
Generic Compiler for Publicly Verifiable Covert
Multi-Party Computation

Sebastian Faust1, Carmit Hazay2, David Kretzler1, and Benjamin Schlosser1

1 Technical University of Darmstadt, Germany
{first.last}@tu-darmstadt.de

2 Bar-Ilan University, Israel
carmit.hazay@biu.ac.il

Abstract. Covert security has been introduced as a compromise be-
tween semi-honest and malicious security. In a nutshell, covert security
guarantees that malicious behavior can be detected by the honest par-
ties with some probability, but in case detection fails all bets are off.
While the security guarantee offered by covert security is weaker than
full-fledged malicious security, it comes with significantly improved effi-
ciency. An important extension of covert security introduced by Asharov
and Orlandi (ASIACRYPT’12) is public verifiability, which allows the
honest parties to create a publicly verifiable certificate of malicious be-
havior. Public verifiability significantly strengthen covert security as the
certificate allows punishment via an external party, e.g., a judge.
Most previous work on publicly verifiable covert (PVC) security focuses
on the two-party case, and the multi-party case has mostly been ne-
glected. In this work, we introduce a novel compiler for multi-party PVC
secure protocols with no private inputs. The class of supported protocols
includes the preprocessing of common multi-party computation proto-
cols that are designed in the offline-online model. Our compiler leverages
time-lock encryption to offer high probability of cheating detection (of-
ten also called deterrence factor) independent of the number of involved
parties. Moreover, in contrast to the only earlier work that studies PVC
in the multi-party setting (CRYPTO’20), we provide the first full formal
security analysis.

Keywords: Covert Security · Multi-Party Computation · Public Verifi-
ability · Time-Lock Puzzles

1 Introduction

Secure multi-party computation (MPC) allows a set of n parties Pi to jointly
compute a function f on their inputs such that nothing beyond the output of
that function is revealed. Privacy of the inputs and correctness of the outputs
need to be guaranteed even if some subset of the parties is corrupted by an
adversary. The two most prominent adversarial models considered in the liter-
ature are the semi-honest and malicious adversary model. In the semi-honest
model, the adversary is passive and the corrupted parties follow the protocol

description. Hence, the adversary only learns the inputs and incoming/outgoing
messages including the internal randomness of the corrupted parties. In con-
trast, the adversarial controlled parties can arbitrarily deviate from the protocol
specification under malicious corruption.

Since in most cases it seems hard (if not impossible) to guarantee that a
corrupted party follows the protocol description, malicious security is typically
the desired security goal for the design of multi-party computation protocols.
Unfortunately, compared to protocols that only guarantee semi-honest security,
protection against malicious adversaries results into high overheads in terms of
communication and computation complexity. For protocols based on distributed
garbling techniques in the oblivious transfer (OT)-hybrid model, the communi-
cation complexity is inflated by a factor of s

log |C| [WRK17b], where C is the com-

puted circuit and s is a statistical security parameter. For secret sharing-based
protocols, Hazay et al. [HVW20] have recently shown a constant communication
overhead over the semi-honest GMW-protocol [GMW87]. In most techniques,
the computational overhead grows with an order of s.

In order to mitigate the drawbacks of the overhead required for malicious
secure function evaluation, one approach is to split protocols into an input-
independent offline and an input-dependent online phase. The input-independent
offline protocol carries out pre-computations that are utilized to speed up the
input-dependent online protocol which securely evaluates the desired function.
Examples for such offline protocols are the circuit generation of garbling schemes
as in authenticated garbling [WRK17a, WRK17b] or the generation of correlated
randomness in form of Beaver triples [Bea92] in secret sharing-based protocols
such as in SPDZ [DPSZ12]. The main idea of this approach is that the offline
protocol can be executed continuously in the background and the online protocol
is executed ad-hoc once input data becomes available or output data is required.
Since the performance requirements for the online protocol are usually much
stricter, the offline part should cover the most expensive protocol steps, as for
example done in [WRK17a, WRK17b] and [DPSZ12].

A middle ground between the design goals of security and efficiency has
been proposed with the notion of covert security. Introduced by Aumann and
Lindell [AL07], covert security allows the adversary to take full control over a
party and let her deviate from the protocol specification in an arbitrary way.
The protocol, however, is designed in such a way that honest parties can detect
cheating with some probability ε (often called the deterrence factor). However, if
cheating is not detected all bets are off. This weaker security notion comes with
the benefit of significantly improved efficiency, when compared to protocols in
the full-fledged malicious security model. The motivation behind covert security
is that in many real-world scenarios, parties are able to actively deviate from the
protocol instructions (and as such are not semi-honest), but due to reputation
concerns only do so if they are not caught. In the initial work of Aumann and
Lindell, the focus was on the two-party case. This has been first extended to the
multi-party case by Goyal et al. [GMS08] and later been adapted to a different
line of MPC protocols by Damg̊ard et al. [DKL+13].

2

While the notion of covert security seems appealing at first glance it has one
important shortcoming. If an honest party detects cheating, then she cannot
reliably transfer her knowledge to other parties, which makes the notion of covert
security significantly less attractive for many applications. This shortcoming of
covert security was first observed by Asharov and Orlandi [AO12], and addressed
with the notion of public verifiability. Informally speaking, public verifiability
guarantees that if an honest party detects cheating, she can create a certificate
that uniquely identifies the cheater, and can be verified by an external party.
Said certificate can be used to punish cheaters for misbehavior, e.g., via a smart
contract [ZDH19], thereby disincentivizing misbehavior.

Despite being a natural security notion, there has been relatively little work
on covert security with public verifiability. In particular, starting with the work of
Asharov and Orlandi [AO12] most works have explored publicly verifiable covert
security in the two-party setting [KM15, HKK+19, ZDH19, DOS20]. These works
use a publicly checkable cut-and-choose approach for secure two-party computa-
tion based on garbled circuits. Here a random subset of size t−1 out of t garbled
circuits is opened to verify if cheating occurred, while the remaining unopened
garbled circuit is used for the actual secure function evaluation. The adversary
needs to guess which circuit is used for the final evaluation and only cheat in
this particular instance. If her guess is false, she will be detected. Hence, there
is a deterrence factor of t−1

t .

For the extension to the multi-party case of covert security even less is
known. Prior work mainly focuses on the restricted version of covert security
that does not offer public verifiability [GMS08, DGN10, LOP11, DKL+13]. The
only work that we are aware of that adds public verifiability to covert secure
multi-party computation protocols is the recent work of Damg̊ard et al. [DOS20].
While [DOS20] mainly focuses on a compiler for the two-party case, they also
sketch how their construction can be extended to the multi-party setting.

1.1 Our Contribution

In contrast to most prior research, we focus on the multi-party setting. Our main
contribution is a novel compiler for transforming input-independent multi-party
computation protocols with semi-honest security into protocols that offer covert
security with public verifiability. Our construction achieves a high deterrence
factor of t−1

t , where t is the number of semi-honest instances executed in the
cut-and-choose protocol. In contrast, the only prior work that sketches a solution
for publicly verifiable covert security for the multi-part setting [DOS20] achieves
≈ t−1

nt , which in particular for a large number of parties n results in a low
deterrence factor. [DOS20] states that the deterrence factor can be increased at
the cost of multiple protocol repetitions, which results into higher complexity
and can be abused to amplify denial-of-service attacks. A detail discussion of
the main differences between [DOS20] and our work is given in Section 6. We
emphasize that our work is also the first that provides a full formal security proof
of the multi-party case in the model of covert security with public verifiability.

3

Our results apply to a large class of input-independent offline protocols for
carrying out pre-computation. Damg̊ard et al. [DOS20] have shown that an
offline-online protocol with a publicly verifiable covert secure offline phase and
a maliciously secure online phase constitutes a publicly verifiable covert secure
protocol in total. Hence, by applying our compiler to a passively secure offline
protocol and combining it with an actively secure online protocol, we obtain
a publicly verifiable covert secure protocol in total. Since offline protocols are
often the most expensive part of the secure multi-party computation protocol,
e.g., in protocols like [YWZ20] and [DPSZ12], our approach has the potential of
significantly improving efficiency of multi-party computation protocols in terms
of computation and communication overhead.

An additional contribution of our work (which is of independent interest) is to
introduce a novel mechanism for achieving public verifiability in protocols with
covert security. Our approach is based on time-lock encryption [RSW96, MT19,
MMV11, BGJ+16], a primitive that enables encryption of messages into the
future and has previously been discussed in the context of delayed digital cash
payments, sealed-bid auctions, key escrow, and e-voting. Time-lock encryption
can be used as a building block to guarantee that in case of malicious behavior
each honest party can construct a publicly verifiable cheating certificate without
further interaction. The use of time-lock puzzles in a simulation-based security
proof requires us to overcome several technical challenges that do not occur for
proving game-based security notions.

In order to achieve efficient verification of the cheating certificates, we also
show how to add verifiability to the notion of time-lock encryption by using
techniques from verifiable delay functions [BBBF18]. While our construction
can be instantiated with any time-lock encryption satisfying our requirements,
we present a concrete extension of the RSW time-lock encryption scheme. Since
RSW-based time-lock encryption [RSW96, MT19] requires a one-time trusted
setup, an instantiation of our construction using the RSW-based time-lock en-
cryption inherits this assumption. We can implement the one-time trusted setup
using a maliciously secure multi-party computation protocol similar to the MPC
ceremony used, e.g., by the cryptocurrency ZCash.

1.2 Technical Overview

In this section, we give a high-level overview of the main techniques used in our
work. To this end, we start by briefly recalling how covert security is typically
achieved. Most covert secure protocols take a semi-honest protocol and execute
t instances of it in parallel. They then check the correctness of t − 1 randomly
chosen instances by essentially revealing the used inputs and randomness and
finally take the result of the last unopened execution as protocol output. The
above requires that (a) checking the correctness of the t − 1 instances can be
carried out efficiently, and (b) the private inputs of the parties are not revealed.

In order to achieve the first goal, one common approach is to derandomize
the protocol, i.e., let the parties generate a random seed from which they derive
their internal randomness. Once the protocol is derandomized, correctness can

4

efficiently be checked by the other parties. To achieve the second goal, the pro-
tocol is divided into an offline and an online protocol as described above. The
output of the offline phase (e.g., a garbling scheme) is just some correlated ran-
domness. As this protocol is input-independent, the offline phase does not leak
information about the parties’ private inputs. The online phase (e.g., evaluating
a garbled circuit) is maliciously secure and hence protects the private inputs.

Public verifiability. To add public verifiability to the above-described approach,
the basic idea is to let the parties sign all transcripts that have been produced
during the protocol execution. This makes them accountable for cheating in one
of the semi-honest executions. One particular challenge for public verifiability
is to ensure that once a malicious party notices that its cheating attempt will
be detected it cannot prevent (e.g., by aborting) the creation of a certificate
proving its misbehavior. Hence, the trivial idea of running a shared coin tossing
protocol to select which of the instances will be checked does not work because
the adversary can abort before revealing her randomness and inputs used in the
checked instances. To circumvent this problem, the recent work of Damg̊ard et
al. [DOS20] proposes the following technique. Each party locally chooses a subset
I of the t semi-honest instances whose computation it wants to check (this is
often called a watchlist [IPS08]). Next, it obliviously asks the parties to explain
their execution in those instances (i.e., by revealing the random coins used in
the protocol execution). While this approach works well in the two-party case,
in the multi-party case it either results in a low deterrence factor or requires
that the protocol execution is repeated many times. This is due to the fact that
each party chooses its watchlist independently; in the worst case, all watchlists
are mutually disjoint. Hence, the size of each watchlist is set to be lower or equal
than t−1

n (resulting in a deterrence factor of t−1nt) to guarantee that one instance
remains unchecked or parties repeat the protocol several times until there is a
protocol execution with an unchecked instance.

Public verifiability from time-lock encryption. Our approach avoids the above
shortcomings by using time-lock encryption. Concretely, we follow the shared
coin-tossing approach mentioned above but prevent the rushing attack by lock-
ing the shared coin (selecting which semi-honest executions shall be opened)
and the seeds of the opened executions in time-lock encryption. Since the time-
lock ciphertexts are produced before the selection-coin is made public, it will be
too late for the adversary to abort the computation. Moreover, since the time-
lock encryption can be solved even without the participation of the adversary,
the honest parties can produce a publicly verifiable certificate to prove misbe-
havior. This approach has the advantage that we can always check all but one
instance of the semi-honest executions, thereby significantly improving the deter-
rence factor and the overall complexity. One may object that solving time-lock
encryption adds additional computational overhead to the honest parties. We
emphasize, however, that the time-lock encryption has to be solved only in the
pessimistic case when one party aborts after the puzzle generation. Moreover,
in our construction, the time-lock parameter can be chosen rather small, since

5

the encryption has to hide the selection-coin and the seeds only for two com-
munication rounds. See section 6 for a more detailed analysis of the overhead
introduced by the time-lock puzzle generation and a comparison to prior work.

Creating the time-lock encryption. There are multiple technical challenges that
we need to address to make the above idea work. First, current constructions
of time-lock encryption matching our requirements require a trusted setup for
generating the public parameters. In particular, we need to generate a strong
RSA modulus N without leaking its factorization, and produce a base-puzzle
that later can be used for efficiency reasons. Both of these need to be generated
just once and can be re-used for all protocol executions. Hence, one option is
to replace the trusted setup by a maliciously secure MPC similar to what has
been done for the MPC ceremony used by the cryptocurrency ZCash. Another
alternative is to investigate if time-lock puzzles matching the requirements of
our compiler can be constructed from hidden order groups with public setup
such as ideal class groups of imaginary quadratic fields [BW88] or Jacobians of
hyperelliptic curves [DG20]. An additional challenge is that we cannot simply
time-lock the seeds of all semi-honest protocol executions (as one instance needs
to remain unopened). To address this problem, we use a maliciously secure MPC
protocol to carry out the shared coin-tossing protocol and produce the time-lock
encryptions of the seeds for the semi-honest protocol instance that are later
opened. We emphasize that the complexity of this step only depends on t and n,
and is in particular independent of the complexity of the functionality that we
want to compute. Hence, for complex functionalities the costs of the maliciously
secure puzzle generation are amortized over the protocol costs 3.

2 Secure Multi-Party Computation

Secure computation in the standalone model is defined via the real world/ideal
world paradigm. In the real world, all parties interact in order to jointly execute
the protocol Π. In the ideal world, the parties send their inputs to a trusted
party called ideal functionality and denoted by F which computes the desired
function f and returns the result back to the parties. It is easy to see that in the
ideal world the computation is correct and reveals only the intended information
by definition. The security of a protocol Π is analyzed by comparing the ideal-
world execution with the real-world execution. Informally, protocol Π is said to
securely realize F if for every real-world adversary A, there exists an ideal-world
adversary S such that the joint output distribution of the honest parties and the
adversary A in the real-world execution of Π is indistinguishable from the joint
output distribution of the honest parties and S in the ideal-world execution.

We denote the number of parties executing a protocol Π by n. Let f :
({0, 1}∗)n → ({0, 1}∗)n, where f = (f1, . . . , fn), be the function realized by Π.

3 Concretely, for each instantiation we require two exponentiations and a small number
of symmetric key encryptions. The latter can be realized using tailored MPC-ciphers
like LowMC [ARS+15].

6

For every input vector x̄ = (x1, . . . , xn) the output vector is ȳ = (f1(x̄), . . . , fn(x̄))
and the i-th party Pi with input xi obtains output fi(x̄).

An adversary can corrupt any subset I ⊆ [n] of parties. We further set
REALΠ,A(z),I(x̄, 1

κ) to be the output vector of the protocol execution of Π on
input x̄ = (x1, . . . , xn) and security parameter κ, where the adversary A on aux-
iliary input z corrupts the parties I ⊆ [n]. By OUTPUTi(REALΠ,A(z),I(x̄, 1

κ)),
we specify the output of party Pi for i ∈ [n].

2.1 Covert Security

Aumann and Lindell introduced the notion of covert security with ε-deterrence
factor in 2007 [AL07]. We focus on the strongest given formulation of covert
security that is the strong explicit cheat formulation, where the ideal-world ad-
versary only learns the honest parties’ inputs if cheating is undetected. However,
we slightly modify the original notion of covert security to capture realistic ef-
fects that occur especially in input-independent protocols and are disregarded
by the notion of [AL07]. The changes are explained and motivated below.

As in the standard secure computation model, the execution of a real-world
protocol is compared to the execution within an ideal world. The real world
is exactly the same as in the standard model but the ideal model is slightly
adapted in order to allow the adversary to cheat. Cheating will be detected by
some fixed probability ε, which is called the deterrence factor. Let ε : N→ [0, 1]
be a function, then the execution in the ideal model works as follows.

Inputs: Each party obtains an input; the ith party’s input is denoted by xi.
We assume that all inputs are of the same length. The adversary receives an
auxiliary input z.

Send inputs to trusted party: Any honest party Pj sends its received
input xj to the trusted party. The corrupted parties, controlled by S, may either
send their received input, or send some other input of the same length to the
trusted party. This decision is made by S and may depend on the values xi for
i ∈ I and auxiliary input z. If there are no inputs, the parties send oki instead
of their inputs to the trusted party.

Trusted party answers adversary: If the trusted party receives inputs
from all parties, the trusted party computes (y1, . . . , ym) = f(w̄) and sends yi
to S for all i ∈ I.

Abort options: If the adversary sends abort to the trusted party as ad-
ditional input (before or after the trusted party sends the potential output to
the adversary), then the trusted party sends abort to all the honest parties and
halts. If a corrupted party sends additional input wi = corruptedi to the trusted
party, then the trusted party sends corruptedi to all of the honest parties and
halts. If multiple parties send corruptedi, then the trusted party disregards all
but one of them (say, the one with the smallest index i). If both corruptedi and
abort messages are sent, then the trusted party ignores the corruptedi message.

Attempted cheat option: If a corrupted party sends additional input wi =
cheati to the trusted party (as above: if there are several messages wi = cheati

7

ignore all but one - say, the one with the smallest index i), then the trusted
party works as follows:

1. With probability ε, the trusted party sends corruptedi to the adversary and
all of the honest parties.

2. With probability 1− ε, the trusted party sends undetected to the adversary
along with the honest parties inputs {xj}j /∈I . Following this, the adversary
sends the trusted party abort or output values {yj}j /∈I of its choice for the
honest parties. If the adversary sends abort, the trusted party sends abort to
all honest parties. Otherwise, for every j /∈ I, the trusted party sends yj to
Pj .

The ideal execution then ends at this point. Otherwise, if no wi equals aborti,
corruptedi or cheati, the ideal execution continues below.

Trusted party answers honest parties: If the trusted party did not re-
ceive corruptedi, cheati or abort from the adversary or a corrupted party then it
sends yj for all honest parties Pj (where j /∈ I).

Outputs: An honest party always outputs the message it obtained from the
trusted party. The corrupted parties outputs nothing. The adversary S outputs
any arbitrary (probabilistic) polynomial-time computable function of the initial
inputs {xi}i∈I , the auxiliary input z, and the received messages.

We denote by IDEALCεf,S(z),I(x̄, 1
κ) the output of the honest parties and the

adversary in the execution of the ideal model as defined above, where x̄ is the
input vector and the adversary S runs on auxiliary input z.

Definition 1 (Covert security with ε-deterrent). Let f,Π, and ε be as
above. Protocol Π is said to securely compute f in the presence of covert adver-
saries with ε-deterrent if for every non-uniform probabilistic polynomial-time ad-
versary A for the real model, there exists a non-uniform probabilistic polynomial-
time adversary S for the ideal model such that for every I ⊆ [n], every balanced
vector x̄ ∈ ({0, 1}∗)n, and every auxiliary input z ∈ {0, 1}∗:

{IDEALCεf,S(z),I(x̄, 1κ)}κ∈N
c≡ {REALΠ,A(z),I(x̄, 1

κ)}κ∈N

Notice that the definition of the ideal world given above differs from the
original definition of Aumann and Lindell in four aspects. First, we add the
support of functions with no private inputs from the parties to model input-
independent functionalities. In this case, the parties send ok instead of their
inputs to the trusted party. Second, whenever a corrupted party aborts, the
trusted party sends abort to all honest parties. Note that this message does not
include the index of the aborting party which differs from the original model.
The security notion of identifiable abort [IOZ14], where the aborting party is
identified, is an independent research area, and is not achieved by our compiler.
Third, we allow a corrupted party to abort after undetected cheating, which does
not weaken the security guarantees.

Finally, we allow the adversary to learn the output of the function f before
it decides to cheat or to act honestly. In the original notion the adversary has

8

to make this decision without seeing the potential output. Although this mod-
ification gives the adversary additional power, it captures the real world more
reliably in regard to standalone input-independent protocols.

Covert security is typically achieved by executing several semi-honest in-
stances and checking some of them via cut-and-choose while utilizing an
unchecked instance for the actual output generation. The result of the semi-
honest instances is often an input-independent precomputation in the form of
correlated randomness, e.g., a garbled circuit or multiplication triples, which is
consumed in a maliciously secure input-dependent online phase, e.g., the circuit
evaluation or a SPDZ-style [DKL+13] online phase. Typically, the precomputa-
tion is explicitly designed not to leak any information about the actual output of
the online phase, e.g., a garbled circuit obfuscates the actual circuit gate tables
and multiplication triples are just random values without any relation to the
output or even the function computed in the online phase. Thus, in such pro-
tocols, the adversary does not learn anything about the output when executing
the semi-honest instances and therefore when deciding to cheat, which makes the
original notion of covert security realistic for such input-dependent protocols.

However, if covert security is applied to the standalone input-independent
precomputation phase, as done by our compiler, the actual output is the cor-
related randomness provided by one of the semi-honest instances. Hence, the
adversary learns potential outputs when executing the semi-honest instances.
Considering a rushing adversary that learns the output of a semi-honest in-
stance first and still is capable to cheat with its last message, the adversary can
base its decision to cheat on potential outputs of the protocol. Although this sce-
nario is simplified and there is often a trade-off between output determination
and cheating opportunities, the adversary potentially learns something about
the output before deciding to cheat. This is a power that the adversary might
have in all cut-and-choose-based protocols that do not further process the out-
put of the semi-honest instances, also in the input-independent covert protocols
compiled by Damg̊ard et al. [DOS20].

Additionally, as we have highlighted above, the result of the precomputation
typically does not leak any information about an input-dependent phase which
uses this precomputation. Hence, in such offline-online protocols, the adversary
has only little benefit of seeing the result of the precomputation before deciding
to cheat or to act honestly.

Instead of adapting the notion of covert security, we could also focus on
protocols that first obfuscate the output of the semi-honest instances, e.g., by
secret sharing it, and then de-obfuscate the output in a later stage. However,
this restricts the compiler to a special class of protocols but has basically the
same effect. If we execute such a protocol with our notion of security up to the
obfuscation stage but without de-obfuscating, the adversary learns the potential
output, that is just some obfuscated output and therefore does not provide any
benefit to the adversary’s cheat decision. Next, we only have to ensure that the
de-obfuscating is done in a malicious or covert secure way, which can be achieved,

9

e.g., by committing to all output shares after the semi-honest instances and then
open them when the cut-and-choose selection is done.

For the above reasons, we think it is a realistic modification to the covert
notion to allow the adversary to learn the output of the function f before she
decides to cheat or to act honestly. Note that the real-world adversary in cut-
and-choose-based protocols does only see a list of potential outputs but the
ideal-world adversary receives a single output which is going to be the protocol
output if the adversary does not cheat or abort. However, we have chosen to be
more generous to the adversary and model the ideal world like this in order to
keep it simpler and more general. For the same reason we ignore the trade-off
between output determination and cheating opportunities observed in real-world
protocols.

In the rest of this work, we denote the trusted party computing function f
in the ideal-world description by FCov.

2.2 Covert Security with Public Verifiability

As discussed in the introduction Asharov and Orlandi introduced to notion of
covert security with ε-deterrent and public verifiability (PVC) in the two-party
setting [AO12]. We give an extension of their formal definition to the multi-party
setting in the following.

In addition to the covert secure protocol Π, we define two algorithms Blame
and Judge. Blame takes as input the view of an honest party Pi after Pi outputs
corruptedj in the protocol execution for j ∈ I and returns a certificate Cert,
i.e., Cert := Blame(viewi). The Judge-algorithm takes as input a certificate Cert
and outputs the identity idj if the certificate is valid and states that party Pj
behaved maliciously; otherwise, it returns none to indicate that the certificate
was invalid.

Moreover, we require that the protocol Π is slightly adapted such that an
honest party Pi computes Cert = Blame(viewi) and broadcasts it after cheating
has been detected. We denote the modified protocol by Π ′. Notice that due to
this change, the adversary gets access to the certificate. By requiring simulatabil-
ity, it is guaranteed that the certificate does not reveal any private information.

We now continue with the definition of covert security with ε-deterrent and
public verifiability in the multi-party case.

Definition 2 (Covert security with ε-deterrent and public verifiability
in the multi-party case (PVC-MPC)). Let f,Π ′,Blame, and Judge be as
above. The triple (Π ′,Blame, Judge) securely computes f in the presence of covert
adversaries with ε-deterrent and public verifiability if the following conditions
hold:

1. (Simulatability) The protocol Π ′ securely computes f in the presence of
covert adversaries with ε-deterrent according to the strong explicit cheat for-
mulation (see Definition 1).

10

2. (Public Verifiability) For every PPT adversary A corrupting parties Pi for
i ∈ I ⊆ [n], there exists a negligible function µ(·) such that for all (x̄, z) ∈
({0, 1}∗)n+1 the following holds:
If OUTPUTj(REALΠ,A(z),I(x̄, 1

κ)) = corruptedi for j ∈ [n]\I and i ∈ I then:

Pr[Judge(Cert) = idi] > 1− µ(n),

where Cert is the output certificate of the honest party Pj in the execution.
3. (Defamation Freeness) For every PPT adversary A corrupting parties Pi for

i ∈ I ⊆ [n], there exists a negligible function µ(·) such that for all (x̄, z) ∈
({0, 1}∗)n+1 and all j ∈ [n] \ I:

Pr[Cert∗ ← A; Judge(Cert∗) = idj] < µ(n).

3 Preliminaries

3.1 Communication Model & Notion of Time

We assume the existence of authenticated channels between every pair of parties.
Further, we assume synchronous communication between all parties participat-
ing in the protocol execution. This means the computation proceeds in rounds,
where each party is aware of the current round. All messages sent in one round
are guaranteed to arrive at the other parties at the end of this round. We further
consider rushing adversaries which in each round are able to learn the messages
sent by other parties before creating and sending their own messages. This allows
an adversary to create messages depending on messages sent by other parties in
the same round.

We denote the time for a single communication round by Tc. In order to
model the time, it takes to compute algorithms, we use the approach presented
by Wesolowski [Wes19]. Suppose the adversary works in computation model
M. The model defines a cost function C and a time-cost function T . C(A, x)
denotes the overall cost to execute algorithm A on input x. Similar, the time-
cost function T (A, x) abstracts the notion of time of running A(x). Considering
circuits as computational model, one may consider the cost function denoting
the overall number of gates of the circuit and the time-cost function being the
circuit’s depth.

Let S be an algorithm that for any RSA modulus N generated with respect
to the security parameter κ on input N and some element g ∈ ZN outputs the
square of g. We define the time-cost function δSq(κ) = T (S, (N, g)), i.e., the time
it takes for the adversary to compute a single squaring modulo N .

3.2 Verifiable Time-Lock Puzzle

Time-lock puzzles (TLP) provide a mean to encrypt messages to the future. The
message is kept secret at least for some predefined time. The concept of a time-
lock puzzle was first introduced by Rivest et al. [RSW96] presenting an elegant

11

construction using sequential squaring modulo a composite integer N = p · q,
where p and q are primes. The puzzle is some x ∈ Z∗N with corresponding solution

y = x2
T

. The conjecture about this construction is that it requires T sequential
squaring to find the solution. Based on the time to compute a single squaring
modulo N , the hardness parameter T denotes the amount of time required to
decrypt the message. (See Section 3.1 for a notion of time.)

We extend the notion of time-lock puzzle by a verifiability notion. This prop-
erty allows a party who solved a puzzle to generate a proof which can be effi-
ciently verified by any third party. Hence, a solver is able to create a verifiable
statement about the solution of a puzzle. Boneh et al. [BBBF18] introduced the
notion of verifiable delay functions (VDF). Similar to solving a TLP, the evalu-
ation of a VDF on some input x takes a predefined number of sequential steps.
Together with the output y, the evaluator obtains a short proof π. Any other
party can use π to verify that y was obtained by evaluating the VDF on input x.
Besides the sequential evaluation, a VDF provides no means to obtain the out-
put more efficiently. Since we require a primitive that allows a party using some
trapdoor information to perform the operation more efficiently, we cannot use a
VDF but start with a TLP scheme and add verifiability using known techniques.

We present a definition of verifiable time-lock puzzles. We include a setup
algorithm in the definition which generates public parameters required to effi-
ciently construct a new puzzle. This way, we separate expensive computation
required as a one-time setup from the generation of puzzles.

Definition 3. Verifiable time-lock puzzle (VTLP) A verifiable time-lock puzzle
scheme over some finite domain S consists of four probabilistic polynomial-time
algorithms (TL.Setup,TL.Generate,TL.Solve,TL.Verify) defined as follows.

– (pp)← TL.Setup(1λ, T) takes as input the security parameter 1λ and a hard-
ness parameter T , and outputs public parameter pp.

– p ← TL.Generate(pp, s) takes as input public parameters pp and a solution
s ∈ S and outputs a puzzle p.

– (s, π)← TL.Solve(pp, p) is a deterministic algorithm that takes as input pub-
lic parameters pp and a puzzle p and outputs a solution s and a proof π.

– b := TL.Verify(pp, p, s, π) is a deterministic algorithm that takes as input
public parameters pp, a puzzle p, a solution s, and a proof π and outputs
a bit b, with b = 1 meaning valid and b = 0 meaning invalid. Algorithm
TL.Verify must run in total time polynomial in log T and λ.

We require the following properties of a verifiable time-lock puzzle scheme.

Completeness For all λ ∈ N, for all T , for all pp← TL.Setup(1λ, T), and for
all s, it holds that

(s, ·)← TL.Solve(TL.Generate(pp, s)).

Correctness For all λ ∈ N, for all T , for all pp ← TL.Setup(1λ, T), for all s,
and for all p← TL.Generate(pp, s), if (s, π)← TL.Solve(p), then

TL.Verify(pp, p, s, π) = 1.

12

Soundness For all λ ∈ N, for all T , and for all PPT algorithms A

Pr

TL.Verify(pp, p′, s′, π′) = 1
s′ 6= s

pp← TL.Setup(1λ, T)
(p′, s′, π′)← A(1λ, pp, T)
(s, ·)← TL.Solve(pp, p′)

 ≤ negl(λ)

Security A VTLP scheme is secure with gap ε < 1 if there exists a polynomial
T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and every polynomial-size
adversary (A1,A2) = {(A1,A2)λ}λ∈N where the depth of A2 is bounded
from above by T ε(λ), there exists a negligible function µ(·), such that for all
λ ∈ N it holds that

Pr

b← A2(pp, p, τ)

(τ, s0, s1)← A1(1λ)
pp← TL.Setup(1λ, T (λ))

b
$← {0, 1}

p← TL.Generate(pp, sb)

 ≤ 1

2
+ µ(λ)

and (s0, s1) ∈ S2.

Although our compiler can be instantiated with any TLP scheme satisfying
Definition 3, we present a concrete construction based on the RSW time-lock
puzzle [RSW96]. We leave it to further research to investigate if a time-lock
puzzle scheme matching our requirements, i.e., verifiability and efficient puzzle
generation, can be constructed based on hidden order groups with public setup
such as ideal class groups of imaginary quadratic fields [BW88] or Jacobians of
hyperelliptic curves [DG20]. Due to the public setup, such constructions might
be more efficient than our RSW-based solution.

In order to make the decrypted value verifiable we integrate the generation
of a proof as introduced by Wesolowski [Wes19] for verifiable delay functions.
The technique presented by Wesolowski provides a way to generate a small proof
which can be efficiently verified. However, proof generation techniques from other
verifiable delay functions, e.g., presented by Pietrzak [Pie19] can be used as well.
The approach of Wesolowski utilizes a function bin, which maps an integer to
its binary representation, and a hash function Hprime that maps any string to an
element of Primes(2k). The set Primes(2k) contains the first 22k prime numbers,
where k denotes the security level (typically 128, 192 or 256).

The TL.Setup-algorithm takes the security and hardness parameter and out-
puts public parameter. This includes an RSA modulus of two strong primes, the
number of sequential squares corresponding to the hardness parameter, and a
base puzzle. The computation can be executed efficiently if the prime numbers
are know. Afterwards, the primes are not needed anymore and can be thrown
away. Note that any party knowing the factorization of the RSA modulus can
efficiently solve puzzles. Hence, the TL.Setup-algorithm should be executed in a
trusted way.

The TL.Generate-algorithm allows any party to generate a time-lock puzzle
over some secret s. In the construction given below, we assume s to be an element
in Z∗N . However, one can use a hybrid approach where the secret is encrypted

13

with some symmetric key which is then mapped to an element in Z∗N . This allows
the generator to time-lock large secrets as well. Note that the puzzle generation
can be done efficiently and does not depend on the hardness parameter T .

The TL.Solve-algorithm solves a time-lock puzzle p by performing sequential
squaring, where the number of steps depend on the hardness parameter T . Along
with the solution, it outputs a verifiable proof π. This proof is used as additional
input to the TL.Verify-algorithm outputting true if the given secret was time-
locked by the given puzzle.

We state the formal definition of our construction next.

Construction Verifiable Time-Lock Puzzle

TL.Setup(1λ, T):

– Sample two strong primes (p, q) and set N := p · q.
– Set T ′ := T /δSq(λ).

– Sample uniform g̃
$← Z∗N and set g := −g̃2(mod N).

– Compute h := g2
T ′

, which can be optimized by reducing 2T
′

module φ(N)
first.

– Set Z := (g, h).
– Output (T ′, N, Z).

TL.Generate(pp, s):

– Parse pp := (T ′, N, Z) and Z := (g, h).

– Sample uniform r
$← {1, . . . , N2}.

– Compute g∗ := gr and h∗ := hr.
– Set c∗ := h∗ · s mod N .
– Output p := (g∗, c∗).

TL.Solve(pp, p):

– Parse pp := (T ′, N, Z) and p := (g∗, c∗).

– Compute h := g∗2
T ′

(mod N) by repeated squaring.
– Compute s := c∗

h
mod N as the solution.

– Compute ` = Hprime(bin(g∗)|| ? ||bin(s)) ∈ Primes(2k) as the challenge.

– Compute π = g∗b2
T ′/`c as the proof.

– Output (s, π).

TL.Verify(pp, p, s, π):

– Parse pp := (T ′, N, Z).
– Parse p := (g∗, c∗).
– Compute ` = Hprime(bin(g∗)|| ? ||bin(s)) ∈ Primes(2k) as the challenge.

– Compute r = 2T
′

mod `.
– Compute h′ = π`g∗r.
– Compute s′ := c∗

h′ .
– If s = s′, output 1, otherwise output 0.

14

The security of the presented construction is based on the conjecture that it
requires T ′ sequential squarings to solve a puzzle. Moreover, the soundness of
the proof generation is based on the number-theoretic assumption that it is hard
to find the `-th root modulo an RSA modulus N of an integer x /∈ {−1, 0,+1}
where ` is uniformly sampled from Primes(2k) and the factorization of N is
unknown. See [Wes19] for a detailed description of the security assumption.

3.3 Commitment

Our protocol makes use of an extractable commitment scheme which is com-
putationally binding and hiding. For ease of description, we assume the scheme
to be non-interactive. We will use the notation (c, d) ← Commit(m) to commit
to message m, where c is the commitment value and d denotes the decommit-
ment or opening value. Similarly, we use m′ ← Open(c, d) to open commitment
c with opening value d to m′ = m or m′ = ⊥ in case of incorrect opening. The
extractability property allows the simulator to extract the committed message
m and the opening value d from the commitment c by using some trapdoor
information.

Such a scheme can be implemented in the random oracle model by defining
Commit(x) = H(i, x, r) where i is the identity of the committer, H : {0, 1}∗ →
{0, 1}2κ is a random oracle and r

$← {0, 1}κ.

3.4 Signature Scheme

We use a signature scheme (Gen,Sign,Verify) that is existentially unforgeable un-
der chosen-message attacks. Before the start of our protocol, each party executes
the Gen-algorithm to obtain a key pair (pk, sk). While the secret key sk is kept
private, we assume that each other party is aware of the party’s public key pk.

3.5 Semi-Honest Base Protocol

Our compiler is designed to transform a semi-honest secure n-party protocol with
no private input tolerating n−1 corruptions, ΠSH, that computes a probabilistic
function (y1, . . . , yn)← f(), where yi is the output for party Pi, into a publicly
verifiable covert protocol, ΠPVC, that computes the same function. In order to
compile ΠSH, it is necessary that all parties that engage in the protocol ΠSH

receive a protocol transcript, which is the same if all parties act honestly. This
means that there needs to be a fixed ordering for the sent messages and that
each message needs to be sent to all involved parties 4.

We stress that any protocol can be adapted to fulfill the compilation require-
ments. Adding a fixed order to the protocol messages is trivial and just a matter
of specification. Furthermore, parties can send all of their outgoing messages to
all other parties without harming the security. This is due to the fact, that the

4 This requirement is inherent to all known publicly verifiable covert secure protocols.

15

protocol tolerates n− 1 corruptions which implies that the adversary is allowed
to learn all messages sent by the honest party anyway. Note that the transferred
messages do not need to be securely broadcasted, because our compiler requires
the protocol to produce a consistent transcript only if all parties act honestly.

3.6 Coin Tossing Functionality

We utilize a maliciously secure coin tossing functionality Fcoin parameterized
with the security parameter κ and the number of parties n. The functionality
receives oki from each party Pi for i ∈ [n] and outputs a random κ-bit string

seed
$← {0, 1}κ to all parties.

Functionality Fcoin

Inputs: Each party Pi with i ∈ [n] inputs oki.

– Sample seed
$← {0, 1}κ.

– Send seed to A.
• If A returns abort, send abort to all honest parties and stop.
• Otherwise, send seed to all honest parties.

3.7 Puzzle Generation Functionality

The maliciously secure puzzle generation functionality FPG is parameterized with
the computational security parameter κ, the number of involved parties n, the
cut-and-choose parameter t and public TLP parameters pp. It receives a coin
share ri, a puzzle randomness share ui, and the seed-share decommitments for
all instances {dij}j∈[t] as input from each party Pi. FPG calculates the random
coin r and the puzzle randomness u using the shares of all parties. Then, it
generates a time-lock puzzle p of r and all seed-share decommitments expect
the ones with index r. In the first output round it sends p to all parties. In the
second output round it reveals the values locked within p to all parties. As we
assume a rushing adversary, A receives the outputs first in both rounds and can
decide if the other parties should receive the outputs as well.

The functionality FPG can be instantiated with a general purpose maliciously
secure MPC-protocol such as the ones specified by [DKL+13] or [YWZ20].

Functionality FPG

Inputs: Each party Pi with i ∈ [n] inputs (ri, ui, {dij}j∈[t]), where ri ∈ [t],
ui ∈ {0, 1}κ, and dij ∈ {0, 1}κ.

– Compute r :=
∑n
i=1 r

i mod t and u :=
⊕n

i=1 u
i.

– Generate puzzle p ← TL.Generate(pp, (r, {dij}i∈[n],j∈[t]\r)) using random-
ness u.

– Send p to A.

16

• If A returns abort, send abort to all honest parties and stop.
• Otherwise, send p to all honest parties.5

– Upon receiving continue from each party, send (r, {dij}i∈[n],j∈[t]\r) to A.
• If A returns abort or some party does not send continue, send abort to

all honest parties and stop.
• Otherwise, send (r, {dij}i∈[n],j∈[t]\r) to all honest parties.

4 PVC Compiler

In the following, we present our compiler for multi-party protocols with no pri-
vate input from semi-honest to publicly verifiable covert security. We start with
presenting a distributed seed computation which is used as subprotocol in our
compiler. Next, we state the detailed description of our compiler. Lastly, we pro-
vide information about the Blame- and Judge-algorithm required by the notion
of publicly verifiable covert security.

4.1 Distributed Seed Computation

The execution of the semi-honest protocol instances ΠSH within our PVC com-
piler requires each party to use a random tape that is uniform at random. In order
to ensure this requirement, the parties execute several instances of a distributed
seed computation subprotocol ΠSG at the beginning. During this subprotocol,
each party Ph selects a uniform κ-bit string as private seed share seed(1,h). Addi-
tionally, Ph and all other parties get uniform κ-bit strings {seed(2,i)}i∈[n], which
are the public seed shares of all parties. The randomness used by Ph in the semi-
honest protocol will be derived from seedh := seed(1,h)⊕ seed(2,h). This way seedh

is distributed uniformly. Note that if protocol ΠSH is semi-malicious instead of
semi-honest secure then each party may choose the randomness arbitrarily and
there is no need to run the seed generation.

As the output, party Ph obtains its own private seed, commitments to all
private seeds, a decommitment for its own private seed, and all public seed
shares. We state the detailed protocol steps next. The protocol is executed by
each party Ph, parameterized with the number of parties n and the security
parameter κ.

Protocol ΠSG

(a) Commit-phase
Party Ph chooses a uniform κ-bit string seed(1,h), sets (ch, dh) ←
Commit(seed(1,h)), and sends ch to all parties.

(b) Public coin-phase
For each i ∈ [n], party Ph sends ok to Fcoin and receives seed(2,i).
Output

5 The honest parties receive p or abort in the same communication round as A.

17

If Ph has not received all messages in the expected communication rounds
or any seed(2,i) = ⊥, it sends abort to all parties and outputs abort.
Otherwise, it outputs (seed(1,h), dh, {seed(2,i), ci}i∈[n]).

4.2 The PVC Compiler

Starting with a n-party semi-honest secure protocol ΠSH we compile a publicly
verifiable covert secure protocol ΠPVC. The compiler works for protocols that
receive no private input.

The compiler uses a signature scheme, a verifiable time-lock puzzle scheme,
and a commitment scheme as building blocks. Moreover, the communication
model is as defined in Section 3.1. We assume each party generated a signa-
ture key pair (sk, pk) and all parties know the public keys of the other parties.
Furthermore, we suppose the setup of the verifiable time-lock puzzle scheme
TL.Setup was executed in a trusted way beforehand. This means in particular
that all parties are aware of the public parameters pp. We stress that this setup
needs to be executed once and may be used by many protocol executions. The
hardness parameter T used as input to the TL.Setup-algorithm needs to be de-
fined as T > 2 ·Tc, where Tc denotes the time for a single communication round
(see Section 3.1). In particular, the hardness parameter is independent of the
complexity of ΠSH.

From a high-level perspective, our compiler works in five phases. At the
beginning, all parties jointly execute the seed generation to set up seeds from
which the randomness in the semi-honest protocol instances is derived. Second,
the parties execute t instances of the semi-honest protocol ΠSH. By executing
several instances, the parties’ honest behavior can be later on checked in all but
one instance. Since checking reveals the confidential outputs of the other parties,
there must be one instance that is unchecked. The index of this one is jointly se-
lected in a random way in the third phase. Moreover, publicly verifiable evidence
is generated such that an honest party can blame any malicious behavior after-
wards. To this end, we use the puzzle generation functionality FPG to generate
a time-lock puzzle first. Next, each party signs all information required for the
other parties to blame this party. In the fourth phase, the parties either honestly
reveal secret information for all but one semi-honest execution or abort. In case
of abort, the honest parties execute the fifth phase. By solving the time-lock
puzzle, the honest parties obtain the required information to create a certificate
about malicious behavior. Since this phase is only required to be executed in case
any party aborted before revealing the information, we call this the pessimistic
case. We stress that no honest party is required to solve a time-lock puzzle in
case all parties behave honestly.

A corrupted party may cheat in two different ways in the compiled proto-
col. Either the party inputs decommitment values into the puzzle generation
functionality which open the commitments created during the seed generation
to ⊥ or the party misbehaved in the execution of ΠSH. The later means that a

18

party uses different randomness than derived from the seeds generated at the
beginning.

The first cheat attempt may be detected in two ways. In the optimistic ex-
ecution, all parties receive the inputs to FPG and can verify that opening the
commitments is successful. In the pessimistic case, solving the time-lock puzzle
reveals the input to FPG. Since we do not want the Judge to solve the puzzle
itself, we provide a proof along with the solution of the time-lock puzzle. To this
end, we require a verifiable time-lock puzzle as modeled in Section 3. Even in the
optimistic case, if an honest party detects cheating, the time-lock puzzle needs
to be solved in order to generate a publicly verifiable certificate.

If all decommitments open the commitments successfully, an honest party can
recompute the seeds used by all other parties in an execution of ΠSH and re-run
the execution. The resulting transcript is compared with the one signed by all
parties beforehand. In case any party misbehaved, a publicly verifiable certificate
can be created. For the sake of exposition, we compress the detection of malicious
behavior and the generation of the certificate into the Blame-algorithm.

The protocol defined as follows is executed by each honest party Ph.

Protocol ΠPVC

Public input: All parties agree on κ, n, t, ΠSH and pp and know all parties’
public keys {pki}i∈[n].
Private input: Ph knows its own secret key skh.

Distributed seed computation:
We abuse notation here and assume that the parties execute the seed generation
protocol from above.

1. For each instance j ∈ [t] party Ph interacts with all other parties to receive

(seed
(1,h)
j , dhj , {seed

(2,i)
j , cij}i∈[n])← ΠSG

and computes seedhj := seed
(1,h)
j ⊕ seed

(2,h)
j .

Semi-honest protocol execution:

2. Party Ph engages in t instances of the protocol ΠSH with all other parties.
In the j-th instance, party Ph uses randomness derived from seedhj and
receives a transcript and output:

(transj , y
h
j)← ΠSH.

Create publicly verifiable evidence:

3. Party Ph samples a coin share rh
$← [t], a randomness share uh

$← {0, 1}κ,
sends the message (rh, uh, {dhj }j∈[t]) to FPG and receives time-lock puzzle
p as response.

4. For each j ∈ [t], Party Ph creates a signature σhj ← Signskh(dataj), where
the signed data is defined as

dataj := (h, j, {seed(2,i)j }i∈[n], {cij}i∈[n], p, transj).

Ph broadcasts its signatures and verifies the received signatures.

19

Optimistic case:

5. If any of the following cases happens
– Ph has not received valid messages in the first protocol steps in the

expected communication round.
– FPG returned abort, or
– any other party has sent abort

party Ph broadcasts and outputs abort.
6. Otherwise, Ph sends continueh to FPG, receives (r, {d∗ij }i∈[n],j∈[t]\r) as re-

sponse and calculates

(m, cert) := Blame(viewh)

where viewh is the view of Ph.
If cert 6= ⊥, broadcast cert and output corruptedm. Otherwise, Ph outputs
yhr .

Pessimistic case:

7. If FPG returned abort in step 6, Ph solves the time-lock puzzle

((r, {d∗ij }i∈[n],j∈[t]\r), π) := TL.Solve(pp, p)

and calculates
(m, cert) := Blame(viewh)

where viewh is the view of Ph.
If cert 6= ⊥, broadcast cert and output corruptedm. Otherwise, output abort.

4.3 Blame-Algorithm

Our PVC compiler uses an algorithm Blame in order to verify the behavior
of all parties in the opened protocol instances and to generate a certificate of
misbehavior if cheating has been detected. It takes the view of a party as input
and outputs the index of the corrupted party in addition to the certificate. If
there are several malicious parties the algorithm selects the one with the minimal
index.

Algorithm Blame

On input the view view of a party which contains:

– public parameters (n, t)

– public seed shares {seed(2,i)j }i∈[n]
– shared coin r
– private seed share commitments and decommitments {cij , dij}i∈[n],j∈[t]\r
– additional certificate information

({pkj}i∈[n], {dataj}j∈[t], π, {σij}i∈[n],j∈[t])

do:

20

1. Calculate seed
(1,i)
j := Open(cij , d

i
j) for each i ∈ [n], j ∈ [t] \ r.

2. Let M1 := {(i, j) ∈ ([n], [t] \ r) : seed
(1,i)
j = ⊥}. If M1 6= ∅, choose the tuple

(m, l) ∈ M1 with minimal m and l, prioritized by m, compute (·, π) :=
TL.Solve(pp, p), if π = ⊥, set cert := (pkm, dataj , π, r, {dij}i∈[n],j∈[t]\r, σml)
and output (m, cert).

3. Set seedij := seed
(1,i)
j ⊕ seed

(2,i)
j for all i ∈ [n] and j ∈ [t] \ r.

4. Re-run ΠSH for all j ∈ [t] \ r by simulating the view of all other parties: In
the j-th instance simulate all parties Pi with randomness seedij for i ∈ [n]
and receive (trans′j , ·).

5. Let M2 := {j ∈ [t] \ r : trans′j 6= transj}. If M2 6= ∅, determine the minimal
index m such that Pm is the first party that has deviated from the protocol
description in an instance l ∈ M2. If Pm has deviated from the protocol
description in several instances l ∈ M2, choose the smallest such l. Then,
set cert := (pkm, datal, {dil}i∈[n], σml) and output (m, cert).

6. Output (0,⊥).

4.4 Judge-Algorithm

The Judge-algorithm receives the certificate and outputs either the identity of
the corrupted party or ⊥. The execution of this algorithm requires no interaction
with the parties participating in the protocol execution. Therefore, it can also
be executed by any third party which possesses a certificate cert. If the output
is pkm for m ∈ [n], the executing party is convinced that party Pm misbehaved
during the protocol execution. The Judge-algorithm is parameterized with n, t,
pp, and ΠSH.

Algorithm Judge(cert)

Inconsistency certificate:
On input cert = (pkm, data, π, r, {dij}i∈[n],j∈[t]\r, σml) do:

– If Verifypkm(data;σml) = ⊥, output ⊥.

– Parse data to (m, l, ·, {cil}i∈[n], p, ·).
– If TL.Verify(pp, p, (r, {dij}i,j), π) = 0 output ⊥.
– If r = l, output ⊥.
– If Open(cml , d

m
l) 6= ⊥, output ⊥. Else output pkm.

Deviation certificate:
On input cert = (pkm, data, {dil}i∈[n], σml).

– If Verifypkm(data;σml) = ⊥, output ⊥.

– Parse data to (m, l, {seed(2,i)l }i∈[n], {cil}i∈[n], ·, transl).
– Set seed

(1,i)
l ← Open(cil, d

i
l) for each i ∈ [n]. If any seed

(1,i)
l = ⊥, output ⊥.

– Set seedil := seed
(1,i)
l ⊕ seed

(2,i)
l for each i.

– Simulate ΠSH using the seeds seedil as randomness of party Pi and get result
(trans′l, ·).

21

– If trans′l = transl, output ⊥. Otherwise, determine the index m′ of the first
party that has deviated from the protocol description. If m 6= m′, output
⊥. Otherwise, output pkm.

Ill formatted: If the cert cannot be parsed to neither of the two above cases,
output (⊥).

5 Security

In this section, we show the security of the compiled protocol described in Sec-
tion 4. To this end, we state the security guarantee in Theorem 1 and prove its
correctness in the following.

Theorem 1. Let ΠSH be a n-party protocol, receiving no private inputs, which
is secure against a passive adversary that corrupts up to n − 1 parties. Let the
signature scheme (Gen,Sign,Verify) be existentially unforgeable under chosen-
message attacks and let the verifiable time-lock puzzle scheme TL be secure with
hardness parameter T > 2 · Tc. Let (Commit,Open) be an extractable commit-
ment scheme which is computationally binding and hiding. Then protocol ΠPVC

along with algorithms Blame and Judge is secure against a covert adversary that
corrupts up to n − 1 parties with deterrence ε = 1 − 1

t and public verifiability
according to definition 2 in the (Fcoin,FPG)-hybrid model. 6

Proof. We prove security of the compiled protocol ΠPVC by showing simulata-
bility, public verifiability, and defamation freeness according to Definition 2 sep-
arately.

5.1 Simulatability

In order to prove that ΠPVC meets covert security with ε-deterrent, we define an
ideal-world simulator S using the adversary A in a black-box way as a subroutine
and playing the role of the parties corrupted by A when interacting with the
ideal covert-functionality FCov.

The simulator and the proof that the joint distribution of the honest parties’
outputs and the view of A in the ideal world is computationally indistinguishable
from the honest parties’ outputs and the view of A in the real world are given
in the full version of the paper.

5.2 Public Verifiability

We first argue that an adversary is not able to perform what we call a detection
dependent abort. This means that once an adversary learns if its cheating will be
detected, it can no longer prevent honest parties from generating a certificate.

6 See section 3.1, for details on the notion of time and the communication model.

22

In order to see this, note that withholding valid signatures by corrupted par-
ties in step 4 results in an abort of all honest parties. In contrast, if all honest
parties receive valid signatures from all other parties in step 4, then they are
guaranteed to obtain the information encapsulated in the time-lock puzzle, i.e.,
the coin r and the decommitments of all parties {dij}i∈[n],j∈[t]\r. Either, all par-
ties jointly trigger the puzzle generation functionality FPG to output the values
or in case any corrupted party aborts, an honest party can solve the time-lock
puzzle without interaction. Thus, it is not possible for a rushing adversary that
gets the output of FPG in step 6 first, to prevent the other parties from learning
it at some time as well. Moreover, the adversary also cannot extract the values
from the puzzles before making the decision if it wants to continue or abort, as
the decision has to be made in time smaller than the time required to solve the
puzzle. Thus, the adversary’s decision to continue or abort is independent from
the coin r and therefore independent from the event of being detected or not.

Secondly, we show that the Judge-algorithm will accept a certificate, created
by an honest party, expect with negligible probability. Assume without loss of
generality that some malicious party Pm has cheated, cheating has been detected
and a certificate (blaming party Pm) has been generated. As we have two types
of certificates, we will look at them separately.

If an honest party outputs an inconsistency certificate, it has received an
inconsistent commitment-opening pair (cml , d

m
l) for some l 6= r. The value cml

is signed directly by Pm and dml indirectly via the signed time-lock puzzle p.
Hence, Judge can verify the signatures and detect the inconsistent commitment
of Pm as well. Note that due to the verifiability of our time-lock construction, the
Judge-algorithm does not have to solve the time-lock puzzle itself but just needs
to verify a given solution. This enables the algorithm to be executed efficiently.

If an honest party outputs a deviation certificate, it has received consistent
openings for all j 6= r from all other parties, but party Pm was the first party
who deviated from the specification of ΠSH in some instance l ∈ [t]\r. Since ΠSH

requires no input from the parties, deviating from its specification means using
different randomness than derived from the seeds generated at the beginning of
the compiled protocol. As Pm has signed the transcript transl, the private seed-
commitments of all parties {cil}i∈[n], the public seeds {seed(2,i)}i∈[n], and the
certificate contains the valid openings {dil}i∈[n], the Judge-algorithm can verify
that Pm was the first party who misbehaved in instance l the same way the
honest party does. Note that it is not necessary for Judge to verify that j 6= r,
because the certificate generating party can only gain valid openings {dil}i∈[n]
for j 6= r.

5.3 Defamation Freeness

Assume, without loss of generality, that some honest party Ph is blamed by the
adversary. We show defamation freeness for the two types of certificates sepa-
rately via a reduction to the security of the commitment scheme, the signature
scheme and the time-lock puzzle scheme.

23

First, assume there is a valid inconsistency certificate cert∗ blaming Ph. This
means that there is a valid signatures of Ph on a commitment c∗hj and a time-

lock puzzle p∗ that has a solution s∗ which contains an opening d∗hj such that

Open(c∗hj , d
∗h
j) = ⊥ and j 6= r. As Ph is honest, Ph only signs a commitment

c∗hj which equals the commitment honestly generated by Ph during the seed

generation. We call such a c∗hj correct. Thus, c∗hj is either correct or the adversary
can forge signatures. Similar, Ph does only sign the puzzle p∗ received by FPG.
This puzzle is generated on the opening value provided by all parties. Since Ph is
honest, correct opening values are inserted. Therefore, the signed puzzle p∗ either
contains the correct opening value or the adversary can forge signatures. Due
to the security guarantees of the puzzle, the adversary has to either provide the
correct solution s∗ or can break the soundness of the time-lock puzzle scheme.
To sum it up, an adversary creating a valid inconsistency certificate contradicts
to the security assumptions specified in Theorem 1.

Second, assume there is a valid deviation certificate cert∗ blaming Ph. This
means, there is a protocol transcript trans∗j in which Ph is the first party that has
sent a message which does not correspond to the next-message function of ΠSH

and the randomness, seedhj used by the judge to simulate Ph. As Ph is honest,

either trans∗ or seedhj needs to be incorrect. Also, Ph does not create a signature
for an invalid trans∗. Thus, trans∗ is either correct or the adversary can forge sig-

natures. The seedhj is calculated as seedhj := seed
(1,h)
j ⊕ seed

(2,h)
j . The public seed

seed
(2,h)
j is signed by Ph and provided directly. The private seed of Ph is provided

via a commitment-opening pair (chj , d
h
j), where chj is signed by Ph. As above, chj

and seed
(2,h)
j are either correct or the adversary can forge signatures. Similar,

dhj is either correct or the adversary can break the binding property of the com-

mitment scheme. If the certificate contains correct (trans∗j , c
h
j , d

h
j , seed

(2,h)
j) the

certificate is not valid. Thus, when creating an accepting cert∗, the adversary
has either broken the signature or the commitment scheme which contradicts to
the assumption of Theorem 1.

ut

6 Evaluation

6.1 Efficiency of our Compiler

In Section 4, we presented a generic compiler for transforming input-independent
multi-party computation protocols with semi-honest security into protocols that
offer covert security with public verifiability. We elaborate on efficiency param-
eters of our construction in the following.

The deterrence factor ε = t−1
t only depends on the number of semi-honest

protocol executions t. In particular, ε is independent of the number of parties.
This property allows for achieving the same deterrence factor for a fixed number
of semi-honest executions while the number of parties increases. Our compiler

24

therefore facilitates secure computation with a large number of parties. Further-
more, the deterrence factor grows with the number of semi-honest instances (t),
similar to previous work based on cut-and-choose (e.g., [AL07, AO12, DOS20]).
Concretely, this means that for only five semi-honest instances, our compiler
achieves a cheating detection probability of 80%. Moreover, the semi-honest in-
stances are independent of each other and, hence, can be executed in parallel.
This means, that the communication and computation complexity in comparison
to a semi-honest protocol increases by factor t. However, our compiler preserves
the round complexity of the semi-honest protocol. Hence, it is particularly useful
for settings and protocols in which the round complexity constitutes the major
efficiency bottleneck. Similarly, the requirement of sending all messages to all
parties further increases the communication overhead by a factor of n − 1 but
does not affect the round complexity. Since this requirement is inherent to all
known publicly verifiable covert secure protocols, e.g., [DOS20], these protocols
incur a similar communication overhead.

While our compiler requires a maliciously secure puzzle generation function-
ality, we stress that the complexity of the puzzle generation is independent of
the cost of the semi-honest protocol. Therefore, the relative overhead of the
puzzle generation shrinks for more complex semi-honest protocols. One applica-
tion where our result may be particular useful is for the preprocessing phase of
multi-party computation, e.g., protocols for generating garbled circuits or multi-
plication triples. In such protocols, one can generate several circuits resp. triples
that are used in several online instances but require just one puzzle generation.

For the sake of concreteness, we constructed a boolean circuit for the puzzle
generation functionality and estimated its complexity in terms of the number of
AND-gates. The construction follows a naive design and should not constitute
an efficient solution but should give a first impression on the circuit complexity.
We present some intuition on how to improve the circuit complexity afterwards.

We utilize the RSW VTLP construction described in Section 3.2 with a hy-
brid construction, in which a symmetric encryption key is locked within the
actual time-lock puzzle and is used to encrypt the actual secret. Note that the
RSW VTLP is not optimized for MPC scenarios. Since our compiler can be in-
stantiated with an arbitrary VTLP satisfying Definition 3, any achievements in
the area of MPC-friendly TLP can result into an improved puzzle generation
functionality for our compiler. To instantiate the symmetric encryption opera-
tion, we use the LowMC [ARS+15] cipher, an MPC-friendly cipher tailored for
boolean circuits.

Let n be the number of parties, t being the number of semi-honest instances,
κ denoting the computational security parameter, and N represents the RSA
modulus used for the RSW VTLP. We use the notation |x| to denote the bit
length of x. The total number of AND-gates of our naive circuit is calculated as
follows:

25

(n− 1) · (11|t|+ 22|N |+ 12)

+ nt · (4|t|+ 2κ+ 755)

+ 192|N |3 + 112|N |2 + 22|N |

It is easy to see that the number of AND-gates is linear in both n and
t. The most expensive part of the puzzle generation is the computation of two
exponentiations required for the RSW VTLP, since the number of required AND-
gates is cubic in |N | for an exponentiation. However, we can slightly adapt our
puzzle generation functionality and protocol to remove these exponentiations
from the maliciously secure puzzle generation protocol. For the sake of brevity,
we just give an intuition here.

Instead of performing the exponentiations gu and hu required for the puzzle
creation within the puzzle generation functionality, we let each party Pi input
a 0-puzzle consisting of the two values gi = gui and hi = hui . The products of
all gi respectively hi are used as g∗ and h∗ for the VTLP computation. Since
we replace the exponentiations with multiplications, the number of AND-gates
is quadratic instead of cubic in |N |.

Note that this modification enables a malicious party to modify the resulting
puzzle by inputting a non-zero puzzle. Intuitively, the attacker can render the
puzzle invalid such that no honest party can create a valid certificate or the
puzzle can be modified such that a corrupted party can create a valid certificate
defaming an honest party. Concretely, one possible attack is to input inconsistent
values gi and hi, i.e., to use different exponents for the two exponentiations. As
such an attack must be executed without knowledge of the coin r, it is sufficient
to detect invalid inputs and consider such behavior as an early abort. To this
end, parties have to provide ui to the puzzle generation functionality and the
functionality outputs u = Σ ui, g

∗ and h∗ in the second output round together
with the coin and the seed openings. By comparing if g∗ = gu and h∗ = hu,
each party can check the validity of the puzzle. Finally, we need to ensure that a
manipulated puzzle cannot be used to create an inconsistency certificate blaming
an honest party. Such false accusation can easily be prevented, e.g., by adding
some zero padding to the value inside the puzzle such that any invalid puzzle
input renders the whole puzzle invalid.

6.2 Comparison with Prior Work

To the best of our knowledge, our work is the first to provide a fully specified
publicly verifiable multi-party computation protocol against covert adversaries.
Hence, we cannot compare to existing protocols directly. However, Damg̊ard
et al. [DOS20] have recently presented two compilers for constructing publicly
verifiable covert secure protocols from semi-honest secure protocols in the two-
party setting, one for input-independent and one for input-dependent protocols.
For the latter, they provide an intuition on how to extend the compiler to the
multi-party case. However, there is no full compiler specification for neither

26

input-dependent nor input-independent protocols. Still, there exist a natural
extension for the input-independent compiler, which we can compare to.

The major difference between our input-independent protocol and their input-
independent protocol, is the way the protocols prevent detection dependent abort.
In the natural extension to Damg̊ard et al. [DOS20], which we call the watchlist
approach in the following, each party independently selects a subset of instances
it wants to check and receives the corresponding seeds via oblivious transfer. The
transcript of the oblivious transfer together with the receiver’s randomness can
be used by the receiver to prove integrity of its watchlist to the judge; similar
to the seed commitments and openings used in our protocol. The watchlists are
only revealed after each party receives the data required to create a certificate
in case of cheating detection, i.e., the signatures by the other parties. Once a
party detects which instances are checked, it is too late to prevent the creation
of a certificate. Our approach utilizes time-lock puzzles for the same purpose.

In the watchlist approach, all parties have different watchlists. For t semi-
honest instances and watchlists of size s ≥ t

n , there is a constant probability
Pr[bad] that no semi-honest instance remains unwatched which leads to a failure
of the protocol. Thus, parties either need to choose s < t

n and hence ε = s
t <

1
n or

run several executions of the protocol. For the latter, the probability of a protocol
failure Pr[bad] and the expected number of protocol runs runs are calculated
based on the inclusion-exclusion principle as follows:

Pr[bad] = 1−
∑t
k=1(−1)(k−1) ∗

(
t
k

)
∗ (
∏s−1
j=0(t− j − k))n∏s−1

j=0(t− j))n

= 1−
t∑

k=1

(−1)(k−1) ·
(
t

k

)
·
(

(t− k)! · (t− s)!
(t− k − s)! · t!

)n
runs = Pr[bad]−1

Setting the watchlist size s ≥ t
n such that there is a constant failure proba-

bility has the additional drawback that the repetition can be abused to amplify
denial-of-service attacks. An adversary can enforce a high failure probability by
selecting its watchlists strategically. If s ≥ t

(n−1) and n − 1 parties are cor-

rupted, the adversary can cause an error with probability 1 which enables an
infinite DoS-attack.

This restriction of the deterrence factor seems to be a major drawback of the
watchlist approach. Although our approach has an additional overhead due to
the puzzle generation, which is independent of the complexity of the transformed
protocol and thus amortizes over the complexity of the base protocols, it has the
benefit that it immediately supports an arbitrary deterrence factor ε. This is
due to the fact that the hidden shared coin toss determines a single watchlist
shared by all parties. In Table 1, we display the maximal deterrence factor of
our approach ε in comparison to the maximal deterrence factor of the watch-
list approach without protocol repetitions ε′ for different settings. Additionally,

27

we provide the number of expected runs required to achieve ε in the watchlist
approach with repetitions.

n t
Our approach Watchlist approach

ε ε′ or runs

2

2 1/2 - 2

3 2/3 1/3 3

10 9/10 4/10 10

3

2 1/2 - 4

4 3/4 1/4 16

10 9/10 3/10 100

5
2 1/2 - 16

6 5/6 1/6 1296

Table 1. Maximal deterrence factor or expected number of runs of the watchlist ap-
proach in comparison to our approach.

Acknowledgments

The first, third, and fourth authors were supported by the German Federal
Ministry of Education and Research (BMBF) iBlockchain project (grant nr.
16KIS0902), by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) SFB 1119 – 236615297 (CROSSING Project S7), by the BMBF and
the Hessian Ministry of Higher Education, Research, Science and the Arts within
their joint support of the National Research Center for Applied Cybersecurity
ATHENE, and by Robert Bosch GmbH, by the Economy of Things Project.
The second author was supported by the BIU Center for Research in Applied
Cryptography and Cyber Security in conjunction with the Israel National Cyber
Bureau in the Prime Minister’s Office, and by ISF grant No. 1316/18.

References

[AL07] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries:
Efficient protocols for realistic adversaries. TCC 2007.

[AO12] Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert security
with public verifiability. ASIACRYPT 2012.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. Ciphers for MPC and FHE. EURO-
CRYPT 2015, Part I.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable
delay functions. CRYPTO 2018, Part I.

28

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomization.
CRYPTO’91.

[BGJ+16] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod
Vaikuntanathan, and Brent Waters. Time-lock puzzles from randomized
encodings. ITCS 2016.

[BW88] Johannes Buchmann and Hugh C. Williams. A key-exchange system based
on imaginary quadratic fields. Journal of Cryptology, June 1988.

[DG20] Samuel Dobson and Steven D. Galbraith. Trustless groups of unknown
order with hyperelliptic curves. IACR Cryptol. ePrint Arch. 2020, 2020.

[DGN10] Ivan Damg̊ard, Martin Geisler, and Jesper Buus Nielsen. From passive to
covert security at low cost. TCC 2010.

[DKL+13] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl,
and Nigel P. Smart. Practical covertly secure MPC for dishonest majority
- or: Breaking the SPDZ limits. ESORICS 2013.

[DOS20] Ivan Damg̊ard, Claudio Orlandi, and Mark Simkin. Black-box transforma-
tions from passive to covert security with public verifiability. CRYPTO
2020, Part II.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Za-
karias. Multiparty computation from somewhat homomorphic encryption.
CRYPTO 2012.

[GMS08] Vipul Goyal, Payman Mohassel, and Adam Smith. Efficient two party and
multi party computation against covert adversaries. EUROCRYPT 2008.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. 19th
ACM STOC 1987.

[HKK+19] Cheng Hong, Jonathan Katz, Vladimir Kolesnikov, Wen-jie Lu, and Xiao
Wang. Covert security with public verifiability: Faster, leaner, and simpler.
EUROCRYPT 2019, Part III.

[HVW20] Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, and Mor Weiss.
The price of active security in cryptographic protocols. EUROCRYPT 2020,
Part II.

[IOZ14] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party com-
putation with identifiable abort. CRYPTO 2014, Part II.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography
on oblivious transfer - efficiently. CRYPTO 2008.

[KM15] Vladimir Kolesnikov and Alex J. Malozemoff. Public verifiability in the
covert model (almost) for free. ASIACRYPT 2015, Part II.

[LOP11] Yehuda Lindell, Eli Oxman, and Benny Pinkas. The IPS compiler: Opti-
mizations, variants and concrete efficiency. CRYPTO 2011.

[MMV11] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Time-lock puzzles
in the random oracle model. CRYPTO 2011.

[MT19] Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan. Homomorphic
time-lock puzzles and applications. CRYPTO 2019, Part I.

[Pie19] Krzysztof Pietrzak. Simple verifiable delay functions. ITCS 2019.

[RSW96] Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and
timed-release crypto. Technical report, Massachusetts Institute of Technol-
ogy. Laboratory for Computer Science, 1996.

[Wes19] Benjamin Wesolowski. Efficient verifiable delay functions. EURO-
CRYPT 2019, Part III.

29

[WRK17a] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated gar-
bling and efficient maliciously secure two-party computation. ACM CCS
17.

[WRK17b] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure
multiparty computation. ACM CCS 17.

[YWZ20] Kang Yang, Xiao Wang, and Jiang Zhang. More efficient MPC from im-
proved triple generation and authenticated garbling. ACM CCS 2020.

[ZDH19] Ruiyu Zhu, Changchang Ding, and Yan Huang. Efficient publicly verifiable
2pc over a blockchain with applications to financially-secure computations.
ACM CCS 2019.

30

