fact that both the OT sender’s strings
`0, `1 and receiver’s choice bit c are functions on sender’s and receiver’s private
inputs x1 and x2.

A 2rNISC scheme for computing UfOT provides a way to encode the private
input xi of any party Pi, so that later any two parties Pi and Pj can securely
compute UfOT (acting as sender and receiver respectively) to reveal only (c, `c)
computed according to arbitrarily chosen functions (g1, g2) and their private
inputs xi and xj , by each sending a single message. Importantly, the encoding
x̂i of Pi is reusable in any number of UfOT computations with different parties
and different functions. Note that different from classical OT where (c, `c) is
private to the receiver, a 2rNISC scheme allows to reconstruct (c, `c) publicly
given all messages sent. Jumping ahead, this feature serves exactly the purpose
of achieving the public reconstruction property of mrNISC.
Constructing 2rNISC for UfOT. We construct 2rNISC for UfOT in the plain
model from LWE with just polynomial modulus and PRF in NC1 in two steps:
We start with designing a scheme ΠfOT = (Com,Encode,Eval) that handles only
circuits g2 with bounded logarithmic depth O(log λ) (whereas the depth of g1 is
unrestricted), and then bootstrap Π to 2rNISC that handles g2 with unbounded
polynomial depth.
GSW Encryption as Homomorphic Commitments. Our 2rNISC makes use
of the GSW homomorphic encryption scheme [46], which can be turned into a
homomorphic commitment scheme (or homomorphic trapdoor functions) as done
in [49]. It enables us to commit to a string x ∈ {0, 1}n in a commitment C, and
then homomorphically evaluate any circuit f on C to obtain a commitment Cf to
f(x). More concretely, the scheme publishes a CRS crs = A containing a matrix
of dimension N ×M for M = Ω(N · log q); the matrix A = [B>|b>1 | . . . |b

>
k ]>

consists of a random submatrix B← Z(N−k)×M
q , together with k LWE samples

{bl = tlB + el}l∈[k] w.r.t. independently sampled secret tl and noise el, where e1
is sampled from a truncated discrete Gaussian distribution and always bounded
by |el|∞ ≤ B. Committing to a binary string x simply involves encrypting each
bit xi using GSW encryption and public key A, and the encryption randomness
is the decommitment.

Commitment to x: {Ci = ARi + xiG}i Decommitment: {Ri}i
where Ri ← {−1, 1}M×N ·dlog qe, G the gadget matrix.

We note two important details: First, the matrix A corresponds to the public
key in GSW encryption; here, we insist on it containing k > 1 LWE samples,
where k is a parameter that scales with the input length of the parties. Second,
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when A is sampled honestly at random, it satisfies the following well-formedness
with overwhelming probability: 1) it is generated as above using some B, tl, and
B-bounded el’s, and 2) vectors el’s are linearly independent over the integers.
Observe that the well-formedness can be verified efficiently given the random
coins used to sample A. For any A satisfying property 1), commitments w.r.t.
A are statistical binding, and in fact even extractable using the secrets tl’s. We
shall see how property 2) is helpful later.

The homomorphism of GSW enables homomorphic evaluation over the com-
mitments to obtain a commitment to f(x) as follows

GSW.Eval(f, {Ci}) = Cf = ARf + f(x)G ,

where Rf = GSW.RandEval(f, {Ri}, {Ci},x) .

The new decommitment Rf can be evaluated directly from {Ri}, {Ci},x and in
particular is linear in the original decommitments Ri’s.
From Homomorphic Commitments to 2rNISC. To construct 2rNISC for
functional OT, our idea is letting each player Pi commit to its input x as the
input encoding, and keep the decommitment as its private state. Note that the
homomorphic commitments require a CRS, but we wish to construct 2rNISC in
the plain model. Thus, we let each player choose its own CRS.

Com(1λ,x) : x̂ = (A, {Ci = ARi + xiG}i), s = {Ri}i
Later two parties, P1 acting as the sender and P2 acting as the receiver, wish to

compute functional OT w.r.t. (g1, g2) on their private inputs denoted as x1 and x2,
and have encodings and secret states denoted as (x̂b = (Ab, {Cb,i}), sb = {Rb,i})
with b = 1 for P1 and b = 2 for P2. P1 can privately compute sender’s strings
(`0, `1) = g1(x1), and P2 the receiver’s choice c = g2(x2). In addition, given
x̂2, both parties can homomorphically evaluate g2 to obtain a commitment
Cg2 = A2Rg2 + cG to c, while P2 additionally knows the decommitment Rg2 .

At this point, we wish to have the following two components to enable
computing `c non-interactively.

– Witness Encryption of Sender’s Strings (`0, `1): P1 would like to witness
encrypt `b w.r.t. the statement that, under CRS A, Cg2 is a commitment to
bit b, so that, `b is revealed given a witness that is a decommtiment to b, and
is hidden if Cg2 is a commitment to 1− b. Then the sender’s computation
encoding is

Encode((g1, g2), (x̂1, x̂2), s1) : α1 = {wb ←WEnc((A2,Cg2 , b), `b)}b∈{0,1}
– Zero-Knowledge Decommitment to Receiver’s Choice c: P2 would like to open

Cg2 to c by sending a decommitment, in a zero-knowledge way that reveals
only c and nothing more about x2. Note that the basic decommitment Rg2

is not zero-knowledge and may reveal information of x2.

Encode((g1, g2), (x̂1, x̂2), s2 = {Ri}i) : α2 = (Xg2 ← ZKDecom(g2,Cg2 ,Rg2)) ,

where ZKDecom produces a zero-knowledge decommitment Xg2 .



10 F. Benhamouda, A. Jain, I. Komargodski, and H. Lin

An evaluator given (α1, α2) can witness decrypt to obtain `c as desired.
Semi-Malicious Security and “Promise” WE and ZK Decommitments.
The main technical challenge is co-designing WE and ZK decommitments so
that the latter can decrypt the former. For this we will draw techniques from
previous works for constructing context-hiding homomorphic signatures [49] and
2-message statistically sender private OT [24]. At the same time, we crucially
rely on the fact that our 2rNISC only need to be secure against semi-malicious
adversaries to simplify the requirements on WE and ZK decommitments. The
key observation is that a semi-malicious corrupted party P2 must generate its
input encoding (A2, {C2,i}i) using the honest algorithm, albeit using arbitrary
randomness. This means that i) A2 must be well-formed and ii) {C2,i}i must be a
valid commitment {A2Ri + x2,iG}i to some input x2 with a decommitement Ri

of 1/-1 values . As a result, Cg2 = A2Rg2 +g2(x2)G must be a valid commitment
to g2(x2) = 0/1 with a decommitment Rg2 of small magnitude11.

Therefore, the correctness and security of WE and ZK decommitments only
need to hold w.r.t. well-formed A (i.e., A2) and valid commitment C (i.e., Cg2)
to 0/1 with small decommitment, and does not need to hold w.r.t. ill-formed A
or invalid commitment C — we refer to this as the promise version of WE and
ZK decommitments:

– Yes instances (A,C, b) contain a well-formed A and a valid commitment C to
bit b, and we require the ZK property of the decommitments and correctness
of WE for them.

– No instances (A,C, b) contain a well-formed A and a valid commitment C
to bit 1− b, and we require the hiding property of WE for them.

Thanks to the fact that it suffices to focus on the promise version, we manage
to give a relatively simple construction of WE and ZK decommitment. Next we
proceed to their description; by default, all matrices A’s are well-formed and
commitments C’s are valid 0/1 commitments.
ZK Decommitment The context-hiding homomorphic signature schemes of [49]
provides a way to generate zero-knowledge decommtiments. If the committer
wishes to open Cf = ARf + f(x)G to f(x) = b w.r.t. CRS A, it constructs the
matrix

D(b) = [A | Cf + (1− b)G] = [A | ARf ±G] ∈ ZN×M
′

q , M ′ = M +Ndlog qe ,

and uses Rf as a right-trapdoor [2,31] of D(b) to sample a short B′-bounded vector
v, for appropriately set B′ such that, D(b)v = u, where u is a random vector
published additionally in the CRS. The vector v is the new decommitment.12

v together with A and the original commitment {Ci} to x reveals no more
information beyond that f(x) = b, since they can be jointly simulated using only

11The magnitude scales exponentially with the depth of g2, which is relatively small
if we set the modulus to be sufficiently large.

12It can be verified efficiently by checking whether it has small magnitude and
D(b)v = u
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(f, b), by sampling A at random with a trapdoor TA [2, 54], Ci’s at random,
and v using TA as a left-trapdoor of D(b). A random A is computationally
indistinguishable from a well-formed A by LWE, and v sampled using the left or
the right trapdoor is statistically close.

However, we do not know how to construct a matching WE for verifying the
above ZK decommitment and need to modify the decommitment as follows. The
new decommitment of A,Cf to f(x) = b contains a short B′-bounded basis
Xf ∈ ZM ′×M ′ of the lattice Λ⊥q (D(b)) = {z ∈ ZM ′ : D(b)z = 0 (mod q)} over
the integers, that is, D(b)Xf = 0N×M

′
and is Xf has full rank over the integers.

Such a basis can be sampled again using Rf as a right-trapdoor of D(b), and
can be simulated together with A, {Ci} by sampling A without a trapdoor TA
and using it as a left-trapdoor of D(b) to sample the basis. In summary, our ZK
decommitment is generated as:

ZKDecom(f, b,D(b),Rf ) : Xf ← SampleRight(A,±G,Rf ,TG, α) .

where TG is a trapdoor of the gadget matrix G and α controls the norm of the
trapdoor.
Promise Witness Encryption. To design a compatible WE that can be
decrypted using the above ZK decommitments. we crucially rely on the following
fundamental properties of lattices defined by a matrix D ∈ ZN×M ′

q .

– If the lattice Λ⊥q (D) = {z ∈ ZM ′ : Dz = 0 (mod q)} has a B′-bounded
basis X over the integers, then vectors of form sD + e can be efficiently
decoded using X, and s can be recovered, provided that the norm of e is
sufficiently smaller than q/B′.

– On the other hand if the lattice Λq(D) = {y ∈ ZM ′ : y = sD (mod q)}
contains k linearly independent vectors of norm� q/B′, then vectors of form
sD + e is lossy and s has n bits of entropy, if k is sufficiently larger than n.
This is essentially because the components of sA in the direction the short
vectors are masked by e.

The work of [24] relied on the above properties in their construction of two
message statistically sender-private OT from LWE. We here rely on them to
achieve respectively the correctness and hiding property of our promise WE. To
encrypt a string `b, under a statement (A,C = Cf , b), our WE does:

WEnc((A,C, b), `b) : D(b) = [A | C− (1− b)G], wb = sbD(b) + eb,̂̀
b = Ext(sd, sb)⊕ `b
output (wb, sd, ̂̀b)

where Ext is a strong seeded extractor and sd is a randomly sampled seed, sb is a
random secret from ZNq , and eb is from a truncated discrete Gaussian distribution
with appropriate parameter.

– Correctness for Yes Instances: For a well-formed A and a valid commitment
C = AR + bG to b, the ZK decommitment X is exactly a short-basis of
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Λ⊥q (D(b)). Therefore, by the first lattice property, given X, the decryptor can
efficiently decode wb to obtain sb and then recover `b.

– Hiding for No Instances: For a well-formed A and a valid commitment
C = AR + (1 − b)G to 1 − b, D(b) = [A | AR] and hence the lattice
Λq(D(b)) contains at least k short vectors. This is because, by the structure
of a well-formed A, for every l ∈ [k], (−tl||1)D(b) = (el||elR) is short as el
and R are. Moreover, these vectors are independent as long as el’s are (and
k < dim(el) = M), where the latter is guaranteed by the (second requirement
of) well-formedness of A. Therefore, by the second lattice property, sb has n
bits of entropy conditioned on wb and the output of the extractor information
theoretically hides `b.

Putting Pieces Together. Combining the homomorphic commitment scheme
with ZK decommitments and the witness encryption, we obtain 2rNISC for
computing functional OT with semi-malicious security. Let’s now examine the
magnitude of the modulus, which we wish to be polynomial. Based on LWE, to
support homomorphic evaluation of a circuit g2 of depth d requires the modulus
to grow exponentially in d . Therefore, only when d is a fixed logarithmic function
in the security parameter λ, would the modulus be a fixed polynomial in λ as
desired.

Following a technique used in [22], we can generically bootstrap to 2rNISC
supporting circuits g2 with unbounded polynomial depth, with the help of a
PRF in NC1 and Yao’s garbled circuits. At a high-level, P1 is going to hide the
sender’s string `b in a garbled circuit Ĝ`b for a function G`b(Λ) that on input
a randomized encoding Λ, outputs `b iff Λ evaluates to b. At evaluation time,
the evaluator will obtain the set of labels {¯̀j} of Ĝ`b corresponding exactly to a
randomized encoding Λ of (g2,x2) generated using pseudorandom coins expanded
via PRF on a key k2 belong to the receiver P2. Then the evaluator can recover `b
iff g2(x2) = b. Crucially, the task for revealing the labels corresponding to Λ can
exactly be accomplished using 2rNISC for logarithmic-depth receiver’s circuits,
as every bit of Λ can be computed by a logarithmic-depth circuit evaluated on
(x2, k2) if PRF ∈ NC1. Correspondingly, every party now needs to commit to
their private input x and a PRF key k. This yields our final 2rNISC for functional
OT from LWE with polynomial modulus and PRF in NC1.

2.3 Step 2: 2rNISC for Functional OT to General mrNISC for P

We construct general mrNISC for polynomial-sized circuits from 2rNISC for
functional OT following a similar approach as [22], which in turn is based on
the round collapsing approach for constructing 2-round MPC protocols started
in [39,50]. The round-collapsing approach collapses an inner MPC protocol with a
polynomial L number of rounds into a 2-round outer MPC protocol, essentially by
letting every party garble its next-step message function for computing the inner
MPC messages. The challenge lies in how to enable the garbled circuits generated
independently by different parties “talk” to each other: the output of one party’s
garbled circuit is the input of another party’s garbled circuit. What is new in this
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work is that we use 2rNISC for functional OT to enable this, which is weaker
than the tools used in previous works. Specifically, the work of [22] proposed and
constructed a primitive called Witness Encryption for NIZK of commitments,
which is a witness encryption scheme for verifying NIZK proof of the correctness
of deterministic computation over committed values. In comparison, 2rNISC is
weaker (in particular, is implied by WE for NIZK of commitments) and has
a simpler definition, thanks to which we manage to instantiate it from LWE
and PRF in NC1. Next, we give an overview of our mrNISC from 2rNISC for
functional OT.
Round Collapsing via 2rNISC for Functional OT. In mrNISC, each party
Pi uses 2rNISC for functional OT to encode its private input xi and a PRF key
fki, ((x̂i, fkρi), si)← Com(xi, ρi). The PRF key will be used to expand pseudo-
random coins for running the inner MPC protocol and generating garbled circuits
described below.

A subset I of parties {Pi}i∈I wishes to compute f(z, {xi}i∈I). Assume that
each party P1 in the inner MPC broadcasts one message m`

i in each round `; but
we now want to carry out this multi-round interaction non-interactively. To do so,
each Pi sends one garbled circuit F̂`i per round ` ∈ [L] of the inner MPC protocol
corresponding to the next message function F`i of Pi. This garbled circuit takes as
input all the messages m<` = {ml

j}l<`,j∈[n] sent in previous rounds, and outputs
the next message m`

i of Pi of the inner MPC (or the output for the last round
` = L).

For an evaluator to compute the output from these garbled circuits {F̂`i}`∈[L],i∈[n],
we need a mechanism to reveal the labels of Pi’s garbled circuits F̂`i that cor-
respond to the correct messages of the inner MPC. More specifically, let k0, k1
be two labels of Pi’s garbled circuit F̂`i for an input wire that takes in the t’th
bit y = ml

j,t of a message from Pj . The goal is revealing only ky, which can be
accomplished using exactly 2rNISC for functional OT.

First, we let k0, k1 be expanded from Pi’s PRF key ρi, that is (k0, k1) =
g1(xi, fki) for some well-chosen g1. Second, y = m1

j is Pj ’s inner MPC message
computed from its input xj and randomness expanded from ρj ; hence, y =
g2(xi, ρ) for some g2. Therefore, to reveal ky, we can modify garbled circuits of
Pi and Pj to additionally output the right 2rNISC computation encodings:

– F̂`−1
i for round `−1 additionally outputs αi ← Encode((g1, g2), (x̂i, f̂ki), (x̂j , f̂kj), si).

– F̂lj for round l where Pj outputsml
j additionally outputs αj ← Encode((g1, g2),

(x̂i, f̂ki), (x̂j , f̂kj), sj).

By the correctness and security of 2rNISC, the evaluator can recover only ky as
desired.

We do not know however how to prove the above construction secure. The
issue is that the PRF key fki is used to generate the labels of all the garbled
circuits and our security hybrids switch garbled circuits to simulated ones, one by
one. Concretely, to switch the garbled circuit for round ` into a simulated one, its
input labels must first be switched to uniformly random ones (instead of being
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PRF outputs). The usual solution for that is to use the pseudorandom property
of the PRF. Unfortunately, we cannot do that, because the secret key fki of the
PRF is an input of the 2rNISC for functional OT for the rounds after round `.
To solve this issue, our final scheme actually uses L+ 1 PRF keys, one for the
randomness of the inner MPC and one for the labels of the garbled circuit for
each of the L rounds. To make sure that the input encodings do not depend on
the parameters of computations later, we employ a constant round inner MPC
protocol, that is, L = O(1).

3 Preliminaries

We denote the security parameter by λ. Let N be the set of non-negative integers.
A function negl : N → N is negligible if for any polynomial p : N → N, for any
large enough λ ∈ N, negl(λ) < 1/p(λ).

We make use of garbled circuits, collision-resistant hash functions, and
pseudorandom functions. A garbled circuit scheme GC is defined as a tuple
of four polynomial-time algorithms GC = (GC.Gen,GC.Garble,GC.Eval,GC.Sim):
i) key ←R GC.Gen(1λ) generates labels or keys key = {key[i, b]}i,b∈{0,1}, ii)
Ĉ ←R GC.Garble(key, C) garbles the circuit, iii) y = GC.Eval(Ĉ, key′) evalu-
ates the garbled circuit on the input x corresponding to the selected labels
key′ = {key[i, xi]}i, iv) (key′, C̃) ←R GC.Sim(1λ, y) simulates a garbled circuit
and the corresponding input labels from the output.

3.1 General Lattice Preliminaries

Lattices. An m-dimensional lattice L is a discrete additive subgroup of Rm.
Given positive integers n,m, q and a matrix A ∈ Zn×mq , we let Λ⊥q (A) denote
the lattice {x ∈ Zm | Ax> = 0> mod q}.
Discrete Gaussians. Let σ be any positive real number. The Gaussian dis-
tribution Dσ with parameter σ is defined by the probability distribution func-
tion ρσ(x) = exp(−π‖x‖2/σ2). For any discrete set L ⊆ Rm, define ρσ(L) =∑

x∈L ρσ(x). The discrete Gaussian distribution DL,σ over L with parameter σ
is defined by the probability distribution function ρL,σ(x) = ρσ(x)/ρσ(L).

The following lemma (e.g., [55, Lemma 4.4]) shows that if the parameter σ
of a discrete Gaussian distribution is small, then any vector drawn from this
distribution will be short (with high probability).

Lemma 3.1. Let m,n, q be positive integers with m > n, q > 2. Let A ∈ Zn×mq

be a matrix of dimensions n×m, σ ∈ Ω̃(n), and L = Λ⊥q (A). Then, there is a
negligible function negl(·) such that

Pr
x←DL,σ

[
‖x‖ >

√
mσ
]
≤ negl(n),

where ‖x‖ denotes the `2 norm of x.
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Truncated Discrete Gaussians. The truncated discrete Gaussian distribution
over Zm with parameter σ, denoted by D̃Zm,σ, is the same as the discrete
Gaussian distribution DZm,σ except that it outputs 0 whenever the `∞ norm
exceeds

√
mσ. By definition, we can say that D̃Zm,σ is

√
mσ-bounded, where

a family of distributions D = {Dλ}λ∈N over the integers is B-bounded (for
B = B(λ) > 0) if for every λ ∈ N it holds that Prx←Dλ [|x| ≤ B(λ)] = 1.

Also, by Lemma 3.1 we get that D̃Zm,σ and DZm,σ are statistically indistin-
guishable. Therefore, in the preliminaries below, unless specified, the lemata will
apply in the setting where by sampling from discrete Gaussian we mean sampling
from truncated discrete Gaussian distribution.

3.2 Learning With Errors

The learning with errors (LWE) problem was defined by Regev [61]. The
LWEn,m,q,χ problem for parameters n,m, q ∈ N and for a distribution χ sup-
ported over Z is to distinguish between the following pair of distributions

(A, sA + e mod q) and (A,u),

where A ← Zn×mq , s ← Z1×n
q , e ← χ1×n and u ← Z1×m

q . Similarly, we can
define the matrix version of the problem, which is known to be hard, if the version
above is hard. Specifically, let k ∈ poly(n,m), then in the matrix the task is to
distinguish between the following two distributions

(A,SA + E mod q) and (A,U),

where A← Zn×mq , S← Zk×nq , E← χk×n and U← Zk×mq .
The gadget matrix [54]. Fix a dimension n and a modulus q. Define the gadget
vector g = (1, 2, 4, . . . , 2log q−1) and the gadget function g−1 : Zq → {0, 1}dlog qe to
be the function that computes the (log q)th bit decomposition of an integer. For
some integer z the function is defined as g−1(z) = v = (v1, . . . , vlog q) where vi ∈
{0, 1} such that z = 〈g,v〉. By extension we define the augmented gadget function
G−1 : Zn×mq → {0, 1}(n·dlog qe)×m to be the function that computes the (log q)th
bit decomposition of every integer in a matrix A ∈ Zn×mq , and arranges them
as a binary matrix of dimension (n · log q)× k which we denote G−1(A). Hence,
Gn ·G−1(z) = Z, where the gadget matrix Gn is Gn = g ⊗ In ∈ Zn×(n·dlog qe)

q .
When n is clear from context, we denote Gn simply by G.

3.3 Review of Gentry-Sahai-Waters FHE Scheme

We now recall the Gentry-Sahai-Waters FHE scheme [46]. The scheme has the
following overall structure:

GSW.Setup: The public key consists of a matrix A ∈ Zn×mq . This matrix is
typically generated by sampling a matrix B ∈ Zn1×m

q , a secret S← Zk×n1
q ,

errors E← χk×m, and finally setting A = [B>|(SB + E)>]> ∈ Zn×mq where
n = n1 + k and m ∈ Ω(n · dlog qe)). The secret key is S.
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GSW.Encrypt: To encrypt a message µ ∈ {0, 1}, sample randomness R ∈
{−1, 0, 1}m×(n·dlog qe) and finally setting C = A · R + µ · G. Note that
if A is generated in the manner above, µ is recoverable, and if it is generated
at random, then µ is information theoretically lost.

GSW.Eval: Let f : {0, 1}κ → {0, 1} be a depth d(κ) boolean circuit, then,
given honestly generated ciphertexts Ci = A · Ri + µi · G for i ∈ [κ].
Then GSW.Eval(f, {Ci}i∈[κ]) computes the evaluated ciphetext C̃ = A · R̃ +
f(µ1, . . . , µκ) ·G. There are two facts about this computation:
Randomness Homomorphism: There is a polynomial time algorithm GSW.RandEval

that on input A, {Ri, µi}i∈[κ], and f , computes R̃.
Bounds: If f ∈ NC1, then ‖R̃‖∞ ≤ O(4d ·m) as shown in [28]. Otherwise,
‖R̃‖∞ ≤ O(md) [46].

3.4 Lattice Trapdoors

Definition 3.2 (Lattice trapdoors [4, 5, 45,54]). There is an efficient ran-
domized algorithm TrapGen(1n, 1m, q) that given any integers n ≥ 1, q ≥ 2 and
m ∈ Ω(n log q), outputs a full-rank matrix A ∈ Zn×mq and a trapdoor matrix
TA ∈ Zm×m such that

1. A ·TA = 0n×m mod q.
2. The distribution of A is negl(n)-close to uniform.
3. TA ∈ Zm×m is a short matrix with linearly independent columns over R.

More precisely, ‖TA‖GS = O(
√
n · log q), where for a matrix X, ‖X‖GS is

the operator norm of the matrix obtained by performing Gram-Schmidt (GS)
orthogonalization of X.

The following lemma is standard and follows from the leftover hash lemma.

Lemma 3.3. For any k ∈ poly(n) and m ∈ Ω(n log q), the following two distri-
butions are negl(n)-close in statistical distance:

{(A,TA,U) |(A,TA)← TrapGen(1n, 1m, q), U← Zn×kq }

and

{(A,TA,A ·R) |(A,TA)← TrapGen(1n, 1m, q), R ← {−1,+1}m×kq }.

We will use the following algorithms for sampling trapdoor matrices.

Algorithm SampleLeft(A,B,TA, α) 7→ T[A|B]: The sample left algorithm takes
as input a full rank matrix A ∈ Zn×m1

q , a matrix B ∈ Zn×m2
q , a trapdoor

TA and it outputs a trapdoor T[A|B] of [A | B].
Algorithm SampleRight(A,B,R,TB, α) 7→ T[A|AR+B]: The sample right al-

gorithm takes as input a matrix A ∈ Zn×m1
q , a full rank matrix B ∈ Zn×m2

q

and its trapdoor TB, along with R ∈ Zm1×m2
q . It outputs a trapdoor

T[A|A·R+B] of [A|A ·R + B].
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The following lemma says that the process of sampling from SampleLeft and
SampleRight produce indistinguishable outputs, when executed on the appropriate
inputs. The lemma follows from [2,31].
Lemma 3.4 (Indistinguishability of SampleRight, SampleLeft). Let A ∈
Zn×m1
q be a full rank matrix with a trapdoor TA. Let B ∈ Zn×m2

q be a full rank
matrix with a trapdoor TB. Let R ∈ Zm1×m2 . Let

α > max
{
‖TA‖GS · ω(

√
log(m1 +m2)), ‖TB‖GS · ‖R‖ · ω(

√
log(m2))

}
.

Then, the following two distributions are statistically close (up to negligible in n
distance):

{X | X← SampleLeft(A,A ·R + B,TA, α)}

and

{X | X← SampleRight(A,B,R,TB, α)}

Further, ‖X‖ ∈ O(
√
m1 +m2 · α).

3.5 Lossy Modes and Unique Decoding

For a given matrix A ∈ Zn×mq we consider the function:

fA(s, e) = s ·A + e mod q,

where s ∈ Z1×n
q and e ∈ Z1×m

q . We now consider two settings where in one fA is
invertible and in the other it is lossy.
Invertible mode. When we have a short trapdoor for A, and if e is short, then
s is recoverable. This is captured by the following lemma.
Lemma 3.5 ([54]). There exist a polynomial time (deterministic) algorithm
RecoverSecret such that the following holds. Let A ∈ Zn×mq be any full rank matrix
and TA be a corresponding trapdoor. Let s ∈ Z1×n

q and e ∈ Z1×m be arbitrary.
Then, RecoverSecret(A,TA, sA + e mod q) = s whenever q > ‖TA‖ · ‖e‖.

Lossy Mode. In the other extreme when the row span of A has k linearly
independent vectors of short norm, s is chosen at random from Znq , and e← DZm,σ
is sampled from a wide enough discrete Gaussian, then sA + e mod q hides s
information theoretically. This is captured by the following lemma.
Lemma 3.6 (From Lemma 4.3 and Lemma 3.2 of [24]). Let A ∈ Zn×mq

where m ∈ Ω(n log q). Assume that there exist k ≤ n linearly independent vectors
in the row span of A, each with norm bounded by γ. Then,

H̃∞ (s | (A, sA + e mod q) ≥ k · log σ
γ
− 1,

where s← Z1×n
q and e← DZm,σ. (H̃∞ denotes average-conditional min-entropy;

see Definition 3.7.)
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3.6 Other Preliminaries

Definition 3.7 (Average Conditional Min-Entropy). Let X be a random-
variable supported on a finite set X and Z be a possibly correlated random-variable
supported on a finite set Z. The average conditional min-entropy:

H̃∞(X|Z) = − log
(
E
z

[
max
x∈X

Pr [X = x | Z = z]
])

Definition 3.8 ((k, ε)-average case strong seeded extractor). A function
Ext : {0, 1}`Ext ×X → {0, 1}` is called a seeded strong average-case extractor, if
it holds that for all random variables X and Z defined on some domains with a
finite support, if H̃∞(X|Z) ≥ k then it holds that:

(s,Ext(s,X), Z) ≈ε (s, U, Z)

where s← {0, 1}`Ext and U ← {0, 1}`.

There exists explicit polynomial-time constructions of seeded strong average-case
(`+O(log(1/ε)), ε) extractors [36,37].

Lemma 3.9 (Error vectors are linearly independent). Let k,m ∈ N such
that k < m/2. Let ei ← DZm,σ for i ∈ [k], where σ > m. Except with negl(m)
probability, the vectors {ei}i∈[k] are linearly independent.

Proof. First observe that the column rank of the matrix E = [e>1 | . . . |e>k ] is at
least as much as the column rank of the matrix E mod 2 (over the field Z2). Due
to the smoothing lemma [55], it is known that the statistical distance between
e mod 2 and Zm2 is at most 2−Ω(m) as σ > m. Finally, the claim holds since for
a matrix A← Zk×m2 sampled uniformly at random

Pr[rank(A) = k] > 1−O(k · 2k−m).

4 Construction of 2rNISC

In this section, we give a construction of 2rNISC for the functionality:

UfOT = {UfOT,λ}λ∈N

This functionality takes three inputs. The public input consists of two polynomial
sized (in λ) functions g1 : {0, 1}n1 → {0, 1}λ × {0, 1}λ and g2 : {0, 1}n2 → {0, 1}.
(We assume that functions are given in the form of Boolean circuits). The
functionality is evaluated as in the specifications described in Figure 1.

We recall that a 2rNISC is a mrNISC where the functionality to be evaluated
is restricted to 2 parties. A 2rNISC allows for an arbitrary number of parties
to commit or encode their inputs. The notion of mrNISC was recalled in the
overview (Section 2.1). A formal definition can be found in the full version [20].

The main result of this section is a semi-malicious 2rNISC scheme for UfOT,λ
assuming LWE and a PRF in NC1.
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Functionality UfOT,λ

Public Input: Polynomial-sized functions g1 : {0, 1}n1 → {0, 1}λ×{0, 1}λ
and g1 : {0, 1}n2 → {0, 1}.

Input of the First Party: x1 ∈ {0, 1}n1 .
Input of the Second Party: x2 ∈ {0, 1}n2 .
Output to both Parties: Compute (y0, y1) = g1(x1) where y0, y1 ∈
{0, 1}λ. Output (g2(x2), yg2(x2)).

Fig. 1: The functionality UfOT,λ,d

Theorem 4.1. Assume LWE with polynomial modulus and a PRF in NC1. Then,
there exists a semi-malicious 2rNISC for UfOT.

The construction that gives Theorem 4.1 is obtained in two modular steps.
In the first step (see Section 4.1 and Theorem 4.2), we construct a 2rNISC for
a subset of all functions in the functionality UfOT,λ. Specifically, we restrict the
circuit depth of g2 to be an a priori fixed d = d(λ) and obtain a protocol based
solely on LWE. In the next step (see Section 4.2 and Theorem 4.3), using standard
bootstrapping techniques using randomized encodings, we obtain our final 2rNISC
without any restriction on d. This step relies, in addition to LWE, on a PRF in
NC1.13

4.1 2rNISC for Depth-Bounded Functions

In this section, we give a construction of a semi-malicious 2rNISC for the restricted
functionality, where g2 has a priori bounded depth d = d(λ). We denote this
functionality by {UfOT,λ,d}λ,d∈N.

Theorem 4.2. Assuming LWE with polynomial modulus, there exists a semi-
malicious 2rNISC for UfOT,λ,d for all (a priori) bounded d ∈ O(log λ). Further,
assuming LWE assumption holds with modulus-to-noise ratio 2Nε for any constant
ε, where N is the dimension, the same protocol is a semi-malicious 2rNISC protocol
for UfOT,λ,d for any (a priori) bounded polynomial d(λ).

Before presenting the protocol, we list various parameters used in the scheme.
We will explain how to set these parameters to achieve correctness and security
in the full version [20].
Parameters.

– λ is the security parameter,
13The common definition of a PRF in NC1 is a PRF whose circuit representation is

in NC1 when viewed as a function of both the input and the seed. We actually need
a slightly weaker condition, namely, that the circuit computing Fx(·) = PRF.Eval(·, x)
with the hardwired input x, as a function of the PRF key is in NC1.
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– ni is the length of the input of party i,
– d is the depth parameter,
– N1 is a lattice dimension involved,
– k is the number of secrets used to generate the commitment key,
– N := N1 + k,
– q is a modulus,
– M ∈ Ω(N · log q) is a dimension involved,
– σ, σ′ are discrete Gaussian parameters,
– ρ is a parameter for trapdoor sampling,
– `Ext is the seed length of an average-case strong-seeded extractor (Defini-

tion 3.8).

The protocol. We now describe the protocol which consists of three phases. The
first phase is a commitment phase where any party can publish a commitment to
its input. The second phase is when two parties decide to execute the functionality
UfOT,λ,d with their respective commitments from the first phase. In this phase,
one message is published from each of these parties. In the third and last
phase, each party locally computes their output, given the public transcript. No
communication is involved in this phase.

We present the protocol from the point of view of a given party which we
call P . This party first commits to its input on a public board. Later, P can
engage in a computation phase with some other party P ′, by each broadcasting
just one message. For this phase, we distinguish between two cases: whether P
is the “first” or “second” party among P, P ′, where the ordering is given by the
functionality. Lastly, each party can recover the output of the computation just
from the public messages.

Commit on input (1λ, x): On input x ∈ {0, 1}∗ perform the following steps:
– Sample a matrix B← ZN1×M

q uniformly at random.
– Sample secrets tl ← Z1×N1

q for l ∈ [k].
– For l ∈ [k], compute bl = tl ·B + el where el is sampled from DMσ .
– Set flag = 0 if {el}l∈[k] are not linearly independent. Otherwise set

flag = 1. Observe that due to Lemma 3.9, with overwhelming probability
flag = 1.

– Denote A = [B>|b>1 | . . . |b
>
k ]> ∈ ZN×Mq .

– Compute commitments of input x. Parse x = (x1, . . . , xn), where n =
|x|. Compute matrices C` = A · R` + x`G for ` ∈ [n]. Here R` ←
{−1,+1}M×(Ndlog qe) is chosen uniformly at random and G ∈ ZN×(Ndlog qe)

q

is the gadget matrix.
– Output x̂ = (flag,A, {C`}`∈[n]) as a public string and remember s =

({R`}`∈[n], x) as a private string.
Encode: There are two cases, depending on the “order” of the parties involved,

denoted P and P ′. In both cases, the view of party P (or its query) consists
of x̂, x̂′, s and the view of P ′ consists of x̂, x̂′, s′. The descriptions of g1, g2
are public. In both cases, party P first parses the public message of P ′ as
follows:
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– Parse x̂′ = (flag′,A′, {C′`}`∈[n′]), where n′ is the input length of party
P ′. If flag′ = 0, output ⊥. Otherwise, proceed.

Party P proceeds as follows, depending on whether it is the “first” party or
the “second”.
Case 1: Party P is the “first” party.
– Compute (y0, y1) = g1(x).
– Compute C̃′g2

= GSW.Eval(g2, {C′`}`∈[nj ]).
– Sample two secrets u0,u1 ← Z1×N

q .
– Compute wb = ub · [A′|C̃′g2

− (1− b) ·G] + ẽ mod q for b ∈ {0, 1}. Here
ẽ is sampled from D1×(M+Ndlog qe)

σ′ .
– Let Ext : {0, 1}`Ext × {0, 1}N log q → {0, 1}λ be a (λ, 2−λ)-strong seeded

extractor. Sample a seed sd of the extractor. Output α = (sd,w0,w1, v0 =
Ext(sd,u0)⊕ y0, v1 = Ext(sd,u1)⊕ y1).

Case 2: Party P is the “second” party.
– Compute C̃g2 = GSW.Eval(g2, {C`}`∈[n]).
– Compute GSW.RandEval(A, {R`, x`}`∈[n]) → R̃g2 such that C̃g2 = A ·

R̃g2 + g2(x) ·G.
– Compute a matrix Xg2 as:

Xg2 =
{

SampleRight(A,−G, R̃g2 ,TG, ρ) when g2(x) = 0
SampleRight(A,G, R̃g2 ,TG, ρ) when g2(x) = 1

Observe that Xg2 is a trapdoor of [A | C̃g2 − (1− g2(x))G].
– Output α = (g2(x),Xg2).

Eval on input (z = (g1, g2), x̂, x̂′, α, α′): Let P be the first party and P′ be the
second party.
– Parse x̂ = (flag,A, {C`}`∈[n]) and x̂′ = (flag′,A′, {C′`}`∈[n′]). If α = ⊥

or α′ = ⊥, then output ⊥. Otherwise,
– Parse α = (sd,w0,w1, v0, v1) and α′ = (α′1,X) where α′1 is a bit.
– Compute u = RecoverSecret([A′|C̃′g2

−(1−α′1)G)], X,wα′
1
), where recall

that C̃′g2
= GSW.Eval(g2, {C′`}`∈[n]).

– Compute out2 = Ext(sd,u)⊕ vα′
1
. Set out1 = α′1

– Output out = (out1, out2).

In the full version, we derive a concrete setting of parameters with which we
can instantiate the scheme as well as prove the correctness as well as the security.

4.2 Bootstrapping 2rNISC for all depths

In this section, we use a PRF in NC1 to bootstrap a 2rNISC protocol for the
functionality UfOT,λ,c logλ for some fixed large enough constant c to a 2rNISC for
UfOT,λ, as required in Theorem 4.1. Namely, the theorem we prove is:
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Theorem 4.3. Assuming a 2rNISC protocol for the functionality UfOT,λ,c logλ
for a large enough constant c > 0, a PRF in NC1, and a collision resistant hash
function, there exist a 2rNISC for the functionality UfOT,λ.

By combining Theorems 4.2 and 4.2, and using the fact that LWE (with
polynomial modulus) imply collision-resistant hash functions [3], imply Theo-
rem 4.1.

We prove Theorem 4.3 in the full version [20]. An overview of the construction
is provided at the end of Section 2.2.

5 Construction of mrNISC Schemes

Let us now show our construction of mrNISC schemes. We recall the mrNISC
notion from the overview (Section 2.1) and the definition of Functional OT (UfOT,
Fig. 1).

We have the following theorem.

Theorem 5.1. Assuming the existence of a semi-malicious 2rNISC for Func-
tional OT there exists an mrNISC scheme for any polynomial-time functionality.

Our construction of mrNISC for a polynomial-time functionality U uses the
following building blocks:

– A 2rNISC 2rNISC = (Com′,Encode′,Eval′) for Functional OT (fOT ).
– A semi-malicious output-delayed simulatable L-round MPC protocol Π =

(Next,Output) for f . Output-delayed simulatability was introduced in [22]
and ensures that the transcript excluding the last messages can be simulated
for all-but-one honest parties before knowing the output. Formal definitions
and constructions from standard semi-malicious MPC are recalled in ??.
We require the number of rounds L to be constant. The reason behind
this requirement is that in an mrNISC protocol, only when all the honest
parties agreed to provide a computation encoding, the adversary (and so the
simulator) should be able to learn the output. Without loss of generality,
we will assume that in each round ` of Π, each party Pi broadcasts a single
message that depends on its input xi, randomness ri and on the messages
Msg<` = {msg`′

j }j∈[n],`′<`
that it received from all parties in all previous

rounds such that msg`j = Nextj(z, xj , rj ,Msg<`), where z is the public input.
In other words, Nextj is the next message function that computes the message
broadcast by Pj . In the last round L ofΠ anybody computes the public output
y = Output(z,Msg) = U(z, {xi}), from the messages Msg = {msg`j}j∈[n],`∈[L].
We denote by νr the number of bits of ri and by νm the number of bits of
messages msg`i (without loss of generality, we suppose that these numbers
are independent of i and `, but they may depend on z and the security
parameter). Nextj and Output implicitly take as input a unary representation
of the security parameter 1λ.

– A garbled circuit scheme GC = (GC.Gen,GC.Garble,GC.Eval,GC.Sim) for P.
The keys (aka labels) of the garbled circuits have κ bits.
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– A pseudorandom function PRF. Each party will generate L + 1 PRF keys
fk0
i , . . . , fkLi . The key fk0

i is used to generate the randomness for the internal
MPC (via PRF(fki, 0‖z‖ . . . )), while the keys fk1

i , . . . , fkLi are used to encrypt
(via a one-time pad) the labels of the used garbled circuits for rounds 1, . . . , L
respectively (via PRF(fki, 1‖z‖ . . . )).

Our mrNISC scheme is constructed as follows:

– Input: (x̂i, si) ← Com(1λ, xi) samples L + 1 PRF key fk0
i , . . . , fkLi ←R

{0, 1}λ.For each ` ∈ L, Com also generates 2rNISC input encodings and
associated secret state for xi‖fk0

i ‖fk`i :

(x̂`i , s`i)←R Com′(xi‖fk0
i ‖fk`i) . (1)

In other words, party Pi make L 2rNISC input encodings. When we need
to differentiate these encodings, we say that the `-th such input encoding
is made by the virtual party P `i . Finally, Com sets x̂i := {x̂`i}`∈[L] and
si := (xi, {fk`i}`∈[0,L], {s`i}`∈[L]).

– Computation of U(z, ?): αi ← Encode(z, {x̂j}j∈[n], si) proceeds as follows:14

• For ` ∈ [L], generate input labels that will be used to garble the evaluation
circuit F`i defined in Fig. 2:

(stateKey`i , {msgKey`i,j}j)←R GC.Gen(1λ) .

For ` = 1, all the input labels are empty, as F1
i does not take any input.

We also define stateKeyL+1
i and {msgKeyL+1

i,j }j to be empty strings.
• For ` ∈ [L], j ∈ [n], k ∈ [νm], b ∈ {0, 1}, compute the following ciphertexts

ct`i,j,k,b ←R msgKey`+1
i,j [k, b]⊕ PRF(fk`i , 1‖z‖j‖k‖b‖[κ]) . (2)

If ` = L, these ciphertexts are set to be empty strings.
• For ` ∈ [L], garble the evaluation circuit F`i :

F̂`i ←R GC.Garble((stateKey`i , {msgKey`i,j}j∈[n]), F`i) .

• Set αi := ({F̂`i}`∈[L], {ct`+1
i,j,k,b}j,k,b).

– Output: y = Eval(z, {x̂i}i∈[n], {αi}i∈[n]) proceeds as follows in L iterations,
for ` = 1, . . . , L:
• Evaluate the garbled circuits for round `, for i ∈ [n]:(

stateKey′`+1
i , msg`i , {α`i,j,k,1}j,k, {α

`
j,i,k,2}j,k

)
:= GC.Eval(F̂i, (stateKey′`i , {msgKey`i,j [msg`−1

j ]}
j∈[n])) .

We recall that for round ` = 1, all the input labels are empty strings, so
the evaluation can be performed.

14For simplicity, we suppose that the set of parties participating in the computation
is I = [n].
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• If ` 6= L, decrypt the input labels for the next round, for i, j ∈ [n] and
k ∈ [νm], define g`1,j,k, g`2,i,k as in Fig. 2 and compute:

(_,K`
i,j,k) := Eval′((g`1,j,k, g`2,j,k), (x̂′i, x̂′j), (α`i,j,k,1, α`i,j,k,2)) ,

msgKey`+1
i,j [msg`j ] := {ct`i,j,k, ⊕ K`

i,j,k}k∈[νm] ,

where _ just indicates that we ignore the output.
At the end, Eval got the full transcript of the inner MPC Msg = {msg`j}j∈[n],`∈[L]
and set y := Output(z,Msg).

The correctness of the mrNISC scheme is follows from the perfect correctness
properties of the inner MPC protocol, of the garbled circuit scheme, and the
following fact (if everything is generated as specified in the description above):

Eval′((g`1,j,k, g`2,j,k), (x̂′i, x̂′j), (α`i,j,k,1, α`i,j,k,2)) = (β, yβ)
where β = g`2,j,k(xj‖fk0

j‖fk`j) = the k-th bit of msg`j
and (y0, y1) = g`1,j,k(xi‖fk0

i ‖fk`i)

thus:
K`
i,j,k = yb = PRF(fkj , 1‖z‖j‖k‖β‖[κ]) .

The proof is similar to the security proof of the mrNISC in [22] and is formally
presented in the full version [20].
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Circuit F`i

Hardwired Values: 1λ, `, i, z, {x̂j = {x̂`j}`∈[L]}j∈[n]
, si =

(xi, {fk`i}`∈[0,L], {s`i}`∈[L]), stateKey`+1
i , {msgKey`+1

i,j }j∈[n].
Inputs: (Msg<`−1,msg`−1) where for ` > 1:

– The input messages Msg<`−1 are the messages of protocol Π of
the first ` − 2 rounds. Corresponding garble labels are denoted by
stateKey`i .

– The input messages msg`−1 := {msg`−1
j }

j∈[n] are the ` − 1 round
messages of protocol Π. Corresponding garble labels are denoted by
{msgKey`i,j}j∈[n].

Procedure: (for randomized algorithms, randomness is implicitly hard-
wired)
1. For j ∈ [n], k ∈ [νm], and b ∈ {0, 1}, define the functions g`1,j,k and
g`2,j by:

g`1,j,k(x‖fk0‖fk`) := {PRF(fk`, 1‖z‖j‖k‖b‖[κ])}b∈{0,1} ,

g`2,j(x‖fk0‖fk`) := Nextj(z, x,PRF(fk0, 0‖z‖[νr]),Msg<`−1,msg`−1) ,

and define the functions g`2,j,k to output the k’th bit of g`2,j , for
k ∈ [νm].

2. Compute the `-th round message msg`i = msg`i,1‖ · · · ‖msg`i,νm :=
g`2,i(xi‖fki) of Pi in the inner protocol Π, and associated 2rNISC
encodings, for j ∈ [n], k ∈ [νm]

α`i,j,k,1 ←R Encode′((g`1,j,k, g`2,j,k), (x̂`i , x̂`j), s`i) (3)
α`j,i,k,2 ←R Encode′((g`1,i,k, g`2,i,k), (x̂`j , x̂`i), s`i) (4)

3. Select the input labels stateKey`+1
i [Msg<`−1‖msg`−1] for the next

round (` + 1), corresponding to the messages Msg<`−1‖msg`−1. If
` = L, these values are set to be empty strings.

Output: (stateKey`+1
i [Msg<`−1‖msg`−1], msg`i , {α`i,j,k,1}j,k, {α

`
j,i,k,2}j,k).

Fig. 2: Circuit F`i for the construction of mrNISC in Section 5
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