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Abstract. The random probing model is a leakage model in which each
wire of a circuit leaks with a given probability p. This model enjoys prac-
tical relevance thanks to a reduction to the noisy leakage model, which is
admitted as the right formalization for power and electromagnetic side-
channel attacks. In addition, the random probing model is much more
convenient than the noisy leakage model to prove the security of masking
schemes. In a recent work, Ananth, Ishai, and Sahai (CRYPTO 2018)
introduce a nice expansion strategy to construct random probing secure
circuits. Their construction tolerates a leakage probability of 2−26, which
is the first quantified achievable leakage probability in the random prob-
ing model. In a follow-up work, Beläıd, Coron, Prouff, Rivain, and Taleb
(CRYPTO 2020) generalize their idea and put forward a complete and
practical framework to generate random probing secure circuits. The so-
called expanding compiler can bootstrap simple base gadgets as long as
they satisfy a new security notion called random probing expandability
(RPE). They further provide an instantiation of the framework which
tolerates a 2−8 leakage probability in complexity O(κ7.5) where κ de-
notes the security parameter.

In this paper, we provide an in-depth analysis of the RPE security notion.
We exhibit the first upper bounds for the main parameter of a RPE gad-
get, which is known as the amplification order. We further show that the
RPE notion can be made tighter and we exhibit strong connections be-
tween RPE and the strong non-interference (SNI) composition notion.
We then introduce the first generic constructions of gadgets achieving
RPE for any number of shares and with nearly optimal amplification
orders and provide an asymptotic analysis of such constructions. Last
but not least, we introduce new concrete constructions of small gad-
gets achieving maximal amplification orders. This allows us to obtain
much more efficient instantiations of the expanding compiler: we obtain
a complexity of O(κ3.9) for a slightly better leakage probability, as well
as O(κ3.2) for a slightly lower leakage probability.
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1 Introduction

Most commonly used cryptographic algorithms are assumed to be secure against
black-box attacks, when the adversary is limited to the knowledge of some inputs
and outputs. However, as revealed in the late nineties [18], their implementation
on physical devices can be vulnerable to the more powerful side-channel attacks.
The latter additionally exploit the physical emanations of the underlying device
such as the execution time or the device temperature, power consumption, or
electromagnetic radiations during the algorithm execution.

To counteract side-channel attacks which often only require cheap equipment
and can be easily mounted in a short time interval, the cryptographic community
has searched for efficient countermeasures. Among the different approaches, one
of the most widely used is known as masking. Simultaneously introduced by
Chari, Jutla, Rao and Rohatgi [10], and by Goubin and Patarin [16] in 1999,
it happens to be strongly related to techniques usually applied in secure multi-
party computation. In a nutshell, the idea is to split each sensitive variable of the
implementation into n shares such that n − 1 of them are generated uniformly
at random whereas the last one is computed as a combination of the original
value and the random shares. Doing so, one aims to ensure that an adversary
cannot recover the secret without knowledge of all the shares. When the shares
are combined by bitwise addition, the masking is said to be Boolean, and it
enjoys simple implementation for linear operations which can be simply applied
on each share separately. However, things are trickier for non-linear operations
for which it is impossible to compute the result without combining shares.

In order to reason about the security of these countermeasures, the com-
munity has introduced a variety of models. Among them, the probing model
introduced by Ishai, Sahai, and Wagner in 2003 [17] is well suited to analyze the
security of masked implementations. Basically, it assumes that an adversary is
able to get the exact values of a certain number t of intermediate variables in
an implementation. This way, it captures the increasing difficulty of combining
noisy leakage to recover secrets. Despite its wide use by the community [20, 13,
11, 8, 12], the probing model raised a number of concerns regarding its relevance
in practice. Therefore, in 2013, Prouff and Rivain introduced a general and prac-
tical model, known as the noisy leakage model [19]. This model well captures the
reality of embedded devices by assuming that all the manipulated data leak to-
gether with some noise. Unfortunately, proving the security of a masking scheme
in this model is rather tedious, which is why Duc, Dziembowski, and Faust pro-
vided in 2014 a reduction showing that a scheme secure in the probing model is
also secure in the noisy leakage model [14].

This reduction is based on an intermediate leakage model, known as random
probing model, to which the security in the noisy leakage model tightly reduces.
In this model, every wire of a circuit is assumed to leak with some constant
leakage probability. Then, a circuit is secure if there is a negligible probability
that these leaking wires actually reveal information on the secrets. Compared
to the probing model, the random probing model is closer to the noisy leakage
model and, in particular, captures horizontal attacks which exploit the repeated
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manipulations of variables throughout the implementation. Classical probing se-
cure schemes are also secure in the random probing model but the tolerated
leakage probability (a.k.a. leakage rate) might not be constant which is not sat-
isfactory from a practical viewpoint. Indeed, in practice, the leakage probability
translates to some side-channel noise amount which might not be customizable
by the implementer.

So far, only a few constructions [1, 3, 2, 9] tolerate a constant leakage proba-
bility. The two former ones [1, 3] are based on expander graphs and the tolerated
probability is not made explicit. The third construction [2] is based on multi-
party computation protocols and an expansion strategy. It reaches a tolerated
leakage probability of around 2−26 for a complexity of O(κ8.2) for some secu-
rity parameter κ, as computed by the authors of [9]. Finally, the more recent
construction [9] relies on masking gadgets and a similar expansion strategy and
reaches a tolerated leakage probability of 2−8 for a complexity of O(κ7.5). While
obtaining such quantified tolerated leakage probability is of great practical in-
terest, the obtained complexity is high which makes this construction hardly
practical.

Besides their explicit construction, the authors of [9] provide a complete
and practical framework to generate random probing secure implementations.
Namely, they formalize the expanding compiler which produces a random prob-
ing secure version of any circuit from three base gadgets (for addition, copy, and
multiplication) achieving a random probing expandability (RPE) property. The
advantage of this approach is that it enables to bootstrap small gadgets (defined
for a small number of shares) into a circuit achieving arbitrary security in the
random probing model while tolerating a constant and quantified leakage prob-
ability. Although the concrete results of [9] in terms of complexity and tolerated
leakage probability are promising, the authors left open the analysis of this RPE
property and the design of better gadgets in this paradigm.

Our contributions. In this paper, we provide an in-depth analysis of the ran-
dom probing expandability security notion. We first provide some upper bounds
for the amplification order of an RPE gadget, which is the crucial parameter
in view of a low-complexity instantiation of the expanding compiler. We further
show that the RPE notion can be made tighter and we exhibit strong rela-
tions between RPE and the strong non-interference (SNI) composition notion
for probing-secure gadgets.

From these results, we introduce the first generic constructions of gadgets
achieving RPE for any number of shares and with nearly optimal amplification
orders. These generic gadgets are derived from the widely known Ishai-Sahai-
Wagner (ISW) construction. We show that the obtained expanding compiler can
approach a quadratic complexity depending on the leakage probability that must
be tolerated: the smaller the leakage probability, the closer the complexity to
O(κ2). We further introduce a new multiplication gadget achieving the optimal
amplification order, which allows us to improve the convergence to a quadratic
complexity.
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Finally, we provide new concrete constructions of copy, addition, and multi-
plication gadgets achieving maximal amplification orders for small numbers of
shares. These gadgets yield much more efficient instantiations than all the pre-
vious schemes (including the analysed ISW-based constructions). While slightly
improving the tolerated leakage probability to p = 2−7.5, our 3-share instanti-
ation achieves a complexity of O(κ3.9). For a slightly lower leakage probability,
our 5-share instantiation drops the complexity to O(κ3.2).

We thus achieve a significant step forward in the quest for efficient random
probing secure schemes that tolerate a quantified leakage probability. Besides our
concrete instantiations, our work introduces several tools (new bounds, relations,
and generic gadgets) that shall be instrumental for future constructions.

2 Preliminaries

Along the paper, we shall use similar notations and formalism as [9]. In partic-
ular, K shall denote a finite field. For any n ∈ N, we shall denote [n] the integer
set [n] = [1, n]∩Z. For any tuple x = (x1, . . . , xn) ∈ Kn and any set I ⊆ [n], we
shall denote x|I = (xi)i∈I .

2.1 Linear Sharing, Circuits, and Gadgets

In the following, the n-linear decoding mapping, denoted LinDec, refers to the
function Kn → K defined as

LinDec : (x1, . . . , xn) 7→ x1 + · · ·+ xn ,

for every n ∈ N and (x1, . . . , xn) ∈ Kn. We shall further consider that, for every
n, ` ∈ N, on input (x̂1, . . . , x̂`) ∈ (Kn)` the n-linear decoding mapping acts as

LinDec : (x̂1, . . . , x̂`) 7→ (LinDec(x̂1), . . . , LinDec(x̂`)) .

Definition 1 (Linear Sharing). Let n, ` ∈ N. For any x ∈ K, an n-linear
sharing of x is a random vector x̂ ∈ Kn such that LinDec(x̂) = x. It is said to be
uniform if for any set I ⊆ [n] with |I| < n the tuple x̂|I is uniformly distributed
over K|I|. A n-linear encoding is a probabilistic algorithm LinEnc which on input
a tuple x = (x1, . . . , x`) ∈ K` outputs a tuple x̂ = (x̂1, . . . , x̂`) ∈ (Kn)` such that
x̂i is a uniform n-sharing of xi for every i ∈ [`].

An arithmetic circuit on a field K is a labeled directed acyclic graph whose
edges are wires and vertices are arithmetic gates processing operations on K. We
consider circuits composed of addition gates, (x1, x2) 7→ x1 + x2, multiplication
gates, (x1, x2) 7→ x1 · x2, and copy gates, x 7→ (x, x). A randomized arithmetic
circuit is equipped with an additional random gate which outputs a fresh uniform
random value of K.

In the following, we shall call an (n-share, `-to-m) gadget, a randomized
arithmetic circuit that maps an input x̂ ∈ (Kn)` to an output ŷ ∈ (Kn)m such
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that x = LinDec(x̂) ∈ K` and y = LinDec(ŷ) ∈ Km satisfy y = g(x) for some
function g. In this paper, we shall consider gadgets for three types of functions
(corresponding to the three types of gates): the addition g : (x1, x2) 7→ x1 + x2,
the multiplication g : (x1, x2) 7→ x1 · x2 and the copy g : x 7→ (x, x). We shall
generally denote such gadgets Gadd, Gmult and Gcopy respectively.

2.2 Random Probing Security

Let p ∈ [0, 1] be some constant leakage probability parameter, a.k.a. the leakage
rate. In the p-random probing model, an evaluation of a circuit C leaks the value
carried by each wire with a probability p (and leaks nothing otherwise), all the
wire leakage events being mutually independent.

As in [9], we formally define the random-probing leakage of a circuit from
the two following probabilistic algorithms:

– The leaking-wires sampler takes as input a randomized arithmetic circuit C
and a probability p ∈ [0, 1], and outputs a set W, denoted as

W ← LeakingWires(C, p) ,

whereW is constructed by including each wire label from the circuit C with
probability p to W (where all the probabilities are mutually independent).

– The assign-wires sampler takes as input a randomized arithmetic circuit C,
a set of wire labels W (subset of the wire labels of C), and an input x, and
it outputs a |W|-tuple w ∈ (K ∪ {⊥})|W|, denoted as

w ← AssignWires(C,W,x) ,

where w corresponds to the assignments of the wires of C with label in W
for an evaluation on input x.

Definition 2 (Random Probing Leakage). The p-random probing leakage
of a randomized arithmetic circuit C on input x is the distribution Lp(C,x)
obtained by composing the leaking-wires and assign-wires samplers as

Lp(C,x)
id
= AssignWires(C, LeakingWires(C, p),x) .

Definition 3 (Random Probing Security). A randomized arithmetic circuit
C with ` · n ∈ N input gates is (p, ε)-random probing secure with respect to
encoding Enc if there exists a simulator Sim such that for every x ∈ K`:

Sim(C) ≈ε Lp(C,Enc(x)) . (1)

2.3 Expanding Compiler

In [2], Ananth, Ishai and Sahai propose an expansion approach to build a
random-probing-secure circuit compiler from a secure multiparty protocol. This
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approach was later revisited by Beläıd, Coron, Prouff, Rivain, and Taleb who
formalize the notion of expanding compiler [9].

The principle of the expanding compiler is to recursively apply a base com-
piler, denoted CC, and which simply consists in replacing each gate in the input
circuit by the corresponding gadget. More specifically, assume we have three n-
share gadgets Gadd, Gmult, Gcopy, for the addition, the multiplication, and the
copy on K. The base compiler CC simply consists in replacing each addition gate
in the original gadget by Gadd, each multiplication gate by Gmult, and each copy
gate by Gcopy, and by replacing each wire by n wires carrying a sharing of the
original wire. One can derive three new n2-share gadgets by simply applying CC

to each gadget: G
(2)
add = CC(Gadd), G

(2)
mult = CC(Gmult), and G

(2)
copy = CC(Gcopy).

Doing so, we obtain n2-share gadgets for the addition, multiplication, and copy
on K. This process can be iterated an arbitrary number of times, say k, to an
input circuit C:

C
CC−−−→ Ĉ1

CC−−−→ · · · CC−−−→ Ĉk .

The first output circuit Ĉ1 is the original circuit in which each gate is replaced
by a base gadget Gadd, Gmult, or Gcopy. The second output circuit Ĉ2 is the

original circuit C in which each gate is replaced by an n2-share gadget G
(2)
add,

G
(2)
mult, or G

(2)
copy as defined above. Equivalently, Ĉ2 is the circuit Ĉ1 in which each

gate is replaced by a base gadget. In the end, the output circuit Ĉk is hence the
original circuit C in which each gate has been replaced by a k-expanded gadget
and each wire has been replaced by nk wires carrying an (nk)-linear sharing of
the original wire.

This expanding compiler achieves random probing security if the base gadgets
verify a property called random probing expandability [9].

2.4 Random Probing Expandability

We recall hereafter the original definition of the random probing expandability
(RPE) property for 2-input 1-output gadgets.

Definition 4 (Random Probing Expandability [9]). Let f : R → R. An
n-share gadget G : Kn ×Kn → Kn is (t, f)-random probing expandable (RPE)
if there exists a deterministic algorithm SimG

1 and a probabilistic algorithm SimG
2

such that for every input (x̂, ŷ) ∈ Kn × Kn, for every set J ⊆ [n] and for every
p ∈ [0, 1], the random experiment

W ← LeakingWires(G, p)

(I1, I2, J
′)← SimG

1 (W, J)

out← SimG
2 (W, J ′, x̂|I1 , ŷ|I2)

ensures that

1. the failure events F1 ≡
(
|I1| > t

)
and F2 ≡

(
|I2| > t

)
verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2 (2)
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with ε = f(p) (in particular F1 and F2 are mutually independent),

2. J ′ is such that J ′ = J if |J | ≤ t and J ′ ⊆ [n] with |J ′| = n− 1 otherwise,

3. the output distribution satisfies

out
id
=
(
AssignWires(G,W, (x̂, ŷ)) , ẑ|J′

)
(3)

where ẑ = G(x̂, ŷ).

The RPE notion can be simply extended to gadgets with 2 outputs: the SimG
1

simulator takes two sets J1 ⊆ [n] and J2 ⊆ [n] as input and produces two sets J ′1
and J ′2 satisfying the same property as J ′ in the above definition (w.r.t. J1 and
J2). The SimG

2 simulator must then produce an output including ẑ1|J′1 and ẑ2|J′1
where ẑ1 and ẑ2 are the output sharings. The RPE notion can also be simply
extended to gadgets with a single input: the SimG

1 simulator produces a single
set I so that the failure event (|I| > t) occurs with probability ε (and the SimG

2

simulator is then simply given x̂|I where x̂ is the single input sharing). We refer
the reader to [9] for the formal definitions of these variants. Eventually, the RPE
notion can also be extended to gadgets with an arbitrary number ` of inputs.
The SimG

1 simulator then produces ` sets I1, . . . , I` so that the corresponding
failures (|I1| > t), . . . , (|I`| > t) occur with probability ε and are additionally
mutually independent. The SimG

2 simulator then simply gets use of the shares of
each input as designated respectively by the corresponding sets I1, . . . , I`.

Note that as explained in [9], the requirement of the RPE notion on the
mutual independence of the failure events might seem too strong. We can actu-
ally use the proposed relaxation referred to as weak random probing expandabil-
ity. Namely, the equalities (Equation (2)) are replaced by inequalities as upper
bounds are sufficient in our context. We refer the reader to [9] for the concrete
reduction, which does not impact the amplification orders.

2.5 Complexity of the Expanding Compiler

We start by recalling the definition of the amplification order of a function and
of a gadget.

Definition 5 (Amplification Order).

– Let f : R→ R which satisfies

f(p) = cd p
d +O(pd+ε)

as p tends to 0, for some cd > 0 and ε > 0. Then d is called the amplification
order of f .

– Let t > 0 and G a gadget. Let d be the maximal integer such that G achieves
(t, f)-RPE for f : R → R of amplification order d. Then d is called the
amplification order of G (with respect to t).
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We stress that the amplification order of a gadget G is defined with respect
to the RPE threshold t. Namely, different RPE thresholds t are likely to yield
different amplification orders d for G (or equivalently d can be thought of as a
function of t).

As shown in [9], the complexity of the expanding compiler relates to the
(minimum) amplification order of the three gadgets used in the base compiler
CC. If the latter achieves (t, f)-RPE with an amplification order d, the expanding
compiler achieves (p, 2−κ)-random probing security with a complexity blowup of
O(κe) for an exponent e satisfying

e =
logNmax

log d
(4)

with

Nmax = max

(
Nm,m , eigenvalues

((
Na,a Nc,a

Na,c Nc,c

)))
(5)

where Nx,y denotes the number of gates “x” in a gadget “y”, with “m” meaning
multiplication, “a” meaning addition, and “c” meaning copy. As an illustration,
the instantiation proposed in [9] satisfies Nmax = 21 and d = 3

2 which yields an
asymptotic complexity of O(κ7.5).

Finally, we recall the notion of maximum tolerated leakage probability which
corresponds to the maximum value p for which we have f(p) < p. This happens
to be a necessary and sufficient condition for the expansion strategy to apply
with (t, f)-RPE gadgets. The instantiation proposed in [9] tolerates a leakage
probability up to 2−7.80.

3 Bounding the Amplification Order

As recalled above, the amplification order of a gadget is a crucial parameter
of its random probing expandability. The higher the amplification order, the
lower the asymptotic complexity of the expanding compiler, ceteris paribus. A
natural question which was left open in [9] is to determine the best amplification
order that can be hoped for given the different parameters of a gadget. In this
section, we exhibit concrete upper bounds on the amplification order that can
be achieved by a gadget depending on its input-output dimensions (`,m), its
number of shares n, and its RPE threshold t.

Before giving the bounds let us make a key observation on the amplification
order of a gadget. Let G be a 2-to-1 n-share gadget achieving (t, f)-RPE. A
subset W of the wires of G is said to be a failure set with respect to the first
input (resp. the second input) if there exists a set J ⊆ [n] such that (I1, I2, J

′)←
SimG

1 (W, J) implies |I1| > t (resp. |I2| > t), namely if a leaking set W implies
the failure event F1 (resp. F2) in the definition of RPE. One can check that G
has amplification order d ≤ dup if one of the two following events occurs:

1. there exists a failure set W w.r.t. the first input or the second input such
that |W| = dup,
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2. there exists a failure set W w.r.t. the first input and the second input such
that |W| = 2dup.

In the former case, the existence of the failure set implies that the function f(p)
has a non-zero coefficient in pdup and hence d ≤ dup. In the latter case, the
existence of the double failure set implies that the function f2(p) has a non-
zero coefficient in p2dup and hence d ≤ dup. The case of a single-input gadget is
simpler: it has amplification order d ≤ dup if there exists a failure set W (w.r.t.
its single input) such that |W| = dup.

We start by exhibiting a generic upper bound for the amplification order and
then look at the particular case of what we shall call a standard multiplication
gadget.

3.1 Generic Upper Bound

In the following we will say that a function g : K` → Km is complete if at least
one of its m outputs is functionally dependent on the ` inputs. Similarly, we say
that a gadget G is complete if its underlying function g is complete.

The following lemma gives our generic upper bound on the amplification
order.

Lemma 1. Let f : R→ R, n ∈ N and `,m ∈ {1, 2}. Let G : (Kn)` → (Kn)m be
an `-to-m n-share complete gadget achieving (t, f)-RPE. Then its amplification
order d is upper bounded by

min((t+ 1), (3− `) · (n− t)).

Proof. The first part of the bound on the amplification order d ≤ (t + 1) is
immediate since by probing t+ 1 shares of any input, the considered set will be
a failure set of cardinality t + 1. We then consider two cases depending on the
number of inputs:

1. 1-input gadgets (` = 1): We show that we can exhibit a failure set of size
2(n− t). Let us denote the output shares z1, . . . , zn (for two-output gadgets,
i.e. m = 2, z1, . . . , zn can be any of the output sharings). In the evaluation of
the (t, f)-RPE property, t shares among the zi’s (corresponding to the set J)
must be simulated. Without loss of generality, let z1, . . . , zt be those shares
(i.e. J = [t]). By including both input gates of each of the remaining output
shares zt+1, . . . , zn in the set W, the distribution to be simulated requires
the knowledge of the full input (by completeness of the gadget). The set W
is thus a failure set with 2(n− t) elements.

2. 2-input gadgets (` = 2): Considering the same failure set as in the above
case, the simulation of out requires the full two input sharings. Hence W
is a failure set of size 2(n − t) with respect to the two inputs, and so the
amplification order satisfies d ≤ (n− t).

We hence conclude that d ≤ min((t + 1), 2(n − t)) for one-input gadgets, and
d ≤ min((t+ 1), (n− t)) for two-input gadgets. �
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Corollary 1 (One-input gadget). The amplification order d of a one-input
gadget achieving (t, f)-RPE is upper bounded by

d ≤ 2(n+ 1)

3
.

The above corollary directly holds from Lemma 1 for a RPE threshold t = 2n−1
3

(which balances the two sides of the min).

Corollary 2 (Two-input gadget). The amplification order d of a two-input
gadget achieving (t, f)-RPE is upper bounded by

d ≤ n+ 1

2
.

The above corollary directly holds from Lemma 1 for a RPE threshold t = n−1
2

(which balances the two sides of the min).
We deduce from the two above corollaries that for a circuit composed of addi-

tion, multiplication and copy gadgets, the amplification order is upper bounded

d ≤ min

(
2(n+ 1)

3
,
n+ 1

2

)
=
n+ 1

2
,

which can only be achieved for an odd number of shares by taking t = n−1
2 as

RPE threshold.

3.2 Upper Bound for Standard Multiplication Gadgets

The generic bound exhibited above is not tight in the special case of a standard
multiplication gadget which computes cross products between the input shares,
such as the ISW multiplication gadget [17]. We exhibit hereafter a tighter bound
for such gadgets.

Formally, a n-share multiplication gadget G is a standard multiplication gad-
get, if on input (x,y) ∈ (Kn)2, G computes the cross products xi · yj for
1 ≤ i, j ≤ n. Our upper bound on the amplification order for such gadgets
is given in the following lemma.

Lemma 2. Let f : R → R and n ∈ N. Let G be an n-share standard multi-
plication gadget achieving (t, f)-RPE. Then its amplification order d is upper
bounded by

d ≤ min

(
t+ 1

2
, (n− t)

)
.

Proof. The second part of the bound (n− t) holds directly from Lemma 1. We
now prove the bound (t + 1)/2 by exhibiting a failure set of size t + 1 with t
output shares, which will be a failure on both inputs. Let {mij}0≤i,j≤n denote
the cross products such that mij = xi · yj . Consider a set W made of t + 1
such variables {mij} for which the indexes i and j are all distinct. Specifically,
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W = {xi1 ·yj1 , . . . , xit+1 ·yjt+1} such that {i`}1≤`≤t+1 and {j`}1≤`≤t+1 are both
sets of (t+ 1) distinct indexes. Clearly, such a set is a failure set for both inputs
x and y since it requires t+ 1 shares of each of them to be perfectly simulated
(even without considering the output shares to be also simulated). We hence
have a double failure set of cardinality t + 1 which implies the (t + 1)/2 upper
bound on the amplification order. �

The above lemma implies that the highest amplification order for standard
multiplication gadgets might be achieved for a RPE threshold t = 2n−1

3 which
yields the following maximal upper bound:

d ≤ n+ 1

3
,

which is lower than the generic upper bound for 2-to-1 gadgets exhibited in
Corollary 2. This loss suggests that better amplification orders could be achieved
for multiplication gadgets that do not compute direct cross products of the input
shares. We actually provide new constructions of multiplication gadgets avoiding
this loss in Section 5.

4 A Closer Look at Random Probing Expandability

In this section, we give a closer look at the RPE notion. We first show that it
naturally splits into two different notions, that we shall call RPE1 and RPE2,
and further introduce a tighter variant which will be useful for our purpose. We
then study the relations between (tight) RPE and the Strong Non-Interference
(SNI) notion used for probing security. We exhibit strong connections between
(tight) RPE1 and SNI, which will be very useful for our constructive results
depicted in Section 5.

4.1 Splitting RPE

From Definition 4, we can define two sub-properties which are jointly equivalent
to RPE. In the first one, designated by RPE1, the set J is constrained to satisfy
|J | ≤ t and J ′ = J (the simulator does not choose J ′). In the second one,
designated by RPE2, J ′ is chosen by the simulator such that J ′ ⊆ [n] with
|J ′| = n − 1 (and J does not matter anymore). For the sake of completeness,
these two notions are formally defined in the full version of this paper.

This split is somehow a partition of the RPE notion since we have:

G is (t, f)-RPE ⇐⇒ G is (t, f)-RPE1 and G is (t, f)-RPE2

for any gadget G. As a result of the above equivalence, we can show that a
gadget achieves RPE1 and RPE2 independently in order to obtain RPE for this
gadget. Formally, we use the following lemma.
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Lemma 3. An n-share gadget G : Kn × Kn → Kn which is (t, f1)-RPE1 and
(t, f2)-RPE2 is also (t, f)-RPE with f(p) ≥ max(f1(p), f2(p)) for every p ∈ [0, 1].

We can refine the upper bounds introduced in Section 3 with respect to this
split. In Lemma 1, the bound d ≤ t+ 1 applies to both RPE1 and RPE2, while
the bound d ≤ (3 − `) · (n − t) only applies to RPE1. Similarly, in Lemma 2,
the bound d ≤ (t + 1)/2 applies to both RPE1 and RPE2, while the bound
d ≤ (n− t) only applies to RPE1.

4.2 Tightening RPE

We introduce a tighter version of the RPE security property. The so-called tight
random probing expandability (TRPE) is such that a failure occurs when the
simulation requires more than t input shares (as in the original RPE notion) but
also whenever this number of shares is greater than the size of the leaking set
W. Formally, the failure event Fj is defined as

Fj ≡
(
|Ij | > min(t, |W|)

)
for every j ∈ [`].

This tighter security property will be instrumental in the following to ob-
tain generic RPE constructions. Similarly to the original RPE property, the
TRPE property can be split into two intermediate properties, namely TRPE1
and TRPE2 and Lemma 3 also applies to the case of TRPE. Moreover the upper
bounds on the amplification order for RPE in Lemmas 1 and 2 further apply to
the amplification order for TRPE (which holds by definition). The formal TRPE,
TRPE1, and TRPE2 definitions are given in the full version of this paper for
the sake of completeness.

We show hereafter that the TRPE notion is actually equivalent to the RPE
notion if and only if the function f is of maximal amplification order t+ 1.

Lemma 4. Let t ∈ N, let f : R→ R of amplification order d. Let G be a gadget.

1. If G achieves (t, f)-TRPE, then it achieves (t, f ′)-RPE for some f ′ : R→ R
of amplification order d′ ≥ d.

2. If G is of amplification order d with respect to t (i.e. d is the max amplifica-
tion order of a function f for which G is (t, f)-RPE), then for all f ′ : R→ R
for which G achieves (t, f ′)-TRPE, f ′ is of amplification order d′ ≤ d.

3. If d = t + 1, then G achieves (t, f)-TRPE if and only if G achieves (t, f)-
RPE.

Proof. The proof for the first two points is easy. In particular, for the first point,
if G achieves TRPE with an amplification order of d, then G achieves RPE
with amplification order at least d, since a failure in the TRPE setting i.e.
|Ij | > min(t, |W|) does not necessarily imply a failure in the RPE setting i.e.
|Ij | > t, meanwhile if there is no failure for TRPE for a leaking set of wires W,
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then this implies that |Ij | ≤ min(t, |W|) ≤ t so there is no failure in the RPE
setting either.

As for the second point, the proof is similar: if G achieves an amplification
of d in the RPE setting, then it achieves an amplification order of at most d in
the TRPE setting, since a failure in the RPE setting i.e. |Ij | > t immediately
implies a failure in the TRPE setting |Ij | > min(t, |W|). But also, even if there
is no failure for a leaking set of wires W in the RPE setting we might still have
a failure in the TRPE setting for the same set W. This is mainly the case where
W can be simulated with sets of input shares Ij such that |W| < |Ij | ≤ t, so we
have |Ij | ≤ t (i.e. no failure for RPE) and |Ij | > min(t, |W|) = |W| (i.e. failure
on TRPE). This concludes the proof for the second point.

We will now prove the third point. Let d = t+ 1. We will show that for every
set J ′ ⊆ [n] of output shares and every leaking set of wires W, a failure occurs
in the TRPE setting if and only if a failure also occurs in the RPE setting. If
|W| ≥ t, then the two settings are equivalent since min(t, |W|) = t. We will thus
only focus on the case |W| < t. Clearly, a failure in the RPE setting, i.e. |Ij | > t,
implies a failure in the TRPE setting, i.e. |Ij | > min(t, |W|). Let us now show
that the converse is also true.

We assume by contradiction that there exists J ′ and W implying a TRPE
failure which is not an RPE failure, that is a set Ij satisfying |W| < |Ij | ≤ t. We
then show that there exists a leaking setW ′ of size |W ′| < t+1 for which an RPE
failure always occurs, which implies an amplification order strictly lower than
t+ 1 and hence contradicts the lemma hypothesis. This set W ′ is constructed as
W ′ =W∪I ′j for some set I ′j ⊂ [n]\Ij such that |I ′j | = t+1−|Ij |. The simulation
of W ′ and J ′ then requires the input shares from Ij ∪ I ′j . However, we have

|Ij ∪ I ′j | = |Ij |+ |I ′j | = t+ 1

implying an RPE failure, and

|W ′| = |W ∪ I ′j | ≤ |W|+ |I ′j | = |W|+ t+ 1− |Ij | < |W|+ t+ 1− |W| = t+ 1.

Thus, we have built a failure set W ′ of size strictly less than the amplification
order t+ 1, which contradicts the hypothesis and hence concludes the proof. �

The above proof also applies to the case of the split notions, specifically for
((t, f)-RPE1, (t, f)-TRPE1) and for ((t, f)-RPE2, (t, f)-TRPE2).

4.3 Unifying (Tight) RPE and SNI

Strong non-interference (SNI) is a widely used notion to compose probing-secure
gadgets [5]. In [9], the authors exhibit a relation between the SNI and the random
probing composability (RPC) property in their Proposition 1. We go one step
further and study the relation between SNI and (T)RPE.

We state hereafter some equivalence results between the (T)RPE1 and SNI
notions, up to some constraints on the parameters. Let us first recall the defini-
tion of the SNI notion.
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Definition 6 (Strong Non-Interference (SNI)). Let n, ` and τ be positive
integers. An n-share gadget G : (Kn)` → Kn is τ -SNI if there exists a deter-
ministic algorithm SimG

1 and a probabilistic algorithm SimG
2 such that for every

set J ⊆ [n] and subset W of wire labels from G satisfying |W| + |J | 6 τ , the
following random experiment with any x̂ ∈ (Kn)`

I ← SimG
1 (W, J)

out← SimG
2

(
x̂|I
)

yields
|I1| 6 |W|, . . . , |I`| 6 |W| (6)

and
out

id
=
(
AssignWires(G,W, x̂) , ŷ|J

)
(7)

where I = (I1, . . . , I`) and ŷ = G(x̂).

We first formally show that (T)RPE1 implies SNI.

Lemma 5. Let t ∈ N and f : R → R of amplification order t + 1. Let G be a
gadget which achieves (t, f)-TRPE1. Then G is also t-SNI.

Proof. By definition of TRPE1 and by hypothesis on the amplification order,
there exist input sets I1, . . . , I` which can perfectly simulate any leaking wires set
W such that |W| ≤ t and any set of output shares J such that |J | ≤ t, satisfying
|I1|, . . . , |I`| ≤ |W|. Consequently, there exist input sets I1, . . . , I` which can
perfectly simulate any leaking wires setW such that |W| = ti ≤ t and any set of
output shares J such that |W|+ |J | ≤ t with |I1|, . . . , |I`| ≤ ti. G is thus t-SNI.
�

We now show that SNI implies TRPE1 up to some constraints on the pa-
rameters t and τ .

Lemma 6. Let τ, ` ∈ N. Let G be an `-to-1 gadget which achieves τ -SNI. Then
G satisfies (t, f)-TRPE1 for some f : R→ R with an amplification order of

d ≥ 1

`
min(t+ 1, τ − t+ 1) .

Proof. Since G is τ -SNI, then for any set of leaking wiresW and output shares J
such that |W|+ |J | ≤ τ , the wires indexed by W and the output shares indexed
by J can be perfectly simulated from input shares indexed by I1, . . . , I` such
that |Ij | ≤ |W| for every 1 ≤ j ≤ `. In the TRPE1 property, the set J of output
shares can be any set of size |J | ≤ t so we can assume |J | = t without loss of
generality.

For a leaking setW of size |W| < min(t+1, τ − t+1) no failure event occurs.
Indeed τ -SNI and |W| < τ − t+ 1 implies |W|+ |J | ≤ τ and hence the existence
of the sets I1, . . . , I` allowing the simulation with |Ij | ≤ |W|. And |W| < t+ 1
implies |Ij | ≤ min(t, |W|) for every j which implies the absence of failure. Then
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for a leaking set W of size |W| ≥ min(t+ 1, τ − t+ 1), no condition remains to
rule out simulation failures and one could actually get a failure for every input.
In the latter case, the amplification order would equal 1

` min(t+ 1, n− t), but in
all generality it could be higher (i.e. this value is a lower bound). �

An illustrative summary of the relations between RPE1, TRPE1 and SNI is
depicted in Figure 1 (d denotes the amplification order of the function f). We
hence observe an equivalence between the three notions up to some constraints
on the parameters t, d, τ and `.

τ -SNI (t, f)-TRPE1 (t, f)-RPE1

d ≥ 1
`

min(t+ 1, τ − t+ 1)

τ = t iff d = t+ 1

Fig. 1: Summary of relations between the different notions.

Relation and separation between (T)RPE2 and SNI. For a given n-
share gadget G, the (T)RPE2 notion exclusively focuses on the simulation of
a set of leaking intermediate variables together with a chosen set of (n − 1)
output shares. If G is τ -SNI for τ < n− 1, then nothing can be claimed on the
simulation of the latter sets. But if G is (n − 1)-SNI, then any set of (n − 1)
output shares can be perfectly simulated without the knowledge of any input
share. Concretely, it implies that G is (t, f)-(T)RPE2 of amplification order at
least 1 as a chosen output set of (n− 1) shares alone can be perfectly simulated
without any additional knowledge on the input shares. Namely, we have

(n− 1)-SNI ⇒ (t, f)-(T)RPE2 of amplification order at least 1.

Nevertheless, there is no relation from τ -SNI to (t, f)-(T)RPE2 for amplifi-
cation orders strictly greater than 1 as (T)RPE2 would then consider leaking
sets of size larger than or equal to n (for n-share gadgets, τ < n). On the other
side, there is no direct implication either from (t, f)-(T)RPE2 to τ -SNI since the
former property does not consider all possible output sets of size (n − 1), but
only a chosen one.

5 Generic Constructions

To the best of our knowledge, the only RPE gadgets in the literature are the
ones designed in [9] which are restricted to a small number of shares, specifi-
cally n ∈ {2, 3}. A natural open question is the definition of RPE gadgets with
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good amplification orders, typically achieving or approaching the upper bounds
exhibited in Section 3, for any number of shares n. In this section, we exhibit
copy, addition, and multiplication gadgets derived from the widely known Ishai-
Sahai-Wagner (ISW) construction [17]. Based on the results demonstrated in
Section 4, we are able to show that these gadgets achieve RPE for any number
of shares n with amplification orders close to the upper bounds (up to a small
constant factor). We further provide an asymptotic analysis of the expanding
compiler using these gadgets as well as a new multiplication gadget reaching
the optimal amplification order hence improving the convergence to a better
asymptotic complexity.

5.1 Generic Copy and Addition Gadgets

As intuitively proposed in [9] for small gadgets, copy and addition gadgets can be
naturally derived from a refresh gadget. Such a gadget takes one sharing as input
and outputs a new refreshed sharing of the same value. We formally introduce
these natural constructions hereafter and show that their RPE security can be
reduced to that of the underlying refresh gadget.

Generic Copy Gadget. Algorithm 1 displays the generic construction for the
copy gadget from a refresh gadget. It simply consists in refreshing the input
sharing twice to obtain two fresh copies.

Algorithm 1: Copy gadget Gcopy

Input : (a1, . . . , an) input sharing
Output: (e1, . . . , en), (f1, . . . , fn) fresh copies of (a1, . . . , an)
(e1, . . . , en)← Grefresh(a1, . . . , an);
(f1, . . . , fn)← Grefresh(a1, . . . , an);

We have the following lemma (see the proof in the full version of this paper).

Lemma 7. Let Grefresh be an n-share (t, f)-TRPE refresh gadget of amplifica-
tion order d. Then, the copy gadget Gcopy displayed in Algorithm 1 is (t, f ′)-
TRPE also of amplification order d.

As a consequence of this result, a TRPE refresh gadget directly yields a
TRPE copy gadget achieving the same amplification order. Both gadgets can
then reach the upper bound for 1-input gadgets whenever t + 1 = 2(n − t)

implying an amplification order d = 2(n+1)
3 .

Generic Addition Gadget. Algorithm 2 displays the generic construction for
the addition gadget from a refresh gadget. It simply consists in refreshing both
input sharings before adding them.
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Algorithm 2: Addition Gadget Gadd

Input : (a1, . . . , an), (b1, . . . , bn) input sharings
Output: (c1, . . . , cn) sharing of a+ b
(e1, . . . , en)← Grefresh(a1, . . . , an);
(f1, . . . , fn)← Grefresh(b1, . . . , bn);
(c1, . . . , cn)← (e1 + f1, . . . , en + fn);

We have the following lemma (see the proof in the full version of this paper).

Lemma 8. Let Grefresh be an n-share refresh gadget and let Gadd be the corre-
sponding addition gadget displayed in Algorithm 2. Then if Grefresh is (t, f)-RPE
(resp. (t, f)-TRPE) of amplification order d, then Gadd is (t, f ′)-RPE (resp.
(t, f ′)-TRPE) for some f ′ of amplification order d′ ≥ bd2c.

The above lemma shows that a (T)RPE refresh gadget of amplification order
d directly yields a (T)RPE addition gadget of amplification order at least bd2c.
If the refresh gadget achieves the optimal d = 2(n+1)

3 , then the generic addition
gadget has an amplification order at least bn3 c which is not far from the upper
bound for two-input gadgets of n+1

2 .

We stress that the results of Lemma 7 and Lemma 8 are general and apply for
any refresh gadget satisfying the (T)RPE property. In the rest of the section, we
shall focus on a particular refresh gadget, namely the ISW-based refresh gadget.
We show that this gadget achieves (T)RPE from which we obtain (T)RPE copy
and addition gadgets for any number of shares n and with amplification orders
close to the upper bound (up to a small constant factor).

5.2 ISW-based Copy and Addition Gadgets

As a basis of further constructions, we focus our analysis on the most deployed
refresh gadget, which is based on the ISW construction [17].

ISW Refresh Gadget. This refresh can be seen as an ISW multiplication
between the input sharing and the n-tuple (1, 0, . . . , 0). This is formally depicted
in Algorithm 3.
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Algorithm 3: ISW Refresh

Input : (a1, . . . , an) input sharing, {rij}1≤i<j≤n random values
Output: (c1, . . . , cn) such that c1 + · · ·+ cn = a1 + · · ·+ an
for i← 1 to n do

ci ← ai;
end
for i← 1 to n do

for j ← 1 to i− 1 do
ci ← ci + rji;

end
for j ← i+ 1 to n do

ci ← ci + rij ;
end

end
return (c1, . . . , cn);

We demonstrate through Lemma 9 that the ISW refresh gadget satisfies
TRPE with an amplification order close to the optimal one. The proof is given
in the full version of this paper.

Lemma 9. Let n ∈ N. For every t ≤ n − 2, the n-share ISW refresh gadget is
(t, f1)-TRPE1 and (t, f2)-TRPE2 for some functions f1, f2 : R→ R of amplifi-
cation orders d1, d2 which satisfy:

– d1 = min(t+ 1, n− t) for f1,

– d2 = t+ 1 for f2.

Corollary 3 then directly follows from Lemma 3 applied to TRPE and Lemma 9.

Corollary 3. Let n ∈ N. For every t ≤ n − 2, the n-share ISW refresh gadget
is (t, f)-TRPE of amplification order

d = min(t+ 1, n− t).

According to Lemma 1, the upper bound on the amplification order of 1-
input gadgets is d ≤ min(t+ 1, 2(n− t)) which gives d ≤ 2n+2

3 for t = 2n−1
3 . In

contrast, the ISW refresh gadget reaches d = bn+1
2 c by taking t = dn−12 e. While

applying this result to the generic constructions of addition and copy gadgets
introduced above, we obtain:

– a copy gadget of amplification order dc = bn+1
2 c (Lemma 7),

– an addition gadget of amplification order at least da = bn+1
4 c (Lemma 8).

In the following, we demonstrate a tighter result than Lemma 8 for the ISW-
based addition gadget (namely which does not imply the loss of a factor 2).
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ISW-based Copy Gadget. The copy gadget Gcopy that uses the n-share ISW
refresh gadget as a building block in Algorithm 1 achieves the same amplification
order as the ISW refresh for the TRPE setting, i.e. d = min(t + 1, n − t). This
is a direct implication from Lemma 7. Then, from Lemma 4, we have that ISW-
based Gcopy also achieves (t, f ′)-RPE with amplification order d′ ≥ d. We can
actually prove that ISW-based Gcopy achieves (t, f ′)-RPE with amplification
order d′ exactly equal to the amplification order in the TRPE setting, i.e. d′ =
d = min(t+ 1, n− t). This is stated in the following lemma which proof is given
in the full version of this paper.

Lemma 10. Let Gcopy be the n-share copy gadget displayed in Algorithm 1 and
instantiated with the ISW refresh gadget. Then for every t ≤ n−2, Gcopy achieves
(t, f)-RPE with amplification order d = min(t+ 1, n− t).

ISW-based Addition Gadget. The addition gadget Gadd that uses the n-
share ISW refresh gadget as a building block in Algorithm 2 achieves the same
amplification order as the ISW refresh gadget, which is tighter than the bound
from Lemma 8. This is stated in the following Lemma, which follows from
Lemma 9, and from the fact that ISW refresh is (n − 1)-SNI. The proof is
given in the full version of this paper.

Lemma 11. Let Gadd be the n-share addition gadget displayed in Algorithm 2
and instantiated with the ISW refresh gadget. Then for every t ≤ n − 2, Gadd

achieves (t, f1)-TRPE1 and (t, f2)-TRPE2 for some functions f1, f2 : R→ R of
amplification orders d1, d2 which satisfy:

– d1 = min(t+ 1, n− t),
– d2 = t+ 1.

Corollary 4 then directly follows from Lemma 11 by applying Lemma 3
(TRPE1 ∩ TRPE2 ⇒ TRPE) and Lemma 4 (TRPE ⇒ RPE).

Corollary 4. Let n ∈ N. For every t ≤ n−2, the n-share gadget Gadd displayed
in Algorithm 2 and instantiated with the ISW refresh gadget is (t, f)-RPE of
amplification order d = min(t+ 1, n− t).

5.3 ISW Multiplication Gadget

In contrast to the copy and addition gadgets that are built from generic schemes
with a refresh gadget as a building block, the multiplication gadget can be di-
rectly defined as the standard ISW multiplication, which is recalled in Algo-
rithm 4.
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Algorithm 4: ISW Multiplication

Input : (a1, . . . , an),(b1, . . . , bn) input sharings, {rij}1≤i<j≤n random
values

Output: (c1, . . . , cn) sharing of a · b
for i← 1 to n do

ci ← ai · bi;
end
for i← 1 to n do

for j ← i+ 1 to n do
ci ← ci + rij ;
rji ← (ai · bj + rij) + aj · bi;
cj ← cj + rji;

end

end
return (c1, . . . , cn);

We have the following lemma (see the proof in the full version of this paper).

Lemma 12. Let n ∈ N. For every t ≤ n − 2, the n-share ISW multiplication
gadget displayed in Algorithm 4 is (t, f1)-RPE1 and (t, f2)-RPE2 for some func-
tions f1, f2 : R→ R of amplification orders d1, d2 which satisfy:

– d1 =
min(t+ 1, n− t)

2
,

– d2 =
t+ 1

2
.

Corollary 5 then directly follows from Lemma 12 by applying Lemma 3
(RPE1 ∩ RPE2 ⇒ RPE).

Corollary 5. Let n ∈ N. For every t ≤ n − 2, the n-share ISW multiplication
gadget displayed in Algorithm 4 is (t, f)-RPE of amplification order

d =
min(t+ 1, n− t)

2
.

According to Lemma 2, the upper bound on the amplification order of a
standard multiplication gadget (i.e. which starts with the cross-products of the
input shares) is d ≤ min((t + 1)/2, (n − t)) which gives d ≤ (n+ 1)/3 for t =
(2n− 1)/3. In contrast, the ISW multiplication gadget reaches d = bn+1

4 c by
taking t = dn−12 e.

5.4 Application to the Expanding Compiler

As recalled in Section 2.5, instantiating the expanding compiler with three RPE
base gadgets gives a (p, 2−κ)-random probing secure compiler (i.e. achieving κ
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bits of security against a leakage probability p) with a complexity blowup of
O(κe) for an exponent e satisfying

e =
logNmax

log d

where Nmax satisfies (5) and where d is the minimum amplification order of the
three base gadgets.

We can instantiate the expanding compiler using the above ISW-based gad-
gets. Specifically, we use the ISW multiplication for the multiplication gadget
Gmult, and the generic constructions of addition and copy gadgets based on the
ISW refresh. From Lemmas 10, 11, and 12, the maximum amplification order
achievable by the compiler is the minimum of the three gadgets, which is the
order of the ISW multiplication gadget:

d =
min(t+ 1, n− t)

2
.

Hence, for a given number of shares n, the maximum amplification order achiev-
able is

dmax =

⌊
n+ 1

4

⌋
which is obtained for t = dn−12 e. On the other hand, the value of Nmax can be
characterized in terms of the number of shares n from the ISW algorithm. Recall
from Section 2.5 that

Nmax = max

(
Nm,m , eigenvalues

((
Na,a Nc,a

Na,c Nc,c

)))
.

In the case of the ISW-based gadgets, we have Nm,m = n2 and(
Na,a Nc,a

Na,c Nc,c

)
=

(
n(2n− 1) 2n(n− 1)
n(n− 1) n2

)
.

The eigenvalues of the above matrix are λ1 = n and λ2 = 3n2 − 2n, implying
Nmax = 3n2− 2n. Thus, the expanding compiler instantiated by our ISW-based
gadgets has a complexity blowup O(κe) with exponent

e =
log(3n2 − 2n)

log(b(n+ 1)/4c)
.

Figure 2 (blue curve) shows the evolution of the value of this exponent with
respect to the number of shares n (where we assume an odd n). The value of
e clearly decreases as the number of shares grows, and this decrease is faster
for a small number of shares (5 ≤ n ≤ 10). The exponent value reaches e ≈ 4
for a number of shares around 25 and then slowly converges towards e = 2 as
n grows. This is to be compared with the O(κ7.5) complexity achieved by the
instantiation from [2, 9].
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Fig. 2: Evolution of the complexity exponent e = log(Nmax)/ log(d) with respect
to the number of shares n. The blue curve matches the instantiation with the
ISW-based gadgets; the orange curve assumes the optimal amplification order
(i.e. an improvement of the multiplication gadget); the pink curve assumes a
better complexity for addition and copy gadgets (so that Nmax matches Nm,m =
n2).

Towards a Better Complexity. Choosing gadgets which attain the upper
bound min(t + 1, n − t) on the amplification order from Lemma 1 allows the
compiler to have the maximum amplification order d = (n + 1)/2 and thus
have the lowest complexity blowup. Our ISW-based copy and addition gadgets
achieve this bound while the ISW multiplication gadget is limited to (n + 1)/4
(Lemma 12). To reach the optimal amplification order, one would need a different
multiplication gadget and in particular a multiplication gadget which does not
perform a direct product of shares (because of the bound from Lemma 2). We
introduce such a multiplication gadget hereafter (see Section 5.5). Specifically,
our new multiplication gadget achieves the upper bound on the amplification
order min(t + 1, n − t) by avoiding a direct product of shares using a prior
refresh on the input sharings. The orange curve in Figure 2 shows the evolution
of the value of the exponent when instantiating the expanding compiler with our
previous addition and copy gadgets and this new multiplication gadget. For such
an instantiation, the complexity exponent still slowly converges towards e = 2
but, as we can see from Figure 2, the exponent value is much better for small
values of n. For example, we obtain e ≈ 3 for n = 20.

Another possible direction for improvement would be to lower the complexity
of the addition and copy gadgets, which is mainly dominated by the refreshing.
Assume that we can design a (T)RPE refresh gadget in sub-quadratic complex-

22



ity, e.g. as the refresh gadgets proposed in [20, 7, 15], then the eigenvalues of the
matrix in (5) would also be sub-quadratic and the value of Nmax from equa-
tion (5) would drop to Nm,m = n2 (if the multiplication gadget still requires n2

multiplication gates). The pink curve in Figure 2 depicts the evolution of the
exponent value under this assumption. We still have a slow convergence towards
e = 2 but the exponent value is yet better for small values of n. For example,
a complexity blowup of O(κ2.5) is obtained with 20 shares. We leave the task
of finding such a sub-quadratic (T)RPE refresh gadget as an open question for
further research.

The above analysis shows that the expanding compiler can theoretically ap-
proach a quadratic complexity at the cost of increasing the number of shares in
the base gadgets. The downside of it is that the tolerated leakage probability is
likely to decrease as the number of shares grow. For instance, the ISW construc-
tion is known to only tolerate a leakage probability p = O(1/n) [14]. The number
of shares hence offers multiple trade-offs between the tolerated probability and
the asymptotic complexity of the compiler. Starting from a target leakage prob-
ability p, one could determine the highest number of shares admissible from a
generic construction (such as the ISW-based instantiation exhibited above) and
thus deduce the best complexity exponent achievable. In Section 6, we exhibit
concrete trade-offs that can be reached for small values of n.

5.5 Multiplication Gadget with Maximal Amplification Order

Constructing a multiplication gadget which achieves the upper bound on the
amplification order from Lemma 1 is tricky. First, as a standard multiplication
gadget (i.e. which computes the cross products of the input shares), the ISW
multiplication cannot achieve the maximal amplification order (see Lemma 2).
In order to reach the upper bound for two-input gadgets (see Corollary 2), we
need a non-standard multiplication gadget, i.e. which does not perform a direct
product between the input shares. As an additional observation, the addition,
copy, and random gates are virtually free in a multiplication gadget since they do
not impact the final complexity of the expanding compiler (see Section 2.5). This
suggests that we can be greedy in terms of randomness to reach the maximal
amplification order.

In the following, we will describe the construction of a new multiplication
gadget which achieves the maximum amplification order min(t + 1, n − t). We
first describe our standard n-share multiplication gadget and then explain how
we avoid the initial cross products of shares. First, the gadget constructs the
matrix of the cross product of input shares:

M =


a1 · b1 a1 · b2 · · · a1 · bn
a2 · b1 a2 · b2 · · · a2 · bn

...
...

. . .
...

an · b1 an · b2 · · · an · bn


23



Then, it picks n2 random values which define the following matrix:

R =


r1,1 r1,2 · · · r1,n
r2,1 r2,2 · · · r2,n

...
...

. . .
...

rn,1 rn,2 · · · rn,n


It then performs an element-wise addition between the matrices M and R:

P = M +R =


p1,1 p1,2 · · · p1,n
p2,1 p2,2 · · · p2,n

...
...

. . .
...

pn,1 pn,2 · · · pn,n


At this point, the gadget randomizes each product of input shares from the
matrix M with a single random value from R. In order to generate the correct
output, the gadget adds all the columns of P into a single column V of n elements,
and adds all the columns of the transpose matrix RT into a single column X of
n elements:

V =


p1,1 + · · ·+ p1,n
p2,1 + · · ·+ p2,n

...
pn,1 + · · ·+ pn,n

 , X =


r1,1 + · · ·+ rn,1
r1,2 + · · ·+ rn,2

...
r1,n + · · ·+ rn,n


The n-share output is finally defined as (c1, . . . , cn) = V +X.

In order to further increase the maximum amplification order attainable by
the gadget, we need to avoid performing a direct product of shares (because
of the bound proved in Lemma 2). For this, we add a pre-processing phase
to the gadget using a refresh gadget Grefresh. Specifically, we refresh the input
(b1, . . . , bn) each time it is used. In other terms, each row of the matrix M uses
a fresh copy of (b1, . . . , bn) produced using the considered refresh gadget. This
amounts to performing n independent refreshes of the input (b1, . . . , bn). The
matrix M is thus defined as

M =


a1 · b(1)1 a1 · b(1)2 · · · a1 · b(1)n
a2 · b(2)1 a2 · b(2)2 · · · a2 · b(2)n

...
...

. . .
...

an · b(n)1 an · b(n)2 · · · an · b(n)n


where (b

(j)
1 , . . . , b

(j)
n ), j ∈ [n], are the n independent refreshings of the input

(b1, . . . , bn).
With this refreshing scheme, we avoid using the same share more than once

for one of the two input sharings. As a consequence, the double failure set of size
t + 1 which is the reason behind the bound (t + 1)/2 in Lemma 2, becomes a
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simple failure set (i.e. provoking a failure on a single input sharing). In addition,
the computational overhead of these additional n refreshes is negligible compared
to the joint contribution of the copy and addition gadgets to the complexity of
the expanding compiler.

For the sake of completeness, we present the full algorithm for this multipli-
cation gadget in Algorithm 5.

Algorithm 5: Our multiplication gadget

Input : (a1, . . . , an),(b1, . . . , bn) input sharings, {rij}1≤i≤n,1≤j≤n
random values, refresh gadget Grefresh

Output: (c1, . . . , cn) sharing of a · b
for i← 1 to n do

(b
(i)
1 , . . . , b

(i)
n )← Grefresh(b1, . . . , bn);

end
for i← 1 to n do

for j ← 1 to n do

pi,j ← ai × b(i)j + ri,j ;

end

end
(v1, . . . , vn)← (0, . . . , 0);
(x1, . . . , xn)← (0, . . . , 0);
for i← 1 to n do

for j ← 1 to n do
vi ← vi + pi,j ;
xi ← xi + ri,j ;

end

end
for i← 1 to n do

ci ← vi + xi;
end
return (c1, . . . , cn);

In the following lemma, we show that if the refresh gadget Grefresh achieves
the TRPE1 property with the amplification order at least d = min(t+ 1, n− t)
for any t, then the multiplication gadget depicted in Algorithm 5 achieves TRPE
with the maximum amplification orders. The proof is given in the full version of
this paper.

Lemma 13. Let t ≤ n − 1. Let Grefresh be a (t, f ′)-TRPE1 refresh gadget for
some function f ′ : R → R, and Gmult the n-share multiplication gadget from
Algorithm 5. If f ′ is of amplification order d′ ≥ d = min(t + 1, n − t), then
Gmult achieves (t, f)-TRPE for some function f : R→ R of amplification order
d = min(t+ 1, n− t).

Corollary 6 then directly follows from Lemma 13 by applying Lemma 4
(TRPE ⇒ RPE).
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Corollary 6. Let t ≤ n − 1. Let Grefresh be a (t, f ′)-TRPE1 refresh gadget for
some function f ′ : R → R, and Gmult the n-share multiplication gadget from
Algorithm 5. If f ′ is of amplification order d′ ≥ d = min(t + 1, n − t), then
Gmult achieves (t, f)-RPE for some function f : R → R of amplification order
d = min(t+ 1, n− t).

6 Efficient Small Gadgets

This section displays our new constructions of small gadgets for copy, addition,
and multiplication operations with a low number of shares. As explained in [9], we
cannot achieve RPE security with relevant amplification orders for gadgets of less
than 3 shares. Then, as explained in Section 3.1, the highest amplification orders
can only be achieved for gadgets with an odd number of shares. We therefore
omit 4-share gadgets and display our best trade-offs in terms of RPE security
and complexity for 3-share and 5-share gadgets. Each one of these gadgets is
experimentally verified using the VRAPS verification tool from [9].

Addition and Copy Gadgets. For the construction of small 3-share and
5-share addition and copy gadgets, we use the generic constructions depicted
in Algorithms 1 and 2 (in Section 5) which naturally use a refresh gadget as
a building block. We hence start by looking for refresh gadgets that have a
good complexity in terms of gates count, and achieve the upper bound on the
amplification order for the specific case of 3-share and 5-share constructions (but
not necessarily for a higher number of shares).

Multiplication gadget. For the construction of small 3-share and 5-share mul-
tiplication gadgets, we use the generic construction depicted in Algorithm 5 from
Section 5.5 which, to the best of our knowledge, is the only multiplication gad-
get which achieves the maximum amplification order for any number of shares,
and specifically for 3-share and 5-share constructions. As for the refresh gadget
Grefresh which is used to perform n refreshes on the second input, we use the
same scheme as for the construction of small addition and copy gadgets (and
which shall satisfy the necessary condition on Grefresh from Corollary 6).

While the multiplication gadget from Section 5.5 achieves the desired am-
plification order, we add another pre-processing phase to the gadget in order to
further improve the tolerated leakage probability. In addition to the n refreshes
performed on the second input b (see Algorithm 5), we add another single re-
fresh of the input (a1, . . . , an) before computing the cross-products, using the
same refresh gadget Grefresh. Refreshing the input (a1, . . . , an) before usage ex-
perimentally shows a further increase in the maximum tolerated leakage prob-
ability, by adding more randomness to the input shares before computing the
cross-product matrix M in Algorithm 5. And since the refresh gadget Grefresh

achieves the maximum amplification order, the amplification order achieved by
Gmult is not affected by adding another refresh to the first input a.
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The above construction achieves the maximum amplification order for 3-share
(d = 2) and 5-share (d = 3) gadgets based on natural refresh gadgets detailed
hereafter.

6.1 3-share Gadgets

We start with the construction of 3-share gadgets for our three base operations.

Copy and Addition Gadgets. We build our copy and addition gadgets from
the instantiation of the generic constructions of Section 5 (Algorithms 1 and 2)
with 3 shares. However, we do not use the ISW refresh gadget but the following
more efficient construction with only two random values (instead of three):

Grefresh : c1 ← r1 + a1

c2 ← r2 + a2

c3 ← (r1 + r2) + a3.

This refresh is sufficient to reach the upper bounds on the amplification orders
(from Lemma 1). From this basis, we obtain the following 3-share addition gadget
with four random values:

Gadd : c1 ← (r1 + a1) + (r3 + b1)

c2 ← (r2 + a2) + (r4 + b2)

c3 ←
(
(r1 + r2) + a3

)
+
(
(r3 + r4) + b3

)
and the following 3-share copy gadget with also four random values:

Gcopy : c1 ← r1 + a1; d1 ← r3 + a1

c2 ← r2 + a2; d2 ← r4 + a2

c3 ← (r1 + r2) + a3; d3 ← (r3 + r4) + a3.

Multiplication Gadget. The following construction is a 3-share instantiation
of the multiplication gadget described in Section 5.5. For the input refreshing,
we use the 3-share refresh gadget described above with two uniformly random
values. The construction achieves the bound on the amplification order from
Lemma 1 with 17 random values:

Gmult : i1,1 ← r1 + b1; i1,2 ← r2 + b2; i1,3 ← (r1 + r2) + b3

i2,1 ← r3 + b1; i2,2 ← r4 + b2; i2,3 ← (r3 + r4) + b3

i3,1 ← r5 + b1; i3,2 ← r6 + b2; i3,3 ← (r5 + r6) + b3

a′1 ← r7 + a1; a′2 ← r8 + a2; a′3 ← (r7 + r8) + a3

c1 ← (a′1 · i1,1 + r1,1) + (a′1 · i1,2 + r1,2) + (a′1 · i1,3 + r1,3) + (r1,1 + r2,1 + r3,1)

c2 ← (a′2 · i2,1 + r2,1) + (a′2 · i2,2 + r2,2) + (a′2 · i2,3 + r2,3) + (r1,2 + r2,2 + r3,2)

c3 ← (a′3 · i3,1 + r3,1) + (a′3 · i3,2 + r3,2) + (a′3 · i3,3 + r3,3) + (r1,3 + r2,3 + r3,3).
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Results. Table 1 displays the results for the above gadgets obtained through
the VRAPS tool. The second column gives the complexity, where Na, Nc, Nm,
Nr stand for the number of addition gates, copy gates, multiplication gates
and random gates respectively. The third column provides the amplification
order of the gadget. And the last column gives the maximum tolerated leakage
probability. The last row gives the global complexity, amplification order, and
maximum tolerated leakage probability for the expanding compiler using these
three gadgets from the results provided in [9].

Table 1: Results for the 3-share gadgets for (t = 1, f)-RPE, achieving the bound
on the amplification order.

Gadget
Complexity

(Na, Nc, Nm, Nr)
Amplification

order
log2 of maximum
tolerated proba

Grefresh (4, 2, 0, 2) 2 −5.14

Gadd (11, 4, 0, 4) 2 −4.75

Gcopy (8, 7, 0, 4) 2 −7.50

Gmult (40, 29, 9, 17) 2 −7.41

Compiler O(|C| · κ3.9) 2 −7.50

6.2 5-share Gadgets

We now present our 5-share gadgets for our three base operations, which reach
the optimal amplification order from Lemma 1.

Copy and Addition Gadgets. As for the 3-share case, we use the generic
constructions from Section 5. Instead of using the ISW refresh gadget which
would require 10 uniformly random values for a 5-share construction, we use the
circular refresh gadget described in [4, 6] (a.k.a. block refresh gadget):

Grefresh : c1 ← (r1 + r2) + a1

c2 ← (r2 + r3) + a2

c3 ← (r3 + r4) + a3

c4 ← (r4 + r5) + a4

c5 ← (r5 + r1) + a5.

This gadget only uses n randoms for an n-share construction, and while it does
not achieve enough security in the generic case (unless the refresh block is iter-
ated on the input a certain number of times [4, 6]), it proves to be more than
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enough to achieve the necessary amplification order for our 5-share construc-
tions. We use a variant of the original version (also suggested in [4]): we choose
to sum the random values first (thus obtaining a sharing of 0) before adding them
to the input shares. The idea is to avoid using the input shares in any of the
intermediate variables, so that input shares only appear in the input variables
{ai}1≤i≤n and the final output variables {ci}1≤i≤n. Intuitively, this trick allows
to have less failure tuples in the gadget because there are less variables that
could leak information about the input. This is validated experimentally where
we obtain better results in terms of amplification order and tolerated leakage
probability for small gadgets.

From this circular refresh, we obtain an addition gadget and a copy gadget
that both reach the upper bound on the amplification order while making use of
ten random values. The description of those 5-share gadgets is given in the full
version of the paper.

Multiplication Gadget. We use the 5-share instantiation of the multiplication
gadget described in Section 5.5. For the input refreshing, we use the 5-share
circular refresh gadget described above. The gadget advantageously achieves the
optimal amplification order (given by Lemma 1) with 55 random values. The
description of this 5-share multiplication gadget is given in the full version of
the paper.

Results. Table 2 gives the results for the above gadgets obtained through the
VRAPS tool.

Table 2: Results for the 5-share gadgets for (t = 2, f)-RPE, achieving the bound
on the amplification order.

Gadget Complexity
Amplification

order
log2 of maximum
tolerated proba

Grefresh (10, 5, 0, 5) 3 −4.83

Gadd (25, 10, 0, 10) 3 [−6.43,−3.79]

Gcopy (20, 15, 0, 10) 3 [−6.43,−5.78]

Gmult (130, 95, 25, 55) 3 [−12.00,−6.03]

Compiler O(|C| · κ3.23) 3 [−12.00,−6.03]

From Tables 1 and 2, we observe that the asymptotic complexity is better for
the instantiation based on 5-share gadgets as they provide a better amplification
order with limited overhead. While this result can seem to be counterintuitive,
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it actually comes from the fact that each gadget will be expended less in the
second scenario. We stress that we could only obtain an interval [2−12, 2−6] for
the tolerated leakage probability because it was computationally too expensive
to obtain a tighter interval from the VRAPS tool, but this could probably be
improved in the future. Meanwhile, we can consider that our best complexity
O(|C| · κ3.2) comes at the price of a lower tolerated leakage probability of 2−12

(5-share gadget) compared to the O(|C| · κ3.9) complexity and 2−7.5 tolerated
leakage probability obtained for our 3-share instantiation.

In comparison, the previous instantiation of the expanding compiler [9] could
only achieve a complexity of O(|C| · κ7.5) for maximum tolerated probabilities
of 2−8, and the instantiation of the expanding approach with a multi-party
computation protocol [2], could only achieve a complexity of O(|C| · κ8.2) for
maximum tolerated probabilities of 2−26.
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CRYPT 2016, Part II, volume 9666 of LNCS, pages 616–648. Springer, Heidelberg,
May 2016.
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