
Unbounded Multi-Party Computation
from Learning with Errors

Prabhanjan Ananth1, Abhishek Jain2, Zhengzhong Jin2, and Giulio Malavolta3

1 University of California, Santa Barbara, CA
prabhanjan.va@gmail.com

2 Johns Hopkins University, Baltimore, MD
{abhishek,zzjin}@cs.jhu.edu

3 Max Planck Institute for Security and Privacy
giulio.malavolta@hotmail.it

Abstract. We consider the problem of round-optimal unbounded MPC :
in the first round, parties publish a message that depends only on their
input. In the second round, any subset of parties can jointly and securely
compute any function f over their inputs in a single round of broadcast.
We do not impose any a-priori bound on the number of parties nor on
the size of the functions that can be computed.

Our main result is a semi-honest two-round protocol for unbounded
MPC in the plain model from the hardness of the standard learning
with errors (LWE) problem. Prior work in the same setting assumes the
hardness of problems over bilinear maps. Thus, our protocol is the first
example of unbounded MPC that is post-quantum secure.

The central ingredient of our protocol is a new scheme of attribute-
based secure function evaluation (AB-SFE) with public decryption. Our
construction combines techniques from the realm of homomorphic com-
mitments with delegation of lattice basis. We believe that such a scheme
may find further applications in the future.

1 Introduction

A multi-party computation (MPC) protocol [20] allows a set of n mutually dis-
trustful parties to evaluate any circuit C over their inputs (x1, . . . , xn), while
leaking nothing beyond the circuit output C(x1, . . . , xn). MPC is one of the
pillars of modern cryptography and the study of its round complexity (and
the necessary assumptions) has motivated a large body of research. A series
of recent works has established that two rounds are necessary and sufficient
to securely compute any function, under a variety of cryptographic assump-
tions [15, 24, 29, 17, 8, 18].

A recent line of work [2, 7, 9] focuses on constructing round-optimal MPC
with reusable first message, i.e. where the first message of the MPC can be
reused an unbounded number of times for computing different functions over
the committed inputs. However, out of these works only [9] achieves the “dream
version” of two round MPC, i.e. an MPC that simultaneously satisfies all of the
following properties:

2 Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta

– No trusted setup is required.

– In the first round, each party publishes a first message that depends only on
their input and does not depend on the number of parties nor on the size of
the circuit being evaluated.

– In the second round, any subset of parties can evaluate a circuit C over their
first messages. The output can be publicly reconstructed given all the second
messages.

– The second round can be repeated arbitrarily many times (with different
circuits and different sets of parties), without the need to recompute a first
message. Parties can join the system at any time by posting a first message.

Throughout this work, we refer to such an MPC protocol as unbounded MPC.
Among all works on round-optimal protocols, only [9] achieves the notion of

truly unbounded MPC without the need for a trusted setup. In particular, the
works of [2, 7] fall short in satisfying this notion because they impose a bound
on the number of participants that needs to be fixed once and for all in the first
round and needs to be shared across all parties. The earlier work of [29] does
not suffer from this limitation, but requires a trusted setup.

The work of [9] assumes the hardness of standard problems over bilinear
maps. While the veracity of such assumptions is well-established in the classical
settings, the lurking threat of quantum computing renders such a solution imme-
diately insecure in the presence of a scalable quantum machine. This motivates
us to ask the following question:

Can we construct unbounded MPC from Learning with Errors (LWE)?

1.1 Our Results

We consider the problem of unbounded MPC with security against semi-honest
adversaries in the dishonest majority setting. In our communication model, par-
ties publish their first message through a broadcast channel which is immedi-
ately delivered to all participants. At any point in time, any subset S of par-
ticipants (with a dishonest majority) can gather together and evaluate a circuit
C over their inputs (x1, . . . , x|S|) in a single round of broadcast. The output
C(x1, . . . , x|S|) can then be publicly reconstructed from the messages of all par-
ties. This phase can be repeated arbitrarily many times without having to re-
initialize the first message (i.e. the first message is reusable). We do not impose
any a-priori bound on the number of participants nor on the size of the circuits.

We prove the following theorem:

Theorem 1 (Informal). If the learning with errors (LWE) problem is hard,
then there exist a two-round unbounded MPC in the plain model.

By additionally assuming the quantum hardness of LWE, we obtain the first
post-quantum secure protocol for (semi-honest) unbounded MPC in two rounds.
Our main technical ingredient is a new construction of attribute-based secure

Unbounded Multi-Party Computation from Learning with Errors 3

function evaluation (AB-SFE) [27] where the output can be publicly reconstructed
at the end of the second round. On a technical level, our scheme combines the
homomorphic commitment scheme from [23] with techniques to delegate a lattice
basis. We believe that such a scheme may find further applications in the future.

Semi-Malicious Security. In the full version of the paper, we extend our
results to the semi-malicious setting by building on techniques in [10].

2 Technical Overview

In the following, we summarize the main technical innovations of our work. This
outline can be roughly split in three components: First we introduce the notion
of AB-SFE [27] with public decryption and we recall the security properties that
we want to guarantee. Then we show an instantiation of AB-SFE with public
decryption from LWE, building on the construction of homomorphic commit-
ments from [23]. Finally, we show how AB-SFE functions as the main ingredient
(alongside garbled circuits) for constructing unbounded MPC.

2.1 AB-SFE with Public Decryption

We begin by recalling the notion of AB-SFE [27]. AB-SFE was introduced in
the context of designated-verifier non-interactive zero-knowledge proof to obtain
constructions from new assumptions. However the work of [27] focused on the
notion where decrypting a message requires a secret state (that might leak some
information about the attribute). Here we augment the syntax of AB-SFE with
a public decryption procedure. For the purpose of our work, it is going to be
useful to cast this primitive as a two-party protocol between an “authority” and
a “sender.” The interaction proceeds as follows:

– Key Generation: On input an attribute x, the authority locally runs a
setup algorithm crs ← Setup(1λ) and generates a secret/public key pair
(msk, pk)← KeyGen(crs, x).4

– Encryption: Given the public key pk (generated as above), a circuit C and
a message µ, the sender computes a ciphertext ct← Enc(pk, C, µ).

– Decryption Hint: To enable public decryption, the authority crafts a
circuit-specific decryption hint skC ← Hint(msk, C).

– Public Decryption: Anyone who possesses the ciphertext ct and the de-
cryption hint skC can recover the message µ by running Dec(skC , ct). The
procedure succeeds if and only if C(x) = 1.

One way to intepret this primitive is as a secure two-party computation proto-
col where the interaction consists only of two rounds and where only one party

4 Note that we could have merged the Setup and the KeyGen algorithms in a single
subroutine, however we refrained to do so in order to match the original syntax
from [27].

4 Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta

speaks in the first round. Looking ahead, this latter property is going to be cru-
cial to achieve unbounded secure MPC, since it will allow multiple (unbounded)
parties to simultaneously play the role of the sender.

Security of AB-SFE. As for the security of AB-SFE we define two properties:
(1) We require that nothing beyond C(x) is revealed about the attribute x. This
requirement must hold even for polynomially many circuits (C1, . . . , Cq) and
in the presence of the corresponding decryption hints (skC1

, . . . , skCq), for any
polynomial q. (2) We require that for all cirucits C such that C(x) = 0 it holds
that

Enc(pk, C, µ0) ≈ Enc(pk, C, µ1)

are computationally inditinguishable. This is required to hold even if the dis-
tinguisher is given the random coins used in the key generation procedure. In
other words, if the circuit outputs 0, even the key authority should not be able
to learn the message of the sender. This is in stark contrast with the standard
attribute-based encryption settings [31, 25] where typically semantic security
does not hold against a corrupted authority.

2.2 AB-SFE from Learning with Errors

The problem of constructing AB-SFE was considered in [27] where they obtained
schemes from a variety of assumptions in the private decryption settings, based
on 2-round oblivious transfer. However, none of their schemes support public
decryption (without adding an extra round of interaction).

In this work we take a different route. Our starting point is the fully homo-
morphic commitment scheme from [23], which we briefly recall in the following.

Homomorphic Commitments. The commitment key is a uniform matrix
A← Zn×mq and committing to a multi-bit string (x1, . . . , xu) corresponds to the
computation of a set of

Ci = Com(A, xi; Ri) = A ·Ri + xiG

where Ri ← {0, 1}m×m and G is the gadget matrix from [28]. Here Ri is a low-
norm vector and plays the role of the decommitment. In [23] it is shown that one
can homomorphically evaluate any (depth-bounded) circuit C over committed
value and still obtain a well-formed commitment CC . The exact details of the
algorithm are irrelevant for the purpose of this overview, except for the fact that
one can define a (deterministic) homomrphic computation over the decommit-
ments and obtain a low-norm vector RC,x, which is a valid decommiment for
CC .

At this point it is instructive to take a step back and think how we could
implement AB-SFE if we had a general-purpose witness encryption [16] scheme.
A witness encryption scheme, associated with a NP language, consists of an en-
cryption and a decryption algorithm: Anyone can encrypt their message µ under
an NP instance and the decryption algorithm can obtain µ using the witness
to this instance. We use witness encryption as follows: The sender encrypts µ

Unbounded Multi-Party Computation from Learning with Errors 5

under the instance A · RC,x + C(x)G which is obtained by homomorphically
evaluating upon the commitments using the circuit C. The authority releases
the decomitment RC,x as witness which would then allow anyone to recover µ if
and only if C(x) = 1. Temporarily glossing over the fact that RC,x might leak
some information about x, we are going to show how to implement this idea
without resorting to the power of general-purpose witness encryption.

Computing Hints via Basis Delegation. Our first observation is that, when
C(x) = 1, the matrix

[
A CC

]
=
[
A ARC,x + G

]
matches the construction of

lattice trapdoor in [28]. Hence, RC,x allows us to compute a short basis (a trap-
door) for the dual lattice spanned by

[
A CC

]
. Following [28], such a trapdoor

T can be efficiently computed in the following way

T =

[
I −RC,x

0 I

]
·
[

I 0
−G−1[A] TG

]
where TG is a short basis for the lattice Λ⊥q (G), which is publicly computable.

At this point it is tempting to view
[
A CC

]
as the public-key of the witness

encryption and T as the witness. After all, T has low norm if and only if RC,x

does, which implies that RC,x is a valid decommitment for CC .
However we are not yet done. The adversary receives RC,x, for multiple cir-

cuits, where each decommitment is a deterministic function of the decomitments
(R1, . . . ,Ru) and enough number of such decommitments will leak some infor-
mation about x. Recall that we are interested in the public decryption setting,
which would require us to publicly release T, which is again a deterministic
funciton of RC,x.

Our next idea is to randomize the trapdoor T using the basis delegation
procedure of [12]. In the literature, this process is also referred to as SampleRight.

First we add a uniformly sampled matrix Â ← Zn×2mq and a uniform vector

y← Znq to the public paramenters. Given the trapdoor T for
[
A CC

]
, the inverse

sampling algorithm allows us to probabilistically sample a low-norm vector e
such that [

Â A CC

]
· e = y

and e carries no information about T. At this point we have all ingredients to
instantiate our witness encryption: After recomputing CC homomorphically, the
encryptor parses

p̂k =
[
y Â A CC

]
as a public key for a dual Regev encryption scheme [19] (with appropriate di-

mensions) and uses p̂k to encrypt µ in a canonical way. The decryption hint e
can be computed from RC,x as described above and allows anyone to recover
µ, since it has low norm. Some care is needed in setting the parameters for the
noise, but it is not hard to prove that the scheme is secure assuming the hardness
of the LWE problem.

To see why we achieve security against a corrupted sender, we first switch
from using a trapdoor for

[
A CC

]
to generate the matrix RC,x to instead use

6 Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta

a trapdoor for Â (using a process referred to as SampleLeft)5; this switch is
statistically indistinguishable and follows from the standard lattice trapdoor
lemmas. We do this switch for every circuit. Once we do this, we then invoke
leftover hash lemma to instead generate the commitment as Ui + xiG, where
Ui is generated uniformly at random. At this point, the input of the receiver is
information-theoretically hidden from the sender.

The security against a corrupted receiver follows from the noise smudging
lemma and learning with errors.

2.3 From AB-SFE with Public Decryption to Unbounded MPC

We are now ready to show how AB-SFE with public decryption readily gives us
a construction of unbounded MPC.

Building Blocks. In addition to AB-SFE with public decryption, we are going
to assume the existence of any semi-malicious secure two-round MPC, denoted
by mpc, such as the protocols proposed in [8, 18]. We note that we do not
place any additional restrictions on mpc: For instance, it need not guarantee
any reusability property and moreover, the total number of parties in the MPC
protocol can be fixed before the first round message. Furthermore we are going
to make use of garbled circuits [32]. For the reader unfamiliar with the notion, a
garbling scheme allows one to compute a garbled version of a circuit C together
with set of label pairs (labi,0, labi,1). Given an input z, its encoding consists of the
labels corresponding to its bit representation (lab1,z1 , . . . , lab|z|,z|z|) and security
requires that nothing is revealed about z, besides the output of the computation
C(z).

It is also going to be convenient to consider an augmented notion of AB-SFE,
that we denote by 2AB-SFE, following the convention from [22]. A 2AB-SFE
with public decryption is identical to AB-SFE with public decryption except
that the encryption algorithm takes as input two messages (µ0, µ1) and the
public decryption returns µ0 if C(x) = 0 and µ1 if C(x) = 1. Given an AB-SFE,
it is easy to construct a 2AB-SFE by just encrypting µ0 under the complement
of C.

The Unbounded MPC Protocol. We provide a simplified desciption of our
unbounded MPC in the following.

– First Message: Given an input xi, the first message of each party simply
consists of the generation of a public key pki for the 2AB-SFE scheme, where
the attribute is set to the input xi.

– Second Message: Each party Pi is given as input set of parties S and a cir-
cuit C. First, it computes a garbled version of the circuit that takes as input
S (specifying the subset of parties participating in the protocol), any first

5 In the technical sections, instead of using the terms SampleLeft and SampleRight,
we use the algorithm GenSamplePre that captures the functionality of both these
algorithms.

Unbounded Multi-Party Computation from Learning with Errors 7

round messages (m1, . . . ,m|S|) of mpc and computes the ith party’s second
round messages of mpc (the input xi is hardwired in the computation). After
it computes the garbled circuit, it then takes each pair of labels (labi,0, labi,1)
and computes a 2AB-SFE encryption for the corresponding participant Pj
under the circuit Γi,j , defined as follows.

Γi,j : Compute the i-th bit of mj .

Finally, for all j = 1 . . . |S| compute the decryption hints for the 2AB-SFE
encryption corresponding to the circuit Γj,i.

– Reconstruction: The public reconstruction algorithm works by using all
the decryption hints to recover all the labels, which in turn are used to eval-
uate the garbled circuits. This results in a set of second round messages
(p1, . . . , p|S|) for the underlying two-round MPC. The reconstruction algo-
rithm then returns the result of the reconstruction procedure of the one-time
MPC.

Since the first message consists only of the key of the 2AB-SFE scheme, it is
clear that the resulting MPC does not impose a bound on the parties. Also
note that the underlying two-round secure MPC, namely mpc, is freshly re-
initialized for each second message and therefore the security of the reusable
protocol is not affected. One subtlety that we ignored in the above description is
that the computation of the messages for the one-time MPC is randomized and
we need to ensure that the same randomness is used consistently in the first and
second message for each party. This can be done routinely by adding a PRF key
alongside the input and drawing all necessary random coins by evaluating the
PRF on some public input.

2.4 Related Work

Ishai et al. [26] introduced the notion of reusable non-interactive secure compu-
tation (rNISC), where a receiver can publish a reusable encoding of its input
y and any sender can enable computation of f(x, y) by computing a message
using input x and sending it to the receiver. This notion has subsequently been
studied in many follow-up works; see, e.g., [1, 11, 5, 6, 13].

The recent work of Benhamouda and Lin [9] extends this notion to the mul-
tiparty setting, and refer to it as multiparty reusable NISC (mrNISC). Unlike
rNISC which is primarily challenging in the malicious adversary model (from the
viewpoint of black-box constructions), mrNISC is non-trivial even in the semi-
honest adversary model. Unbounded MPC seeks the same goals as mrNISC; we
use the former terminology to emphasize the key property that the first round
messages do not depend on the number of parties or the size of the circuit or
the size of the subset of parties involved in the actual computation.

8 Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta

3 Preliminaries

3.1 Notations

For any integer n, we use [n] to denote the set {1, 2, . . . , n}. We use Z to denote
the sets of integers, and use Zq to denote Z/qZ.

For any sets S1, S2, . . . , Sn of integers, and any tuple (i∗1, i
∗
2, . . . , i

∗
n) ∈ S1 ×

S2× · · ·×Sn, we use the notation (i∗1, i
∗
2, . . . , i

∗
n) + 1 (resp. (i∗1, i

∗
2, . . . , i

∗
n)− 1) to

denote the lexicographical smallest (resp. biggest) element in S1×S2× · · · ×Sn
that is lexicographical greater (resp. less) than (i∗1, i

∗
2, . . . , i

∗
n).

Statistical Distance. For any two discrete distributions P,Q, the statis-
tical distance between P and Q is defined as SD(P,Q) =

∑
i

∣∣Pr [P = i] −
Pr [Q = i]

∣∣/2 where i takes all the values in the support of P and Q.

3.2 Lattice and LWE Assumption

Let m be an integer, a lattice is a discrete additive group in Rm. We say that
a set of linear independent vectors B = {b1,b2, . . . ,bk} is a basis of a lattice

Λ, if Λ = {Bz | z ∈ Zk}. Let B̃ = {b̃1, b̃2, . . . , b̃k} be the Gram-Schmidt basis

derived from B. We denote ‖B̃‖ = maxi∈[k] ‖b̃i‖.
For any integer n,m, q ≥ 2 and Zn×mq , we define the q-ary lattice

Λq(A) = {z ∈ Zmq | ∃s ∈ Zn, z = AT s (modq)}
Λ⊥q (A) = {z ∈ Zmq | Az = 0 (modq)}

Similarly, for any y ∈ Znq , we define the coset Λy
q (A) = {z ∈ Zmq | Az =

y (modq)}.

Discrete Gaussian. For any integer n and real s > 0, define the Gaussian
function ρs : R→ R+ of parameter s as ρs(x) = exp(−π‖x‖2/s2). For any lattice
Λ, any vector c ∈ Rm, and real s > 0, we denote ρs(Λ + c) =

∑
x∈Λ ρs(x + c).

The discrete Gaussian probabilistic distribution DΛ+c,s is a distribution over Λ
with density function ρs(x)/ρs(Λ+ c), for any x ∈ Λ.

Theorem 2 (Noise Flooding [4, 21, 14, 30]). For any c ∈ Z, and real s > 0,
SD(DZ,s, Dc+Z,s) < O(c/s).

Definition 1 (LWE Assumption). Let n = n(λ),m = m(λ), ` = `(λ) be

polynomials in λ, and let the modulus q = 2λ
O(1)

be a function of λ, and χ = χ(λ)
be a noise distribution. The Learning with Error (LWE) assumption states that
for any PPT distinguisher D, there exists a negligible function ν(λ) such that
for any sufficiently large λ,∣∣∣∣Pr

[
D(1λ, (A,S ·A + E)) = 1

]
− Pr

[
D(1λ, (A,U)) = 1

] ∣∣∣∣ < ν(λ)

where A← Zn×mq ,S← Z`×nq ,U← Z`×mq ,E← χ`×m.

Unbounded Multi-Party Computation from Learning with Errors 9

Lattice Trapdoor and Preimage Sampling.

Theorem 3 ([28], Theorem 5.1). There is an efficient randomized algorithm
TrapGen(1n, 1m, q), that given any integer n ≥ 1, q ≥ 2, and sufficiently large
m = O(n log q), outputs a (partity-check) matrix A ∈ Zn×mq , and a short basis

T for Λ⊥q (A), such that A is statistically close to uniform.

Theorem 4 ([12], Theorem 3.4, Special Case). Let n, q,m be positive inte-
gers with q ≥ 2, and m ≥ 2n log q, there exists a PPT algorithm GenSamplePre on
input of A =

[
A1 A2

]
∈ Zn×2mq , and S ∈ {1, 2}, a basis BS for Λ⊥q (AS), a vec-

tor y ∈ Znq , and an integer r > ‖B̃S‖·ω(
√

log 2m), outputs e← GenSamplePre(A,
BS , S,y, r), such that for overwhelming fraction of A, e is statistically close to
DΛy

q (A),r.

3.3 Garbling Scheme

A garbling scheme is a pair of algorithms (Garble,Eval), which works as follows.

– Garble(1λ, C): The garbling algorithm takes as input a security parametere
λ, and a circuit C with input length `in and output length `out. Then it
outputs a garbled circuit C̃ and some labels lab = {labb,i}b∈{0,1},i∈[`in].

– Eval(C̃, labx): For any x ∈ `in, let labx denote {labxi,i}i∈[`in]. On input C̃ and
labx, it outputs a y.

We require a garbling scheme to satisfy the following properties.

– Correctness: For any circuit C : {0, 1}`in → {0, 1}`out , and any input x ∈
{0, 1}`in , we have

Pr
[
(C̃, lab)← Garble(1λ, C), y ← Eval(C̃, labx) : y = C(x)

]
= 1

– Simulation Security: There exists a simulator Sim such that for any n.u.
PPT distinguisher D, there exists a negligible function ν(λ) such that∣∣∣∣Pr

[
(C̃, lab)← Garble(1λ, C) : D(1λ, C̃, labx) = 1

]
−

Pr
[
(C, lab)← Sim(1λ, C(x)) : D(1λ, C, lab) = 1

] ∣∣∣∣ < ν(λ)

3.4 Semi-Malicious 2-round MPC in Plain Model

A (one-time useable, selective secure) semi-malicious 2-round MPC in the plain
model is a tuple of algorithms (Round1,Round2,Rec), which work as follows.

There are N parties who want to jointly compute f(x1, x2, . . . , xN), where
xi is the input of i-th party.

10 Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta

– Round 1: For each i ∈ [N], the i-th party sets fresh random coins ri, and
executes msgi ← Round1(1λ, xi, f ; ri).

– Round 2: For each i ∈ [N], the i-th party executes pi ← Round2(xi, ri, {msgj}j∈[N]).

– Output Recovery: Any one with {pi}i∈[N] executes y ← Rec({pi}i∈[N]).

We require the protocol to satisfy the following property.

– Semi-Malicious Simulation Security: There exists a simulator Sim such
that, for any input {xi}i∈[N], for any subset of honest parties H ⊆ [N], and
any dishonest parties’ random coins {ri}i∈[N]\H , any PPT distinguisher D,
there exists a negligible function ν(λ) such that for any sufficiently large λ,∣∣∣∣Pr

[
∀i∈H,ri←{0,1}∗,∀i∈[N],msgi=Round1(1

λ,xi;ri),
pi=Round2(xi,ri,{msgj}j∈[N])

: D(1λ, {msgi, pi}i∈[N]) = 1
]
−

Pr
[
D(1λ,Sim(1λ, H, {xi, ri}i/∈H , f, f({xi}i∈[N]))) = 1

] ∣∣∣∣ < ν(λ)

Here, without loss of generality, we assume the Round1 and Round2 use the
same random coins.

3.5 Homomorphic Commitment

A homomorphic commitment scheme is a tuple of algorithms (Setup,Com,Eval),
with the following syntax.

– Gen(1λ) : A CRS generation algorithm that takes as input a security param-
eter λ, and it outputs a common random string crs.

– Com(crs, µ; r) : A commitment algorithm that takes as input the CRS crs, a
message µ ∈ {0, 1}, and randomness r, it outputs a commmiment c.

– Eval(C, (c1, c2, . . . , cu)) : The (fully) homomorphic evaluation algorithm Eval
takes as input a circuit C, and some commitments c1, c2, . . . , cu, and it out-
puts an evaluated commitment Com(C(x); rC,x), where x = (x1, x2, . . . , xu)
is the message that c1, c2, . . . , cu committed. Furthermore, the randomness
rC,x can be efficiently computed from the randomenss used to compute
c1, c2, . . . cu and x.

We require it to satisfy the following properties.

Statistical Hiding. There exists a negligible function ν(λ) such that,

SD((crs,Com(crs, 0)), (crs,Com(crs, 1))) < ν(λ),

where the randomness is over the CRS crs and the randomness used to compute
the commitment.

Construction. Let n = n(λ) be a polynomial in λ, q = 2ADD, andm = 2n log q.

– Gen(1λ) : It samples A← Zn×mq uniformly at random, and output crs = A.

Unbounded Multi-Party Computation from Learning with Errors 11

– Com(crs = A, µ ∈ {0, 1}; R) : It outputs a commitment C = AR + µG.

– Eval(C, (C1,C2, . . . ,Cu)): For each gate in the circuit C, the homomorphic
evaluation algorithm performs the following:
• For each addition gate, let the commitment of the input wires to be

Cl,Cr, it computes the commitment for the output wire as follows.

Co = Cl + Cr

• For each multiplication gate, let the commitment of the input wires to
be Cl,Cr, it computes the commitment for the output wire as follows.

Co = ClG
−1[Cr]

Lemma 1 (Bound on Homomorphic Evaluation). Let A ∈ Zn×mq be a
matrix, x = (x1, x2, . . . , xu) be a binary string, and C be a boolean circuit of
depth d. Let

C = Eval(C, (Com(A, x1; R1),Com(A, x2; R1), . . . ,Com(A, xu; Ru))),

where x1, x2, . . . , xu ∈ {0, 1}, and R1,R2, . . . ,Ru ∈ {0, 1}m×m. Then there ex-
ists a RC,x that can be efficiently computed from x1, x2, . . . , xu and R1,R2, . . . ,Ru

such that C = Com(A, C(x1, x2, . . . , xu); RC,x) and ‖RC,x‖max < 2O(d logm).

Proof. We analysis for each gate. For each addition gate, if Cl = ARl + µlG,
and Cr = ARr + µrG, then Co = A(Rl + Rr) + (µr + µl)G. Hence, if we let
Ro = Rl + Rr, then ‖Ro‖max ≤ ‖Rl‖max + ‖Rr‖max.

For each multiplication gate, Co = ClG
−1[Cr] = A(RlG

−1[Cr] + µrRr) +
µlµrG. Let Ro = RlG

−1[Cr]+µrGr. Hence, ‖Ro‖max ≤ m‖Rl‖max+‖Rr‖max.
Hence, by induction on the depth of the circuit, we have that ‖RC,x‖max ≤

(m+ 1)O(d).

4 Secure Function Evaluation with Public Decryption

4.1 Definition

An AB-SFE with public decryption is a tuple of algorithms (Setup,KeyGen,Enc,
Hint,Dec), with the following syntax.

– Setup(1λ): On input the security parameter λ, output a common random
string crs.

– KeyGen(crs, x): On input the crs, and a binary string x, it outputs a public
key pk and a master secret key msk.

– Enc(pk, C, µ): On input the public key pk, a boolean circuit C : {0, 1}|x| →
{0, 1}, and a message µ ∈ {0, 1}, it outputs a ciphertext ct.

– Hint(msk, C): On input the master secret key, and the circuit C, output a
hint skC .

12 Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta

– Dec(skC , ct): On input a hint skC , and a ciphertext ct, it outputs a message
µ′.

We require the AB-SFE to satisfy the following properties.

– Correctness. For any binary string x, circuit C : {0, 1}|x| → {0, 1} with
C(x) = 1, and any message µ ∈ {0, 1}, there exists a negligible function ν(λ)
such that for any sufficiently large λ,

Pr
[
crs←Setup(1λ),(pk,msk)←KeyGen(crs,x),ct←Enc(pk,C,µ)

skC←Hint(msk,C),µ′←Dec(skC ,ct)
: µ = µ′

]
≥ 1− ν(λ)

– Statistical Indistinguishability of Public Keys. There exists a negligi-
ble function ν(λ) such that, with 1−negl(λ) probability over the randomness
of crs← Setup(1λ), for any x0, x1 with |x0| = |x1|, and any sufficiently large
λ,

SD (pk0, pk1) < ν(λ)

where pkb is generated by KeyGen(crs, xb) for b ∈ {0, 1}.
– Statistical Simulation of Hints. There exists a negligible function ν(λ), a

PPT crs generating function Setup(1λ) and a PPT simulator Sim such that,
for any input string x, any circuit C, let (crs, tr) ← Setup(1λ), (pk,msk) ←
KeyGen(crs, x), we have

SD
(
Setup(1λ), crs

)
< ν(λ) (1)

SD
(
Hint(msk, f),Sim(1λ, pk, tr, C, C(x))

)
< ν(λ) (2)

where the randomness in Equation 1 is over the randomness of Setup. The
randomness in Equation 2 is only over the randomness of Hint, and all other
random values are fixed.

– Adaptive Sender Computational Indistinguishable Security. For any
input string x, any boolean circuit C : {0, 1}|x| → {0, 1} with C(x) = 0, any
adaptive n.u. PPT adversary A, there exists a negligible function ν(λ) such
that∣∣∣∣Pr

[
crs←Setup(1λ),r←{0,1}∗
(pk,msk)=KeyGen(crs,x;r)

: C ← A(1λ, crs, r),A(Enc(pk, C, 0)) = 1
]
−

Pr
[
crs←Setup(1λ),r←{0,1}∗
(pk,msk)=KeyGen(crs,x;r)

: C ← A(1λ, crs, r),A(Enc(pk, C, 1)) = 1
] ∣∣∣∣ < ν(λ)

2AB-SFE. A 2AB-SFE scheme with public decryption has the same syntax as
AB-SFE with public decryption, except that Enc and Dec are replaced by the
following two algorithms:

– 2Enc(pk, C, {µi,0, µi,1}i∈[`out]): On input the public key pk, a multi-bit output

circuit C : {0, 1}|x| → {0, 1}`out , and `out pair of labels, it output a ciphertext
ct.

Unbounded Multi-Party Computation from Learning with Errors 13

– 2Dec(skC , ct): On input a hint skC , and a ciphertext ct, output {µ′i}i∈[`out].

We also extend the correctness and sender’s security to the following.

– Correctness: For any binary string x, circuit C : {0, 1}|x| → {0, 1}`out , and
any messages (µi,0, µi,1)i∈[`out], there exists a negligible function ν(λ) such
that for any sufficiently large λ,

Pr

[
crs←Setup(1λ),(pk,msk)←KeyGen(crs,x),ct←2Enc(pk,C,(µi,0,µi,1)i∈[`out])

skC←Hint(msk,C),(µ′i)i∈[`out]←2Dec(skC ,ct)
:

∀i ∈ [`out], µ
′
i = µi,Ci(x)

]
≥ 1− ν(λ)

where Ci(x) is the i-th output bit of C(x).

– Adaptive Sender’s Computational Indistinguishable Security: For
any input string x, any circuit C : {0, 1}|x| → {0, 1}`out , any messages
(µi,0, µi,1)i∈[`out], any n.u. PPT adversary A, there exists a negligible function
ν(λ) such that for any sufficiently large λ,∣∣∣∣Pr

[
crs←Setup(1λ),r←{0,1}∗
(pk,msk)=KeyGen(crs,x;r)

:C ← A(1λ, crs, r),

A(2Enc(pk, C, (µi,0, µi,1)i∈[`out])) = 1

]
−

Pr

[
crs←Setup(1λ),r←{0,1}∗
(pk,msk)=KeyGen(crs,x;r)

:C ← A(1λ, crs, r),

A(2Enc(pk, C, (µi,Ci(x), µi,Ci(x))i∈[`out])) = 1

]∣∣∣∣ < ν(λ)

From AB-SFE to 2AB-SFE with Public Decryption. Given an AB-SFE
scheme with public decryption, it is straightforward to construct a 2AB-SFE
scheme with public decryption, following the methodology in [22] (where it was
described in the context of attribute-based encryption). Roughly speaking, the
idea is to encrypt one of the messages under the complement of C. We refer the
reader to [22] for details.

4.2 Construction

Our construction uses the following parameters and algorithms.

– λ, the security parameter.

– n, the dimension of LWE.

– q = 2Θ(d log3 λ), the LWE modulus, where d is the bound for the depth of the
circuit.

– χ, the discrete Gaussian of deviation poly(λ).

14 Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta

– χ′, the descrete Gaussian of deviation 2Θ(d log2 λ).

– m = 2n log q, the number of columns in the commitment.

– A homomorphic commitment scheme (Gen,Com,Eval). See Section 3.5.

– Preimage sampling algorithm GenSamplePre, with r = 2Θ(d log2m). See Sec-
tion 3.2.

The construction is described in Figure 1. Now we proceed to prove the proper-
ties.

Removing the Depth Dependence. In the construction Figure 1, the param-
eters depends on the depth of the circuit. However, one can use the randomized
encoding [3] to remove the depth dependence. Specifically, instead of evaluate
the circuit C on input x directly, we evaluate the randomized encoding of C
and x. Since the randmoized encoding can be computed in NC1, we can set the
parameters to be large enough to work for any circuit in NC1, and thus remove
the depth dependence.

Lemma 2 (Correctness). The construction in Figure 1 satisfies correctness.

Proof. For any binary string x, any circuit C with C(x) = 1 and depth at most d,
and any message µ ∈ {0, 1}, by Lemma 1, RC,x is bounded by 2O(d logm). Hence,

‖TA′‖max ≤ 2‖RC,x‖max(2m) = 2O(d logm), and thus ‖T̃A′‖ ≤
√

2m‖TA′‖max =
2O(d logm). Since the matrix TA′ is basis for Λ⊥q (A′) and we set the parameter

r = 2Θ(d log2m) > ‖T̃A′‖ · ω(
√

log 2m). From Theorem 4, e is statistically close
to DΛy

q (A′),r. Hence, we have

〈
ct, (1,−eT)

〉
= sT ·

[
y A′′

] [1
−e

]
+
[
eT1 eT2

] [1
−e

]
+
q

2
µ =

q

2
µ+

[
eT1 eT2

] [1
−e

]
,

where the second equality follows from e ≈s DΛy
q (A′′)r , and thus A′′e = y with

overwhelming probability.
Since the second term can be bounded by

|
〈
(eT1 , e

T
2), (1,−e)

〉
| ≤

√
‖e1‖2 + ‖e2‖2 ·

√
‖e‖2 + 1 < q/4,

with overwhelming probability, the scheme is correct.

Lemma 3 (Statistical Indistinguishability of Public Keys). The con-
struction satisfies statistical public key indistinguishability security.

Proof. For any x0, x1 with |x0| = |x1|, and b ∈ {0, 1}, we have pkb = (crs,Com(A, xb)).
From the statistical hiding property of the commitment scheme, we have SD(pk0,
pk1) < ν(λ).

Lemma 4 (Statistical Simulation of Hints). The construction satisfies sta-
tistical hint simulation security.

Unbounded Multi-Party Computation from Learning with Errors 15

AB-SFE with Public Decryption

– Setup(1λ): Sample y← Znq ,A← Zn×mq , Â← Zn×2m
q . Output crs = (y,A, Â).

– KeyGen(crs, x = (x1, . . . , xu) ∈ {0, 1}u):

• Parse crs = (y,A, Â). Sample Ri ← {0, 1}m×m.

• For all i ∈ [u], compute Ci = Com(A, xi;Ri) = A ·Ri + xiG.

• Let pk = (crs, {Ci}i∈[u]), and msk = (pk, {Ri}i∈[u]).
• Output (pk,msk).

– Enc(pk, C, µ ∈ {0, 1}):
• Parse pk = (crs, {Ci}i∈[u]) and crs = (y,A, Ã).

• Deterministically homomorphically compute CC = Eval(C, {Ci}i∈[u]).

• Let A′ =
[
A CC

]
, and A′′ =

[
Â A′

]
.

• Samples s← Znq and e1 ← χ3m+1, e2 ← χ′m.

• Output ct = sT ·
[
y A′′

]
+
[
eT1 eT2

]
+ µ ·

[
q
2
01×4m

]
.

– Hint(msk, C):

• Parse msk = (pk, {Ri}i∈[u]), and pk = ((y,A, Â), {C}i∈[u])
• Deterministically homomorphically compute CC = Eval(C, {Ci}i∈[u]).

• Let A′ =
[
A CC

]
, and A′′ =

[
Â A′

]
.

• If C(x) = 0, Let skC = ⊥. Otherwise, parse CC = A ·RC,x +G, where RC,x

can be obtained deterministically from {Ri}i∈[u] and C.

• Let TA′ =

[
I −RC,x

0 I

]
·
[

I 0
−G−1[A] TG

]
, where TG is the short basis for

Λ⊥q (G).

• Sample e← GenSamplePre(A′′,TA′ , 2,y, r).

• Output skC = e.

– Dec(skC , ct):
• If skC = ⊥, output ⊥.

• Otherwise, parse skC = e, if |
〈
ct, (1,−eT)

〉
| < q/4, then let µ′ = 0, otherwise

µ′ = 1, and output µ′.

Fig. 1. Description of AB-SFE with public decryption.

Proof. We construct the following simulator (Setup,Sim).

We now prove the two properties. For any x ∈ {0, 1}n, let crs ← Setup(1λ),
(pk,msk)← KeyGen(crs, x), and (crs, tr)← Setup(1λ).

16 Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta

Simulator (Setup, Sim)

– Setup(1λ):
• Sample y← Znq ,A← Gen(1λ).

• Let (Â,T)← TrapGen(1n, 12m).

• Output crs = (y,A, Â), and trapdoor tr = T.

– Sim(1λ, pk, tr, C, C(x)):

• Parse pk = (crs, (Ci)i∈[u]), crs = (y,A, Â), and tr = T.

• Deterministically homomorphically compute CC = Eval(C, (Ci)i∈[u]).

• Denote A′ =
[
A CC

]
, and A′′ =

[
Â A′

]
.

• If C(x) = 0, Let skC = ⊥.

• Otherwise, Sample e← GenSamplePre(A′′, tr, 1,y, r).

• Output skC = e.

Fig. 2. Description of the simulator.

– SD(crs, crs) < negl(λ): This follows from the property that Â sampled by
TrapGen is statistically close to uniform random.

– SD
(
Hint(msk, C),Sim(1λ, pk, tr, C, C(x))

)
< negl(λ): Note that the matrices

A′′ in Sim and Hint are the same. Follow the argument in Lemma 2, the
parameters r satisfies the condition for Theorem 4. Hence, from Theorem 4,
we have

SD (GenSamplePre(A′′,TA′ , 2,y, r),GenSamplePre(A′′,T, 1,y, r)) < negl(λ)

Hence, SD(skC , skC) < negl(λ).

Lemma 5 (Sender’s Indistinguishability Security). The construction sat-
isfies sender’s indistinguishability security.

Proof. For any input x1, . . . , xu and circuit C with C(x1, x2, . . . , xu) = 0, we
build the following hybrids.

– Hybrid0: In this hybrid, the adversary is given a ciphertext of Enc(pk, C, 0).

– Hybrid1: This hybrid is almost the same as Hybrid0, except that we use RC,x

to generate the ciphertext ct. Specifically, we replace the ct as follows.
• Let CC = A ·RC,x, where RC,x can be computed deterministically from
{Ri}i∈[u].

• Samples s← Znq and e← χ, e′1 ← χ2m, e′2 ← χm, e2 ← χ′m.

• Output ct =
[
sT · y + e+ q

2µ sT Â + e′T1 sTA + e′T2 (sTA + e′T2) ·RC,x + eT2

]
.

Unbounded Multi-Party Computation from Learning with Errors 17

– Hybrid2: This hybrid is the same as Hybrid1, except that we replace the first,
the second, and the third component of ct as uniformly random matrices.
Specifically, we replace the ct as follows.
• Let CC = A ·RC,x, where RC,x can be computed deterministically from

(Ri)i∈[u].

• Samples u← Zq,u1 ← Z2m
q and u2 ← Zmq , e2 ← χ′m.

• Output ct =
[
u u1 u2 u2 ·RC,x + eT2

]
.

– Hybrid3: This hybrid is almost the same as Hybrid0, except that the adversary
is given a ciphertext of Enc(pk, C, 1).

Now we prove that these hybrids are indistinguishable.

– Hybrid0 ≈s Hybrid1: In the hybrid Hybrid0, parse eT1 =
[
e e′T1 e′T2

]
, where

e ∈ Zq, e′1 ∈ Z2m
q , e′2 ∈ Zmq . Then we can express ct as

ct = sT ·
[
y Â A CC

]
+
[
e e′1 e′2 e2

]
+ µ

[
q
2 0 0 0

]
=
[
sTy + e + q

2µ, s
T Â + e′T1 , s

TA + e′T2 , (sTA + e′T2)RC,x + eT2 + (−e′T2 RC,x)
]

Since | − e′T2 · RC,x| ≤ ‖e′2‖‖RC,x‖2, by the noise flooding Theorem 2, we
have

SD(Hybrid0,Hybrid1) = SD(eT2 + (−e′T2 RC,x), χ′m) < O(‖e′2‖‖RC,x‖2/r′) = negl(λ)

– Hybrid1 ≈c Hybrid2: Since the only difference between Hybrid1 and Hybrid2 is
the first, the second, and third component of ct. Also note that, in Hybrid1,

sT · y + e, sT Â + e′T1 and sTA + e′T2 are LWE instance, and hence is indis-
tinguishable with the uniformly random u,u1,u2 in Hybrid2. Hence, Hybrid1

and Hybrid2 are computationally indistinguishable by LWE assumption.

– Hybrid2 ≈c Hybrid3: Since Hybrid2 does not use any message µ to generat
the ciphertext ct, we can reverse Hybrid0 to Hybrid2, and obtain Hybrid2 ≈c
Hybrid3.

By the hyrbid argument, we finish the proof.

5 Unbounded MPC

5.1 Definition

A (semi-honest) unbounded MPC protocol is a 2-round MPC protocol (Round1,
Round2,Rec) satisfying the following syntax.

– First Round: The i-th party’s input is xi. It sets the random coins ri, and
executes msgi ← Round1(1λ, xi; ri). Then the i-th party broadcasts msgi.

18 Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta

– Second Round: After receiving the first round messages, a subset of parties
S ⊆ [N] decide to jointly compute a `out-bit output circuit f :

∏
i∈S{0, 1}|xi| →

{0, 1}`out .
For each i ∈ S, the i-th party executes pi ← Round2(xi, ri, {msgj}j∈S , S, f),
and broadcasts pi.

– Public Recovery: Anyone with {pi}i∈S can execute y ← Rec({pi}i∈S , S).

Efficiency. The runing time of Round1 is polynomial in λ and |xi|, and is
independent of N or the size of the circuit they want to compute later. The
runing time of Round2 is polynomial in λ, |S| and |C|.

Unbounded-Party Semi-Honest Security. For any PPT adversary A, there
exists a simulator (Sim1,Sim2) such that∣∣∣Pr

[
ARegstr(·,·),Eval(·,·)(1λ) = 1

]
− Pr

[
ARegstr(·,·),Eval(·,·)(1λ) = 1]

]∣∣∣ ≤ negl(λ)

where the oracles Regstr(·, ·) and Eval(·, ·) are defined as follows.

– Regstr(flag ∈ {Honest,Dishonest}, x):
• Set random coins rN , and let msgi ← Round1(1λ, x; rN).

• If flag is Honest, then let H = H ∪ {i} and output msgN . Otherwise,
output (msg, rN).

• Let xN = x and N = N + 1.

– Eval(S, f):
• If S * [N], then abort.

• For each i ∈ S ∩H, let pi ← Round2(xi, ri, {msgj}j∈S , S, f).

• Output {pi}i∈S .

– Regstr(flag ∈ {Honest,Dishonest}, x):
• If flag is Honest, then let H = H ∪ {N}, compute (msgN , stN) ←

Sim1(1λ, 1|x|), and output msgN . Otherwise, set fresh randomness rN ,
output (Round1(1λ, x; rN), rN).

• Let xN = x, and N = N + 1.

– Eval(S, f):
• If S * [N], then abort.

• Output {pi}i∈S∩H ← Sim2({sti}i∈S∩H , S,H, f, f({xi}i∈S∩H)).

5.2 Construction

We present our unbounded MPC protocol Π = (Round1,Round2,Rec) in Figure
3. Our construction uses the following ingredients:

– An AB-SFE scheme ABSFE = (ABSFE.Setup,ABSFE.KGen,ABSFE.2Enc,
ABSFE.Hint,ABSFE.2Dec) with public decryption.

Unbounded Multi-Party Computation from Learning with Errors 19

– A one-time use two-round semi-malicious MPC protocol One = (One.Round1,
One.Round2,One.Rec) in the plain model.

– A pseudorandom function PRF = (PRF.Gen,PRF.Eval).

– A garbling scheme GC = (GC.Garble,GC.Eval).

Round1(1λ, xi): Party i performs the following steps:

– Sample a CRS crsi ← ABSFE.Setup(1λ) and a PRF key ki ← PRF.Gen(1λ).

– Compute (pki,mski)← ABSFE.KGen(crsi, (xi, ki))

– Output msgi = pki.

Round2(xi, ri, {msgj}j∈S , S, f): Party i performs the following steps:

– Compute crsi, ki and mski from ri, and parse msgj = pkj .

– Compute (C̃i, l̃ab) ← GC.Garble(C[xi,ki]), where the circuit C[xi,ki] on input a tuple
{m̃sgj}j∈S does the following:
• ri = PRF.Eval(ki, (S || f)).

• Output p̃i = One.Round2(xi, ri, {m̃sgj}j∈S , f).

– Parse l̃ab = {˜labj,k,b}j∈S,k∈[|m̃sgj |],b∈{0,1}.

– For j ∈ S \ {i}, compute ci,j ← ABSFE.2Enc
(
pkj , GS,f , {˜labj,k,0, ˜labj,k,1}k∈[|m̃sgj |]

)
,

where the circuit GS,f on input (xi, ki) does the following:
• ri = PRF.Eval(ki, (S || f)).

• m̃sgi = One.Round1(1λ, xi, f ; ri).

• Output m̃sgi.

– hi ← ABSFE.Hint(mski, GS,f), m̃sgi = GS,f (xi, ki).

– Output pi =
(
{ci,j}j∈S\{i}, hi, C̃i, { ˜labi,k,m̃sgi[k]

}k∈[|m̃sgi|]

)
.

Rec({pj}j∈S , S): Party i performs the following steps:

– For each i ∈ S, parse pi =
(
{ci,j}j∈S\{i}, hi, C̃i, { ˜labi,k,m̃sgi[k]

}k∈[|m̃sgi|]

)
.

– For each i ∈ S and j ∈ S \ {i}, compute l̃abi,j ← ABSFE.2Dec(hi, ci,j). Set l̃abi,i =

{ ˜labi,k,m̃sgi[k]
}k∈[|m̃sgi|]. Compute p̃i = GC.Eval(C̃i, {l̃abj}j∈S).

– Output y = One.Rec({p̃i}i∈S).

Fig. 3. Description of Unbounded-Party Reusable MPC Π.

20 Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta

5.3 Security

Lemma 6 (Unbounded-Party Simulation Security). The construction in
Section 5.2 satisfies semi-honest unbounded-party simulation security.

Proof. For any n.u. PPT adversary A, let N(λ) be the upper bound for the
number of parties N , and Q(λ) be the upper bound for the number of queries
the A made to Eval. For any i∗ ∈ [N(λ)], and q∗ ∈ [Q(λ)], we build the following
hybrids.

– Hybrid0: This hybrid is the same as ARegstr(·,·),Eval(·,·).

– Hybrid
(i∗,j∗,q∗)
1 : This hybrid is almost the same as the Hybrid0, except that

we replace the labels used by ABSFE.2Enc to the same labels. Specifically,
we replace the ABSFE.2Enc encryption in Eval(·, ·) as follows.
• For j ∈ S \ {i}, if (i, j, q) < (i∗, j∗, q∗), m̃sgj = GS,f (xj , kj),

ci,j ← ABSFE.2Enc(pkj , GS,f , (˜labj,k,m̃sgj [k]
, ˜labj,k,m̃sgj [k]

)k∈[|m̃sgj |]).

If (i, j, q) ≥ (i∗, j∗, q∗), ci,j ← ABSFE.2Enc(pkj , GS,f , (˜labj,k,0, ˜labj,k,1)k∈[|m̃sgj |]).

– Hybrid
(i∗,q∗)
2 : This hybrid is almost the same as the Hybrid

(N,N,Q)+1
1 , except

that we generate the labels of the garbled circuits by the simulator. Specifi-
cally, we replace the garbled circuits generation in Eval(·, ·) as follows.
• If (i, q) < (i∗, q∗), then (Ci, lab)← GC.Sim(1λ, C[xi,ki]({m̃sgj}j∈S)),

let C̃i = Ci, and parse lab = (˜labj,k,m̃sgj [k]
)j∈S,k∈[|m̃sgj |].

If (i, q) ≥ (i∗, q∗), then (C̃i, l̃ab)← Garble(C[xi,ki]).

– Hybridi
∗

3 : This hybrid is almost the same as Hybrid
(N,Q)+1
2 , except that we

generate the replace the CRS generation of Round1(1λ, xi) in Regstr(·, ·) as
follows.
• If i < i∗ and i ∈ H, generate (crsi, tri)← ABSFE.Setup(1λ).

• If i ≥ i∗ or i /∈ H, generate crsi ← ABSFE.Setup(1λ).

– Hybrid
(i∗,q∗)
4 : This hybrid is almost the same as HybridN+1

3 , except that we
replace the hint generation in Eval(·, ·) by the simulator. Specifically, let q be
the number of queries to Eval(·, ·), we replace the generation of hi as follows.

• If (i, q) < (i∗, q∗) and i ∈ H, hi ← ABSFE.Sim(1λ, pki, tri, GS,f , m̃sgi).

• If (i, q) ≥ (i∗, q∗) or i ∈ H̄, hi ← ABSFE.Hint(mski, GS,f).

– Hybridi
∗

5 : This hybrid is almost the same with Hybrid
(N,Q)+1
4 , except that

we replace the PRF with random function. Specifically, we replace the ran-
domness ri generation in Eval(·, ·) with the following. Let (S, f) be the q-th
query,
• For each i ∈ S, if i < i∗ and i ∈ H, let ri = PRFi.F(S || f).

• If i ≥ i∗ or i /∈ H, let ri = PRF.Eval(ki, (S || f)).

Unbounded Multi-Party Computation from Learning with Errors 21

• Let m̃sgi = One.Round1

(
1λ, xi, f ; ri

)
, p̃i = One.Round2(xi, ri, {m̃sgj}j∈S , f).

where PRFi.F is a random function for each i < i∗, i ∈ H.

– Hybridq
∗

6 : This hybrid is almost the same with HybridN+1
5 , except that we

replace the {m̃sgi, p̃i}i∈S∩H using One.Sim. Specifically, we replace the gen-
eration of {m̃sgi, p̃i}i∈S∩H in Eval(·, ·) as follows.

At the begining of Eval(·, ·), we initialize an empty map Map : φ→ φ.

Let (S, f) be the q-th query to Eval(·, ·).
• If Map(S, f) is defined before, let {m̃sgi, p̃i}i∈S∩H = Map(S, f).

• Otherwise, if q < q∗, let ri = PRF.Eval(ki, (S||f)) for each i ∈ S \H,

• {m̃sgi, p̃i}i∈S∩H ← One.Sim(1λ, S ∩H, {xi, ri}i∈S\H , f, f({xi}i∈S)),

• and if q ≥ q∗, for each i ∈ S ∩H, set fresh randomness ri,

let m̃sgi = One.Round1

(
1λ, xi, f ; ri

)
, p̃i = One.Round2(xi, ri, {m̃sgj}j∈S , f),

and define Map(S, f) = {m̃sgi, p̃i}i∈S∩H .

– Ideal: This hybrid is the same as HybridQ+1
6 , except that we replace each

KGen of real input (xi, ki) with the dummy (0|xi|, 0|ki|), for each i ∈ H. This

hybrid is the same as ARegstr(·,·),Eval(·,·)(1λ). See the simulator in Figure 4.

Lemma 7. Hybrid0 is identical to Hybrid
(1,1,1)
1 . Moreover, there exists a negligi-

ble function ν(λ) such that for any sufficiently large λ,∣∣∣∣ Pr
Hybrid

(i∗,j∗,q∗)
1

[
ARegstr(·,·),Eval(·,·)(1λ) = 1

]
−

Pr
Hybrid

(i∗,j∗,q∗)+1
1

[
ARegstr(·,·),Eval(·,·)(1λ) = 1

]∣∣∣∣ < ν(λ).

Proof. We build the following adversary A′ trying to break the sender’s indistin-
guishability security.A′ sets the randomness and runs the adversaryARegstr(·,·),Eval(·,·),
where the oracles Regstr(·, ·) and Eval(·, ·) are implemented as follows.

– Regstr(·, ·): For each query, the adversary A′ does the same thing as the
Hybrid0.

– Eval(·, ·): Let q the q-th query be (S, f). The adversary does the following.

For each i ∈ H ∩ S, it generates the garbled circuit and labels (C̃i, l̃ab) for
C[xi,ki]. Then for each j ∈ S \ {i}, it considers three cases.

• If (i, j, q) < (i∗, j∗, q∗), A′ uses ABSFE.2Enc to encrypt the same labels.

• If (i, j, q) = (i∗, j∗, q∗), it queries the challenger with the circuit GS,f ,
and obtains a challenge ciphertext ct. Let ci,j = ct.

• If (i, j, q) > (i∗, j∗, q∗), A′ uses ABSFE.2Enc to encrypt different labels.

Finally A′ computes and outputs {pi}i∈S∩H by the same way as Hybrid0.

22 Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta

Sim1(1λ, 1|x|):

• Let (crsN , trN)← Setup(1λ), and (pkN ,mskN)← KGen(crsN , (0
|x|, 0λ)).

• Output msgN = pkN , and stN = trN .

Sim2 initialization: an empty map Map : φ→ φ.

Sim2({sti}i∈S∩H , S,H, f, f({xi}i∈S∩H)):

• For the q-the query (S, f), if Map(S, f) is defined before, then let

{m̃sgi, p̃i}i∈S∩H = Map(S, f).

• Otherwise, let ri = PRF.Eval(ki, (S||f)) for each i ∈ S \H, and

{m̃sgi, p̃i}i∈S∩H ← One.Sim(1λ, S ∩H, {xi, ri}i∈S\H , f, f({xi}i∈S)),

define Map(S, f) = {m̃sgi, p̃i}i∈S∩H .

• For each i ∈ S ∩H
∗ Let (C̃i, l̃ab)← GC.Sim(1λ, p̃i), parse l̃ab = { ˜labj,k,m̃sgj [k]

}j∈S,k∈[|m̃sgj |].

∗ For each j ∈ S \ {i}, compute

ci,j ← ABSFE.2Enc(pkj , GS,f , { ˜labj,k,m̃sgj [k]
, ˜labj,k,m̃sgj [k]

}k∈[|m̃sgj |]).

∗ hi ← ABSFE.Sim(1λ, pki, tri = sti, GS,f , m̃sgi).

• Output pi =
(

(ci,j)j∈S , hi, C̃i, { ˜labi,k,m̃sgi[k]
}k∈[|m̃sgi|]

)
.

Fig. 4. Description of the simulator (Sim1, Sim2).

Now for the challenge ciphertext ct, we consider two cases. When ct is ob-
tained by ABSFE.2Enc of different labels, then the adversary A′ simulates the

environment of Hybrid
(i∗,j∗,q∗)
1 . Hence,

Pr
[
ct← ABSFE.2Enc(pk, GS,f , (˜labj,k,0, ˜labj,k,1)k∈[|m̃sgj |]) : A′(1λ, crs, r) = 1

]
= Pr

Hybrid
(i∗,j∗,q∗)
1

[
ARegstr(·,·),Eval(·,·)(1λ) = 1

]

When ct is generated with the same labels, then the adversary A′ simulates

the environment of Hybrid
(i∗,j∗,q∗)+1
1 . Hence,

Pr
[
ct← ABSFE.2Enc(pk, GS,f , (˜labj,k,m̃sgj [k]

, ˜labj,k,m̃sgj [k]
)k∈[|m̃sgj |]) : A′(1λ, crs, r) = 1

]
= Pr

Hybrid
(i∗,j∗,q∗)+1
1

[
ARegstr(·,·),Eval(·,·)(1λ) = 1

]

Unbounded Multi-Party Computation from Learning with Errors 23

From the adaptive sender’s computational indistinguishable security of AB-

SFE, we derive that Hybrid
(i∗,j∗,q∗)
1 and Hybrid

(i∗,j∗,q∗)+1
1 are indistinguishable.

Lemma 8. Hybrid
(N,N,Q)+1
1 is identical to Hybrid

(1,1)
2 . Moreover, there exists a

negligible function ν(λ) such that for any sufficiently large λ,∣∣∣∣∣ Pr
Hybrid

(i∗,q∗)
2

[
ARegstr(·,·),Eval(·,·)(1λ) = 1

]
− Pr

Hybrid
(i∗,q∗)+1
2

[
ARegstr(·,·),Eval(·,·)(1λ) = 1

]∣∣∣∣∣ < ν(λ)

Proof. We build the following distinguisher D for the garbled scheme GC. D takes
as input (1λ, C̃, lab), sets the randomness and runs the adversaryARegstr(·,·),Eval(·,·),
where the oracles Regstr(·, ·) and Eval(·, ·) are implemented as follows.

– Regstr(·, ·): For each query, the adversary A′ does the same thing as the
Hybrid0.

– Eval(·, ·): Let q the q-th query be (S, f). The adversary does the following.
For each i ∈ H ∩ S, it considers three cases.

• If (i, q) < (i∗, q∗), then it generates C̃i, l̃ab by the simulator GC.Sim.

• If (i, q) = (i∗, q∗), then it sets C̃i, l̃ab to be the input C̃, lab.

• If (i, q) > (i∗, q∗), then it generates C̃i, l̃ab by honestly garbling C[xi,ki].

Finally, it computes and outputs {pi}i∈S∩H by the same way as Hybrid
(N,N,Q)+1
1 .

When (C̃, lab) ← GC.Garble(1λ, C[ski∗ ,ki∗]
), then the distinguisher D simu-

lates the environment of Hybrid
(i∗,q∗)
2 for A. Hence, we have

Pr
[
(C̃, lab)← GC.Garble(1λ, C[ski∗ ,ki∗

]) : D(1λ, C̃, lab) = 1
]

= Pr
Hybrid

(i∗,q∗)
2

[
ARegstr(·,·),Eval(·,·)(1λ) = 1

]
.

When (C̃, lab)← GC.Sim(1λ, C[ski∗ ,ki∗]
({m̃sgj}j∈S)), the distinguisher simu-

lates the environment of Hybrid
(i∗,q∗)+1
2 for A. Hence,

Pr
[
(C̃, lab)← GC.Sim(1λ, C[ski∗ ,ki∗]

({msgj}j∈S)) : D(1λ, C̃, lab) = 1
]

= Pr
Hybrid

(i∗,q∗)+1
2

[
ARegstr(·,·),Eval(·,·)(1λ) = 1

]
.

From the security of the garbling scheme, we derive that Hybrid
(i∗,q∗)
2 and

Hybrid
(i∗,q∗)+1
2 are indistinguishable.

Lemma 9. Hybrid
(N,Q)+1
2 is identical to Hybrid1

3. Moreover, there exists a negli-

gible function ν(λ) such that for any sufficiently large λ, SD(Hybridi
∗

3 ,Hybridi
∗+1
3) <

ν(λ).

24 Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta

Proof. We build the following function g. The function g takes as input the crs,
and for each i < i∗, g generates the crsi using ABSFE.Setup. For each i > i∗,
g generates crsi using ABSFE.Setup. For i∗, if i∗ ∈ H, then sets crsi∗ as crs.
Otherwise, it generates crsi∗ using ABSFE.Setup. Then g invokes A and simulates

Regstr(·, ·) and Eval(·, ·) in the same way as Hybrid
(N,Q)+1
2 .

When crs← ABSFE.Setup(1λ), then g(crs) is identical to Hybridi
∗

3 . When crs is

generated by ABSFE.Setup(1λ), then g(crs) is identical to Hybridi
∗+1
3 . From the

statistical public key indistinguisbaility property, we derive that SD(Hybridi
∗

3 ,

Hybridi
∗+1
3) < negl(λ).

Lemma 10. HybridN+1
3 is identical to Hybrid

(1,1)
4 . Moreover, there exists a negli-

gible function ν(λ) such that for sufficiently large λ, SD(Hybrid
(i∗,q∗)
4 ,Hybrid

(i∗,q∗)+1
4)

< ν(λ).

Proof. Since the only difference between Hybrid
(i∗,q∗)
4 and Hybrid

(i∗,q∗)+1
4 is the

way that hi is generated in q-th query of O, from the statistical hint simulation

security of AB-SFE, we have SD(Hybrid
(i∗,q∗)
4 ,Hybrid

(i∗,q∗)+1
4) < negl(λ).

Lemma 11. Hybrid
(N,Q)+1
4 and Hybrid1

5 are identical. There exists a negligible
function ν(λ) such that for any sufficiently large λ,∣∣∣∣∣ Pr
Hybridi

∗
5

[
ARegstr(·,·),Eval(·,·)(1λ) = 1

]
− Pr

Hybridi
∗+1

5

[
ARegstr(·,·),Eval(·,·)(1λ) = 1

]∣∣∣∣∣ < ν(λ).

Proof. We construct the following adversary A′ for the PRF. A′O(1λ) is given
access to a PRF oracle, and it invokes the adversary ARegstr(·,·),Eval(·,·)(1λ) by
implementing the oracles Regstr(·, ·) and Eval(·, ·) as follows.

– Regstr(·, ·): For the i-th query, only sample ki ← PRF.Gen(1λ) when i ≥ i∗

or i /∈ H.

– Eval(·, ·): For each query (S, f), do the same thing as Eval in Hybrid
(N,Q)+1
4 ,

except the generation of ri. We generate ri as follows. For each i ∈ S,
• if i < i∗ and i ∈ H, let ri = PRFi.F(S||f).

• If i = i∗ and i∗ ∈ H, let ri ← O(S||f).

• If i > i∗ or i /∈ H, ri = PRF.Eval(ki, (S||f)).

When O′ is PRF.Eval(k, ·) for a uniform random PRF key k, the adversary

A′ simulates the environment of Hybridi
∗

5 for A. Hence,

Pr
[
k ← {0, 1}λ : A′PRF.Eval(k,·)(1λ) = 1

]
= Pr

Hybridi
∗

5

[
ARegstr(·,·),Eval(·,·)(1λ) = 1

]
.

When O′ is a random function F(·), the adversary A′ simulates the environ-

ment of Hybridi
∗

5 for A. Hence,

Pr[A′F(·)(1λ) = 1] = Pr
Hybridi

∗+1
5

[
ARegstr(·,·),Eval(·,·)(1λ) = 1

]
.

Unbounded Multi-Party Computation from Learning with Errors 25

From the security of PRF, we derive that Hybridi
∗

5 and Hybridi
∗+1
5 are indis-

tinguishable.

Lemma 12. HybridN+1
5 is identical to Hybrid1

6. Moreover, there exists a negligi-
ble function ν(λ) such that for any sufficiently large λ,∣∣∣∣∣ Pr
Hybridq

∗
6

[
ARegstr(·,·),Eval(·,·)(1λ) = 1

]
− Pr

Hybridq
∗+1

6

[
ARegstr(·,·),Eval(·,·)(1λ) = 1

]∣∣∣∣∣ < ν(λ).

Proof. We build the following distinguisher D for the semi-malicous MPC se-
curity. The adversary D invokes the adversary ARegstr(·,·),Eval(·,·)(1λ), where the
oracle Regstr(·, ·) is the same as in HybridN+1

5 , and the oracle Eval(·, ·) is imple-
mented as follows.

Let the q-th query be (S, f), the oracle Eval(·, ·) performs the same executions
as in HybridN+1

5 , except the generation of (m̃sgi, p̃i) is replaced as follows.

– If Map(S, f) is defined before, then let {m̃sgi, p̃i}i∈S∩H ← Map(S, f). Oth-
werwise,
• If q < q∗, let {m̃sgi, p̃i}i∈S∩H ← One.Sim(1λ, S∩H, {xi, ri}i∈S\H , f, f({xi}i∈S)).

• If q = q∗, query the challenger with the number of parties |S|, the inputs
{xi}i∈S , the honest party subset H ∩ S, the randomness for dishon-
est parties {ri}i∈S\H , and obtains the challenge {msgi, pi}i∈S∩H . Let
{m̃sgi, p̃i}i∈S∩H = {msgi, pi}i∈S∩H , and define Map(S, f) = {msgi, pi}i∈S∩H .

• If q > q∗, for each i ∈ S ∩ H, set fresh randomness ri. Let m̃sgi =
One.Round1

(
1λ, xi, f ; ri

)
, p̃i = One.Round2(xi, ri, {m̃sgj}j∈S , f), and de-

fine Map(S, f) = {m̃sgi, p̃i}i∈S∩H .

When {msgi, pi}i∈S∩H is obtained from real world execution, with dishonest
parties’ random coins {ri}i∈S\H , the distinguisher D simulates the environment

of Hybridq
∗

6 for A. Hence,

Pr

[∀i∈S∩H,ri←{0,1}∗

∀i∈S,msgi=One.Round1(1
λ,xi;ri),

pi=One.Round2(xi,ri,{msgj}j∈S)
: D(1λ, {msgi, pi}i∈S) = 1

]
= Pr

[
D(1λ,Hybridq

∗

6) = 1
]

When {msgi, pi}i∈S∩H is obtained from the ideal simulation, then the dis-
tinguisher D simulates the environment of Hybridq∗+1

6 for A. Hence,

Pr

[
{msgi, pi}i∈S∩H ← Sim(1λ, S ∩H, {xi, ri}i∈S\H , f, f({xi}i∈S)) :

D(1λ, {msgi, pi}i∈S) = 1

]
= Pr

[
D(1λ,Hybridq

∗+1
6)

]
.

Hence, from the semi-malicious security of the MPC protocol, we derive that

Hybridq
∗

6 and Hybridq
∗+1

6 are indistinguishable.

26 Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta

Lemma 13. There exists a negligible function ν(λ) such that for any sufficiently

large λ, SD(HybridQ+1
6 , Ideal) < ν(λ).

Proof. Similar to Lemma 10, this Lemma follows from the statistical public key
indistinguishability.

Combining Lemma 7 to Lemma 13, we finish the proof.

References

1. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation
based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg, Germany, Copenhagen, Den-
mark (May 11–15, 2014). https://doi.org/10.1007/978-3-642-55220-5 22

2. Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Multikey fhe in the plain model.
Cryptology ePrint Archive, Report 2020/180 (2020), https://eprint.iacr.org/
2020/180

3. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: 45th FOCS.
pp. 166–175. IEEE Computer Society Press, Rome, Italy (Oct 17–19, 2004).
https://doi.org/10.1109/FOCS.2004.20

4. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In:
Ostrovsky, R. (ed.) 52nd FOCS. pp. 120–129. IEEE Computer Society Press, Palm
Springs, CA, USA (Oct 22–25, 2011). https://doi.org/10.1109/FOCS.2011.40

5. Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness
indistinguishability and secure computation in the plain model from new assump-
tions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol.
10626, pp. 275–303. Springer, Heidelberg, Germany, Hong Kong, China (Dec 3–7,
2017). https://doi.org/10.1007/978-3-319-70700-6 10

6. Badrinarayanan, S., Jain, A., Ostrovsky, R., Visconti, I.: Non-interactive se-
cure computation from one-way functions. In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 118–138. Springer,
Heidelberg, Germany, Brisbane, Queensland, Australia (Dec 2–6, 2018).
https://doi.org/10.1007/978-3-030-03332-3 5

7. Bartusek, J., Garg, S., Masny, D., Mukherjee, P.: Reusable two-round mpc from
ddh. Cryptology ePrint Archive, Report 2020/170 (2020), https://eprint.iacr.
org/2020/170

8. Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious
transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EU-
ROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 500–532. Springer, Heidelberg,
Germany, Tel Aviv, Israel (Apr 29 – May 3, 2018). https://doi.org/10.1007/978-
3-319-78375-8 17

9. Benhamouda, F., Lin, H.: Multiparty reusable non-interactive secure computation.
Cryptology ePrint Archive, Report 2020/221 (2020), https://eprint.iacr.org/
2020/221

10. Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from
LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol.
11240, pp. 370–390. Springer, Heidelberg, Germany, Panaji, India (Nov 11–14,
2018). https://doi.org/10.1007/978-3-030-03810-6 14

https://doi.org/10.1007/978-3-642-55220-5_22
https://eprint.iacr.org/2020/180
https://eprint.iacr.org/2020/180
https://doi.org/10.1109/FOCS.2004.20
https://doi.org/10.1109/FOCS.2011.40
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-030-03332-3_5
https://eprint.iacr.org/2020/170
https://eprint.iacr.org/2020/170
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-78375-8_17
https://eprint.iacr.org/2020/221
https://eprint.iacr.org/2020/221
https://doi.org/10.1007/978-3-030-03810-6_14

Unbounded Multi-Party Computation from Learning with Errors 27

11. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random ora-
cle. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014. pp. 597–608. ACM Press,
Scottsdale, AZ, USA (Nov 3–7, 2014). https://doi.org/10.1145/2660267.2660374

12. Cash, D., Hofheinz, D., Kiltz, E.: How to delegate a lattice basis. Cryptology ePrint
Archive, Report 2009/351 (2009), https://eprint.iacr.org/2009/351

13. Chase, M., Dodis, Y., Ishai, Y., Kraschewski, D., Liu, T., Ostrovsky, R., Vaikun-
tanathan, V.: Reusable non-interactive secure computation. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 462–488.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22, 2019).
https://doi.org/10.1007/978-3-030-26954-8 15

14. Dodis, Y., Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Public-
key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC 2010.
LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg, Germany, Zurich, Switzerland
(Feb 9–11, 2010). https://doi.org/10.1007/978-3-642-11799-2 22

15. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg, Germany, San Diego, CA, USA (Feb 24–26, 2014).
https://doi.org/10.1007/978-3-642-54242-8 4

16. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its ap-
plications. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM
STOC. pp. 467–476. ACM Press, Palo Alto, CA, USA (Jun 1–4, 2013).
https://doi.org/10.1145/2488608.2488667

17. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear
maps. In: Umans, C. (ed.) 58th FOCS. pp. 588–599. IEEE Computer Society Press,
Berkeley, CA, USA (Oct 15–17, 2017). https://doi.org/10.1109/FOCS.2017.60

18. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II.
LNCS, vol. 10821, pp. 468–499. Springer, Heidelberg, Germany, Tel Aviv, Israel
(Apr 29 – May 3, 2018). https://doi.org/10.1007/978-3-319-78375-8 16

19. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and
new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM
STOC. pp. 197–206. ACM Press, Victoria, BC, Canada (May 17–20, 2008).
https://doi.org/10.1145/1374376.1374407

20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
ACM STOC. pp. 218–229. ACM Press, New York City, NY, USA (May 25–27,
1987). https://doi.org/10.1145/28395.28420

21. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the
learning with errors assumption. In: Yao, A.C.C. (ed.) ICS 2010. pp. 230–240.
Tsinghua University Press, Tsinghua University, Beijing, China (Jan 5–7, 2010)

22. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Rough-
garden, T., Feigenbaum, J. (eds.) 45th ACM STOC. pp. 555–564. ACM Press, Palo
Alto, CA, USA (Jun 1–4, 2013). https://doi.org/10.1145/2488608.2488678

23. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic sig-
natures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th
ACM STOC. pp. 469–477. ACM Press, Portland, OR, USA (Jun 14–17, 2015).
https://doi.org/10.1145/2746539.2746576

24. Gordon, S.D., Liu, F.H., Shi, E.: Constant-round MPC with fairness and guarantee
of output delivery. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part II.

https://doi.org/10.1145/2660267.2660374
https://eprint.iacr.org/2009/351
https://doi.org/10.1007/978-3-030-26954-8_15
https://doi.org/10.1007/978-3-642-11799-2_22
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1145/2488608.2488667
https://doi.org/10.1109/FOCS.2017.60
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/2488608.2488678
https://doi.org/10.1145/2746539.2746576

28 Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta

LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg, Germany, Santa Barbara, CA,
USA (Aug 16–20, 2015). https://doi.org/10.1007/978-3-662-48000-7 4

25. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani di
Vimercati, S. (eds.) ACM CCS 2006. pp. 89–98. ACM Press, Alexandria, Virginia,
USA (Oct 30 – Nov 3, 2006). https://doi.org/10.1145/1180405.1180418, available
as Cryptology ePrint Archive Report 2006/309

26. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient
non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg, Germany, Tallinn, Estonia
(May 15–19, 2011). https://doi.org/10.1007/978-3-642-20465-4 23

27. Lombardi, A., Quach, W., Rothblum, R.D., Wichs, D., Wu, D.J.: New construc-
tions of reusable designated-verifier NIZKs. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 670–700. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA (Aug 18–22, 2019). https://doi.org/10.1007/978-
3-030-26954-8 22

28. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg, Germany, Cambridge, UK (Apr 15–19, 2012).
https://doi.org/10.1007/978-3-642-29011-4 41

29. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666,
pp. 735–763. Springer, Heidelberg, Germany, Vienna, Austria (May 8–12, 2016).
https://doi.org/10.1007/978-3-662-49896-5 26

30. O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption.
In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525–542.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 14–18, 2011).
https://doi.org/10.1007/978-3-642-22792-9 30

31. Sahai, A., Waters, B.R.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg, Germany,
Aarhus, Denmark (May 22–26, 2005). https://doi.org/10.1007/11426639 27

32. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS. pp. 162–167. IEEE Computer Society Press, Toronto, Ontario, Canada
(Oct 27–29, 1986). https://doi.org/10.1109/SFCS.1986.25

https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-030-26954-8_22
https://doi.org/10.1007/978-3-030-26954-8_22
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-642-22792-9_30
https://doi.org/10.1007/11426639_27
https://doi.org/10.1109/SFCS.1986.25

	Unbounded Multi-Party Computation from Learning with Errors

