Unbounded Multi-Party Computation from Learning with Errors

Prabhanjan Ananth ${ }^{1}$, Abhishek Jain ${ }^{2}$, Zhengzhong Jin ${ }^{2}$, and Giulio Malavolta ${ }^{3}$
${ }^{1}$ University of California, Santa Barbara, CA
prabhanjan.va@gmail.com
2 Johns Hopkins University, Baltimore, MD
\{abhishek, zzjin\}@cs.jhu.edu
${ }^{3}$ Max Planck Institute for Security and Privacy
giulio.malavolta@hotmail.it

Abstract

We consider the problem of round-optimal unbounded MPC: in the first round, parties publish a message that depends only on their input. In the second round, any subset of parties can jointly and securely compute any function f over their inputs in a single round of broadcast. We do not impose any a-priori bound on the number of parties nor on the size of the functions that can be computed.

Our main result is a semi-honest two-round protocol for unbounded MPC in the plain model from the hardness of the standard learning with errors (LWE) problem. Prior work in the same setting assumes the hardness of problems over bilinear maps. Thus, our protocol is the first example of unbounded MPC that is post-quantum secure.

The central ingredient of our protocol is a new scheme of attributebased secure function evaluation (AB-SFE) with public decryption. Our construction combines techniques from the realm of homomorphic commitments with delegation of lattice basis. We believe that such a scheme may find further applications in the future.

1 Introduction

A multi-party computation (MPC) protocol [20] allows a set of n mutually distrustful parties to evaluate any circuit C over their inputs (x_{1}, \ldots, x_{n}), while leaking nothing beyond the circuit output $C\left(x_{1}, \ldots, x_{n}\right)$. MPC is one of the pillars of modern cryptography and the study of its round complexity (and the necessary assumptions) has motivated a large body of research. A series of recent works has established that two rounds are necessary and sufficient to securely compute any function, under a variety of cryptographic assumptions [15, 24, 29, 17, 8, 18].

A recent line of work [2, 7, 9] focuses on constructing round-optimal MPC with reusable first message, i.e. where the first message of the MPC can be reused an unbounded number of times for computing different functions over the committed inputs. However, out of these works only [9] achieves the "dream version" of two round MPC, i.e. an MPC that simultaneously satisfies all of the following properties:

- No trusted setup is required.
- In the first round, each party publishes a first message that depends only on their input and does not depend on the number of parties nor on the size of the circuit being evaluated.
- In the second round, any subset of parties can evaluate a circuit C over their first messages. The output can be publicly reconstructed given all the second messages.
- The second round can be repeated arbitrarily many times (with different circuits and different sets of parties), without the need to recompute a first message. Parties can join the system at any time by posting a first message.

Throughout this work, we refer to such an MPC protocol as unbounded MPC.
Among all works on round-optimal protocols, only [9] achieves the notion of truly unbounded MPC without the need for a trusted setup. In particular, the works of $[2,7]$ fall short in satisfying this notion because they impose a bound on the number of participants that needs to be fixed once and for all in the first round and needs to be shared across all parties. The earlier work of [29] does not suffer from this limitation, but requires a trusted setup.

The work of [9] assumes the hardness of standard problems over bilinear maps. While the veracity of such assumptions is well-established in the classical settings, the lurking threat of quantum computing renders such a solution immediately insecure in the presence of a scalable quantum machine. This motivates us to ask the following question:

Can we construct unbounded MPC from Learning with Errors (LWE)?

1.1 Our Results

We consider the problem of unbounded MPC with security against semi-honest adversaries in the dishonest majority setting. In our communication model, parties publish their first message through a broadcast channel which is immediately delivered to all participants. At any point in time, any subset S of participants (with a dishonest majority) can gather together and evaluate a circuit C over their inputs $\left(x_{1}, \ldots, x_{|S|}\right)$ in a single round of broadcast. The output $C\left(x_{1}, \ldots, x_{|S|}\right)$ can then be publicly reconstructed from the messages of all parties. This phase can be repeated arbitrarily many times without having to reinitialize the first message (i.e. the first message is reusable). We do not impose any a-priori bound on the number of participants nor on the size of the circuits.

We prove the following theorem:
Theorem 1 (Informal). If the learning with errors (LWE) problem is hard, then there exist a two-round unbounded MPC in the plain model.

By additionally assuming the quantum hardness of LWE, we obtain the first post-quantum secure protocol for (semi-honest) unbounded MPC in two rounds. Our main technical ingredient is a new construction of attribute-based secure
function evaluation (AB-SFE) [27] where the output can be publicly reconstructed at the end of the second round. On a technical level, our scheme combines the homomorphic commitment scheme from [23] with techniques to delegate a lattice basis. We believe that such a scheme may find further applications in the future.

Semi-Malicious Security. In the full version of the paper, we extend our results to the semi-malicious setting by building on techniques in [10].

2 Technical Overview

In the following, we summarize the main technical innovations of our work. This outline can be roughly split in three components: First we introduce the notion of AB-SFE [27] with public decryption and we recall the security properties that we want to guarantee. Then we show an instantiation of AB-SFE with public decryption from LWE, building on the construction of homomorphic commitments from [23]. Finally, we show how AB-SFE functions as the main ingredient (alongside garbled circuits) for constructing unbounded MPC.

2.1 AB-SFE with Public Decryption

We begin by recalling the notion of AB-SFE [27]. AB-SFE was introduced in the context of designated-verifier non-interactive zero-knowledge proof to obtain constructions from new assumptions. However the work of [27] focused on the notion where decrypting a message requires a secret state (that might leak some information about the attribute). Here we augment the syntax of AB-SFE with a public decryption procedure. For the purpose of our work, it is going to be useful to cast this primitive as a two-party protocol between an "authority" and a "sender." The interaction proceeds as follows:

- Key Generation: On input an attribute x, the authority locally runs a setup algorithm crs $\leftarrow \operatorname{Setup}\left(1^{\lambda}\right)$ and generates a secret/public key pair (msk, pk) $\leftarrow \operatorname{KeyGen}(\mathrm{crs}, x) .{ }^{4}$
- Encryption: Given the public key pk (generated as above), a circuit C and a message μ, the sender computes a ciphertext ct $\leftarrow \operatorname{Enc}(\mathrm{pk}, C, \mu)$.
- Decryption Hint: To enable public decryption, the authority crafts a circuit-specific decryption hint $\mathrm{sk}_{C} \leftarrow \operatorname{Hint}(m s k, C)$.
- Public Decryption: Anyone who possesses the ciphertext ct and the decryption hint sk_{C} can recover the message μ by running $\operatorname{Dec}\left(\mathrm{sk}_{C}, \mathrm{ct}\right)$. The procedure succeeds if and only if $C(x)=1$.

One way to intepret this primitive is as a secure two-party computation protocol where the interaction consists only of two rounds and where only one party

[^0]speaks in the first round. Looking ahead, this latter property is going to be crucial to achieve unbounded secure MPC, since it will allow multiple (unbounded) parties to simultaneously play the role of the sender.

Security of AB-SFE. As for the security of AB-SFE we define two properties: (1) We require that nothing beyond $C(x)$ is revealed about the attribute x. This requirement must hold even for polynomially many circuits $\left(C_{1}, \ldots, C_{q}\right)$ and in the presence of the corresponding decryption hints $\left(\mathrm{sk}_{C_{1}}, \ldots, \mathrm{sk}_{C_{q}}\right)$, for any polynomial q. (2) We require that for all cirucits C such that $C(x)=0$ it holds that

$$
\operatorname{Enc}\left(\mathrm{pk}, C, \mu_{0}\right) \approx \operatorname{Enc}\left(\mathrm{pk}, C, \mu_{1}\right)
$$

are computationally inditinguishable. This is required to hold even if the distinguisher is given the random coins used in the key generation procedure. In other words, if the circuit outputs 0 , even the key authority should not be able to learn the message of the sender. This is in stark contrast with the standard attribute-based encryption settings [31, 25] where typically semantic security does not hold against a corrupted authority.

2.2 AB-SFE from Learning with Errors

The problem of constructing AB-SFE was considered in [27] where they obtained schemes from a variety of assumptions in the private decryption settings, based on 2-round oblivious transfer. However, none of their schemes support public decryption (without adding an extra round of interaction).

In this work we take a different route. Our starting point is the fully homomorphic commitment scheme from [23], which we briefly recall in the following.
Homomorphic Commitments. The commitment key is a uniform matrix $\mathbf{A} \leftarrow \mathbb{Z}_{q}^{n \times m}$ and committing to a multi-bit string $\left(x_{1}, \ldots, x_{u}\right)$ corresponds to the computation of a set of

$$
\mathbf{C}_{i}=\operatorname{Com}\left(\mathbf{A}, x_{i} ; \mathbf{R}_{i}\right)=\mathbf{A} \cdot \mathbf{R}_{i}+x_{i} \mathbf{G}
$$

where $\mathbf{R}_{i} \leftarrow\{0,1\}^{m \times m}$ and \mathbf{G} is the gadget matrix from [28]. Here \mathbf{R}_{i} is a lownorm vector and plays the role of the decommitment. In [23] it is shown that one can homomorphically evaluate any (depth-bounded) circuit C over committed value and still obtain a well-formed commitment \mathbf{C}_{C}. The exact details of the algorithm are irrelevant for the purpose of this overview, except for the fact that one can define a (deterministic) homomrphic computation over the decommitments and obtain a low-norm vector $\mathbf{R}_{C, x}$, which is a valid decommiment for \mathbf{C}_{C}.

At this point it is instructive to take a step back and think how we could implement AB-SFE if we had a general-purpose witness encryption [16] scheme. A witness encryption scheme, associated with a NP language, consists of an encryption and a decryption algorithm: Anyone can encrypt their message μ under an NP instance and the decryption algorithm can obtain μ using the witness to this instance. We use witness encryption as follows: The sender encrypts μ
under the instance $\mathbf{A} \cdot \mathbf{R}_{C, x}+C(x) \mathbf{G}$ which is obtained by homomorphically evaluating upon the commitments using the circuit C. The authority releases the decomitment $\mathbf{R}_{C, x}$ as witness which would then allow anyone to recover μ if and only if $C(x)=1$. Temporarily glossing over the fact that $\mathbf{R}_{C, x}$ might leak some information about x, we are going to show how to implement this idea without resorting to the power of general-purpose witness encryption.

Computing Hints via Basis Delegation. Our first observation is that, when $C(x)=1$, the matrix $\left[\mathbf{A} \mathbf{C}_{C}\right]=\left[\mathbf{A} \mathbf{A} \mathbf{R}_{C, x}+\mathbf{G}\right]$ matches the construction of lattice trapdoor in [28]. Hence, $\mathbf{R}_{C, x}$ allows us to compute a short basis (a trapdoor) for the dual lattice spanned by $\left[\mathbf{A} \mathbf{C}_{C}\right]$. Following [28], such a trapdoor \mathbf{T} can be efficiently computed in the following way

$$
\mathbf{T}=\left[\begin{array}{cc}
\mathbf{I} & -\mathbf{R}_{C, x} \\
\mathbf{0} & \mathbf{I}
\end{array}\right] \cdot\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
-\mathbf{G}^{-1}[\mathbf{A}] & \mathbf{T}_{\mathbf{G}}
\end{array}\right]
$$

where $\mathbf{T}_{\mathbf{G}}$ is a short basis for the lattice $\Lambda_{q}^{\perp}(\mathbf{G})$, which is publicly computable. At this point it is tempting to view [$\mathbf{A} \mathbf{C}_{C}$] as the public-key of the witness encryption and \mathbf{T} as the witness. After all, \mathbf{T} has low norm if and only if $\mathbf{R}_{C, x}$ does, which implies that $\mathbf{R}_{C, x}$ is a valid decommitment for \mathbf{C}_{C}.

However we are not yet done. The adversary receives $\mathbf{R}_{C, x}$, for multiple circuits, where each decommitment is a deterministic function of the decomitments $\left(\mathbf{R}_{1}, \ldots, \mathbf{R}_{u}\right)$ and enough number of such decommitments will leak some information about x. Recall that we are interested in the public decryption setting, which would require us to publicly release \mathbf{T}, which is again a deterministic funciton of $\mathbf{R}_{C, x}$.

Our next idea is to randomize the trapdoor \mathbf{T} using the basis delegation procedure of [12]. In the literature, this process is also referred to as SampleRight. First we add a uniformly sampled matrix $\widehat{\mathbf{A}} \leftarrow \mathbb{Z}_{q}^{n \times 2 m}$ and a uniform vector $\mathbf{y} \leftarrow \mathbb{Z}_{q}^{n}$ to the public paramenters. Given the trapdoor \mathbf{T} for $\left[\mathbf{A} \mathbf{C}_{C}\right]$, the inverse sampling algorithm allows us to probabilistically sample a low-norm vector e such that

$$
\left[\begin{array}{lll}
\widehat{\mathbf{A}} & \mathbf{A} & \mathbf{C}_{C}
\end{array}\right] \cdot \mathbf{e}=\mathbf{y}
$$

and \mathbf{e} carries no information about \mathbf{T}. At this point we have all ingredients to instantiate our witness encryption: After recomputing \mathbf{C}_{C} homomorphically, the encryptor parses

$$
\widehat{\mathrm{pk}}=\left[\begin{array}{llll}
\mathbf{y} & \widehat{\mathbf{A}} & \mathbf{A} & \mathbf{C}_{C}
\end{array}\right]
$$

as a public key for a dual Regev encryption scheme [19] (with appropriate dimensions) and uses $\widehat{\mathrm{pk}}$ to encrypt μ in a canonical way. The decryption hint e can be computed from $\mathbf{R}_{C, x}$ as described above and allows anyone to recover μ, since it has low norm. Some care is needed in setting the parameters for the noise, but it is not hard to prove that the scheme is secure assuming the hardness of the LWE problem.

To see why we achieve security against a corrupted sender, we first switch from using a trapdoor for $\left[\mathbf{A} \mathbf{C}_{C}\right]$ to generate the matrix $\mathbf{R}_{C, x}$ to instead use
a trapdoor for $\widehat{\mathbf{A}}$ (using a process referred to as SampleLeft) ${ }^{5}$; this switch is statistically indistinguishable and follows from the standard lattice trapdoor lemmas. We do this switch for every circuit. Once we do this, we then invoke leftover hash lemma to instead generate the commitment as $\mathbf{U}_{\mathbf{i}}+x_{i} \mathbf{G}$, where $\mathbf{U}_{\mathbf{i}}$ is generated uniformly at random. At this point, the input of the receiver is information-theoretically hidden from the sender.

The security against a corrupted receiver follows from the noise smudging lemma and learning with errors.

2.3 From AB-SFE with Public Decryption to Unbounded MPC

We are now ready to show how AB-SFE with public decryption readily gives us a construction of unbounded MPC.

Building Blocks. In addition to AB-SFE with public decryption, we are going to assume the existence of any semi-malicious secure two-round MPC, denoted by mpc, such as the protocols proposed in [8, 18]. We note that we do not place any additional restrictions on mpc: For instance, it need not guarantee any reusability property and moreover, the total number of parties in the MPC protocol can be fixed before the first round message. Furthermore we are going to make use of garbled circuits [32]. For the reader unfamiliar with the notion, a garbling scheme allows one to compute a garbled version of a circuit C together with set of label pairs $\left(\mathrm{lab}_{i, 0}, \mathrm{lab}_{i, 1}\right)$. Given an input z, its encoding consists of the labels corresponding to its bit representation $\left(\operatorname{lab}_{1, z_{1}}, \ldots, \operatorname{lab}_{|z|, z_{|z|} \mid}\right)$ and security requires that nothing is revealed about z, besides the output of the computation $C(z)$.

It is also going to be convenient to consider an augmented notion of AB-SFE, that we denote by $2 \mathrm{AB}-\mathrm{SFE}$, following the convention from [22]. A 2AB-SFE with public decryption is identical to AB-SFE with public decryption except that the encryption algorithm takes as input two messages $\left(\mu_{0}, \mu_{1}\right)$ and the public decryption returns μ_{0} if $C(x)=0$ and μ_{1} if $C(x)=1$. Given an AB-SFE, it is easy to construct a $2 \mathrm{AB}-\mathrm{SFE}$ by just encrypting μ_{0} under the complement of C.

The Unbounded MPC Protocol. We provide a simplified desciption of our unbounded MPC in the following.

- First Message: Given an input x_{i}, the first message of each party simply consists of the generation of a public key pk_{i} for the 2 AB -SFE scheme, where the attribute is set to the input x_{i}.
- Second Message: Each party P_{i} is given as input set of parties S and a circuit C. First, it computes a garbled version of the circuit that takes as input S (specifying the subset of parties participating in the protocol), any first

[^1]round messages $\left(m_{1}, \ldots, m_{|S|}\right)$ of mpc and computes the $i^{t h}$ party's second round messages of mpc (the input x_{i} is hardwired in the computation). After it computes the garbled circuit, it then takes each pair of labels $\left(\mathrm{lab}_{i, 0}, l a b_{i, 1}\right)$ and computes a $2 \mathrm{AB}-\mathrm{SFE}$ encryption for the corresponding participant P_{j} under the circuit $\Gamma_{i, j}$, defined as follows.
$$
\Gamma_{i, j}: \text { Compute the } i \text {-th bit of } m_{j} .
$$

Finally, for all $j=1 \ldots|S|$ compute the decryption hints for the $2 \mathrm{AB}-\mathrm{SFE}$ encryption corresponding to the circuit $\Gamma_{j, i}$.

- Reconstruction: The public reconstruction algorithm works by using all the decryption hints to recover all the labels, which in turn are used to evaluate the garbled circuits. This results in a set of second round messages $\left(p_{1}, \ldots, p_{|S|}\right)$ for the underlying two-round MPC. The reconstruction algorithm then returns the result of the reconstruction procedure of the one-time MPC.

Since the first message consists only of the key of the 2AB-SFE scheme, it is clear that the resulting MPC does not impose a bound on the parties. Also note that the underlying two-round secure MPC, namely mpc, is freshly reinitialized for each second message and therefore the security of the reusable protocol is not affected. One subtlety that we ignored in the above description is that the computation of the messages for the one-time MPC is randomized and we need to ensure that the same randomness is used consistently in the first and second message for each party. This can be done routinely by adding a PRF key alongside the input and drawing all necessary random coins by evaluating the PRF on some public input.

2.4 Related Work

Ishai et al. [26] introduced the notion of reusable non-interactive secure computation (rNISC), where a receiver can publish a reusable encoding of its input y and any sender can enable computation of $f(x, y)$ by computing a message using input x and sending it to the receiver. This notion has subsequently been studied in many follow-up works; see, e.g., $[1,11,5,6,13]$.

The recent work of Benhamouda and Lin [9] extends this notion to the multiparty setting, and refer to it as multiparty reusable NISC (mrNISC). Unlike rNISC which is primarily challenging in the malicious adversary model (from the viewpoint of black-box constructions), mrNISC is non-trivial even in the semihonest adversary model. Unbounded MPC seeks the same goals as mrNISC; we use the former terminology to emphasize the key property that the first round messages do not depend on the number of parties or the size of the circuit or the size of the subset of parties involved in the actual computation.

3 Preliminaries

3.1 Notations

For any integer n, we use $[n]$ to denote the set $\{1,2, \ldots, n\}$. We use \mathbb{Z} to denote the sets of integers, and use \mathbb{Z}_{q} to denote $\mathbb{Z} / q \mathbb{Z}$.

For any sets $S_{1}, S_{2}, \ldots, S_{n}$ of integers, and any tuple $\left(i_{1}^{*}, i_{2}^{*}, \ldots, i_{n}^{*}\right) \in S_{1} \times$ $S_{2} \times \cdots \times S_{n}$, we use the notation $\left(i_{1}^{*}, i_{2}^{*}, \ldots, i_{n}^{*}\right)+1$ (resp. $\left(i_{1}^{*}, i_{2}^{*}, \ldots, i_{n}^{*}\right)-1$) to denote the lexicographical smallest (resp. biggest) element in $S_{1} \times S_{2} \times \cdots \times S_{n}$ that is lexicographical greater (resp. less) than $\left(i_{1}^{*}, i_{2}^{*}, \ldots, i_{n}^{*}\right)$.

Statistical Distance. For any two discrete distributions P, Q, the statistical distance between P and Q is defined as $\operatorname{SD}(P, Q)=\sum_{i} \mid \operatorname{Pr}[P=i]-$ $\operatorname{Pr}[Q=i] \mid / 2$ where i takes all the values in the support of P and Q.

3.2 Lattice and LWE Assumption

Let m be an integer, a lattice is a discrete additive group in \mathbb{R}^{m}. We say that a set of linear independent vectors $\mathbf{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{k}\right\}$ is a basis of a lattice Λ, if $\Lambda=\left\{\mathbf{B z} \mid \mathbf{z} \in \mathbb{Z}^{k}\right\}$. Let $\widetilde{\mathbf{B}}=\left\{\widetilde{\mathbf{b}_{1}}, \widetilde{\mathbf{b}_{2}}, \ldots, \widetilde{\mathbf{b}_{k}}\right\}$ be the Gram-Schmidt basis derived from \mathbf{B}. We denote $\|\widetilde{\mathbf{B}}\|=\max _{i \in[k]}\left\|\widetilde{\mathbf{b}}_{i}\right\|$.

For any integer $n, m, q \geq 2$ and $\mathbb{Z}_{q}^{n \times m}$, we define the q-ary lattice

$$
\begin{aligned}
\Lambda_{q}(\mathbf{A}) & =\left\{\mathbf{z} \in \mathbb{Z}_{q}^{m} \mid \exists \mathbf{s} \in \mathbb{Z}^{n}, \mathbf{z}=\mathbf{A}^{T} \mathbf{s}(\bmod q)\right\} \\
\Lambda_{q}^{\perp}(\mathbf{A}) & =\left\{\mathbf{z} \in \mathbb{Z}_{q}^{m} \mid \mathbf{A z}=\mathbf{0}(\bmod q)\right\}
\end{aligned}
$$

Similarly, for any $\mathbf{y} \in \mathbb{Z}_{q}^{n}$, we define the $\operatorname{coset} \Lambda_{q}^{\mathbf{y}}(\mathbf{A})=\left\{\mathbf{z} \in \mathbb{Z}_{q}^{m} \mid \mathbf{A z}=\right.$ $\mathbf{y}(\bmod q)\}$.

Discrete Gaussian. For any integer n and real $s>0$, define the Gaussian function $\rho_{s}: \mathbb{R} \rightarrow \mathbb{R}^{+}$of parameter s as $\rho_{s}(\mathbf{x})=\exp \left(-\pi\|\mathbf{x}\|^{2} / s^{2}\right)$. For any lattice Λ, any vector $\mathbf{c} \in \mathbb{R}^{m}$, and real $s>0$, we denote $\rho_{s}(\Lambda+\mathbf{c})=\sum_{\mathbf{x} \in \Lambda} \rho_{s}(\mathbf{x}+\mathbf{c})$. The discrete Gaussian probabilistic distribution $D_{\Lambda+\mathbf{c}, s}$ is a distribution over Λ with density function $\rho_{s}(\mathbf{x}) / \rho_{s}(\Lambda+\mathbf{c})$, for any $\mathbf{x} \in \Lambda$.

Theorem 2 (Noise Flooding [4, 21, 14, 30]). For any $c \in \mathbb{Z}$, and real $s>0$, $\mathrm{SD}\left(D_{\mathbb{Z}, s}, D_{c+\mathbb{Z}, s}\right)<O(c / s)$.

Definition 1 (LWE Assumption). Let $n=n(\lambda), m=m(\lambda), \ell=\ell(\lambda)$ be polynomials in λ, and let the modulus $q=2^{\lambda^{O(1)}}$ be a function of λ, and $\chi=\chi(\lambda)$ be a noise distribution. The Learning with Error (LWE) assumption states that for any PPT distinguisher \mathcal{D}, there exists a negligible function $\nu(\lambda)$ such that for any sufficiently large λ,

$$
\left|\operatorname{Pr}\left[\mathcal{D}\left(1^{\lambda},(\mathbf{A}, \mathbf{S} \cdot \mathbf{A}+\mathbf{E})\right)=1\right]-\operatorname{Pr}\left[\mathcal{D}\left(1^{\lambda},(\mathbf{A}, \mathbf{U})\right)=1\right]\right|<\nu(\lambda)
$$

where $\mathbf{A} \leftarrow \mathbb{Z}_{q}^{n \times m}, \mathbf{S} \leftarrow \mathbb{Z}_{q}^{\ell \times n}, \mathbf{U} \leftarrow \mathbb{Z}_{q}^{\ell \times m}, \mathbf{E} \leftarrow \chi^{\ell \times m}$.

Lattice Trapdoor and Preimage Sampling.

Theorem 3 ([28], Theorem 5.1). There is an efficient randomized algorithm $\operatorname{TrapGen}\left(1^{n}, 1^{m}, q\right)$, that given any integer $n \geq 1, q \geq 2$, and sufficiently large $m=O(n \log q)$, outputs a (partity-check) matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$, and a short basis \mathbf{T} for $\Lambda_{q}^{\perp}(\mathbf{A})$, such that \mathbf{A} is statistically close to uniform.

Theorem 4 ([12], Theorem 3.4, Special Case). Let n, q, m be positive integers with $q \geq 2$, and $m \geq 2 n \log q$, there exists a PPT algorithm GenSamplePre on input of $\mathbf{A}=\left[\begin{array}{ll}\mathbf{A}_{1} & \mathbf{A}_{2}\end{array}\right] \in \mathbb{Z}_{q}^{n \times 2 m}$, and $S \in\{1,2\}$, a basis \mathbf{B}_{S} for $\Lambda_{q}^{\perp}\left(\mathbf{A}_{S}\right)$, a vector $\mathbf{y} \in \mathbb{Z}_{q}^{n}$, and an integer $r>\left\|\widetilde{\mathbf{B}_{S}}\right\| \cdot \omega(\sqrt{\log 2 m})$, outputs $\mathbf{e} \leftarrow G e n S a m p l e P r e(\mathbf{A}$, $\left.\mathbf{B}_{S}, S, \mathbf{y}, r\right)$, such that for overwhelming fraction of \mathbf{A}, \mathbf{e} is statistically close to $D_{\Lambda_{q}^{\mathrm{y}}(\mathbf{A}), r}$.

3.3 Garbling Scheme

A garbling scheme is a pair of algorithms (Garble, Eval), which works as follows.

- Garble $\left(1^{\lambda}, C\right)$: The garbling algorithm takes as input a security parametere λ, and a circuit C with input length $\ell_{\text {in }}$ and output length $\ell_{\text {out }}$. Then it outputs a garbled circuit \widetilde{C} and some labels $\operatorname{lab}=\left\{\operatorname{lab}_{b, i}\right\}_{b \in\{0,1\}, i \in\left[\ell_{\text {in }}\right]}$.
$-\operatorname{Eval}\left(\widetilde{C}, \operatorname{lab}_{x}\right):$ For any $x \in \ell_{\text {in }}$, let lab_{x} denote $\left\{\operatorname{lab}_{x_{i}, i}\right\}_{i \in\left[\ell_{\text {in }}\right]}$. On input \widetilde{C} and lab_{x}, it outputs a y.

We require a garbling scheme to satisfy the following properties.

- Correctness: For any circuit $C:\{0,1\}^{\ell_{\text {in }}} \rightarrow\{0,1\}^{\text {out }}$, and any input $x \in$ $\{0,1\}^{\ell_{\text {in }}}$, we have

$$
\operatorname{Pr}\left[(\widetilde{C}, \operatorname{lab}) \leftarrow \operatorname{Garble}\left(1^{\lambda}, C\right), y \leftarrow \operatorname{Eval}\left(\widetilde{C}, \operatorname{lab}_{x}\right): y=C(x)\right]=1
$$

- Simulation Security: There exists a simulator Sim such that for any n.u. PPT distinguisher \mathcal{D}, there exists a negligible function $\nu(\lambda)$ such that

$$
\begin{aligned}
& \operatorname{Pr}\left[(\widetilde{C}, \text { lab }) \leftarrow \operatorname{Garble}\left(1^{\lambda}, C\right): \mathcal{D}\left(1^{\lambda}, \widetilde{C}, \text { lab }_{x}\right)=1\right]- \\
& \operatorname{Pr}\left[(\bar{C}, \overline{\mathrm{lab}}) \leftarrow \operatorname{Sim}\left(1^{\lambda}, C(x)\right): \mathcal{D}\left(1^{\lambda}, \bar{C}, \overline{\mathrm{lab}}\right)=1\right] \mid<\nu(\lambda)
\end{aligned}
$$

3.4 Semi-Malicious 2-round MPC in Plain Model

A (one-time useable, selective secure) semi-malicious 2-round MPC in the plain model is a tuple of algorithms (Round ${ }_{1}$, Round $\left._{2}, R e c\right)$, which work as follows.

There are N parties who want to jointly compute $f\left(x_{1}, x_{2}, \ldots, x_{N}\right)$, where x_{i} is the input of i-th party.

- Round 1: For each $i \in[N]$, the i-th party sets fresh random coins r_{i}, and executes $\mathrm{msg}_{i} \leftarrow \operatorname{Round}_{1}\left(1^{\lambda}, x_{i}, f ; r_{i}\right)$.
- Round 2: For each $i \in[N]$, the i-th party executes $p_{i} \leftarrow \operatorname{Round}_{2}\left(x_{i}, r_{i},\left\{\operatorname{msg}_{j}\right\}_{j \in[N]}\right)$.
- Output Recovery: Any one with $\left\{p_{i}\right\}_{i \in[N]}$ executes $y \leftarrow \operatorname{Rec}\left(\left\{p_{i}\right\}_{i \in[N]}\right)$.

We require the protocol to satisfy the following property.

- Semi-Malicious Simulation Security: There exists a simulator Sim such that, for any input $\left\{x_{i}\right\}_{i \in[N]}$, for any subset of honest parties $H \subseteq[N]$, and any dishonest parties' random coins $\left\{r_{i}\right\}_{i \in[N] \backslash H}$, any PPT distinguisher \mathcal{D}, there exists a negligible function $\nu(\lambda)$ such that for any sufficiently large λ,

$$
\begin{aligned}
& \left\lvert\, \operatorname{Pr}\left[\begin{array}{c}
\forall i \in H, r_{i} \leftarrow\{0,1\}^{*}, \forall i \in[N], \operatorname{msg}_{i}=\operatorname{Round}_{1}\left(1^{\lambda} \lambda, x_{i} ; r_{i}\right), \\
p_{i}=\operatorname{Round}_{2}\left(x_{i}, r_{i},\left\{\operatorname{msg}_{j}\right\}_{j \in[\mathcal{N}]}\right.
\end{array}, \mathcal{D}\left(1^{\lambda},\left\{\operatorname{msg}_{i}, p_{i}\right\}_{i \in[N]}\right)=1\right]-\right. \\
& \operatorname{Pr}\left[\mathcal{D}\left(1^{\lambda}, \operatorname{Sim}\left(1^{\lambda}, H,\left\{x_{i}, r_{i}\right\}_{i \notin H}, f, f\left(\left\{x_{i}\right\}_{i \in[N]}\right)\right)\right)=1\right] \mid<\nu(\lambda)
\end{aligned}
$$

Here, without loss of generality, we assume the Round ${ }_{1}$ and Round ${ }_{2}$ use the same random coins.

3.5 Homomorphic Commitment

A homomorphic commitment scheme is a tuple of algorithms (Setup, Com, Eval), with the following syntax.

- Gen $\left(1^{\lambda}\right)$: A CRS generation algorithm that takes as input a security parameter λ, and it outputs a common random string crs.
- Com(crs, $\mu ; r)$: A commitment algorithm that takes as input the CRS crs, a message $\mu \in\{0,1\}$, and randomness r, it outputs a commmiment c.
- Eval $\left(C,\left(c_{1}, c_{2}, \ldots, c_{u}\right)\right)$: The (fully) homomorphic evaluation algorithm Eval takes as input a circuit C, and some commitments $c_{1}, c_{2}, \ldots, c_{u}$, and it outputs an evaluated commitment $\operatorname{Com}\left(C(x) ; r_{C, x}\right)$, where $x=\left(x_{1}, x_{2}, \ldots, x_{u}\right)$ is the message that $c_{1}, c_{2}, \ldots, c_{u}$ committed. Furthermore, the randomness $r_{C, x}$ can be efficiently computed from the randomenss used to compute $c_{1}, c_{2}, \ldots c_{u}$ and x.

We require it to satisfy the following properties.
Statistical Hiding. There exists a negligible function $\nu(\lambda)$ such that,

$$
\mathrm{SD}((\mathrm{crs}, \operatorname{Com}(\mathrm{crs}, 0)),(\mathrm{crs}, \operatorname{Com}(\mathrm{crs}, 1)))<\nu(\lambda),
$$

where the randomness is over the CRS crs and the randomness used to compute the commitment.
Construction. Let $n=n(\lambda)$ be a polynomial in $\lambda, q=2^{A D D}$, and $m=2 n \log q$.
$-\operatorname{Gen}\left(1^{\lambda}\right):$ It samples $\mathbf{A} \leftarrow \mathbb{Z}_{q}^{n \times m}$ uniformly at random, and output crs $=\mathbf{A}$.
$-\operatorname{Com}(\mathrm{crs}=\mathbf{A}, \mu \in\{0,1\} ; \mathbf{R})$: It outputs a commitment $\mathbf{C}=\mathbf{A R}+\mu \mathbf{G}$.
$-\operatorname{Eval}\left(C,\left(\mathbf{C}_{1}, \mathbf{C}_{2}, \ldots, \mathbf{C}_{u}\right)\right)$: For each gate in the circuit C, the homomorphic evaluation algorithm performs the following:

- For each addition gate, let the commitment of the input wires to be $\mathbf{C}_{l}, \mathbf{C}_{r}$, it computes the commitment for the output wire as follows.

$$
\mathbf{C}_{o}=\mathbf{C}_{l}+\mathbf{C}_{r}
$$

- For each multiplication gate, let the commitment of the input wires to be $\mathbf{C}_{l}, \mathbf{C}_{r}$, it computes the commitment for the output wire as follows.

$$
\mathbf{C}_{o}=\mathbf{C}_{l} \mathbf{G}^{-1}\left[\mathbf{C}_{r}\right]
$$

Lemma 1 (Bound on Homomorphic Evaluation). Let $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$ be a matrix, $x=\left(x_{1}, x_{2}, \ldots, x_{u}\right)$ be a binary string, and C be a boolean circuit of depth d. Let

$$
\mathbf{C}=\operatorname{Eval}\left(C,\left(\operatorname{Com}\left(\mathbf{A}, x_{1} ; \mathbf{R}_{1}\right), \operatorname{Com}\left(\mathbf{A}, x_{2} ; \mathbf{R}_{1}\right), \ldots, \operatorname{Com}\left(\mathbf{A}, x_{u} ; \mathbf{R}_{u}\right)\right)\right)
$$

where $x_{1}, x_{2}, \ldots, x_{u} \in\{0,1\}$, and $\mathbf{R}_{1}, \mathbf{R}_{2}, \ldots, \mathbf{R}_{u} \in\{0,1\}^{m \times m}$. Then there exists a $\mathbf{R}_{C, x}$ that can be efficiently computed from $x_{1}, x_{2}, \ldots, x_{u}$ and $\mathbf{R}_{1}, \mathbf{R}_{2}, \ldots, \mathbf{R}_{u}$ such that $\mathbf{C}=\operatorname{Com}\left(\mathbf{A}, C\left(x_{1}, x_{2}, \ldots, x_{u}\right) ; \mathbf{R}_{C, x}\right)$ and $\left\|\mathbf{R}_{C, x}\right\|_{\max }<2^{O(d \log m)}$.

Proof. We analysis for each gate. For each addition gate, if $\mathbf{C}_{l}=\mathbf{A} \mathbf{R}_{l}+\mu_{l} \mathbf{G}$, and $\mathbf{C}_{r}=\mathbf{A} \mathbf{R}_{r}+\mu_{r} \mathbf{G}$, then $\mathbf{C}_{o}=\mathbf{A}\left(\mathbf{R}_{l}+\mathbf{R}_{r}\right)+\left(\mu_{r}+\mu_{l}\right) \mathbf{G}$. Hence, if we let $\mathbf{R}_{o}=\mathbf{R}_{l}+\mathbf{R}_{r}$, then $\left\|\mathbf{R}_{o}\right\|_{\text {max }} \leq\left\|\mathbf{R}_{l}\right\|_{\text {max }}+\left\|\mathbf{R}_{r}\right\|_{\text {max }}$.

For each multiplication gate, $\mathbf{C}_{o}=\mathbf{C}_{l} \mathbf{G}^{-1}\left[\mathbf{C}_{r}\right]=\mathbf{A}\left(\mathbf{R}_{l} \mathbf{G}^{-1}\left[\mathbf{C}_{r}\right]+\mu_{r} \mathbf{R}_{r}\right)+$ $\mu_{l} \mu_{r} \mathbf{G}$. Let $\mathbf{R}_{o}=\mathbf{R}_{l} \mathbf{G}^{-1}\left[\mathbf{C}_{r}\right]+\mu_{r} \mathbf{G}_{r}$. Hence, $\left\|\mathbf{R}_{o}\right\|_{\max } \leq m\left\|\mathbf{R}_{l}\right\|_{\max }+\left\|\mathbf{R}_{r}\right\|_{\max }$.

Hence, by induction on the depth of the circuit, we have that $\left\|\mathbf{R}_{C, x}\right\|_{\max } \leq$ $(m+1)^{O(d)}$.

4 Secure Function Evaluation with Public Decryption

4.1 Definition

An AB-SFE with public decryption is a tuple of algorithms (Setup, KeyGen, Enc, Hint, Dec), with the following syntax.
$-\operatorname{Setup}\left(1^{\lambda}\right)$: On input the security parameter λ, output a common random string crs.

- KeyGen(crs, x): On input the crs, and a binary string x, it outputs a public key pk and a master secret key msk.
- Enc(pk, $C, \mu)$: On input the public key pk, a boolean circuit $C:\{0,1\}^{|x|} \rightarrow$ $\{0,1\}$, and a message $\mu \in\{0,1\}$, it outputs a ciphertext ct.
- Hint(msk, C): On input the master secret key, and the circuit C, output a hint sk_{C}.
- Dec(sk $\left.{ }_{C}, \mathrm{ct}\right):$ On input a hint sk_{C}, and a ciphertext ct, it outputs a message μ^{\prime}.

We require the AB-SFE to satisfy the following properties.

- Correctness. For any binary string x, circuit $C:\{0,1\}^{|x|} \rightarrow\{0,1\}$ with $C(x)=1$, and any message $\mu \in\{0,1\}$, there exists a negligible function $\nu(\lambda)$ such that for any sufficiently large λ,
- Statistical Indistinguishability of Public Keys. There exists a negligible function $\nu(\lambda)$ such that, with $1-\operatorname{negl}(\lambda)$ probability over the randomness of crs $\leftarrow \operatorname{Setup}\left(1^{\lambda}\right)$, for any x_{0}, x_{1} with $\left|x_{0}\right|=\left|x_{1}\right|$, and any sufficiently large λ,

$$
\mathrm{SD}\left(\mathrm{pk}_{0}, \mathrm{pk}_{1}\right)<\nu(\lambda)
$$

where pk_{b} is generated by KeyGen(crs, x_{b}) for $b \in\{0,1\}$.

- Statistical Simulation of Hints. There exists a negligible function $\nu(\lambda)$, a PPT crs generating function $\overline{\operatorname{Setup}}\left(1^{\lambda}\right)$ and a PPT simulator Sim such that, for any input string x, any circuit C, let $(\overline{c r s}, \operatorname{tr}) \leftarrow \overline{\operatorname{Setup}}\left(1^{\lambda}\right)$, (pk, msk) \leftarrow KeyGen(crs, x), we have

$$
\begin{align*}
& \mathrm{SD}\left(\operatorname{Setup}\left(1^{\lambda}\right), \mathrm{crs}\right)<\nu(\lambda) \tag{1}\\
& \mathrm{SD}\left(\operatorname{Hint}(\mathrm{msk}, f), \operatorname{Sim}\left(1^{\lambda}, \mathrm{pk}, \operatorname{tr}, C, C(x)\right)\right)<\nu(\lambda) \tag{2}
\end{align*}
$$

where the randomness in Equation 1 is over the randomness of Setup. The randomness in Equation 2 is only over the randomness of Hint, and all other random values are fixed.

- Adaptive Sender Computational Indistinguishable Security. For any input string x, any boolean circuit $C:\{0,1\}^{|x|} \rightarrow\{0,1\}$ with $C(x)=0$, any adaptive n.u. PPT adversary \mathcal{A}, there exists a negligible function $\nu(\lambda)$ such that

$$
\begin{aligned}
& \operatorname{Pr}\left[\begin{array}{c}
\left.\begin{array}{c}
\text { rrs } \leftarrow \operatorname{Setup}\left(1^{\lambda}\right), r \leftarrow\{0,1\}^{*} \\
(\mathrm{pk}, \text { msk })=\operatorname{Key} \operatorname{Gen}(\operatorname{crs}, x ; r)
\end{array}: C \leftarrow \mathcal{A}\left(1^{\lambda}, \operatorname{crs}, r\right), \mathcal{A}(\operatorname{Enc}(\mathrm{pk}, C, 0))=1\right]- \\
\left.\operatorname{Pr}\left[\begin{array}{l}
\operatorname{crs} \leftarrow \operatorname{Setup}\left(1^{\lambda}\right), r \leftarrow\{0,1\}^{*} \\
(\mathrm{pk}, \text { msk })=\operatorname{Key} \operatorname{Gen}(\mathrm{crs}, x, r)
\end{array}: C \leftarrow \mathcal{A}\left(1^{\lambda}, \operatorname{crs}, r\right), \mathcal{A}(\operatorname{Enc}(\mathrm{pk}, C, 1))=1\right] \right\rvert\,<\nu(\lambda)
\end{array}\right.
\end{aligned}
$$

2AB-SFE. A 2AB-SFE scheme with public decryption has the same syntax as AB-SFE with public decryption, except that Enc and Dec are replaced by the following two algorithms:

- $2 \operatorname{Enc}\left(\mathrm{pk}, C,\left\{\mu_{i, 0}, \mu_{i, 1}\right\}_{i \in\left[\ell_{\text {out }}\right]}\right)$: On input the public key pk, a multi-bit output
 ct.
$-2 \operatorname{Dec}\left(\mathrm{sk}_{C}, \mathrm{ct}\right):$ On input a hint sk_{C}, and a ciphertext ct, output $\left\{\mu_{i}^{\prime}\right\}_{i \in\left[\ell_{\text {out }}\right]}$.
We also extend the correctness and sender's security to the following.
- Correctness: For any binary string x, circuit $C:\{0,1\}^{|x|} \rightarrow\{0,1\}^{\ell_{\text {out }}}$, and any messages $\left(\mu_{i, 0}, \mu_{i, 1}\right)_{i \in\left[\ell_{\text {out }}\right]}$, there exists a negligible function $\nu(\lambda)$ such that for any sufficiently large λ,

$$
\begin{array}{r}
\operatorname{Pr}\left[\begin{array}{c}
\operatorname{crs} \leftarrow \operatorname{Setup}\left(1^{\lambda}\right),(\mathrm{pk}, \mathrm{msk}) \leftarrow \operatorname{KeyGen}(\mathrm{crs}, x), \text { ct } \leftarrow 2 \operatorname{Enc}\left(\mathrm{pk}, C,\left(\mu_{i, 0}, \mu_{i, 1}\right)_{i \in\left[\ell_{\text {out }}\right)}\right) \\
\mathrm{sk}_{C} \leftarrow \operatorname{Hint}(\mathrm{msk}, C),\left(\mu_{i}^{\prime}\right)_{i \in[\text { out }]} \leftarrow 2 \operatorname{Dec}(\mathrm{sk} \\
C
\end{array}, \mathrm{ct}\right)
\end{array}
$$

where $C_{i}(x)$ is the i-th output bit of $C(x)$.

- Adaptive Sender's Computational Indistinguishable Security: For any input string x, any circuit $C:\{0,1\}^{|x|} \rightarrow\{0,1\}^{\text {out }}$, any messages $\left(\mu_{i, 0}, \mu_{i, 1}\right)_{i \in\left[\ell_{\text {out }}\right]}$, any n.u. PPT adversary \mathcal{A}, there exists a negligible function $\nu(\lambda)$ such that for any sufficiently large λ,

$$
\begin{aligned}
\operatorname{Pr}\left[\begin{array}{l}
\operatorname{crs} \leftarrow \operatorname{Setup}\left(1^{\lambda}\right), r \leftarrow\{0,1\}^{*} \\
(\mathrm{pk}, \text { msk })=\operatorname{KeyGen}(\mathrm{crs}, x ; r)
\end{array}\right. & : C \leftarrow \mathcal{A}\left(1^{\lambda}, \mathrm{crs}, r\right), \\
& \left.\mathcal{A}\left(2 \operatorname{Enc}\left(\mathrm{pk}, C,\left(\mu_{i, 0}, \mu_{i, 1}\right)_{i \in\left[\ell_{\text {out }}\right]}\right)\right)=1\right]- \\
\operatorname{Pr}\left[\begin{array}{l}
\operatorname{crs} \leftarrow \operatorname{Setup}\left(1^{\lambda}\right), r \leftarrow\{0,1\}^{*} \\
(\mathrm{pk}, \text { msk })=\operatorname{KeyGen}(\mathrm{crs}, x ; r)
\end{array}\right. & : C \leftarrow \mathcal{A}\left(1^{\lambda}, \mathrm{crs}, r\right), \\
& \left.\mathcal{A}\left(2 \operatorname{Enc}\left(\mathrm{pk}, C,\left(\mu_{i, C_{i}(x)}, \mu_{i, C_{i}(x)}\right)_{i \in\left[\ell_{\text {out }}\right]}\right)\right)=1\right] \mid<\nu(\lambda)
\end{aligned}
$$

From AB-SFE to 2AB-SFE with Public Decryption. Given an AB-SFE scheme with public decryption, it is straightforward to construct a 2AB-SFE scheme with public decryption, following the methodology in [22] (where it was described in the context of attribute-based encryption). Roughly speaking, the idea is to encrypt one of the messages under the complement of C. We refer the reader to [22] for details.

4.2 Construction

Our construction uses the following parameters and algorithms.
$-\lambda$, the security parameter.
$-n$, the dimension of LWE.
$-q=2^{\Theta\left(d \log ^{3} \lambda\right)}$, the LWE modulus, where d is the bound for the depth of the circuit.
$-\chi$, the discrete Gaussian of deviation poly (λ).
$-\chi^{\prime}$, the descrete Gaussian of deviation $2^{\Theta\left(d \log ^{2} \lambda\right)}$.
$-m=2 n \log q$, the number of columns in the commitment.

- A homomorphic commitment scheme (Gen, Com, Eval). See Section 3.5.
- Preimage sampling algorithm GenSamplePre, with $r=2^{\Theta\left(d \log ^{2} m\right)}$. See Section 3.2.

The construction is described in Figure 1. Now we proceed to prove the properties.

Removing the Depth Dependence. In the construction Figure 1, the parameters depends on the depth of the circuit. However, one can use the randomized encoding [3] to remove the depth dependence. Specifically, instead of evaluate the circuit C on input x directly, we evaluate the randomized encoding of C and x. Since the randmoized encoding can be computed in NC^{1}, we can set the parameters to be large enough to work for any circuit in NC^{1}, and thus remove the depth dependence.

Lemma 2 (Correctness). The construction in Figure 1 satisfies correctness.
Proof. For any binary string x, any circuit C with $C(x)=1$ and depth at most d, and any message $\mu \in\{0,1\}$, by Lemma $1, \mathbf{R}_{C, x}$ is bounded by $2^{O(d \log m)}$. Hence, $\left\|\mathbf{T}_{\mathbf{A}^{\prime}}\right\|_{\max } \leq 2\left\|\mathbf{R}_{C, x}\right\|_{\max }(2 m)=2^{O(d \log m)}$, and thus $\left\|\widetilde{\mathbf{T}_{\mathbf{A}^{\prime}}}\right\| \leq \sqrt{2 m}\left\|\mathbf{T}_{\mathbf{A}^{\prime}}\right\|_{\max }=$ $2^{O(d \log m)}$. Since the matrix $\mathbf{T}_{\mathbf{A}^{\prime}}$ is basis for $\Lambda_{q}^{\perp}\left(\mathbf{A}^{\prime}\right)$ and we set the parameter $r=2^{\Theta\left(d \log ^{2} m\right)}>\left\|\widetilde{\mathbf{T}_{\mathbf{A}^{\prime}}}\right\| \cdot \omega(\sqrt{\log 2 m})$. From Theorem $4, \mathbf{e}$ is statistically close to $D_{\Lambda_{q}^{\mathrm{y}}\left(\mathbf{A}^{\prime}\right), r}$. Hence, we have

$$
\left\langle\mathrm{ct},\left(1,-\mathbf{e}^{T}\right)\right\rangle=\mathbf{s}^{T} \cdot\left[\mathbf{y} \mathbf{A}^{\prime \prime}\right]\left[\begin{array}{c}
1 \\
-\mathbf{e}
\end{array}\right]+\left[\begin{array}{c}
\mathbf{e}_{1}^{T} \\
\left.\mathbf{e}_{2}^{T}\right]
\end{array}\left[\begin{array}{c}
1 \\
-\mathbf{e}
\end{array}\right]+\frac{q}{2} \mu=\frac{q}{2} \mu+\left[\begin{array}{ll}
\mathbf{e}_{1}^{T} & \left.\mathbf{e}_{2}^{T}\right]
\end{array}\left[\begin{array}{c}
1 \\
-\mathbf{e}
\end{array}\right]\right.\right.
$$

where the second equality follows from $\mathbf{e} \approx_{s} D_{\Lambda_{q}^{\mathbf{y}}\left(\mathbf{A}^{\prime \prime}\right)_{r}}$, and thus $\mathbf{A}^{\prime \prime} \mathbf{e}=\mathbf{y}$ with overwhelming probability.

Since the second term can be bounded by

$$
\left|\left\langle\left(\mathbf{e}_{1}^{T}, \mathbf{e}_{2}^{T}\right),(1,-\mathbf{e})\right\rangle\right| \leq \sqrt{\left\|\mathbf{e}_{1}\right\|^{2}+\left\|\mathbf{e}_{2}\right\|^{2}} \cdot \sqrt{\|\mathbf{e}\|^{2}+1}<q / 4
$$

with overwhelming probability, the scheme is correct.
Lemma 3 (Statistical Indistinguishability of Public Keys). The construction satisfies statistical public key indistinguishability security.

Proof. For any x_{0}, x_{1} with $\left|x_{0}\right|=\left|x_{1}\right|$, and $b \in\{0,1\}$, we have $\mathrm{pk}_{b}=\left(\operatorname{crs}, \operatorname{Com}\left(\mathbf{A}, x_{b}\right)\right)$. From the statistical hiding property of the commitment scheme, we have $\mathrm{SD}\left(\mathrm{pk}_{0}\right.$, $\left.\mathrm{pk}_{1}\right)<\nu(\lambda)$.

Lemma 4 (Statistical Simulation of Hints). The construction satisfies statistical hint simulation security.

```
\(\underline{\text { AB-SFE with Public Decryption }}\)
\(-\operatorname{Setup}\left(1^{\lambda}\right):\) Sample \(\mathbf{y} \leftarrow \mathbb{Z}_{q}^{n}, \mathbf{A} \leftarrow \mathbb{Z}_{q}^{n \times m}, \widehat{\mathbf{A}} \leftarrow \mathbb{Z}_{q}^{n \times 2 m}\). Output crs \(=(\mathbf{y}, \mathbf{A}, \widehat{\mathbf{A}})\).
- KeyGen(crs, \(\left.x=\left(x_{1}, \ldots, x_{u}\right) \in\{0,1\}^{u}\right)\) :
    - Parse crs \(=(\mathbf{y}, \mathbf{A}, \widehat{\mathbf{A}})\). Sample \(\mathbf{R}_{i} \leftarrow\{0,1\}^{m \times m}\).
    - For all \(i \in[u]\), compute \(\mathbf{C}_{i}=\operatorname{Com}\left(\mathbf{A}, x_{i} ; \mathbf{R}_{i}\right)=\mathbf{A} \cdot \mathbf{R}_{i}+x_{i} \mathbf{G}\).
    - Let pk \(=\left(\right.\) crs, \(\left.\left\{\mathbf{C}_{i}\right\}_{i \in[u]}\right)\), and msk \(=\left(\right.\) pk, \(\left.\left\{\mathbf{R}_{i}\right\}_{i \in[u]}\right)\).
    - Output (pk, msk).
- Enc(pk, \(C, \mu \in\{0,1\})\) :
    - Parse pk \(=\left(\right.\) crs, \(\left.\left\{\mathbf{C}_{i}\right\}_{i \in[u]}\right)\) and crs \(=(\mathbf{y}, \mathbf{A}, \widetilde{\mathbf{A}})\).
    - Deterministically homomorphically compute \(\mathbf{C}_{C}=\operatorname{Eval}\left(C,\left\{\mathbf{C}_{i}\right\}_{i \in[u]}\right)\).
    - Let \(\mathbf{A}^{\prime}=\left[\begin{array}{ll}\mathbf{A} & \mathbf{C}_{C}\end{array}\right]\), and \(\mathbf{A}^{\prime \prime}=\left[\begin{array}{ll}\widehat{\mathbf{A}} & \mathbf{A}^{\prime}\end{array}\right]\).
    - Samples \(\mathbf{s} \leftarrow \mathbb{Z}_{q}^{n}\) and \(\mathbf{e}_{1} \leftarrow \chi^{3 m+1}, \mathbf{e}_{2} \leftarrow \chi^{\prime m}\).
    - Output ct \(=\mathbf{s}^{T} \cdot\left[\begin{array}{ll}\mathbf{y} & \mathbf{A}^{\prime \prime}\end{array}\right]+\left[\mathbf{e}_{1}^{T} \mathbf{e}_{2}^{T}\right]+\mu \cdot\left[\frac{q}{2} \mathbf{0}_{1 \times 4 m}\right]\).
- Hint(msk, \(C\) ):
    - Parse msk \(=\left(\right.\) pk, \(\left.\left\{\mathbf{R}_{i}\right\}_{i \in[u]}\right)\), and \(\mathrm{pk}=\left((\mathbf{y}, \mathbf{A}, \widehat{\mathbf{A}}),\{\mathbf{C}\}_{i \in[u]}\right)\)
    - Deterministically homomorphically compute \(\mathbf{C}_{C}=\operatorname{Eval}\left(C,\left\{\mathbf{C}_{i}\right\}_{i \in[u]}\right)\).
    - Let \(\mathbf{A}^{\prime}=\left[\begin{array}{ll}\mathbf{A} & \mathbf{C}_{C}\end{array}\right]\), and \(\mathbf{A}^{\prime \prime}=\left[\begin{array}{ll}\widehat{\mathbf{A}} & \mathbf{A}^{\prime}\end{array}\right]\).
    - If \(C(x)=0\), Let sk \({ }_{C}=\perp\). Otherwise, parse \(\mathbf{C}_{C}=\mathbf{A} \cdot \mathbf{R}_{C, x}+\mathbf{G}\), where \(\mathbf{R}_{C, x}\)
        can be obtained deterministically from \(\left\{\mathbf{R}_{i}\right\}_{i \in[u]}\) and \(C\).
    - Let \(\mathbf{T}_{\mathbf{A}^{\prime}}=\left[\begin{array}{cc}\mathbf{I} & -\mathbf{R}_{C, x} \\ \mathbf{0} & \mathbf{I}\end{array}\right] \cdot\left[\begin{array}{cc}\mathbf{I} & \mathbf{0} \\ -\mathbf{G}^{-1}[\mathbf{A}] & \mathbf{T}_{\mathbf{G}}\end{array}\right]\), where \(\mathbf{T}_{\mathbf{G}}\) is the short basis for
        \(\Lambda_{q}^{\perp}(\mathbf{G})\).
    - Sample \(\mathbf{e} \leftarrow\) GenSamplePre \(\left(\mathbf{A}^{\prime \prime}, \mathbf{T}_{\mathbf{A}^{\prime}}, 2, \mathbf{y}, r\right)\).
    - Output \(\mathrm{sk}_{C}=\mathbf{e}\).
\(-\operatorname{Dec}\left(\mathrm{sk}_{C}, \mathrm{ct}\right)\) :
    - If \(\mathrm{sk}_{C}=\perp\), output \(\perp\).
    - Otherwise, parse \(\mathrm{sk}_{C}=\mathbf{e}\), if \(\left|\left\langle\mathrm{ct},\left(1,-\mathbf{e}^{T}\right)\right\rangle\right|<q / 4\), then let \(\mu^{\prime}=0\), otherwise
        \(\mu^{\prime}=1\), and output \(\mu^{\prime}\).
```

Fig. 1. Description of AB-SFE with public decryption.

Proof. We construct the following simulator ($\overline{\text { Setup }}, \mathrm{Sim}$).

We now prove the two properties. For any $x \in\{0,1\}^{n}$, let crs $\leftarrow \operatorname{Setup}\left(1^{\lambda}\right)$, $(\mathrm{pk}, \mathrm{msk}) \leftarrow \operatorname{KeyGen}(\mathrm{crs}, x)$, and $(\overline{\mathrm{crs}}, \operatorname{tr}) \leftarrow \overline{\operatorname{Setup}}\left(1^{\lambda}\right)$.

Simulator (Setup, Sim)

$-\overline{\operatorname{Setup}}\left(1^{\lambda}\right)$:

- Sample $\mathbf{y} \leftarrow \mathbb{Z}_{q}^{n}, \mathbf{A} \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$.
- Let $(\widehat{\mathbf{A}}, \mathbf{T}) \leftarrow \operatorname{TrapGen}\left(1^{n}, 1^{2 m}\right)$.
- Output $\overline{c r s}=(\mathbf{y}, \mathbf{A}, \widehat{\mathbf{A}})$, and trapdoor $\operatorname{tr}=\mathbf{T}$.
$-\operatorname{Sim}\left(1^{\lambda}, \mathrm{pk}, \mathrm{tr}, C, C(x)\right)$:
- Parse pk $=\left(\overline{\mathrm{crs}},\left(\mathbf{C}_{i}\right)_{i \in[u]}\right), \overline{\mathrm{crs}}=(\mathbf{y}, \mathbf{A}, \widehat{\mathbf{A}})$, and $\operatorname{tr}=\mathbf{T}$.
- Deterministically homomorphically compute $\mathbf{C}_{C}=\operatorname{Eval}\left(C,\left(\mathbf{C}_{i}\right)_{i \in[u]}\right)$.
- Denote $\mathbf{A}^{\prime}=\left[\begin{array}{ll}\mathbf{A} & \mathbf{C}_{C}\end{array}\right]$, and $\mathbf{A}^{\prime \prime}=\left[\begin{array}{ll}\widehat{\mathbf{A}} & \mathbf{A}^{\prime}\end{array}\right]$.
- If $C(x)=0$, Let $\overline{s \mathrm{k}_{C}}=\perp$.
- Otherwise, Sample $\mathbf{e} \leftarrow$ GenSamplePre $\left(\mathbf{A}^{\prime \prime}, \operatorname{tr}, 1, \mathbf{y}, r\right)$.
- Output $\overline{\mathrm{sk}_{C}}=\mathbf{e}$.

Fig. 2. Description of the simulator.
$-\operatorname{SD}(\mathrm{crs}, \overline{\mathrm{crs}})<\operatorname{negl}(\lambda)$: This follows from the property that $\widehat{\mathbf{A}}$ sampled by TrapGen is statistically close to uniform random.
$-\mathrm{SD}\left(\operatorname{Hint}(\mathrm{msk}, C), \operatorname{Sim}\left(1^{\lambda}, \mathrm{pk}, \operatorname{tr}, C, C(x)\right)\right)<\operatorname{negl}(\lambda)$: Note that the matrices $\mathbf{A}^{\prime \prime}$ in Sim and Hint are the same. Follow the argument in Lemma 2, the parameters r satisfies the condition for Theorem 4. Hence, from Theorem 4, we have

SD $\left(\operatorname{GenSamplePre}\left(\mathbf{A}^{\prime \prime}, \mathbf{T}_{\mathbf{A}^{\prime}}, 2, \mathbf{y}, r\right), \operatorname{GenSamplePre}\left(\mathbf{A}^{\prime \prime}, \mathbf{T}, 1, \mathbf{y}, r\right)\right)<\operatorname{negl}(\lambda)$
Hence, $\mathrm{SD}\left(\mathrm{sk}_{C}, \overline{\mathrm{sk}_{C}}\right)<\operatorname{negl}(\lambda)$.
Lemma 5 (Sender's Indistinguishability Security). The construction satisfies sender's indistinguishability security.

Proof. For any input x_{1}, \ldots, x_{u} and circuit C with $C\left(x_{1}, x_{2}, \ldots, x_{u}\right)=0$, we build the following hybrids.

- Hybrid $_{0}$: In this hybrid, the adversary is given a ciphertext of $\operatorname{Enc}(\mathrm{pk}, C, 0)$.
- Hybrid ${ }_{1}$: This hybrid is almost the same as Hybrid ${ }_{0}$, except that we use $\mathbf{R}_{C, x}$ to generate the ciphertext ct. Specifically, we replace the ct as follows.
- Let $\mathbf{C}_{C}=\mathbf{A} \cdot \mathbf{R}_{C, x}$, where $\mathbf{R}_{C, x}$ can be computed deterministically from $\left\{\mathbf{R}_{i}\right\}_{i \in[u]}$.
- Samples $\mathbf{s} \leftarrow \mathbb{Z}_{q}^{n}$ and $e \leftarrow \chi, \mathbf{e}_{1}^{\prime} \leftarrow \chi^{2 m}, \mathbf{e}_{2}^{\prime} \leftarrow \chi^{m}, \mathbf{e}_{2} \leftarrow \chi^{\prime m}$.
- Output ct $=\left[\mathbf{s}^{T} \cdot \mathbf{y}+e+\frac{q}{2} \mu \mathbf{s}^{T} \widehat{\mathbf{A}}+\mathbf{e}_{1}^{\prime T} \mathbf{s}^{T} \mathbf{A}+\mathbf{e}_{2}^{\prime T}\left(\mathbf{s}^{T} \mathbf{A}+\mathbf{e}_{2}^{\prime T}\right) \cdot \mathbf{R}_{C, x}+\mathbf{e}_{2}^{T}\right]$.
- Hybrid $_{2}$: This hybrid is the same as Hybrid ${ }_{1}$, except that we replace the first, the second, and the third component of ct as uniformly random matrices. Specifically, we replace the ct as follows.
- Let $\mathbf{C}_{C}=\mathbf{A} \cdot \mathbf{R}_{C, x}$, where $\mathbf{R}_{C, x}$ can be computed deterministically from $\left(\mathbf{R}_{i}\right)_{i \in[u]}$.
- Samples $u \leftarrow \mathbb{Z}_{q}, \mathbf{u}_{1} \leftarrow \mathbb{Z}_{q}^{2 m}$ and $\mathbf{u}_{2} \leftarrow \mathbb{Z}_{q}^{m}, \mathbf{e}_{2} \leftarrow \chi^{\prime m}$.
- Output ct $=\left[u \mathbf{u}_{1} \mathbf{u}_{2} \mathbf{u}_{2} \cdot \mathbf{R}_{C, x}+\mathbf{e}_{2}^{T}\right]$.
- Hybrid $_{3}$: This hybrid is almost the same as Hybrid_{0}, except that the adversary is given a ciphertext of $\operatorname{Enc}(\mathrm{pk}, C, 1)$.

Now we prove that these hybrids are indistinguishable.

- Hybrid $_{0} \approx_{s}$ Hybrid $_{1}$: In the hybrid Hybrid ${ }_{0}$, parse $\mathbf{e}_{1}^{T}=\left[e \mathbf{e}_{1}^{\prime T} \mathbf{e}_{2}^{\prime T}\right]$, where $e \in \mathbb{Z}_{q}, \mathbf{e}_{1}^{\prime} \in \mathbb{Z}_{q}^{2 m}, \mathbf{e}_{2}^{\prime} \in \mathbb{Z}_{q}^{m}$. Then we can express ct as

$$
\begin{aligned}
\mathbf{c t} & =\mathbf{s}^{T} \cdot\left[\mathbf{y} \widehat{\mathbf{A}} \mathbf{A} \mathbf{C}_{C}\right]+\left[e \mathbf{e}_{1}^{\prime} \mathbf{e}_{2}^{\prime} \mathbf{e}_{2}\right]+\mu\left[\begin{array}{lll}
\frac{q}{2} & \mathbf{0} & \mathbf{0} \\
\mathbf{0}
\end{array}\right] \\
& =\left[\mathbf{s}^{T} \mathbf{y}+\mathbf{e}+\frac{q}{2} \mu, \mathbf{s}^{T} \widehat{\mathbf{A}}+\mathbf{e}_{1}^{\prime T}, \mathbf{s}^{T} \mathbf{A}+\mathbf{e}_{2}^{\prime T},\left(\mathbf{s}^{T} \mathbf{A}+\mathbf{e}_{2}^{\prime T}\right) \mathbf{R}_{C, x}+\mathbf{e}_{2}^{T}+\left(-\mathbf{e}_{2}^{T} \mathbf{R}_{C, x}\right)\right]
\end{aligned}
$$

Since $\left|-\mathbf{e}_{2}^{\prime T} \cdot \mathbf{R}_{C, x}\right| \leq\left\|\mathbf{e}_{2}^{\prime}\right\|\left\|\mathbf{R}_{C, x}\right\|_{2}$, by the noise flooding Theorem 2, we have

$$
\mathrm{SD}\left(\operatorname{Hybrid}_{0}, \operatorname{Hybrid}_{1}\right)=\mathrm{SD}\left(\mathbf{e}_{2}^{T}+\left(-\mathbf{e}_{2}^{\prime T} \mathbf{R}_{C, x}\right), \chi^{\prime m}\right)<O\left(\left\|\mathbf{e}_{2}^{\prime}\right\|\left\|\mathbf{R}_{C, x}\right\|_{2} / r^{\prime}\right)=\operatorname{negl}(\lambda)
$$

- Hybrid $_{1} \approx_{c}$ Hybrid $_{2}$: Since the only difference between Hybrid ${ }_{1}$ and Hybrid ${ }_{2}$ is the first, the second, and third component of ct. Also note that, in Hybrid ${ }_{1}$, $\mathbf{s}^{T} \cdot \mathbf{y}+e, \mathbf{s}^{T} \widehat{\mathbf{A}}+\mathbf{e}_{1}^{\prime T}$ and $\mathbf{s}^{T} \mathbf{A}+\mathbf{e}_{2}^{\prime T}$ are LWE instance, and hence is indistinguishable with the uniformly random $u, \mathbf{u}_{1}, \mathbf{u}_{2}$ in Hybrid ${ }_{2}$. Hence, Hybrid ${ }_{1}$ and Hybrid $_{2}$ are computationally indistinguishable by LWE assumption.
- Hybrid $_{2} \approx_{c}$ Hybrid $_{3}$: Since Hybrid $_{2}$ does not use any message μ to generat the ciphertext ct, we can reverse Hybrid ${ }_{0}$ to Hybrid ${ }_{2}$, and obtain Hybrid ${ }_{2} \approx_{c}$ Hybrid $_{3}$.

By the hyrbid argument, we finish the proof.

5 Unbounded MPC

5.1 Definition

A (semi-honest) unbounded MPC protocol is a 2-round MPC protocol (Round ${ }_{1}$, Round ${ }_{2}$, Rec) satisfying the following syntax.

- First Round: The i-th party's input is x_{i}. It sets the random coins r_{i}, and executes $\operatorname{msg}_{i} \leftarrow \operatorname{Round}_{1}\left(1^{\lambda}, x_{i} ; r_{i}\right)$. Then the i-th party broadcasts msg_{i}.
- Second Round: After receiving the first round messages, a subset of parties $S \subseteq[N]$ decide to jointly compute a $\ell_{\text {out-bit output circuit } f: \prod_{i \in S}\{0,1\}^{\left|x_{i}\right|} \rightarrow} \rightarrow$ $\{0,1\}^{\text {lout }}$.
For each $i \in S$, the i-th party executes $p_{i} \leftarrow \operatorname{Round}_{2}\left(x_{i}, r_{i},\left\{\operatorname{msg}_{j}\right\}_{j \in S}, S, f\right)$, and broadcasts p_{i}.
- Public Recovery: Anyone with $\left\{p_{i}\right\}_{i \in S}$ can execute $y \leftarrow \operatorname{Rec}\left(\left\{p_{i}\right\}_{i \in S}, S\right)$.

Efficiency. The runing time of Round $_{1}$ is polynomial in λ and $\left|x_{i}\right|$, and is independent of N or the size of the circuit they want to compute later. The runing time of Round $_{2}$ is polynomial in $\lambda,|S|$ and $|C|$.

Unbounded-Party Semi-Honest Security. For any PPT adversary \mathcal{A}, there exists a simulator $\left(\operatorname{Sim}_{1}, \operatorname{Sim}_{2}\right)$ such that
where the oracles $\operatorname{Regstr}(\cdot, \cdot)$ and $\operatorname{Eval}(\cdot, \cdot)$ are defined as follows.

- Regstr(flag $\in\{$ Honest, Dishonest $\}, x):$
- Set random coins r_{N}, and let $\operatorname{msg}_{i} \leftarrow \operatorname{Round}_{1}\left(1^{\lambda}, x ; r_{N}\right)$.
- If flag is Honest, then let $H=H \cup\{i\}$ and output msg_{N}. Otherwise, output (msg, r_{N}).
- Let $x_{N}=x$ and $N=N+1$.
$-\operatorname{Eval}(S, f)$:
- If $S \nsubseteq[N]$, then abort.
- For each $i \in S \cap H$, let $p_{i} \leftarrow \operatorname{Round}_{2}\left(x_{i}, r_{i},\left\{\operatorname{msg}_{j}\right\}_{j \in S}, S, f\right)$.
- Output $\left\{p_{i}\right\}_{i \in S}$.
$-\overline{\text { Regstr }}($ flag $\in\{$ Honest, Dishonest $\}, x)$:
- If flag is Honest, then let $H=H \cup\{N\}$, compute $\left(\mathrm{msg}_{N}, \mathrm{st}_{N}\right) \leftarrow$ $\operatorname{Sim}_{1}\left(1^{\lambda}, 1^{|x|}\right)$, and output msg_{N}. Otherwise, set fresh randomness r_{N}, output $\left(\operatorname{Round}_{1}\left(1^{\lambda}, x ; r_{N}\right), r_{N}\right)$.
- Let $x_{N}=x$, and $N=N+1$.
$-\overline{\operatorname{Eval}}(S, f)$:
- If $S \nsubseteq[N]$, then abort.
- Output $\left\{p_{i}\right\}_{i \in S \cap H} \leftarrow \operatorname{Sim}_{2}\left(\left\{\mathrm{st}_{i}\right\}_{i \in S \cap H}, S, H, f, f\left(\left\{x_{i}\right\}_{i \in S \cap H}\right)\right)$.

5.2 Construction

We present our unbounded MPC protocol $\Pi=\left(\right.$ Round $_{1}$, Round $_{2}$, Rec) in Figure 3. Our construction uses the following ingredients:

- An AB-SFE scheme ABSFE $=$ (ABSFE.Setup, ABSFE.KGen, ABSFE.2Enc, ABSFE.Hint, ABSFE.2Dec) with public decryption.
- A one-time use two-round semi-malicious MPC protocol One $=\left(\right.$ One.Round $_{1}$, One.Round ${ }_{2}$, One.Rec) in the plain model.
- A pseudorandom function PRF $=($ PRF.Gen, PRF.Eval $)$.
- A garbling scheme GC $=$ (GC.Garble, GC.Eval).
$\operatorname{Round}_{1}\left(1^{\lambda}, x_{i}\right)$: Party i performs the following steps:
- Sample a CRS $\operatorname{crs}_{i} \leftarrow \operatorname{ABSFE} . \operatorname{Setup}\left(1^{\lambda}\right)$ and a PRF key $k_{i} \leftarrow \operatorname{PRF}$.Gen $\left(1^{\lambda}\right)$.
- Compute $\left(\mathrm{pk}_{i}\right.$, msk $\left._{i}\right) \leftarrow$ ABSFE.KGen $\left(\operatorname{crs}_{i},\left(x_{i}, k_{i}\right)\right)$
- Output $^{\mathrm{msg}}{ }_{i}=\mathrm{pk}_{i}$.

Round $_{2}\left(x_{i}, r_{i},\left\{\operatorname{msg}_{j}\right\}_{j \in S}, S, f\right)$: Party i performs the following steps:

- Compute crs_{i}, k_{i} and msk_{i} from r_{i}, and parse $\mathrm{msg}_{j}=\mathrm{pk}_{j}$.
- Compute $\left(\widetilde{C_{i}}, \widetilde{\mathrm{lab}}\right) \leftarrow \mathrm{GC} . \operatorname{Garble}\left(C_{\left[x_{i}, k_{i}\right]}\right)$, where the circuit $C_{\left[x_{i}, k_{i}\right]}$ on input a tuple $\left\{\widetilde{\mathrm{msg}_{j}}\right\}_{j \in S}$ does the following:
- $r_{i}=\operatorname{PRF} . \operatorname{Eval}\left(k_{i},(S \| f)\right)$.
- Output $\widetilde{p}_{i}=$ One. $_{\text {Round }}^{2}\left(x_{i}, r_{i},\left\{\widetilde{\operatorname{msg}}_{j}\right\}_{j \in S}, f\right)$.
- Parse $\widetilde{\mathrm{Iab}}=\left\{\widetilde{\mathrm{lab}_{j, k, b}}\right\}_{j \in S, k \in\left[\mid \widetilde{\left.\text { msg }_{j} \mid\right], b \in\{0,1\}} \text {. }\right.}$.
- For $j \in S \backslash\{i\}$, compute $c_{i, j} \leftarrow \operatorname{ABSFE} .2 \operatorname{Enc}\left(\operatorname{pk}_{j}, G_{S, f},\left\{\widetilde{\operatorname{lab}_{j, k, 0}}, \widetilde{\operatorname{lab}_{j, k, 1}}\right\}_{k \in\left[\mid \widetilde{\left.\operatorname{ms}_{j} \mid\right]}\right.}\right)$, where the circuit $G_{S, f}$ on input (x_{i}, k_{i}) does the following:
- $r_{i}=\operatorname{PRF} . E v a l\left(k_{i},(S \| f)\right)$.
- $\widetilde{\operatorname{msg}_{i}}=$ One.Round $_{1}\left(1^{\lambda}, x_{i}, f ; r_{i}\right)$.
- Output $\widetilde{\mathrm{msg}}_{i}$.
$-h_{i} \leftarrow$ ABSFE. $\operatorname{Hint}\left(\mathrm{msk}_{i}, G_{S, f}\right), \widetilde{\mathrm{msg}_{i}}=G_{S, f}\left(x_{i}, k_{i}\right)$.
- Output $p_{i}=\left(\left\{c_{i, j}\right\}_{j \in S \backslash\{i\}}, h_{i}, \widetilde{C}_{i},\left\{\operatorname{lab}_{i, k, \widetilde{\text { mss }_{i}[k]}}\right\}_{k \in\left[\mid \widetilde{\left.\text { msg }_{i} \mid\right]}\right.}\right)$.
$\underline{\operatorname{Rec}\left(\left\{p_{j}\right\}_{j \in S}, S\right): ~ P a r t y} i$ performs the following steps:

- For each $i \in S$ and $j \in S \backslash\{i\}$, compute $\widetilde{\operatorname{lab}}_{i, j} \leftarrow \operatorname{ABSFE} .2 \operatorname{Dec}\left(h_{i}, c_{i, j}\right)$. Set $\widetilde{\operatorname{lab}}_{i, i}=$ $\left\{\text { lab }_{i, k, \text {,msg }_{i}[k]}\right\}_{\left.k \in\left[\mid \widetilde{\mathrm{msg}_{i}}\right]\right]}$. Compute $\widetilde{p}_{i}=\mathrm{GC} . \operatorname{Eval}\left(\widetilde{C}_{i},\left\{\widetilde{\mathrm{Iab}}_{j}\right\}_{j \in S}\right)$.
- Output $y=$ One. $\operatorname{Rec}\left(\left\{\widetilde{p}_{i}\right\}_{i \in S}\right)$.

Fig. 3. Description of Unbounded-Party Reusable MPC Π.

5.3 Security

Lemma 6 (Unbounded-Party Simulation Security). The construction in Section 5.2 satisfies semi-honest unbounded-party simulation security.

Proof. For any n.u. PPT adversary \mathcal{A}, let $N(\lambda)$ be the upper bound for the number of parties N, and $Q(\lambda)$ be the upper bound for the number of queries the \mathcal{A} made to Eval. For any $i^{*} \in[N(\lambda)]$, and $q^{*} \in[Q(\lambda)]$, we build the following hybrids.

- Hybrid $_{0}$: This hybrid is the same as $\mathcal{A}^{\operatorname{Regstr}(\cdot, \cdot), \operatorname{Eval}(\cdot, \cdot)}$.
- $\operatorname{Hybrid}_{1}^{\left(i^{*}, j^{*}, q^{*}\right)}$: This hybrid is almost the same as the Hybrid ${ }_{0}$, except that we replace the labels used by ABSFE.2Enc to the same labels. Specifically, we replace the ABSFE.2Enc encryption in $\operatorname{Eval}(\cdot, \cdot)$ as follows.
- For $j \in S \backslash\{i\}$, if $(i, j, q)<\left(i^{*}, j^{*}, q^{*}\right)$, $\widetilde{\operatorname{msg}_{j}}=G_{S, f}\left(x_{j}, k_{j}\right)$,

$$
\text { If }(i, j, q) \geq\left(i^{*}, j^{*}, q^{*}\right), c_{i, j} \leftarrow \operatorname{ABSFE} .2 \operatorname{Enc}\left(\mathrm{pk}_{j}, G_{S, f},\left(\operatorname{lab}_{j, k, 0}, \mid \operatorname{lab}_{j, k, 1}\right)_{k \in\left[\mid \widetilde{\left.\operatorname{msg}_{j} \mid\right]}\right.}\right)
$$

- $\operatorname{Hybrid}_{2}^{\left(i^{*}, q^{*}\right)}$: This hybrid is almost the same as the $\operatorname{Hybrid}_{1}^{(N, N, Q)+1}$, except that we generate the labels of the garbled circuits by the simulator. Specifically, we replace the garbled circuits generation in $\operatorname{Eval}(\cdot, \cdot)$ as follows.
- If $(i, q)<\left(i^{*}, q^{*}\right)$, then $\left(\overline{C_{i}}, \overline{\mathrm{lab}}\right) \leftarrow \mathrm{GC} \cdot \operatorname{Sim}\left(1^{\lambda}, C_{\left[x_{i}, k_{i}\right]}\left(\left\{\widetilde{\mathrm{msg}_{j}}\right\}_{j \in S}\right)\right)$, let $\widetilde{C}_{i}=\overline{C_{i}}$, and parse $\overline{\mathrm{lab}}=\left(\mathrm{lab}_{j, k, \widetilde{\mathrm{msg}}_{j}[k]}\right)_{j \in S, k \in\left[\left|\widetilde{\mathrm{~ms}}_{j}\right|\right]}$.
If $(i, q) \geq\left(i^{*}, q^{*}\right)$, then $(\widetilde{C}, \widetilde{\mathrm{lab}}) \leftarrow \operatorname{Garble}\left(C_{\left[x_{i}, k_{i}\right]}\right)$.
- Hybrid ${ }_{3}^{i^{*}}$: This hybrid is almost the same as $\operatorname{Hybrid}_{2}^{(N, Q)+1}$, except that we generate the replace the CRS generation of $\operatorname{Round}_{1}\left(1^{\lambda}, x_{i}\right)$ in $\operatorname{Regstr}(\cdot, \cdot)$ as follows.
- If $i<i^{*}$ and $i \in H$, generate $\left(\mathrm{crs}_{i}, \operatorname{tr}_{i}\right) \leftarrow \operatorname{ABSFE} . \overline{\operatorname{Setup}}\left(1^{\lambda}\right)$.
- If $i \geq i^{*}$ or $i \notin H$, generate $\operatorname{crs}_{i} \leftarrow \operatorname{ABSFE}$.Setup(1 1^{λ}).
- Hybrid ${ }_{4}^{\left(i^{*}, q^{*}\right)}$: This hybrid is almost the same as Hybrid ${ }_{3}^{N+1}$, except that we replace the hint generation in $\operatorname{Eval}(\cdot, \cdot)$ by the simulator. Specifically, let q be the number of queries to $\operatorname{Eval}(\cdot, \cdot)$, we replace the generation of h_{i} as follows.
- If $(i, q)<\left(i^{*}, q^{*}\right)$ and $i \in H, h_{i} \leftarrow \operatorname{ABSFE} . \operatorname{Sim}\left(1^{\lambda}, \operatorname{pk}_{i}, \operatorname{tr}_{i}, G_{S, f}, \widetilde{\operatorname{msg}}_{i}\right)$.
- If $(i, q) \geq\left(i^{*}, q^{*}\right)$ or $i \in \bar{H}, h_{i} \leftarrow \operatorname{ABSFE} . \operatorname{Hint}\left(\operatorname{msk}_{i}, G_{S, f}\right)$.
- Hybrid ${ }_{5}^{i^{*}}$: This hybrid is almost the same with $\operatorname{Hybrid}_{4}^{(N, Q)+1}$, except that we replace the PRF with random function. Specifically, we replace the randomness r_{i} generation in $\operatorname{Eval}(\cdot, \cdot)$ with the following. Let (S, f) be the q-th query,
- For each $i \in S$, if $i<i^{*}$ and $i \in H$, let $r_{i}=\operatorname{PRF}_{i} \cdot \mathrm{~F}(S \| f)$.
- If $i \geq i^{*}$ or $i \notin H$, let $r_{i}=\operatorname{PRF} . E v a l\left(k_{i},(S \| f)\right)$.
- Let $\widetilde{\operatorname{msg}_{i}}=$ One.Round ${ }_{1}\left(1^{\lambda}, x_{i}, f ; r_{i}\right), \widetilde{p}_{i}=$ One.Round ${ }_{2}\left(x_{i}, r_{i},\left\{\widetilde{\operatorname{msg}_{j}}\right\}_{j \in S}, f\right)$. where $\mathrm{PRF}_{i} . \mathrm{F}$ is a random function for each $i<i^{*}, i \in H$.
- $\operatorname{Hybrid}_{6}^{q^{*}}$: This hybrid is almost the same with Hybrid ${ }_{5}^{N+1}$, except that we replace the $\left\{\widetilde{m s g}_{i}, \widetilde{p}_{i}\right\}_{i \in S \cap H}$ using One.Sim. Specifically, we replace the generation of $\left\{\widetilde{\operatorname{msg}_{i}}, \widetilde{p}_{i}\right\}_{i \in S \cap H}$ in $\operatorname{Eval}(\cdot, \cdot)$ as follows.
At the begining of $\operatorname{Eval}(\cdot, \cdot)$, we initialize an empty map Map : $\phi \rightarrow \phi$.
Let (S, f) be the q-th query to $\operatorname{Eval}(\cdot, \cdot)$.
- If $\operatorname{Map}(S, f)$ is defined before, let $\left\{\widetilde{\operatorname{msg}_{i}}, \widetilde{p}_{i}\right\}_{i \in S \cap H}=\operatorname{Map}(S, f)$.
- Otherwise, if $q<q^{*}$, let $r_{i}=\operatorname{PRF} . E v a l\left(k_{i},(S \| f)\right)$ for each $i \in S \backslash H$,
- $\left\{\widetilde{\mathrm{msg}_{i}}, \widetilde{p}_{i}\right\}_{i \in S \cap H} \leftarrow \operatorname{One} . \operatorname{Sim}\left(1^{\lambda}, S \cap H,\left\{x_{i}, r_{i}\right\}_{i \in S \backslash H}, f, f\left(\left\{x_{i}\right\}_{i \in S}\right)\right)$,
- and if $q \geq q^{*}$, for each $i \in S \cap H$, set fresh randomness r_{i}, let $\widetilde{\operatorname{msg}_{i}}=$ One.Round ${ }_{1}\left(1^{\lambda}, x_{i}, f ; r_{i}\right), \widetilde{p}_{i}=$ One.Round $_{2}\left(x_{i}, r_{i},\left\{\widetilde{\operatorname{msg}_{j}}\right\}_{j \in S}, f\right)$, and define $\operatorname{Map}(S, f)=\left\{\widetilde{\mathrm{msg}_{i}}, \widetilde{p}_{i}\right\}_{i \in S \cap H}$.
- Ideal: This hybrid is the same as $\operatorname{Hybrid}_{6}^{Q+1}$, except that we replace each KGen of real input (x_{i}, k_{i}) with the dummy $\left(0^{\left|x_{i}\right|}, 0^{\left|k_{i}\right|}\right)$, for each $i \in H$. This hybrid is the same as $\mathcal{A}^{\overline{\operatorname{Regstr}(}(\cdot,), \overline{\operatorname{Eval}(}(\cdot,)}\left(1^{\lambda}\right)$. See the simulator in Figure 4.

Lemma 7. Hybrid $_{0}$ is identical to $\operatorname{Hybrid}_{1}^{(1,1,1)}$. Moreover, there exists a negligible function $\nu(\lambda)$ such that for any sufficiently large λ,

$$
\begin{aligned}
& \mid \operatorname{Pr}_{\text {Hybrid }}^{1}\left(i^{*}, j^{*}, q^{*}\right)
\end{aligned} \quad\left[\mathcal{A}^{\left.\operatorname{Regstr}(\cdot, \cdot), \operatorname{Eval}(\cdot, \cdot)\left(1^{\lambda}\right)=1\right]-} \begin{array}{l}
\operatorname{Pr}_{\text {Hybrid }_{1}^{\left(i^{*}, j^{*}, q^{*}\right)+1}}\left[\mathcal{A}^{\operatorname{Regstr}(\cdot, \cdot), \operatorname{Eval}(\cdot, \cdot)}\left(1^{\lambda}\right)=1\right] \mid<\nu(\lambda) .
\end{array}\right.
$$

Proof. We build the following adversary \mathcal{A}^{\prime} trying to break the sender's indistinguishability security. \mathcal{A}^{\prime} sets the randomness and runs the adversary $\mathcal{A}^{\operatorname{Regstr}(\cdot, \cdot), \operatorname{Eval}(\cdot, \cdot) \text {, }, ~ ; ~}$ where the oracles $\operatorname{Reg} \operatorname{str}(\cdot, \cdot)$ and $\operatorname{Eval}(\cdot, \cdot)$ are implemented as follows.

- Regstr (\cdot, \cdot) : For each query, the adversary \mathcal{A}^{\prime} does the same thing as the Hybrid ${ }_{0}$.
- Eval (\cdot, \cdot) : Let q the q-th query be (S, f). The adversary does the following. For each $i \in H \cap S$, it generates the garbled circuit and labels ($\left.\widetilde{C}_{i}, \widetilde{\mathrm{lab}}\right)$ for $C_{\left[x_{i}, k_{i}\right]}$. Then for each $j \in S \backslash\{i\}$, it considers three cases.
- If $(i, j, q)<\left(i^{*}, j^{*}, q^{*}\right), \mathcal{A}^{\prime}$ uses ABSFE.2Enc to encrypt the same labels.
- If $(i, j, q)=\left(i^{*}, j^{*}, q^{*}\right)$, it queries the challenger with the circuit $G_{S, f}$, and obtains a challenge ciphertext ct. Let $c_{i, j}=\mathrm{ct}$.
- If $(i, j, q)>\left(i^{*}, j^{*}, q^{*}\right), \mathcal{A}^{\prime}$ uses ABSFE.2Enc to encrypt different labels.

Finally \mathcal{A}^{\prime} computes and outputs $\left\{p_{i}\right\}_{i \in S \cap H}$ by the same way as Hybrid_{0}.
$\operatorname{Sim}_{1}\left(1^{\lambda}, 1^{|x|}\right):$

- Let $\left(\overline{\operatorname{crs}_{N}}, \operatorname{tr}_{N}\right) \leftarrow \overline{\operatorname{Setup}}\left(1^{\lambda}\right)$, and $\left(\right.$ pk $_{N}$, msk $\left._{N}\right) \leftarrow \operatorname{KGen}\left(\overline{\operatorname{crs}}_{N},\left(0^{|x|}, 0^{\lambda}\right)\right)$.
- Output $\mathrm{msg}_{N}=\mathrm{pk}_{N}$, and $\mathrm{st}_{N}=\operatorname{tr}_{N}$.
Sim_{2} initialization: an empty map Map : $\phi \rightarrow \phi$.
$\underline{\operatorname{Sim}_{2}\left(\left\{\text { st }_{i}\right\}_{i \in S \cap H}, S, H, f, f\left(\left\{x_{i}\right\}_{i \in S \cap H}\right)\right):}$
- For the q-the query (S, f), if $\operatorname{Map}(S, f)$ is defined before, then let

$$
\left\{\widetilde{\operatorname{msg}_{i}}, \widetilde{p}_{i}\right\}_{i \in S \cap H}=\operatorname{Map}(S, f) .
$$

- Otherwise, let $r_{i}=\operatorname{PRF} . \operatorname{Eval}\left(k_{i},(S \| f)\right)$ for each $i \in S \backslash H$, and

$$
\left\{\widetilde{\operatorname{msg}_{i}}, \widetilde{p}_{i}\right\}_{i \in S \cap H} \leftarrow \operatorname{One} . \operatorname{Sim}\left(1^{\lambda}, S \cap H,\left\{x_{i}, r_{i}\right\}_{i \in S \backslash H}, f, f\left(\left\{x_{i}\right\}_{i \in S}\right)\right),
$$

define $\operatorname{Map}(S, f)=\left\{\widetilde{\operatorname{msg}_{i}}, \widetilde{p_{i}}\right\}_{i \in S \cap H}$.

- For each $i \in S \cap H$
$*$ Let $\left(\widetilde{C_{i}}, \widetilde{\mathrm{lab}}\right) \leftarrow \mathrm{GC} \cdot \operatorname{Sim}\left(1^{\lambda}, \widetilde{p}_{i}\right)$, parse $\widetilde{\mathrm{lab}}=\left\{\mathrm{lab}_{\mathrm{J}_{j, k, \widetilde{\text { msg }}_{j}[k]}}\right\}_{\left.j \in S, k \in\left[\mid \widetilde{\mathrm{msg}_{j}}\right]\right]}$.
* For each $j \in S \backslash\{i\}$, compute

$$
c_{i, j} \leftarrow \operatorname{ABSFE} .2 \operatorname{Enc}\left(\mathrm{pk}_{j}, G_{S, f},\left\{\operatorname{lab}_{\mathrm{b}_{j, k, \widetilde{\mathrm{msg}}_{j}}[k]}, \operatorname{lab}_{j, k, \widetilde{\text { msg }}_{j}[k]}\right\}_{k \in\left[\left|\widetilde{\mathrm{~ms}}_{j}\right|\right]}\right) .
$$

$* h_{i} \leftarrow \operatorname{ABSFE} . \operatorname{Sim}\left(1^{\lambda}, \mathrm{pk}_{i}, \operatorname{tr}_{i}=\mathrm{st}_{i}, G_{S, f}, \widetilde{\mathrm{msg}}_{i}\right)$.

- Output $p_{i}=\left(\left(c_{i, j}\right)_{j \in S}, h_{i}, \widetilde{C}_{i},\left\{\operatorname{lab}_{i, k, \text { msg }_{i}[k]}\right\}_{k \in\left[| | \widetilde{\left.\text { ms }_{i} \mid\right]}\right.}\right)$.

Fig. 4. Description of the simulator $\left(\operatorname{Sim}_{1}, \operatorname{Sim}_{2}\right)$.

Now for the challenge ciphertext ct, we consider two cases. When ct is obtained by ABSFE.2Enc of different labels, then the adversary \mathcal{A}^{\prime} simulates the environment of $\operatorname{Hybrid}_{1}^{\left(i^{*}, j^{*}, q^{*}\right)}$. Hence,

$$
\begin{array}{r}
\operatorname{Pr}\left[\mathrm { ct } \leftarrow \mathrm { ABSFE } . 2 \operatorname { E n c } \left(\mathrm{pk}, G_{S, f},\left(\widetilde{\operatorname{lab}_{j, k, 0}}, \widetilde{\left.\left.\left.\operatorname{lab}_{j, k, 1}\right)_{k \in\left[| | \text { msg }_{j} \mid\right]}\right): \mathcal{A}^{\prime}\left(1^{\lambda}, \mathrm{crs}, r\right)=1\right]}\right.\right.\right. \\
=\widetilde{\operatorname{Hybrid}_{1}^{\left(i^{*}, j^{*}, q^{*}\right)}}\left[\mathcal{A}^{\operatorname{Regstr}(\cdot, \cdot), \operatorname{Eval}(\cdot, \cdot)}\left(1^{\lambda}\right)=1\right]
\end{array}
$$

When ct is generated with the same labels, then the adversary \mathcal{A}^{\prime} simulates the environment of $\operatorname{Hybrid}_{1}^{\left(i^{*}, j^{*}, q^{*}\right)+1}$. Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[\mathrm { ct } \leftarrow \mathrm { ABSFE } . 2 \operatorname { E n c } \left(\mathrm{pk}, G_{S, f},\left(\operatorname{lab}_{j, k,{\widetilde{\operatorname{msg}_{j}}}_{j}}[k]\right.\right.\right. & ,{\left.\left.\left.\widetilde{\operatorname{lab}} \underset{j, k, \widetilde{\text { msg }}_{j}[k]}{ }\right)_{k \in\left[\mid \widetilde{\left.\operatorname{msg}_{j} \mid\right]}\right.}\right): \mathcal{A}^{\prime}\left(1^{\lambda}, \mathrm{crs}, r\right)=1\right]}^{=} \underset{\operatorname{Hybrid}_{1}^{\left(i^{*}, j^{*}, q^{*}\right)+1}}{ }\left[\mathcal{A}^{\operatorname{Regstr}(\cdot, \cdot), \operatorname{Eval}(\cdot, \cdot)}\left(1^{\lambda}\right)=1\right]
\end{aligned}
$$

From the adaptive sender's computational indistinguishable security of ABSFE, we derive that $\operatorname{Hybrid}_{1}^{\left(i^{*}, j^{*}, q^{*}\right)}$ and $\operatorname{Hybrid}_{1}^{\left(i^{*}, j^{*}, q^{*}\right)+1}$ are indistinguishable.

Lemma 8. $\operatorname{Hybrid}_{1}^{(N, N, Q)+1}$ is identical to $\operatorname{Hybrid}_{2}^{(1,1)}$. Moreover, there exists a negligible function $\nu(\lambda)$ such that for any sufficiently large λ,
$\left|\operatorname{Pr}_{\operatorname{Hybrid}_{2}^{\left(i^{*}, q^{*}\right)}}\left[\mathcal{A}^{\operatorname{Regstr}(\cdot, \cdot), \operatorname{Eval}(\cdot, \cdot)}\left(1^{\lambda}\right)=1\right]-\operatorname{Pr}_{\operatorname{Hybrid}_{2}^{\left(i^{*}, q^{*}\right)+1}}\left[\mathcal{A}^{\operatorname{Regstr}(\cdot, \cdot), \text { Eval }(\cdot, \cdot)}\left(1^{\lambda}\right)=1\right]\right|<\nu(\lambda)$
Proof. We build the following distinguisher \mathcal{D} for the garbled scheme GC. \mathcal{D} takes
 where the oracles $\operatorname{Regstr}(\cdot, \cdot)$ and $\operatorname{Eval}(\cdot, \cdot)$ are implemented as follows.

- Regstr (\cdot, \cdot) : For each query, the adversary \mathcal{A}^{\prime} does the same thing as the Hybrid ${ }_{0}$.
- Eval (\cdot, \cdot) : Let q the q-th query be (S, f). The adversary does the following. For each $i \in H \cap S$, it considers three cases.
- If $(i, q)<\left(i^{*}, q^{*}\right)$, then it generates $\widetilde{C_{i}}, \widetilde{\mathrm{ab}}$ by the simulator GC.Sim.
- If $(i, q)=\left(i^{*}, q^{*}\right)$, then it sets $\widetilde{C_{i}}, \widetilde{\text { lab }}$ to be the input \widetilde{C}, lab.
- If $(i, q)>\left(i^{*}, q^{*}\right)$, then it generates $\widetilde{C_{i}}, \widetilde{\text { lab }}$ by honestly garbling $C_{\left[x_{i}, k_{i}\right]}$.

Finally, it computes and outputs $\left\{p_{i}\right\}_{i \in S \cap H}$ by the same way as $\operatorname{Hybrid}_{1}^{(N, N, Q)+1}$.
When $(\widetilde{C}$, lab $) \leftarrow \operatorname{GC} . \operatorname{Garble}\left(1^{\lambda}, C_{\left[\mathrm{sk}_{i^{*}}, k_{\left.i^{*}\right]}\right]}\right)$, then the distinguisher \mathcal{D} simulates the environment of $\operatorname{Hybrid}_{2}^{\left(i^{*}, q^{*}\right)}$ for \mathcal{A}. Hence, we have

$$
\begin{array}{r}
\left.\operatorname{Pr}\left[(\widetilde{C}, \operatorname{lab}) \leftarrow \mathrm{GC} . \operatorname{Garble}\left(1^{\lambda}, C_{\left[\mathrm{sk}_{i^{*}}, k_{i^{*}}\right]}\right]\right): \mathcal{D}\left(1^{\lambda}, \widetilde{C}, \operatorname{lab}\right)=1\right] \\
=\operatorname{Pr}_{\operatorname{Hybrid}_{2}^{\left(i^{*}, q^{*}\right)}}\left[\mathcal{A}^{\operatorname{Regstr}(\cdot, \cdot), \text { Eval }(\cdot, \cdot)}\left(1^{\lambda}\right)=1\right]
\end{array}
$$

When $(\widetilde{C}, \operatorname{lab}) \leftarrow \mathrm{GC} \cdot \operatorname{Sim}\left(1^{\lambda}, C_{\left[\mathrm{sk}_{i^{*}, k_{i^{*}}}\right]}\left(\left\{\widetilde{\mathrm{msg}_{j}}\right\}_{j \in S}\right)\right)$, the distinguisher simulates the environment of $\operatorname{Hybrid}_{2}^{\left(i^{*}, q^{*}\right)+1}$ for \mathcal{A}. Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[(\widetilde { C } , \mathrm { lab }) \leftarrow \mathrm { GC } \cdot \operatorname { S i m } \left(1^{\lambda},\right.\right. & C_{\left.\left[\mathrm{sk}_{\left.i^{*}, k_{i^{*}}\right]}\left(\left\{\operatorname{msg}_{j}\right\}_{j \in S}\right)\right): \mathcal{D}\left(1^{\lambda}, \widetilde{C}, \operatorname{lab}\right)=1\right]}=\operatorname{Prbrid}_{2}^{\left(i^{*}, q^{*}\right)+1} \\
& \left.\mathcal{A}^{\operatorname{Regstr}(\cdot, \cdot), \operatorname{Eval}(\cdot, \cdot)}\left(1^{\lambda}\right)=1\right] .
\end{aligned}
$$

From the security of the garbling scheme, we derive that $\operatorname{Hybrid}_{2}^{\left(i^{*}, q^{*}\right)}$ and Hybrid $2^{\left(i^{*}, q^{*}\right)+1}$ are indistinguishable.

Lemma 9. $\operatorname{Hybrid}_{2}^{(N, Q)+1}$ is identical to $\operatorname{Hybrid}_{3}^{1}$. Moreover, there exists a negligible function $\nu(\lambda)$ such that for any sufficiently large $\lambda, \operatorname{SD}\left(\operatorname{Hybrid}_{3}^{i^{*}}, \operatorname{Hybrid}_{3}^{i^{*}+1}\right)<$ $\nu(\lambda)$.

Proof. We build the following function g. The function g takes as input the crs, and for each $i<i^{*}, g$ generates the crs_{i} using ABSFE.Setup. For each $i>i^{*}$, g generates crs_{i} using ABSFE.Setup. For i^{*}, if $i^{*} \in H$, then sets $\mathrm{crs}_{i^{*}}$ as crs. Otherwise, it generates $\mathrm{crs}_{i^{*}}$ using ABSFE.Setup. Then g invokes \mathcal{A} and simulates $\operatorname{Regstr}(\cdot, \cdot)$ and $\operatorname{Eval}(\cdot, \cdot)$ in the same way as $\operatorname{Hybrid}_{2}^{(N, Q)+1}$.

When crs $\leftarrow \operatorname{ABSFE} . \operatorname{Setup}\left(1^{\lambda}\right)$, then $g(\mathrm{crs})$ is identical to Hybrid ${ }_{3}^{i^{*}}$. When crs is generated by ABSFE. $\overline{\operatorname{Setup}}\left(1^{\lambda}\right)$, then $g(\mathrm{crs})$ is identical to Hybrid ${ }_{3}^{i^{+}+1}$. From the statistical public key indistinguisbaility property, we derive that $\operatorname{SD}\left(\mathrm{Hybrid}_{3}^{i^{*}}\right.$, $\left.\operatorname{Hybrid}_{3}^{i^{*}+1}\right)<\operatorname{negl}(\lambda)$.

Lemma 10. Hybrid ${ }_{3}^{N+1}$ is identical to $\operatorname{Hybrid}_{4}^{(1,1)}$. Moreover, there exists a negligible function $\nu(\lambda)$ such that for sufficiently large $\lambda, \operatorname{SD}\left(\operatorname{Hybrid}_{4}^{\left(i^{*}, q^{*}\right)}, \operatorname{Hybrid}_{4}^{\left(i^{*}, q^{*}\right)+1}\right)$ $<\nu(\lambda)$.
Proof. Since the only difference between $\operatorname{Hybrid}_{4}^{\left(i^{*}, q^{*}\right)}$ and $\operatorname{Hybrid}_{4}^{\left(i^{*}, q^{*}\right)+1}$ is the way that h_{i} is generated in q-th query of \mathcal{O}, from the statistical hint simulation security of AB-SFE, we have $\operatorname{SD}\left(\operatorname{Hybrid}_{4}^{\left(i^{*}, q^{*}\right)}, \operatorname{Hybrid}_{4}^{\left(i^{*}, q^{*}\right)+1}\right)<\operatorname{negl}(\lambda)$.

Lemma 11. $\operatorname{Hybrid}_{4}^{(N, Q)+1}$ and Hybrid ${ }_{5}^{1}$ are identical. There exists a negligible function $\nu(\lambda)$ such that for any sufficiently large λ,
$\left|\operatorname{Pr}_{\operatorname{Hybrid}{\underset{5}{*}}^{*}}\left[\mathcal{A}^{\operatorname{Regstr}(\cdot, \cdot), \operatorname{Eval}(\cdot, \cdot)}\left(1^{\lambda}\right)=1\right]-\operatorname{Pr}_{\operatorname{Hybrid}_{5}^{i^{*+1}}}\left[\mathcal{A}^{\operatorname{Regstr}(\cdot, \cdot), \operatorname{Eval}(\cdot, \cdot)}\left(1^{\lambda}\right)=1\right]\right|<\nu(\lambda)$.
Proof. We construct the following adversary \mathcal{A}^{\prime} for the PRF. $\mathcal{A}^{\prime \mathcal{O}}\left(1^{\lambda}\right)$ is given access to a PRF oracle, and it invokes the adversary $\mathcal{A}^{\operatorname{Regstr}(\cdot, \cdot), \operatorname{Eval}(\cdot, \cdot)}\left(1^{\lambda}\right)$ by implementing the oracles $\operatorname{Regstr}(\cdot, \cdot)$ and $\operatorname{Eval}(\cdot, \cdot)$ as follows.
$-\operatorname{Regstr}(\cdot, \cdot)$: For the i-th query, only sample $k_{i} \leftarrow \operatorname{PRF} . G e n\left(1^{\lambda}\right)$ when $i \geq i^{*}$ or $i \notin H$.

- Eval (\cdot, \cdot) : For each query (S, f), do the same thing as Eval in $\operatorname{Hybrid}_{4}^{(N, Q)+1}$, except the generation of r_{i}. We generate r_{i} as follows. For each $i \in S$,
- if $i<i^{*}$ and $i \in H$, let $r_{i}=\mathrm{PRF}_{i} \cdot \mathrm{~F}(S \| f)$.
- If $i=i^{*}$ and $i^{*} \in H$, let $r_{i} \leftarrow \mathcal{O}(S \| f)$.
- If $i>i^{*}$ or $i \notin H, r_{i}=\operatorname{PRF} . \operatorname{Eval}\left(k_{i},(S \| f)\right)$.

When \mathcal{O}^{\prime} is PRF.Eval (k, \cdot) for a uniform random PRF key k, the adversary \mathcal{A}^{\prime} simulates the environment of Hybrid ${ }_{5}^{i^{*}}$ for \mathcal{A}. Hence,

$$
\operatorname{Pr}\left[k \leftarrow\{0,1\}^{\lambda}: \mathcal{A}^{\prime \text { PRF.Eval }(k, \cdot)}\left(1^{\lambda}\right)=1\right]=\operatorname{Pr}_{\text {Hybrid }}^{5}{ }^{*}\left[\mathcal{A}^{\operatorname{Regstr}(\cdot, \cdot), \operatorname{Eval}(\cdot, \cdot)}\left(1^{\lambda}\right)=1\right] .
$$

When \mathcal{O}^{\prime} is a random function $\mathrm{F}(\cdot)$, the adversary \mathcal{A}^{\prime} simulates the environment of Hybrid ${ }_{5}^{i^{*}}$ for \mathcal{A}. Hence,

$$
\operatorname{Pr}\left[\mathcal{A}^{\prime \mathrm{F}(\cdot)}\left(1^{\lambda}\right)=1\right]=\operatorname{Pr}_{\mathrm{Hybrid}_{5}^{i^{*}+1}}\left[\mathcal{A}^{\operatorname{Regstr}(\cdot, \cdot), \operatorname{Eval}(\cdot, \cdot)}\left(1^{\lambda}\right)=1\right]
$$

From the security of PRF, we derive that Hybrid ${ }_{5}^{i^{*}}$ and $\operatorname{Hybrid}_{5}^{i^{*}+1}$ are indistinguishable.

Lemma 12. Hybrid ${ }_{5}^{N+1}$ is identical to Hybrid ${ }_{6}^{1}$. Moreover, there exists a negligible function $\nu(\lambda)$ such that for any sufficiently large λ,
$\left|\operatorname{Pr}_{\mathrm{Hybrid} \boldsymbol{q}_{6}^{q^{*}}}\left[\mathcal{A}^{\operatorname{Regstr}(\cdot, \cdot), \operatorname{Eval}(\cdot, \cdot)}\left(1^{\lambda}\right)=1\right]-\operatorname{Prbrrid}_{6}^{q^{*+1}}\left[\mathcal{A}^{\operatorname{Regstr}(\cdot, \cdot), \operatorname{Eval}(\cdot, \cdot)}\left(1^{\lambda}\right)=1\right]\right|<\nu(\lambda)$.
Proof. We build the following distinguisher \mathcal{D} for the semi-malicous MPC security. The adversary \mathcal{D} invokes the adversary $\mathcal{A}^{\operatorname{Regstr}(\cdot, \cdot), \operatorname{Eval}(\cdot, \cdot)}\left(1^{\lambda}\right)$, where the oracle $\operatorname{Regstr}(\cdot, \cdot)$ is the same as in $\operatorname{Hybrid}_{5}^{N+1}$, and the oracle Eval (\cdot, \cdot) is implemented as follows.

Let the q-th query be (S, f), the oracle $\operatorname{Eval}(\cdot, \cdot)$ performs the same executions as in Hybrid ${ }_{5}^{N+1}$, except the generation of $\left(\widetilde{\operatorname{msg}_{i}}, \widetilde{p}_{i}\right)$ is replaced as follows.

- If $\operatorname{Map}(S, f)$ is defined before, then let $\left\{\widetilde{\operatorname{msg}_{i}}, \widetilde{p}_{i}\right\}_{i \in S \cap H} \leftarrow \operatorname{Map}(S, f)$. Othwerwise,
- If $q<q^{*}$, let $\left\{\widetilde{\operatorname{msg}_{i}}, \widetilde{p}_{i}\right\}_{i \in S \cap H} \leftarrow$ One. $\operatorname{Sim}\left(1^{\lambda}, S \cap H,\left\{x_{i}, r_{i}\right\}_{i \in S \backslash H}, f, f\left(\left\{x_{i}\right\}_{i \in S}\right)\right)$.
- If $q=q^{*}$, query the challenger with the number of parties $|S|$, the inputs $\left\{x_{i}\right\}_{i \in S}$, the honest party subset $H \cap S$, the randomness for dishonest parties $\left\{r_{i}\right\}_{i \in S \backslash H}$, and obtains the challenge $\left\{\operatorname{msg}_{i}, p_{i}\right\}_{i \in S \cap H}$. Let $\left\{\widetilde{\operatorname{msg}_{i}}, \widetilde{p}_{i}\right\}_{i \in S \cap H}=\left\{\operatorname{msg}_{i}, p_{i}\right\}_{i \in S \cap H}$, and define $\operatorname{Map}(S, f)=\left\{\operatorname{msg}_{i}, p_{i}\right\}_{i \in S \cap H}$.
- If $q>q^{*}$, for each $i \in S \cap H$, set fresh randomness r_{i}. Let $\widetilde{\operatorname{msg}_{i}}=$ One.Round ${ }_{1}\left(1^{\lambda}, x_{i}, f ; r_{i}\right), \widetilde{p}_{i}=$ One. Round ${ }_{2}\left(x_{i}, r_{i},\left\{\widetilde{\operatorname{msg}_{j}}\right\}_{j \in S}, f\right)$, and define $\operatorname{Map}(S, f)=\left\{\widetilde{\operatorname{msg}_{i}}, \widetilde{p}_{i}\right\}_{i \in S \cap H}$.

When $\left\{\operatorname{msg}_{i}, p_{i}\right\}_{i \in S \cap H}$ is obtained from real world execution, with dishonest parties' random coins $\left\{r_{i}\right\}_{i \in S \backslash H}$, the distinguisher \mathcal{D} simulates the environment of $\operatorname{Hybrid}_{6}^{q^{*}}$ for \mathcal{A}. Hence,

$$
\left.\begin{array}{rl}
\operatorname{Pr}\left[\begin{array}{c}
\forall i \in S \cap H, r_{i} \leftarrow\{0,1\}^{*} \\
\forall i \in S, \text { msg }_{i}=\text { One. Round }_{1}\left(1^{\lambda}, x_{i} ; r_{i}\right),
\end{array}\right. & \left.: \mathcal{D}\left(1^{\lambda},\left\{\operatorname{msg}_{i}, p_{i}\right\}_{i \in S}\right)=1\right] \\
p_{i}=\text { One.Round }_{2}\left(x_{i}, r_{i},\left\{\operatorname{mss}_{j}\right\}_{j \in S}\right)
\end{array}\right] \begin{aligned}
& \operatorname{Pr}\left[\mathcal{D}\left(1^{\lambda}, \operatorname{Hybrid}_{6}^{q^{*}}\right)=1\right]
\end{aligned}
$$

When $\left\{\operatorname{msg}_{i}, p_{i}\right\}_{i \in S \cap H}$ is obtained from the ideal simulation, then the distinguisher \mathcal{D} simulates the environment of $\operatorname{Hybrid}_{6}^{q *+1}$ for \mathcal{A}. Hence,

$$
\begin{array}{r}
\operatorname{Pr}\left[\left\{\operatorname{msg}_{i}, p_{i}\right\}_{i \in S \cap H} \leftarrow \operatorname{Sim}\left(1^{\lambda}, S \cap H,\left\{x_{i}, r_{i}\right\}_{i \in S \backslash H}, f, f\left(\left\{x_{i}\right\}_{i \in S}\right)\right):\right. \\
\left.\mathcal{D}\left(1^{\lambda},\left\{\operatorname{msg}_{i}, p_{i}\right\}_{i \in S}\right)=1\right]=\operatorname{Pr}\left[\mathcal{D}\left(1^{\lambda}, \operatorname{Hybrid}_{6}^{q^{*}+1}\right)\right] .
\end{array}
$$

Hence, from the semi-malicious security of the MPC protocol, we derive that $\operatorname{Hybrid}_{6}^{q^{*}}$ and Hybrid ${ }_{6}^{q^{*}+1}$ are indistinguishable.

Lemma 13. There exists a negligible function $\nu(\lambda)$ such that for any sufficiently large $\lambda, \mathrm{SD}\left(\operatorname{Hybrid}_{6}^{Q+1}\right.$, Ideal) $<\nu(\lambda)$.

Proof. Similar to Lemma 10, this Lemma follows from the statistical public key indistinguishability.

Combining Lemma 7 to Lemma 13, we finish the proof.

References

1. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 387-404. Springer, Heidelberg, Germany, Copenhagen, Denmark (May 11-15, 2014). https://doi.org/10.1007/978-3-642-55220-5_22
2. Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Multikey fhe in the plain model. Cryptology ePrint Archive, Report 2020/180 (2020), https://eprint.iacr.org/ 2020/180
3. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC ${ }^{0}$. In: 45th FOCS. pp. 166-175. IEEE Computer Society Press, Rome, Italy (Oct 17-19, 2004). https://doi.org/10.1109/FOCS.2004.20
4. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In: Ostrovsky, R. (ed.) 52nd FOCS. pp. 120-129. IEEE Computer Society Press, Palm Springs, CA, USA (Oct 22-25, 2011). https://doi.org/10.1109/FOCS.2011.40
5. Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness indistinguishability and secure computation in the plain model from new assumptions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 275-303. Springer, Heidelberg, Germany, Hong Kong, China (Dec 3-7, 2017). https://doi.org/10.1007/978-3-319-70700-6_10
6. Badrinarayanan, S., Jain, A., Ostrovsky, R., Visconti, I.: Non-interactive secure computation from one-way functions. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 118-138. Springer, Heidelberg, Germany, Brisbane, Queensland, Australia (Dec 2-6, 2018). https://doi.org/10.1007/978-3-030-03332-3_5
7. Bartusek, J., Garg, S., Masny, D., Mukherjee, P.: Reusable two-round mpc from ddh. Cryptology ePrint Archive, Report 2020/170 (2020), https://eprint.iacr. org/2020/170
8. Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 500-532. Springer, Heidelberg, Germany, Tel Aviv, Israel (Apr 29 - May 3, 2018). https://doi.org/10.1007/978-3-319-78375-8_17
9. Benhamouda, F., Lin, H.: Multiparty reusable non-interactive secure computation. Cryptology ePrint Archive, Report 2020/221 (2020), https://eprint.iacr.org/ 2020/221
10. Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp. 370-390. Springer, Heidelberg, Germany, Panaji, India (Nov 11-14, 2018). https://doi.org/10.1007/978-3-030-03810-6_14
11. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random oracle. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014. pp. 597-608. ACM Press, Scottsdale, AZ, USA (Nov 3-7, 2014). https://doi.org/10.1145/2660267.2660374
12. Cash, D., Hofheinz, D., Kiltz, E.: How to delegate a lattice basis. Cryptology ePrint Archive, Report 2009/351 (2009), https://eprint.iacr.org/2009/351
13. Chase, M., Dodis, Y., Ishai, Y., Kraschewski, D., Liu, T., Ostrovsky, R., Vaikuntanathan, V.: Reusable non-interactive secure computation. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 462-488. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18-22, 2019). https://doi.org/10.1007/978-3-030-26954-8_15
14. Dodis, Y., Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Publickey encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 361-381. Springer, Heidelberg, Germany, Zurich, Switzerland (Feb 9-11, 2010). https://doi.org/10.1007/978-3-642-11799-2_22
15. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74-94. Springer, Heidelberg, Germany, San Diego, CA, USA (Feb 24-26, 2014). https://doi.org/10.1007/978-3-642-54242-8_4
16. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC. pp. 467-476. ACM Press, Palo Alto, CA, USA (Jun 1-4, 2013). https://doi.org/10.1145/2488608.2488667
17. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear maps. In: Umans, C. (ed.) 58th FOCS. pp. 588-599. IEEE Computer Society Press, Berkeley, CA, USA (Oct 15-17, 2017). https://doi.org/10.1109/FOCS.2017.60
18. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 468-499. Springer, Heidelberg, Germany, Tel Aviv, Israel (Apr 29 - May 3, 2018). https://doi.org/10.1007/978-3-319-78375-8_16
19. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC. pp. 197-206. ACM Press, Victoria, BC, Canada (May 17-20, 2008). https://doi.org/10.1145/1374376.1374407
20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC. pp. 218-229. ACM Press, New York City, NY, USA (May 25-27, 1987). https://doi.org/10.1145/28395.28420
21. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the learning with errors assumption. In: Yao, A.C.C. (ed.) ICS 2010. pp. 230-240. Tsinghua University Press, Tsinghua University, Beijing, China (Jan 5-7, 2010)
22. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC. pp. 555-564. ACM Press, Palo Alto, CA, USA (Jun 1-4, 2013). https://doi.org/10.1145/2488608.2488678
23. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC. pp. 469-477. ACM Press, Portland, OR, USA (Jun 14-17, 2015). https://doi.org/10.1145/2746539.2746576
24. Gordon, S.D., Liu, F.H., Shi, E.: Constant-round MPC with fairness and guarantee of output delivery. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part II.

LNCS, vol. 9216, pp. 63-82. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16-20, 2015). https://doi.org/10.1007/978-3-662-48000-7_4
25. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for finegrained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006. pp. 89-98. ACM Press, Alexandria, Virginia, USA (Oct 30 - Nov 3, 2006). https://doi.org/10.1145/1180405.1180418, available as Cryptology ePrint Archive Report 2006/309
26. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 406-425. Springer, Heidelberg, Germany, Tallinn, Estonia (May 15-19, 2011). https://doi.org/10.1007/978-3-642-20465-4_23
27. Lombardi, A., Quach, W., Rothblum, R.D., Wichs, D., Wu, D.J.: New constructions of reusable designated-verifier NIZKs. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 670-700. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18-22, 2019). https://doi.org/10.1007/978-3-030-26954-8_22
28. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700-718. Springer, Heidelberg, Germany, Cambridge, UK (Apr 15-19, 2012). https://doi.org/10.1007/978-3-642-29011-4_41
29. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 735-763. Springer, Heidelberg, Germany, Vienna, Austria (May 8-12, 2016). https://doi.org/10.1007/978-3-662-49896-5_26
30. O'Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525-542. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 14-18, 2011). https://doi.org/10.1007/978-3-642-22792-9_30
31. Sahai, A., Waters, B.R.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457-473. Springer, Heidelberg, Germany, Aarhus, Denmark (May 22-26, 2005). https://doi.org/10.1007/11426639_27
32. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS. pp. 162-167. IEEE Computer Society Press, Toronto, Ontario, Canada (Oct 27-29, 1986). https://doi.org/10.1109/SFCS.1986.25

[^0]: ${ }^{4}$ Note that we could have merged the Setup and the KeyGen algorithms in a single subroutine, however we refrained to do so in order to match the original syntax from [27].

[^1]: ${ }^{5}$ In the technical sections, instead of using the terms SampleLeft and SampleRight, we use the algorithm GenSamplePre that captures the functionality of both these algorithms.

