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Abstract. In this work we introduce a new (circuit-dependent) homo-
morphic secret sharing (HSS) scheme for all log / log log-local circuits,
with communication proportional only to the width of the circuit, and
polynomial computation, assuming the super-polynomial hardness of
learning parity with noise (LPN). At the heart of our new construction is
a pseudorandom correlation generator (PCG), which allows two partie to
locally stretch, from short seeds, pseudorandom instances of an arbitrary
log / log log-local additive correlation.
Our main application, and the main motivation behind this work, is a
generic two-party secure computation protocol for every layered (boolean
or arithmetic) circuit of size s with total communication O(s/ log log s)
and polynomial computation, assuming the super-polynomial hardness of
the standard learning parity with noise assumption (a circuit is layered
if its nodes can be partitioned in layers, such that any wire connects
adjacent layers). This expands the set of assumptions under which the
‘circuit size barrier’ can be broken, for a large class of circuits. The
strength of the underlying assumption is tied to the sublinearity factor:
we achieve communication O(s/k(s)) under the s2

k(s)

-hardness of LPN,
for any k(s) ≤ log log s/4.
Previously, the set of assumptions known to imply a PCG for correlations
of degree ω(1) or generic secure computation protocols with sublinear
communication was restricted to LWE, DDH, and a circularly secure
variant of DCR.

Keywords: homomorphic secret sharing · multiparty computation ·
sublinear communication · learning parity with noise · pseudorandom
correlation generators

1 Introduction

In this work, we present a novel (circuit dependent) homomorphic secret sharing
(HSS) scheme for any (log / log log)-local circuit which is secure under the super-
polynomial hardness of the learning parity with noise (LPN) assumption. The
main application, and motivation for this work, is a new protocol for securely
computing layered arithmetic and boolean circuits with communication sublinear
in the circuit size, under the quasi-polynomial hardness of LPN.



Homomorphic Secret Sharing (HSS). An HSS is a compact secret sharing scheme
equipped with homomorphism: the parties can locally convert compact (additive)
shares of an input into (additive) shares of some function of it, without inter-
action. Compactness here means that the input shares should be much smaller
than, and ideally independent of, the size of the evaluated circuit. More precisely,
HSS for a circuit class allows the parties to homomorphically convert their shares
for any circuit in the class. This powerful primitive has been instantiated for all
circuits under LWE [BKS19], or for NC1 under DDH [BGI16a], or a circularly se-
cure variant of DCR [FGJS17], and for the class of constant degree polynomials
from LPN [BCG+19b].

The circuit size barrier in secure computation. Secure computation allows mu-
tually distrustful parties to securely compute a public function of their joint
private inputs, concealing all information beyond the output. Since its introduc-
tion in the seminal works of Yao [Yao86], and Goldreich, Micali, and Wigder-
son [GMW87b,GMW87a], secure computation has received a constant attention.
For a long time, however, all standard approaches to secure computation have
been stuck at an intriguing circuit-size barrier, in that they require an amount of
communication (at least) proportional to the size of the circuit being computed.
In contrast, insecure computation only requires exchanging the inputs, which
might be considerably smaller than the entire circuit. Getting beyond this limi-
tation has been a major challenge in secure computation. Early positive results
required exponential computation [BFKR91,NN01], or were limited to very sim-
ple functions such as point functions [CGKS95,KO97,CG97] or constant-depth
circuits [BI05].

The situation changed with the breakthrough result of Gentry [Gen09] on
fully-homomorphic encryption (FHE), which led to optimal communication pro-
tocols in the computational setting [DFH12,AJL+12]. On the downside, the set
of assumptions under which we know how to build FHE is very narrow; it is
restricted to lattice-based assumptions such as LWE, and in particular does not
include any of the traditional assumptions which were used in the 20th century.
More recently, the elegant work of [BGI16a] showed for the first time that secure
computation with sublinear communication could be based on assumptions not
known to imply FHE, by building a two-party secure computation protocol under
the DDH assumption, with communication O(s/ log s) for layered circuits of size
s.3 [FGJS17] later followed this blueprint and switched out the DDH assump-
tion for the circular security of the Pallier encryption scheme. It remains open
whether secure computation with sublinear communication can be based on any
other traditional and well-studied assumption, such as code-based assumptions.

1.1 Our Contribution

We show that circuit-dependent homomorphic secret sharing, i.e.HSS where the
share generation requires knowing in advance the circuit to be evaluated homo-
3 A depth-d circuit is layered if it can be divided into d layers such that any wire
connects adjacent layers.
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morphically, for the class of log-local circuits exists, conditioned on (the quasi-
polynomial hardness of) a well-studied 20th century assumption: the learning
parity with noise (LPN) assumption [BFKL94]. Informally, the LPN assumption
captures the hardness of solving an overdetermined system of linear equations
over F2, when a small subset of the equations is perturbed with a random noise.
The LPN assumption has a long history in computational learning theory, where
it emerged. Furthermore, our results only require a flavour of LPN where the
adversary is given a very limited number of samples (typically, O(n) equations
in n indeterminates). In this regime, LPN is equivalent to the hardness of de-
coding random linear codes over F2, which is the well-known syndrome decoding
problem in the coding theory community, where it has been studied since the
60’s [Pra62].

Details on the underlying assumption. In a bit more detail, given a security
parameter λ, the (T, n,N, r)-LPN assumption with dimension n = n(λ), number
of samples N = N(λ) and noise rate r = r(λ) states that for every adversary
Adv running in time at most T = T (λ),

Pr
[
A

$← FN×n2 , ~e
$← BerNr , ~s

$← Fn2 : Adv(A,A · ~s+ ~e) = ~s
]
= negl(λ),

where Berr denotes the Bernouilli distribution which outputs 1 with probability
r, and negl denote some negligible function. When T can be any polynomial
(resp. any super-polynomial function, some super-polynomial function), we say
that we assume the polynomial (resp. quasi-polynomial, super-polynomial) hard-
ness of LPN. For arithmetic circuits, we need to assume LPN over large fields, or
equivalently syndrome decoding for random linear codes over large fields; this is
also a well-founded and well-studied assumption, used in several previous works,
e.g. [BCGI18,BCG+19b].

HSS for any loglog-Depth Circuit. We introduce a new circuit-dependent
HSS scheme for the class of all log log-depth circuits. More precisely,

Main Theorem 1 (HSS for any loglog-Depth Circuit, Informal). Let C be a
size-s, n-input, m-output, (ε · log log)-depth arithmetic circuit over F (for some
ε < 1/4). If the F-LPN assumption with super-polynomial dimension `, O(`)
samples, and inverse super-polynomial rate holds, then there exists a secure HSS
scheme for the class {C} with share size n+O(m ·s · log s/clog1−ε s−log1−2ε s) (for
some constant c) and computational complexity O(m · poly(s) · (log |F|)2).

Restricting the circuit class to depth-k size-s circuits where k(s) ≤ log log s/4
leads to quantitative improvements in the size of the shares, the computational
complexity of expanding shares, and the strength of the LPN assumption.

Application to Sublinear Computation. Our HSS scheme has (non black-
box) implications for sublinear computation. As in [BGI16a], our results holds
for all layered (boolean or arithmetic) circuits, in the two-party setting.
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Main Theorem 2 (Sublinear Computation of Layered Circuits, Informal). For
any layered arithmetic circuit C of polynomial size s = s(λ) with n inputs and
m outputs, for any function k(s) ≤ log log s − log log log s + O(1), there exists
a two party protocol for securely computing C in the honest-but-curious model,
with total communication [2(n + m + s/k)] · log |F| + o(s/k) and computation
bounded by s3 · polylogs · (log |F|)2 under a set of LPN assumptions, the exact
nature of which depends on the sublinearity factor k.

In particular, setting k ← O(log log s) leads to a protocol with total com-
munication O(n+m+ s/ log log s), secure under the super-polynomial hardness
of:

– F-LPN with super-polynomial dimension `, O(`) samples, and inverse super-
polynomial rate,

– F2-LPN with super-polynomial dimension `′, O(`′) samples, and inverse poly-
nomial rate 1/sO(1) (which is implied by the above if F = F2).

Furthermore (but with a slighly different choice of parameters than the one de-
scribed above), as k is reduced to an arbitrarily small k = ω(1), we need only
assume the quasi-polynomial hardness of:

– F-LPN with quasi-polynomial dimension `, O(`) samples, and inverse quasi-
polynomial rate,

– F2-LPN with quasi-polynomial dimension `′, O(`′) samples, and inverse poly-
nomial rate 1/sO(1) (which is implied by the above if F = F2).

and the computation is reduced to O(s1+o(1) · (log |F|)2).

Remark 1. While we require security against super-polynomial-time adversaries,
this remains a relatively weak flavour of LPN where the dimension is very high,
i.e. super-polynomial as well (and the adversary is allowed to run in time O(`2)
where ` is the dimension), and the number of samples which the adversary gets is
very limited,O(`). On the other hand, we require a very small noise rate λ/N . For
example, instantiating the above with k = (log log s)/5, we obtain a secure com-
putation protocol with total communication O(`+m+ s/ log log s) (sublinear in
s) and polynomial computation, assuming that LPN is hard against adversaries
running in super-polynomial time λO(log λ), with dimension ` = λO(log λ), N = 2`
samples, and noise rate λ/N . More generally, for any super-constant function
ω(1), there is a two-party protocol with communication O(n+m+s/ logω(1)) as-
suming the λω(1)-hardness of LPN (i.e., the quasi-polynomial hardness of LPN).

We note that, in this regime of parameters, the best known attacks are the in-
formation set decoding attack [Pra62] and its variants (which only shave constant
in the exponents, hence have the same asymptotic complexity), which require
time 2O(λ).4 Therefore, assuming hardness against λO(log λ)-time adversaries is
a very plausible assumption.
4 BKW and its variants [BKW00,Lyu05] do not improve over information set decoding
attacks in this regime of parameters, due to the very low number of samples.
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Remark 2 (On the Generality of Layered Circuits). Our construction is restricted
to the class of (boolean or arithmetic) layered circuits. This restriction stems
from the blockwise structure of the construction, and was also present in the
previous works of [BGI16a] and [Cou19]. As noted in [Cou19], layered circuits are
a relatively large and general class of circuits, which furthermore capture many
“real-world” circuits such as FFT-like circuits (used in signal processing, integer
multiplication, or permutation networks [Wak68]), Symmetric crypto primitives
(e.g. AES and algorithms that proceed in sequences of low-complexity rounds
are naturally “layered by blocks”), or dynamic-programming algorithm (e.g. the
Smith-Waterman distance, or the Levenshtein distance and its variants).

Generalisation to the malicious setting. Our result can directly be gen-
eralised to the malicious setting using a generic GMW-style compiler [GMW87a],
which is communication preserving when instantiated with succinct zero-knowledge
arguments [NN01]. Such arguments exist under collision-resistant hash functions;
hence, Theorem 2 extends to the malicious setting as well, at the cost of fur-
ther assuming collision-resistant hash functions (which is a mild assumption).
We note that CRHFs have recently been built from (sub-exponentially strong)
flavours of LPN [AHI+17,YZW+19,BLVW19].

1.2 Our Techniques

Our starting point is the construction of pseudorandom generator (PCG) from
the work of [BCG+19b], under the LPN assumption. At a high level, a PCG
allows to distributively generate long pseudorandom instances of a correlation.
More precisely, a PCG for a correlation corr (seen as a distribution over pairs
of elements) is a pair (Gen,Expand) where Gen(1λ) generates a pair of seeds
(k0, k1) and Expand(b, kb) output a string Rb. A PCG must satisfy two properties:
(correctness) (R0, R1) is indistinguishable from a random sample from corr, and
(security) for b ∈ {0, 1}, the string Rb is indistinguishable, even given k1−b, from
a string R′b sampled randomly conditioned on satisfying the correlation with
R1−b.

The technical contribution at the heart of this paper is to show that, under
a certain LPN assumption, there exists a 2-party PCG for the following corre-
lation, which we call substrings tensor powers (stp) correlation. It is (publicly)
parametrised by

– a string length n;
– subsets S1, . . . , Sns ∈

(
[n]
≤K
)
of at most K = log n/ log log n many coordinates

each;
– a tensor power parameter tpp (which can be super-constant, as high as K);

and generates additive shares of all the tensor powers of the prescribed substrings
of a random string, i.e.

(~r, ((1F || ~r[Si])⊗tpp)1≤i≤ns), where ~r ∈ Fn is (pseudo)random.
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In the above, ~a⊗b denotes a vector ~a tensored with itself b rimes. In or-
der to build shares of (~r, ~r⊗2) for some (pseudo)random ~r ∈ Fn (the bilinear
correlation), the PCG of [BCG+19b] uses a multi-point function secret sharing
scheme (MPFSS) (defined in section 3.1) to give the parties small seeds which
can be expanded locally to shares of (~e,~e⊗2) for some random sparse vector
~e ∈ Fn. Thence, if H is some suitable public matrix the parties can get shares
of ~r := H · ~e, which is pseudorandom under LPN, and of ~r⊗2 = H⊗2 · ~e⊗2
by locally multiplying their shares of ~e and ~e⊗2 by H and H⊗2 respectively.
The main issue in using this approach directly is that performing the expanding
~r⊗tpp = H[Si]

⊗tpp · ~e⊗tpp (where H[Si]–abusively–denotes the submatrix of H
with only the rows indexed by elements of Si) would require super-polynomial
computation, as H[Si] has n columns.

The core idea of our work is to develop a very careful modified strategy. In-
stead of letting each ~r be a (pseudo)random mask, we construct ~r as a sum of
n·log n vectors ~rj , each associated with a public subset of at mostK coordinates:
these K coordinates are random, but all others are zero. The crucial property
achieved by this construction is the following: with high probability, the sum of
these sparse vectors will be pseudorandom, but every size-K substring of ~r (and
in particular S1, . . . , Sns) will be expressible as a sum of ‘not too many’ of the
~rj . This allows the expanding to be done by raising to the tensor power tpp a
matrix whose dimensions are both KO(1), and not n as before. Thus computa-
tion remains polynomial.

If we were to stop here, the size of the seeds would grow linearly with ns,
the number of subsets; this would violate the compactness requirement. Instead,
we show that we can batch the subsets into ns/β groups of at most β subsets
each, for some parameter β to be refined, to reduce the share size and recover
compactness, without harming computational efficiency. Indeed, so long as β is
not too large, the substring of ~r associated with the union of any β size-K subsets
of coordinates will still be expressible as a sum of ‘not too many’ of the ~rj . Our
computations reveal a sweet spot for the choice of β, for which the PCG seeds
are compact and yet the complexity of expanding them remains polynomial.

1.3 Related Work

Pseudorandom correlation generators were first studied (under the name of
cryptocapsules) in [BCG+17]. Constructions of PCGs for various correlations,
under variants of the LPN assumptions, and applications of PCGs to low-
communication secure computation, have been described in [BCGI18,BCG+19b,
BCG+19a,SGRR19,BCG+20b,BCG+20a].

Early works on sublinear-communication secure computation either incurred
some exponential cost, or were restricted to very limited types of computations.
The first protocols to break the circuit size barriers was shown in [BFKR91]
(which gave a protocol with optimal communication, albeit with exponential
computation and only for a number of parties linear in the input size). The
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work of [NN01] gave a sublinear protocol, but with exponential complexity.
The work of [BI05] gives a low-communication protocol for constant-depth cir-
cuit, for a number of parties polylogarithmic in the circuit size, and the works
of [CGKS95,KO97,CG97] gave sublinear protocols for the special case of point
functions. The result of Gentry [Gen09] led to the first optimal communica-
tion protocols in the computational setting [DFH12,AJL+12] under LWE-style
assumptions, for all circuits and without incurring any exponential cost. The
work of [IKM+13] gave an optimal communication protocol in the correlated
randomness model, albeit using an exponential amount of correlated random-
ness. More recently, [Cou19] constructed an unconditionally secureMPC protocol
with sublinear communication for layered circuits, in the two-party setting, with
a polynomial amount of correlated randomness. Finally, progress in breaking the
circuit-size barrier for layered circuits in the computational setting is closely tied
to the advances in HSS for super-constant depth circuits [BGI16a,FGJS17].

2 Technical Overview

Notations. We say that a function negl : N → R+ is negligible if it vanishes
faster than every inverse polynomial. For two families of distributions X = {Xλ}
and Y = {Yλ} indexed by a security parameter λ ∈ N, we write X

c
≈ Y if X

and Y are computationally indistinguishable (i.e. any family of circuits of size
poly(λ) has a negligible distinguishing advantage), X

s
≈ Y if they are statistically

indistinguishable (i.e. the above holds for arbitrary, unbounded, distinguishers),
and X ≡ Y if the two families are identically distributed.

We usually denote matrices with capital letters (A,B,C) and vectors with
bold lowercase (~x, ~y). By default, vectors are assumed to be column vectors. If
~x and ~y are two (column) vectors, we use ~x||~y to denote the (column) vector
obtained by their concatenation. We write ~x ⊗ ~y to denote the tensor product
between ~x and ~y, i.e., the vector of length nxny with coordinates xiyj (where nx
is the length of ~x and ny is the length of ~y). We write ~x⊗2 for ~x⊗ ~x, and more
generally, ~x⊗n for the n-th tensor power of ~x, ~x⊗ ~x⊗ · · · ⊗ ~x. Given a vector ~x
of length |~x| = n, the notation HW (x) denotes the Hamming weight ~x, i.e., the
number of its nonzero entries. Let k be an integer. We let {0, 1}k denote the set
of bitstrings of length k. For two strings (x, y) in {0, 1}k, we denote by x ⊕ y
their bitwise xor.

Circuits. An arithmetic circuit C with n inputs and m outputs over a field F
is a directed acyclic graph with two types of nodes: the input nodes are labelled
according to variables {x1, · · · , xn}; the (computation) gates are labelled accord-
ing to a base B of arithmetic functions. In this work, we will focus on arithmetic
circuits with indegree two, over the standard basis {+,×}. C contains m gates
with no children, which are called output gates. If there is a path between two
nodes (v, v′), we say that v is an ancestor of v′. In this work, we will consider a
special type of arithmetic circuits, called layered arithmetic circuits (LBC). An
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LBC is a arithmetic circuit C whose nodes can be partitioned into D = depth(C)
layers (L1, · · · , Ld), such that any edge (u, v) of C satisfies u ∈ Li and v ∈ Li+1

for some i ≤ d−1. Note that the width of a layered arithmetic circuit is also the
maximal number of non-output gates contained in any single layer. Evaluating
a circuit C on input ~x ∈ Fn is done by assigning the coordinates of ~x to the
variables {x1, · · · , xn}, and then associating to each gate g of C (seen as an
arithmetic function) the value obtained by evaluating g on the values associated
to its parent nodes. The output of C on input ~x, denoted C(~x), is the vector of
values associated to the output gates.

2.1 PCG and HSS

Much like a PCG for the bilinear correlation yields an HSS for degree-two cir-
cuits [BCG+19b], given a PCG for the stp correlation with tpp = K, it is al-
most immediate to build an HSS scheme for any singleton class comprised of a
log/loglog-local circuit C (which is the case in particular if its depth is at most
log log− log log log, since the gates have in-degree at most 2). Since the circuit
to be homomorphically evaluated on the input shares is known, the Share pro-
cedure can depend on it (which is not usually the case for HSS). Let S1, . . . , Sm
be the subsets of inputs on which each output depends, and let K denote the
locality of C; we build a (circuit dependent) HSS scheme as follows:

– HSS.Share(~x): Generates compact PCG key (k0, k1) which expand to shares
of (~r, ((1F || ~r[Si])⊗tpp)1≤i≤m), set ~x′ ← ~x ⊕ ~r, and give to each party Pσ a
share sσ = (kσ, ~x

′).
– HSS.Eval(σ, sσ): Expand sσ and, for each i = 1 . . .m, extract a share of

(1F || ~r[Si])⊗tpp. Use it to generate shares of the coefficients of the “degree-
K polynomial” on |Si| ≤ K variables Pi satisfying Pi(X) = C(X − ~r[Si]).
Output the inner product of the vector of coefficient shares with the vector
(1F || ~x′)⊗K . (This linear product is a share of Pi(~x′).)

Correctness and security follow from inspection, along the same lines as
[BCG+19b]. Usually, HSS.Share is given only a circuit class as auxiliary input,
not a specific circuit, and the parties should be able to homomorphically eval-
uate any circuit in the class. In our case however the HSS is circuit-dependent,
because the subsets S1, . . . , Sm are intrinsically tied to the evaluated circuit. An
alternative formulation is that our HSS scheme supports singleton circuit classes
(or, more generally, local circuits with the same pattern of subsets).

2.2 Generating Correlated Randomness from a PCG

From now on, we set the number of parties to N = 2. The work of [BCG+19b,
Section 6] provides a pseudorandom correlation generator under the LPN as-
sumption, generates correlated (pseudo) random strings for the low-degree poly-
nomial correlation, i.e. shares of (~r, ~r⊗2, . . . , ~r⊗d) for some constant d, where
~r is a (pseudo)random vector. With the construction from the previous para-
graph, this yields an HSS for constant-depth circuits. Our goal is to design a

8



PCG which would lead to an HSS for super-constant depth circuits. More specif-
ically, and keeping our end application in mind, we would like for our PCG to
have short enough seeds to lead to a compact HSS scheme (i.e., shares of an
input x should be at most O(x)). This is fundamental when using the scheme
to generate correlated randomness in the protocol of [Cou19], which achieves
sublinear communication in the correlated randomness model, and which is the
starting point of our application to sublinear secure computation.

Our approach is therefore to directly plug in the construction of [BCG+19b]
and see where it fails. Two issues emerge: the computation is super-polynomial,
and the communication not sublinear. Below, we outline each of these issues,
and explain how we overcome them.

First Issue: Too Many Polynomials. The first problem which appears when
plugging the PCG of [BCG+19b] in the protocol of [Cou19] is that the latter
requires distributingmany shares of multivariate polynomials Q̂ – more precisely,
s/k such polynomials (one for each coordinate of each first layer of a bloc). While
the PCG of [BCG+19b] allows to compress pseudorandom pairs (~r,Q( ~X − ~r))
into short seeds, these seeds will still be of length at least ω(log λ), where λ is the
security parameter, for the PCG to have any hope of being secure. That means
that even if we could manage to securely distribute all these seeds with optimal
communication protocols, the overall communication would still be at the very
least ω((s log λ)/ log log s), which cannot be sublinear since log log s = o(log λ)
(as s is polynomial in λ).

We solve this first issue as follows: we fix a parameter β, and partition each
~yi into w/β subvectors, each containing β consecutive coordinates of ~yi. Then,
the core observation is that a simple variant of the PCG of [BCG+19b] allows
in fact to generate shares of (~r, ~r⊗2, · · · , ~r⊗2k) for some pseudorandom r, where
~r⊗j denotes the tensor product of ~r with itself j times (which we call from now
on the j-th tensor power of ~r): this correlation is enough to generate shares
of all degree-2k polynomial in ~r rather than a single one. We will build upon
this observation to show how to generate a batch of β shares of multivariate
polynomials from a single tensor-power correlation, thus reducing the number
of PCG seeds required in the protocol by a factor of β, at the tolerable cost of
slightly increasing the size of each seed.

Solution: Batching β Multivariate Polynomials. Consider the first length-β sub-
vector of ~yi+1, which we denote ~v. Observe that the entire subvector ~v can depend
on at most β ·2k coordinates of ~yi, since each coordinate of ~v depends on at most
2k coordinates of ~yi. Therefore, we can now see the computation of ~v from ~yi
as evaluating β multivariate polynomials (Q1 · · · , Qβ), where all multivariate
polynomials take as input the same size-(β2k) subset of coordinates of ~yi. To
securely compute shares of ~v from shares of ~yi, the parties can use the following
type of correlated randomness: they will have shares of (~r, ~r⊗2, · · ·~r⊗2k), where
~r is a random mask of length β · 2k. Consider the following polynomials:

(Q̂1( ~X), · · · , Q̂β( ~X)) def= (Q1( ~X − ~r), · · · , Qβ( ~X − ~r)).
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Each coefficient of each Q̂ can be computed as a degree-2k multivariate poyno-
mial in the coordinates of ~r – or, equivalently, as a linear combination of the
coordinates of (~r, ~r⊗2, · · ·~r⊗2k). Hence, given additive shares of (~r, ~r⊗2, · · ·~r⊗2k),
the parties can locally compute additive shares of the coefficients of all the poly-
nomials (Q̂1, · · · Q̂β). Using the PCG of [BCG+19b], the seeds for generating
pseudorandom correlations of the form (~r, ~r⊗2, · · ·~r⊗2k) have length:

O

(
λ2

k

· log
((
β · 2k

)2k))
,

where λ is some security parameter related to the hardness of the underlying LPN
assumption. Or more simply, using the fact the computational cost of generating
the correlations contains the term

(
β · 2k

)2k which must remain polynomial in
s. Therefore, the total number of bits which the parties have to distribute (for
all (d/k) · (w/β) = s/(βk) such seeds) is O((s/k) · (λ2k · log s)/β).

Choosing the Parameter β. Suppose for simplicity that we already have at hand
an MPC protocol allowing to securely distribute such seeds between the par-
ties, with linear overhead over the total length of the seeds generated. This
means that generating the full material will require a total communication of
c · s · λ2k · log s/(βk). By setting β to be larger than c · λ2k · log s, the total
communication will be upper bounded by O(s/k) = O(s/ log log s) when setting
k ← O(log log s), which is the highest our techniques will allow it to be pushed.
The most important remaining question is whether we can execute this process in
polynomial time given such a large β. Put more simply, the core issue is that the
computational complexity of expanding short seeds to shares of (~r, ~r⊗2, · · ·~r⊗2k)
with the PCG of [BCG+19b] contains a term of the form (β · 2k)2k . To make
the computation polynomial, we must therefore ensure that β is at most sO(2−k),
which is subpolynomial. Fortunately, this can be done by setting the security pa-
rameter λ of the underlying PCG to be sO(2−2k). For instance, for any constant
ε ∈]0, 1[, we can set λ ← 2log

ε s, k ← log log s/cε, and β ← sO(2−k) for some ex-
plicit constant cε > 2, at the cost of now having to assume the quasi-polynomial
security of the LPN assumption.

Second Issue: Too Much Communication. In the previous paragraphs, we
focused on generating the appropriate correlated random coins using sublinear
total communication. But doing so, we glossed over the fact that in the full
protocol, the parties must also broadcast (shares of) values of the form ~y + ~r,
where ~y contains values of some layer, and ~r is some mask. Recall that with the
method which we just outlined, the parties must generate such a length-(β2k)
mask ~r for the k-ancestors of each length-β subvector of each last layer of a
block. Since there are d/k blocks, whose first layers contain w/β subvector each,
and since each ~y + ~r is of length β · 2k, this requires to communicate a total of
(d/k) · (w/β) · β2k = s · 2k/k values – and this cannot possibly be sublinear in
s. In fact, this issue already appears in [Cou19], where it was solved as follows:
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rather than picking an independent mask for each vector of ancestors of a node
on a layer (or, in our case, of a length-β block of nodes), pick a single ~ri to mask
a full layer ~yi, and define the mask for the subset Si,j of ancestors of a target
value yi+1,j to be ~ri[Si,j ]. This implies that the parties must mow broadcast a
single masked vector ~yi + ~ri for each first layer of a block, reducing the overall
communication back to O(s/k). The correlated randomness which the parties
must securely distribute now consists of tensor powers of many subsets of the
coordinates of each mask.

Using the PCG of [BCG+19b] for ‘Subvectors Tensor Powers Correlations’.
However, attemping to construct a PCG for generating this kind of correlated
randomness from the PCG of [BCG+19b] blows up the computation to the point
that it can no longer be polynomial. To explain this issue, we briefly recall the
high level construction of the PCG of [BCG+19b]. To share a pseudorandom
vector (~r, · · · , ~r⊗2k) where ~r is of length w, the PCG will first generate a very
sparse vector ~r′, with some number t of nonzero coordinates. Then, each (~r′)⊗n

for some n ≤ 2k is itself a tn-sparse vector, of length wn. Using multi-point func-
tion secret sharing (MPFSS, a primitive which was developed in a recent line of
work [GI14,BGI15,BGI16b,BCGI18] and can be built from one way functions),
one can compress shares of (~r′)⊗n to length-tn · logw seeds. Then, the final pseu-
dorandom correlation is obtained by letting the parties locally compress ~r′ by
multiplying it with a large public matrix H, giving a vector ~r = H ·~r′. Similarly,
~r⊗n can be reconstructed by computing H⊗n · (~r′)⊗n = (H · ~r′)⊗n = ~r⊗n, using
the multilinearity of tensor powers. The security relies on the fact that if H is a
large compressing public random matrix, then its product with a random sparse
noise vector ~r′ is indistinguishable from random, under the dual LPN assump-
tion (which is equivalent to the standard LPN assumption). Concretely, one can
think of ~r′ as being of length 2w, and of H as being a matrix from Fw×2w which
compresses ~r′ to a pseudorandom length-w vector.

Now, the issue with this construction is that even if we need only tensor
powers of small subvectors (of length β·2k in our construction) of the vector ~r, the
computation for expanding the seed to these pseudorandom tensor powers will
grow super-polynomially with the length of of entire vector w. Indeed, consider
generating the 2k-th tensor power of a subvector ~r[S] of ~r, for some size-β · 2k
subset S of [w]. Then with the PCG of [BCG+19b], this requires computing
(H[S])

⊗2k · (~r′[S])⊗2k , where the share of (~r′[S])⊗2
k

are obtained from a short
seed using MPFSS, and H[S] ∈ F|S|×2w is the submatrix of H whose columns
are indexed by S. The core issue becomes now visible: even though H[S] has
only |S| rows, it still has 2w columns, and computing H[S]⊗2

k

requires roughly
(|S| ·w)2k arithmetic operation. But since we want ultimately to have k be some
increasing function of s, the above will contain a term of the form w2k = wω(1),
where w (the circuit width) can be polynomial in the circuit size s, leading to
an overall computational complexity of sω(1), which is super-polynomial.
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Solution: Covering the Private Values with the Sum of Separable Masks. Our
solution to circumvent the above problem is to generate ~r as the sum of a certain
number m of shorter masks ~r1, ~r2, . . . which each only cover θ values (note
that they may – and will – overlap). This way the 2k-th tensor power of a
subvector ~v can be obtained from appropriate linear combinations of coordinates
of the 2k-th tensor power of the concatenation of only the ~rj which overlap with
~v. The amount of computation grows super-polynomially in the length of this
concatenated vector only (instead of w as before).

More formally, we have a list of w/β target subsets S1, . . . , Sw/β (each one
corresponding to the 2kβ ancestors of a batch of β outputs) for which we want
to compute the 2k-th tensor power of ~r[Si], for some random ~r ∈ Fw. We want
to find M size-K sets α1, α2, . . . , αM ∈

(
[w]
K

)
such that each Si intersects with

a small number B of αjs, while ∪Mi=1αi = [w]. We associate each αj with a
vector ~rj ∈ FK : together they define a sparse subvector of Fw. If we let ~r be the
sum of these sparse vectors, it is clear that for any i ∈ [w/β], each element of
(1F || ~r[Si])⊗2

k

can be obtained by a linear combination of the elements of the
2k-th tensor power of the vector of size (1+BK) obtained by concatenating (1F)
and the ~rjs such that αj ∩ Si 6= ∅. The amount of computation required is then
of the order (BK)2

k

.
The problem of deterministically finding such subsets α1, . . . , αM – which

we call a B-Good Cover of (Si)i∈[w/β] – turns out to be difficult in the general
case. Fortunately, there is a straightforward probabilistic solution: choosing them
independently and at random works with high probability. More specifically,
taking M ← O(w · lnw) i.i.d. uniformly random submasks covering K ← β2k

values each means that the β2k ancestral inputs of any batch of β outputs will be
covered by only a total of roughly B = logw submasks (the proof of this relies on
standard concentration bounds). This effectively lifts the cost of the computation
from being super-polynomial in w to being only super-polynomial in β2k logw,
which remains polynomial overall when setting β and k to be appropriately
small.

2.3 Application to Sublinear Secure Computation

The work of [Cou19] gives a generic secure protocol with sublinear communica-
tion for layered circuits. It works in the corruptible correlated randomness model :
before the protocol, a trusted dealer lets the adversary choose the strings that the
corrupted parties will get, samples the correlated random coins of the remaining
parties afterwards, and distributes them to the parties. As shown in [BCG+19b],
generating this corruptible randomness using a PCG leads to a secure protocol
in the standard model. In a bit more detail, the parties use a generic secure
protocol to generate the short seeds (k0, k1) then expand them locally; it might
have a high overhead, but it will not be a bottleneck since the seeds are very
small. We show that our new PCG can be used for just this purpose.

The general idea is to split a layered circuit of size s into carefully chosen
blocks, each containing O(log log s) consecutive layers. The precise block de-
composition is detailed in [Cou19]. Using our PCG cast as an HSS scheme for
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O(log log s)-depth circuits (with the duality described in section 2.1) allows the
parties to evaluate the circuit in a block-by-clock fashion: for each block the
parties start with additive shares of

– the inputs of the circuit;
– the values of the first layer of the block;

and, using HSS, compute additive shares of

– the outputs of the circuit which are in the block;
– the values of the last layer, which are also the values of the first layer of the

next block.

Let us note that since the circuit and its blocks are publicly known to both par-
ties, so the fact our HSS scheme is circuit-dependent is not an issue here. This
block-by-block approach allows the parties to ‘skip’ a fraction O(log log(s)) of
the gates when computing the circuit, by communicating at each block rather
than at each gate. Unfortunately, combining all these blocks together involves
pesky technicalities which prohibit a very modular approach and require us to
consider the protocol in its entirety. Indeed, the inputs can appear arbitrarily
many times–up to O(s) even–across many blocks, so the randomness used to
mask them has to be reused, and we cannot deal with each block using an inde-
pendent instance of HSS. However, dealing with this problem does not require
any additional insight, only more cumbersome notations.

In the above outline, we assumed that we had access to a sufficiently low-
communication MPC protocol to distribute the generation of the seeds to our
new PCG. To obtain our claimed result, it remains to show that this build-
ing block can be instantiated under the quasi-polynomial hardness of LPN. In
fact, this MPC protocol needs not have linear communication in the seed size;
it turns out that by tuning the parameters appropriately, any fixed polynomial
in the seed size suffices to guarantee the existence of a “soft spot” for the pa-
rameters of our PCG such that we simultaneously get sublinear total communi-
cation O(s/log log s) and polynomial computation. Distributing the generation
procedure of our PCG essentially boils down to generating (many) seeds for
a multi-point function secret sharing scheme, which itself boils down mainly
to securely generating seeds for a standard length-doubling pseudorandom gen-
erator (PRG), and securely executing about log(domsize) expansions of these
short seeds, where domsize denotes the domain size of the MPFSS. Using a stan-
dard LPN-based PRG and GMW-style secure computation, instantiated with an
LPN-based oblivious transfer protocol, suffices to securely generate the MPFSS
seeds we need.

3 Preliminaries

3.1 Function Secret Sharing

Informally, an FSS scheme for a class of functions C is a pair of algorithms
FSS = (FSS.Gen,FSS.Eval) such that:
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– FSS.Gen given a function f ∈ C outputs a pair of keys (K0,K1);
– FSS.Eval, given Kb and input x, outputs yb such that y0 and y1 form additive

shares of f(x).

The security requirement is that each key Kb computationally hide f , except
for revealing the input and output domains of f . For the formal definition of
FSS, we refer the reader to the full version of this paper. Our application of FSS
requires applying the evaluation algorithm on all inputs. Following [BGI16b,
BCGI18, BCG+19b, BCG+19a], given an FSS scheme (FSS.Gen,FSS.Eval), we
denote by FSS.FullEval an algorithm which, on input a bit b, and an evaluation
key Kb (which defines the input domain I), outputs a list of |I| elements of G
corresponding to the evaluation of FSS.Eval(b,Kb, ·) on every input x ∈ I (in
some predetermined order). Below, we recall some results from [BGI16b] on FSS
schemes for useful classes of functions.

Distributed Point Functions A distributed point function (DPF) [GI14] is
an FSS scheme for the class of point functions fα,β : {0, 1}` → G which satisfies
fα,β(α) = β, and fα,β(x) = 0 for any x 6= α. A sequence of works [GI14,
BGI15,BGI16b] has led to highly efficient constructions of DPF schemes from
any pseudorandom generator (PRG).

Theorem 3 (PRG-based DPF [BGI16b]). Given a PRG G : {0, 1}λ →
{0, 1}2λ+2, there exists a DPF for point functions fα,β : {0, 1}` → G with key
size `·(λ+2)+λ+dlog2 |G|e bits. For m = d log |G|λ+2 e, the key generation algorithm
Gen invokes G at most 2(`+m) times, the evaluation algorithm Eval invokes G
at most `+m times, and the full evaluation algorithm FullEval invokes G at most
2`(1 +m) times.

FSS for Multi-Point Functions Similarly to [BCGI18,BCG+19b,BCG+19a],
we use FSS for multi-point functions. A k-point function evaluates to 0 every-
where, except on k specified points. When specifying multi-point functions we
often view the domain of the function as [n] for n = 2` instead of {0, 1}`.

Definition 4 (Multi-Point Function [BCGI18]). An (n, t)-multi-point func-
tion over an abelian group (G,+) is a function fS,~y : [n] → G, where S =
(s1, · · · , st) is an ordered subset of [n] of size t and ~y = (y1, · · · , yt) ∈ Gt,
defined by fS,~y(si) = yi for any i ∈ [t], and fS,y(x) = 0 for any x ∈ [n] \ S.

We assume that the description of S includes the input domain [n] so that
fS,~y is fully specified. A Multi-Point Function Secret Sharing (MPFSS) is an
FSS scheme for the class of multi-point functions, where a point function fS,~y
is represented in a natural way. We assume that an MPFSS scheme leaks not
only the input and output domains but also the number of points t that the
multi-point function specifies. An MPFSS can be easily obtained by adding t
instances of a DPF.
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3.2 Learning Parity with Noise

Our constructions rely on the Learning Parity with Noise assumption [BFKL93]
(LPN) over a field F (the most standard variant of LPN typically assumes F = F2,
but other fields can be considered). Unlike the LWE assumption, in LPN over F
the noise is assumed to have a small Hamming weight. Concretely, the noise is a
random field element in a small fraction of the coordinates and 0 elsewhere. Given
a field F, Berr(F) denote the distribution which outputs a uniformly random
element of F \ {0} with probability r, and 0 with probability 1− r.

Definition 5 (LPN). For dimension k = k(λ), number of samples (or block
length) q = q(λ), noise rate r = r(λ), and field F = F(λ), the F-LPN(k, q, r)
assumption states that

{(A,~b) | A $← Fq×k, ~e $← Berr(F)q, ~s $← Fk,~b← A · ~s+ ~e}
c
≈{(A,~b) | A $← Fq×k,~b $← Fq}

Here and in the following, all parameters are functions of the security pa-
rameter λ and computational indistinguishability is defined with respect to λ.
Note that the search LPN problem, of finding the vector can be reduced to
the decisional LPN assumption [BFKL93,AIK09]. In this paper, our protocols
will mostly rely on a variant of LPN, called exact LPN (xLPN) [JKPT12]. In
this variant, the noise vector ~e is not sampled from Berr(F)q, but it is sam-
pled uniformly from the set HWrq(Fq) of length-q vectors over F with exactly
rq nonzero coordinates (in contrast, a sample from Berr(F)q has an expected
number r · q of nonzero coordinates). While standard LPN is usually preferred
since the Bernouilli distribution is convenient to analyze, xLPN is often preferred
in concrete implementations, since it offers a potentially higher level of security
for similar parameters (by avoiding weak instances with a low amount of noise).
Furthermore, as outlined in [JKPT12], xLPN and LPN are equivalent: xLPN re-
duces to its search version using the sample-preserving reduction of [AIK07], and
search-xLPN is easily seen to be polynomially equivalent to search-LPN.

Dual LPN. In our protocols, it will also prove convenient to work with the
(equivalent) alternative dual formulation of LPN.

Definition 6 (Dual LPN). For dimension k = k(λ), number of samples (or
block length) q = q(λ), noise rate r = r(λ), and field F = F(λ), the dual-
F-LPN(k, q, r) assumption states that

{(H,~b) | H $← Fq−k×q, ~e $← Berr(F)q,~b← H · ~e}
c
≈{(H,~b) | H $← Fq−k×q,~b $← Fq}

Solving the dual LPN assumption is easily seen to be at least as hard as
solving LPN: given a sample (A,~b), define H ∈ Fq−k×q to be the parity-check
matrix of A (hence H ·A = 0), and feed (H,H ·~b) to the dual LPN solver. Note
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that the parity check matrix of a random matrix is distributed as a random
matrix. Furthermore, when ~b = A · ~s+ ~e, we have H ·~b = H · (A · ~s+ ~e) = H · ~e.
For discussions regarding existing attacks on LPN and their efficiency, we refer
the reader to [BCGI18,BCG+19b].

3.3 Pseudorandom Correlation Generators

Pseudorandom correlation generators (PCG) have been introduced in [BCG+19b].
Informally, a pseudorandom correlation generator allows to generate pairs of
short keys (or seeds) (k0, k1) such that each key kσ can be expanded to a long
string Rσ = Expand(σ, kσ), with the following guarantees: given the key k1−σ,
the string Rσ is indistinguishable from a random string sampled conditioned on
satisfying the target correlation with the string R1−σ = Expand(1 − σ, k1−σ).
The formal definition of PCGs is given in the full version of this paper

4 Secure Computation from Super-Constant-Degree
Low-Locality Polynomial Correlated Randomness

4.1 Block Decomposition of Layered Circuits

Given an arithmetic circuit C and an input vector ~x, we call value of the gate g
on input ~x the value carried by the output wire of a given gate g of C during the
evaluation of C(~x). The following decomposition of layered circuits is implicit
in [Cou19]; for completeness, we give the proof in the full version.

Lemma 7 (Block-Decomposition of Layered Circuits). Let C be a layered
arithmetic circuit over a field F with n inputs and m outputs, of size s and depth
d = d(n). For any integer k, denoting t = t(k) = dd/ke, there exists 2t+1 integers
(s0 = 0, s1, · · · , st−1, st = 0), (m0, · · · ,mt−1), and functions (f0, · · · , ft−1) with
fi : Fn × Fsi → Fsi+1 × Fmi , such that:

– The algorithm A given below satisfies, for any input vector ~x ∈ Fn, A(~x) =
C(~x) (that is, A computes C);

function A(~x)
~x0 ← ~x
for i = 0 to t− 1 do (~xi+1, ~yi)← fi(~xi)

~y ← ~y0|| · · · ||~yt−1
return ~y

– For any i ∈ [[0, t − 1]], j ≤ si+1 +mi, the j-th output5 of fi : Fn × Fsi 7→
Fsi+1 × Fmi can be computed by a multivariate polynomial Pi,j over F2k of
degree degPi,j ≤ 2k;

–
∑t−1
i=0 si ≤ s/k and

∑t−1
i=0mi = m.

5 i.e. the jth coordinate of the image by fi, seen as fi : Fn × Fsi → Fsi+1+mi .
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4.2 Securely Computing C in the Correlated Randomness Model

We represent in fig. 1 the ideal functionality for securely evaluating the layered
arithmetic circuit C.

Ideal Functionality FC

– Parameters. The functionality is parametrised with an arithmetic circuit C
with n inputs over a finite field F.

– Parties. An adversary A and N parties P1, · · · , PN . Each party P` has p` ∈
[0, n] inputs over F, with

∑
`≤N p` = n.

The functionality aborts if it receives any incorrectly formatted message.

1. On input a message (input, ~x`) from each party P` where ~x` ∈ Fp` , set

~x← ~x1|| · · · ||~xN ∈ Fn.

2. Compute ~y ← C(~x). Output ~y to all parties, and terminate.

Fig. 1: Ideal functionality FC for securely evaluating an arithmetic circuit C
among N parties.

We represent on fig. 2 an ideal functionality for distributing (function-dependent)
correlated randomness between the parties.

Theorem 8. Let k ≤ log log s − log log log s. There exists a protocol ΠC which
(perfectly) securely implements the N -party functionality FC in the Fcorr-hybrid
model, against a static, passive, non-aborting adversary corrupting at most N−1
out of N parties, with communication complexity upper bounded by O(N · (n +
s
k +m) · log |F|) and polynomial computation.

The protocol follows closely the construction of [Cou19], with some tedious
technical adaptations which are necessary to rely on the specific type of corre-
lated randomness which we will manage to securely generate with low commu-
nication overhead. The protocol and its security analysis are given in the full
version.

5 Generating Correlated Randomness from LPN

In this section, we construct a protocol Πcorr, which implements the ideal func-
tionality Fcorr with small communication, under the quasi-polynomial LPN as-
sumption. A very natural approach to realise a functionality that distributes cor-
related random coins using a small amount of communication is to rely on pseu-
dorandom correlation generators, a primitive recently defined an constructed (for
various types of correlations, and under a variety of assumptions) in [BCG+19b].
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Ideal Functionality Fcorr

– Parameters. For every i = 0, . . . , dd/ke − 1, functionality is parameterised
with subsets (U in

i,j , Ui,j)1≤j≤dsi+1/βe and (V in
i,j , Vi,j)1≤j≤dmi/βe.

– Parties. An adversary A and N parties P1, · · · , PN .

The functionality aborts if it receives any incorrectly formatted message.

1. On input a message (corrupt, D) with D ( [N ] from A , set H ← [N ] \D and
store (H,D).

2. On input a message input with from each party P`, send ready to A .
3. Setup input masks: On input a message (setinputshare, (~rin,`)`∈D) from A with
∀` ∈ D,~rin,` ∈ Fn, sample (~rin,`)`∈H

$← (Fn)|H|, and set ~rin ←
∑
`∈[N ] ~rin,`.

4. For i = 1 to dd/ke − 1:
(a) Setup masks for the computation gates of the first layer of the ith chunk:

On input a message (setblockshare, i, (~ri,`)`∈D) from A with ∀` ∈ D,~ri,` ∈
Fsi , sample (~ri,`)`∈H

$← (Fsi)|H|, and set ~rin ←
∑
`∈[N ] ~rin,`.

(b) Setup evaluation of the computation gates on the final layer of the ith

chunk:
– For j = 1 to dsi+1/βe, set:

~π(i,j) ←
(
1

n
~rin[U

in
i,j ]

n
~ri[Ui,j ]

)⊗2k

.

– Wait for a message (setshare, (i, j), (~π
(i,j)
` )`∈D) from A with ~π(i,j)

` ∈
Fδ;

– Compute uniformly random shares (~π(i,j)
` )`∈|H| of ~π(i,j)−

∑
`∈D ~π

(i,j)
` .

(c) Setup evaluation of the output gates in the ith chunk:
– For j = 1 to dmi/βe, set:

~π(i,j) ←
(
1

n
~rin[V

in
i,j ]

n
~ri[Vi,j ]

)⊗2k

.

– Wait for a message (setoutputshare, (i, j), (~π
(i,j)
` )`∈D) from A with

~π
(i,j)
` ∈ Fδ;

– Compute uniformly random shares (~π(i,j)
` )`∈|H| of ~π(i,j)−

∑
`∈D ~π

(i,j)
` .

5. Output (~rin,`, (~ri,`, (~π
(i,j)
` )1≤j≤dsi+1/βe, (~π

(i,j)
out,`)1≤j≤dmi/βe)0≤i<dd/ke) to each

party P`.

Fig. 2: Ideal corruptible functionality Fcorr to deal out correlated randomness to
the parties.
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At a high level, [BCG+19b] suggests to distribute correlated randomness with
the following approach:

– Use a generic secure computation protocol ΠGen to distributively execute
the PCG.Gen functionality of the pseudorandom correlation generator. Note
that PCG.Gen outputs short seeds, much smaller than the correlated pseudo-
random strings which can be stretched from these seeds. Therefore, ΠGen

can potentially have a relatively high communication overhead in its inputs
and outputs, while maintaining the overall communication overhead of Πcorr

small.
– Expand the distributively generated seeds locally using the Expand algorithm

of the PCG. Each such string is guaranteed, by the security of the PCG, to be
indistinguishable (from the viewpoint of the other parties) from a uniformly
random string sampled conditioned on satisfying the target correlation with
the expanded strings held by the other parties.

While this approach does not necessarily leads to a secure implementa-
tion of an ideal functionality generating correlated random coins, it was shown
in [BCG+19b] (Theorem 19 in [BCG+19b]) that it provides a provably secure
implementation for all corruptible ideal functionalities for distributing correlated
random coins. Note that this property is satisfied by our functionality Fcorr. Our
protocol Πcorr will follow this approach. We start by constructing a pseudoran-
dom correlation generator for the type of correlated randomness produced by
Fcorr, building upon an LPN-based construction of [BCG+19b].

5.1 Substrings Tensor Powers Correlations (stp)

We now describe our construction of a PCG for generating the type of correlated
randomness produced by Fcorr. As all constructions of [BCG+19b], our con-
struction will be restricted to the two-party setting; hence, we focus on N = 2
parties from now on. Abstracting out the unnecessary details, the functional-
ity Fcorr does the following. It is parametrised with a vector length w, subsets
(Si)1≤i≤ns ∈

(
[w]
≤K
)ns , a tensor power parameter tpp, and generates shares of:

(~r, ((1F || ~r[Si])⊗tpp)1≤i≤ns), where ~r ∈ Fw is random.

We call C the correlation generator associated with Fcorr, i.e. the PPT
algorithm that, on input the security parameter in unary 1λ, samples corre-
lated random string as above (where the parameters (ns,K, tpp) are functions
of λ). It is straightforward to see that C is a reverse-samplable correlation
generator , since it is an additive correlation: given any fixed share share0, a
matching share can be reverse-sampled by sampling ~r and setting share1 ←
(~r, ((1F || ~r[Si])⊗tpp)1≤i≤ns)− share0. We call this type of correlated randomness
a subsets tensor powers (stp). Below, we describe a pseudorandom correlation
generator for such correlations.
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5.2 Good Cover

Before we proceed with the description of a PCG to generate such correlations,
we need to introduce a concept, that of a good cover. The notations in this
subsection are completely self-contained, and may conflict with the parameters
defined for the main protocol. In the course of our construction we will want to
solve the following problem: given a vector ~v of size n, a family (Si)i∈[t] ∈P([n])t

of t (short) subsets of coordinates of ~v, and a (small) bound B > 0, the problem
is to find a family (~vj)j∈[M ] of some number m of size-K subvectors of ~v such
that:

1. The subvectors collectively cover ~v;
2. For each i ∈ [t], there are at most B subvectors in (~vj)j∈[M ] whose coordi-

nates intersect Si.

We call such a family a B-Good Cover of (~v, (Si)i∈[t]). First of all we note that the
values of the vectors and subvectors do not matter, so we will conflate them with
sets and subsets (of coordinates) for simplicity, which leads to a more natural
formulation.

Definition 9 (Good Cover – Set Formulation). Let n,B,K, t, q,M ∈ N
and (Si)i∈[t] ∈

(
[n]
≤q
)t

a family of t subsets of [n] of size at most q each. A family

A = (~αj)j∈[M ] ∈
(
[n]
K

)M
is a B-Good Cover of (Si)i∈[t] if:

1. A covers [n]:
⋃M
j=1 ~α

j = [n]

2. Each Si intersects at most B elements of A: ∀i ∈ [t], |{j ∈ [M ] : ~αj ∩ Si 6=
∅}| ≤ B.

We abusively conflate the two views, where a good cover is just a family of
subsets A ∈

(
[n]
K

)M
and where the good cover is a family of sparse vectors—given

by a set of coordinates and a short vector of values—A ∈ (
(
[n]
K

)
× FK)M .

Lemma 10 (Random Covers are Good Covers.). Let n, κ, κ′ ∈ Nr{0, 1},
and (Si)i∈[t] ∈

(
[n]
≤q
)t

a family of t subsets of [n] of size at most q each. Let

A = (~αj)j∈[M ] ∈
(
[n]
K

)M
be a sequence of M i.i.d. uniform random size-K subsets

of [n], with M = κ · n lnn/K. Let B ← κ′κ · q · lnn.
It holds that A = (~αj)j∈[M ] is a B-Good Cover of (Si)i∈[t] with probability at

least:
1− 1

nκ−1
− t

n(κ′−2)κ·q/2
.

The proof is given in the full version.

5.3 PCG for Subsets Tensor Powers (PCGstp)

We now proceed with the description of a pseudorandom correlation generator
for subsets tensor powers.
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PCG for Low-Degree Polynomials from [BCG+19b]. We start by recalling a
natural variant of pseudorandom correlation generator of [BCG+19b, Section 6],
which generates shares of ~r⊗tpp, for a parameter tpp and a pseudorandom ~r. It
relies on the xLPN assumption with dimension n, number of samples n′ > n,
and a number λ of noisy coordinates. In our instantiation, we will typically
consider n′ = O(n), e.g. n′ = 12n; this corresponds to a particularly conservative
variant of LPN with a very limited number of samples, and is equivalent to the
hardness of decoding a random constant-rate linear code (which is known as the
syndrome decoding problem). As discussed in Section 3, all known attacks on
the syndrome decoding problem for constant-rate codes have complexity 2O(λ).
The PCG of [BCG+19b] is parametrised by integers 1λ, n, n′, λ, tpp ∈ N (where
n′ > n), a field F, and a random parity-check matrix Hn′,n

$← F(n′−n)×n′ .

PCG for Degree-tpp Polynomial Correlations

PCG.Gen: On input 1λ:

1. Pick a random λ-sparse vector ~e
$← HWλ(Fn

′
). Note that ~e⊗tpp ∈

HWλtpp(F(n′)tpp). Let f : [(n′)tpp] 7→ F be the multi-point function with λtpp

points, such that f(i) returns the i-th coordinate of ~e⊗tpp.
2. Compute (K fss

0 ,K
fss
1 )

$← MPFSS.Gen(1λ, f). Output k0 ← (n,K fss
0 ) and k1 ←

(n,K fss
1 ).

PCG.Expand:On input (σ, kσ), compute ~vσ ← MPFSS.FullEval(σ,K fss
σ ) in F(n′)tpp

and set ~rσ ← H⊗tpp
n′,n · ~vσ. Output ~rσ.

Fig. 3: PCG for Low-Degree Polynomials from [BCG+19b].

Correctness follows from the fact that ~v0 + ~v1 = ~e⊗tpp by the correctness of
MPFSS, andH⊗tppn′,n ·~e⊗tpp = (Hn′,n ·~e)⊗tpp by multilinearity of the tensor product.
Hence, denoting ~r = Hn′,n ·~e, it holds that ~r0+~r1 = ~r⊗tpp. For security, we must
show that the following distributions are indistinguishable for any σ = 0, 1:

{(kσ, ~r1−σ) : (k0, k1)
$← Gen(1λ), ~r1−σ ← Expand(1− σ, k1−σ)}

c
≈{(kσ, ~r1−σ) : (k0, k1)

$← Gen(1λ), ~rσ ← Expand(σ, kσ), ~r
$← Fn,

~r1−σ ← ~r⊗tpp − ~rσ}

Proof. We sketch the analysis for the sake of completeness; the full proof is given
in [BCG+19b]. Security is shown with the following sequence of hybrids: first gen-
erate (kσ, ~r1−σ) as in the first distribution above. Then, generate (kσ, ~r1−σ) as
before, and generate an alternative key k′σ solely from the parameters (1λ,F, n,
n′, t, tpp), using the simulator of the MPFSS. Output (k′σ, ~r1−σ); under the secu-
rity of the MPFSS, this distribution is indistinguishable from the previous one.
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Note that k′σ does not depend anymore on the noise vector ~e. In the next hybrid,
generate ~r $← Hn′,n · ~e and set ~r1−σ ← ~r⊗tpp − Expand(σ, kσ); this game is per-
fectly indistinguishable from the previous one. Finally, replace ~r $← Hn′,n · ~e by
~r

$← Fn; under the LPN assumption, this last game (which correspond exactly to
the second distribution) is computationally indistinguishable from the previous
one, and security follows.

Our New PCG. We now describe a variant of the above PCG, tailored to com-
puting the tensor powers of many short subsets. The PCG is parametrised by
(Si)i∈[K] ∈

(
[w]
≤K
)ns , ns subsets of at most K indices taken from [w]. We assume

for simplicity, but morally without loss of generality6, that
⋃ns
i=1 Si = [w]. Our

goal is for the parties to obtain shares of some pseudorandom vector ~r ∈ Fw as
well as shares of (1 || ~r[Si])⊗tpp ∈ Fw·tpp for each i ∈ [ns].

We start by generating a B-good cover (for some integer B) of the (Si)i of the
form (αj , ~rj)j∈[m] ∈ (

(
[w]
θ

)
× Fθ)m where each ~rj is pseudorandom. We generate

each of the m pseudorandom masks ~rj using a different instance of xLPN, i.e.
~rj ← Hj ·~ej , where ~ej ∈ Fθ′ is λ-sparse and Hj

$← Fθ×θ′ for some θ′ = O(θ). For
each Si, we denote Ii := {j ∈ [m] : αj ∩ Si 6= ∅} = {j1, . . . , j|Ii|} the set of the
indices of the masks which ‘intersect’ with Si. Note that ∀i ∈ [ns], |Ii| ≤ B by
definition of a B-good cover. We can now proceed with our main goal: generating
shares of a subsets tensor powers correlation.

We define ~r :=
∑m
j=1 fαj ,~rj ∈ Fw, where fαj ,~rj ∈ Fw is the sparse vector

defined by (fαj ,~rj )|αj = ~rj (and which is equal to 0F on [w]rαj). Since
⋃ns
i=1 Si =

[w] and each of the ~rj is pseudorandom, ~r is also pseudorandom.
Note that for any given i ∈ [ns], (1F || ~r[Si]) is a subvector of the vector ~̃ri ob-

tained by multiplying the block-diagonal matrix H ′i = Diag((1F), Hj1 , . . . ,Hj|Ii|
)

with the vector ~e′i = (1F||ej1 || · · · ||ej|Ii|). Therefore for any tensor power tpp

(i.e. the degree of the polynomial correlation), ~̃r⊗tppi = (H ′i · ~e′i)⊗tpp = (H ′i)
⊗tpp ·

(~e′i)
⊗tpp. If the parties use an MPFSS scheme to generate small seeds which ex-

pand to (~e′i)
⊗tpp, they can then locally obtain shares of ~̃r⊗tppi (since (H ′i)

⊗tpp

is public), and therefore of (1F || ~r[Si])⊗tpp. From all these shares of all the
(1F || ~r[Si])⊗tpp, i ∈ [ns] the parties can locally extract shares of all the ~r[Si] and
thence shares of ~r (since

⋃ns
i=1 Si = [w]). The protocol is given in Figure 4.

Theorem 11. Let w > 0, and (Si)i∈[ns] a list of ns subsets of [w]. Let B, θ′ such
that there exists a B-good cover of (Si)i∈[ns] comprised of size-θ′ vectors, and let
θ < θ′. Assume that the F-xLPN(θ, θ′, λ) assumption holds, and that MPFSS is a
secure multi-point function secret-sharing scheme for the family of (1+µ ·λ)tpp-
point functions from [(1+µ · θ′)tpp] to F for all µ ∈ [B]. Then PCGstp is a secure
6 If

⋃ns
i=1 Si 6= ∅, and with the notations of the rest of the section, the vector ~r we

generate is equal to 0F on [w]r
⋃ns
i=1 Si, hence not pseudorandom. However, we can

simply have the parties generate another mask ~r′ = H ′ · ~e′, pseudorandom under
xLPN, to cover [w] r

⋃ns
i=1 Si. Since the parties do not need shares of (~r′)⊗tpp, the

communication complexity of generating the λ-sparse ~e′ using an MPFSS is not an
issue.
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Pseudorandom Correlation Generator PCGstp

Parameters: w, tpp, λ ∈ N and (Si)1≤i≤ns ⊆ [w]ns .

Gen: On input 1λ:

1. Generate a family of subsets (αj)1≤j≤m ∈
(
[m]
θ′

)m
which form a B-good cover

of the (Si)i∈[ns] (when the αj are paired with length-θ′ vectors in Fθ
′
), and

contracting matricesa (Hj)j∈[m] ∈ (Fθ×θ
′
)m .

2. Pick m random λ-sparse vectors ~ej $← HWλ(Fθ
′
), j ∈ [m] and define:

~rj ← Hj · ~eᵀj , for all j ∈ [m].

3. For each i = 1 . . . ns :
(a) Denoting Ii := {j ∈ [m] : αj ∩ Si 6= ∅} = {j1, · · · , jmi} (with mi ≤ B),

set:
~̃ri ← (1F || Hj1 · ~e

ᵀ
j1
|| · · · || Hjmi · ~e

ᵀ
jmi

)ᵀ.

(b) Let fi : [(1 + mi · θ′)tpp] → F be the multi-point function with (1 +
mi · λ)tpp points, such that fi(x) = (1F||~ej1 || · · · ||~ejmi )

⊗tpp[x]. Compute
(K fss

i,0,K
fss
i,1)

$← MPFSS.Gen(1λ, fi).
4. Output k0 ← (w, (K fss

i,0)i≤ns) and k1 ← (w, (K fss
i,1)i≤ns).

Expand: On input (σ, kσ), parse kσ as (w, (K fss
i,σ)i≤ns).

1. For each i = 1 . . . ns :
Set H ′i ← Diag((1F), Hj1 , . . . , Hjmi

), compute

~vi,σ ← MPFSS.FullEval(σ,K fss
i,σ) ∈ F(1+miλ)

tpp

and set ~yσ ← ((H ′i)
⊗tpp · ~vσ)1≤i≤ns .

2. Extract from ~yσ the appropriate linear combinations of its elements corre-
sponding to a share of (~r, ((1F || ~r[Si])⊗tpp)i∈[ns]). // If there are several ways
to do so, it must be consistent accross σ ∈ {0, 1}.

a Implicitly, the Hj are supposed to be ‘suitably chosen’ for xLPN to be presumed
hard, e.g. that they were randomly and independently sampled.

Fig. 4: Pseudorandom correlation generator PCGstp for generating pseudorandom
instances of the subsets tensor powers correlation over a field F.
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pseudorandom correlation generator, which generates pseudorandom shares of a
subsets tensor powers correlation (~r, ((1F || ~r[Si])⊗tpp)1≤i≤ns) where ~r ∈ Fw.

– Communication: If the MPFSS seeds have size O[λ · (1 + Bλ)tpp · log((1 +
Bθ′)tpp)] and MPFSS.FullEval can be computed with O((1 + Bλ)tpp · (1 +

Bθ′)tpp · log |F|λ ) invocations of a pseudorandom generator PRG : {0, 1}λ 7→
{0, 1}2λ+2, then PCGstp.Gen outputs seeds of size:

|kσ| = O
(
ns · λ · (1 +Bλ)

tpp · log
(
(1 +Bθ′)tpp

))
.

– Computation: The computational complexity of PCGstp.Expand is predomi-
nantly that of O(ns ·(1+Bλ)tpp ·(1+Bθ′)· log |F|λ ) invocations of a PRG, plus ns
matrix-vector products with a matrix of dimensions (1+Bθ)tpp×(1+Bθ′)tpp

which requires at most O(ns ·(Bθ)tpp ·(Bθ′)tpp) ⊆ O(ns ·(Bθ′)2·tpp) arithmetic
operations over F.

The proof of the above theorem is omitted in this version of the paper.

5.4 Instantiating the MPFSS

Theorem 11 assumes the existence of an MPFSS scheme MPFSS for the family
of all (1 + µ · λ)tpp-point functions from [(1 + µ · θ′)tpp] to F for some µ ∈ [B]
(or, equivalently, an MPFSS for each µ which can then all be combined into
one scheme), with the following efficiency guarantees: MPFSS.Gen(1λ) outputs
seeds of size O((1 + Bλ)tpp · λ · log((1 + Bθ′)tpp)), and MPFSS.FullEval can be
computed with O((1+Bλ)tpp ·(1+Bθ′)tpp · log |F|λ ) invocations of a pseudorandom
generator PRG : {0, 1}λ 7→ {0, 1}2λ+2. The works of [BGI16b,BCGI18] provides
exactly such a construction, which makes a black box use of any pseudorandom
generator PRG : {0, 1}λ 7→ {0, 1}2λ+2. We instantiate the PRG using the LPN-
based construction of [BKW03], which we recall in the full version of the paper.

5.5 Securely Distributing MPFSS.Gen an Πstp

The seeds of the MPFSS scheme of [BCGI18] can be securely generated by using
parallel instances of a generic secure computation protocols to securely evaluate
the above PRG. Using GMW to instantiate the generic protocol, we have:

Corollary 12. There exists a semi-honest secure two-party protocol ΠMPFSS

which distributes the seeds of a multi-point function secret-sharing scheme MPFSS
for the family of t′-point functions from [(1 + Bθ′)tpp] to F, using O(t′ · ν · λ2)
calls to an ideal oblivious transfer functionality, where ν = log((1+Bθ′)tpp) and
t′ = (1 + Bλ′)tpp, with an additional communication of O(t′ · ν · λ2) bits, and
total computation polynomial in t′ · ν · λ.

We prove the above corollary by exhibiting ΠMPFSS in the full version. As
a direct corollary of Corollary 12, since the seeds of PCGstp contain exactly ns
independent MPFSS seeds, we have:
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Corollary 13. There exists a semi-honest secure two-party protocol Πstp which
distributes the seeds of the pseudorandom correlation generator PCGstp repre-
sented on Figure 4, using O(ns · t′ ·ν ·λ2) calls to an ideal oblivious transfer func-
tionality, where ν = log((Bθ′ + 1)tpp) and t′ = (1 + Bλ)tpp, with an additional
communication of O(ns ·t′ ·ν ·λ2) bits, and total computation O(ns ·poly(t′ ·ν ·λ)).

Instantiating the oblivious transfer. To execute the GMW protocol, we need an
oblivious transfer. Under the F2-LPN(λ,O(λ), 1/λδ) assumption (δ is any small
constant), there exists oblivious transfers (with simulation security) with poly(λ)
communication and computation; see for example [DGH+20].

Constructing Πcorr. The work of [BCG+19b] shows that any corruptible func-
tionality distributing the output of a correlation generator C can be secure
instantiated using any semi-honest secure two-party protocol Π for distributing
the Gen procedure of a PCG for C , with the same communication as Π, and
with computational complexity dominated by the computational complexity of
Π plus the computational complexity for computing the PCG.Expand procedure.
Therefore, using their result together with our protocol Πstp for generating the
seeds of a PCG for subsets tensor powers correlation allows to securely instan-
tiate Fcorr (with N = 2).

Recall that the computation of PCGstp.Expand is dominated by O(ns · (1 +

Bλ)tpp · (1 + Bθ′)tpp · log |F|
λ ) invocations of a PRG – which requires at most

O(λ2 ·ns ·(1+Bλ)tpp ·(1+Bθ′)tpp · log |F|λ ) operations over F2 using the simple LPN-
based PRG from [BKW03] –, plus an additional O(ns · (1+Bθ)tpp · (1+Bθ′)tpp)
arithmetic operations over F. Since each operation over F can be computed
with O(log |F|)2) boolean operations, combining the two, we get computation
O(λ · ns · (1 +Bθ)tpp · (1 +Bθ′)tpp · (log |F|)2).

All that remains is for the parties to generate the necessary material for
PCGstp: m random Fθ×θ′ matrices and m size-θ′ subsets of [w]. At its core,
this is just a matter for the parties to generate and hold the same m · (θ · θ′ ·
log |F| + log

(
w
θ′

)
) (pseudo)-random bits. This can be achieved by having one

party sample a seed of size λ, send it to the other, and both parties can expand
it locally by calling the length-doubling PRG from [BKW03] (and used above)
m · θ′ · (θ · log |F|+ logw)/λ times (in a GGM tree-like approach). This requires
λ bits of communication and O(m · θ′ · (θ · log |F| + logw) · λ) bits of local
computation. This is summarised in an intermediate theorem, omitted from this
version. Wrapping up, using Πstp with an appropriate good cover suffices to
construct a protocol Πcorr for securely implementing the functionality Fcorr. The
detailed choice of parameters is deferred to the full version. Below, we describe
a specific choice of parameters for the full construction which suffices to arrive
at the claimed result.

6 Choice of Parameters

In this section, we tune the parameters of our protocol. We want to ensure the
scheme is correct with all but negligible probability, that it is secure, that the
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communication is sublinear, and that the computation is polynomial. We make
two sets of choices for the parameters: the first optimising for communication,
and the other for computation (and incidentally for the strength of the security
assumption). The full discussion is deferred to the full version.

Combining Theorem 8–which provides a secure protocol in the Fcorr-hybrid
model–and the instantiation of the Fcorr as provided in the full version, with an
appropriate choice of parameters, also made explicit in the full version, we get
our main theorem, Main Theorem 1 below.

Main Theorem 1 (Sublinear Computation of Layered Circuits – Optimised for
Communication). Assuming the super-polynomial security of

– F-LPN with super-polynomial dimension `, O(`) samples, and inverse super-
polynomial rate,

– F2-LPN with super-polynomial dimension `′ = sO((1)), O(`′) samples, and
inverse polynomial rate (which is implied by the above if F = F2),

there exists a probabilistic semi-honest two-party protocol which securely evalu-
ates any layered arithmetic circuit over F with success probability 1 − negl(s)
and which uses O ([n+ s/ log log s+m] · log |F|) bits of communication and s3 ·
polylogs · (log |F|)2 bits of computation (where s, n, and m are respectively the
number of gates, inputs, and outputs of the circuit).

Instantiating the protocol with an alternative choice of parameters, also de-
tailed in the full version, instead yields the following.

Main Theorem 2 (Sublinear Computation of Layered Circuits – Optimised for
Computation). Assuming the quasi-polynomial security of

– F-LPN with quasi-polynomial dimension `, O(`) samples, and inverse quasi-
polynomial rate,

– F2-LPN with quasi-polynomial dimension `′, O(`′) samples, and inverse poly-
nomial rate (which is implied by the above if F = F2),

there exists a probabilistic semi-honest two-party protocol which securely evalu-
ates any layered arithmetic circuit over F with success probability 1 − negl(s)
and which uses O ([n+ o(s) +m] · log |F|) bits of communication and s1+o(1) ·
(log |F|)2 bits of computation (where s, n, and m are respectively the number of
gates, inputs, and outputs of the circuit).
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