
Classical proofs of quantum knowledge

Thomas Vidick! and Tina Zhang!!

California Institute of Technology

Abstract. We define the notion of a proof of knowledge in the setting
where the verifier is classical, but the prover is quantum, and where
the witness that the prover holds is in general a quantum state. We
establish simple properties of our definition, including that, if a non-
destructive classical proof of quantum knowledge exists for some state,
then that state can be cloned by an unbounded adversary, and that,
under certain conditions on the parameters in our definition, a proof of
knowledge protocol for a hard-to-clone state can be used as a (destruc-
tive) quantum money verification protocol. In addition, we provide two
examples of protocols (both inspired by private-key classical verification
protocols for quantum money schemes) which we can show to be proofs
of quantum knowledge under our definition. In so doing, we introduce
techniques for the analysis of such protocols which build on results from
the literature on nonlocal games. Finally, we show that, under our def-
inition, the verification protocol introduced by Mahadev (FOCS 2018)
is a classical argument of quantum knowledge for QMA relations. In all
cases, we construct an explicit quantum extractor that is able to produce
a quantum witness given black-box quantum (rewinding) access to the
prover, the latter of which includes the ability to coherently execute the
prover’s black-box circuit controlled on a superposition of messages from
the verifier.

1 Introduction

The notion of a proof of knowledge was first considered in the classical setting
in [GMR89] and subsequently formalized in [TW87,FFS88] and [BG92].1 Intu-
itively, a proof of knowledge protocol allows a prover to convince a verifier that
it ‘knows’ or ‘possesses’ some piece of secret information (a ‘witness’, w) which
satisfies a certain relation R relative to a publicly known piece of information x.
(Symbolically, we might say that the prover wants to convince its verifier that,
for a particular x, it knows w such that R(x,w) = 1.) For example, the witness
w might be a private password corresponding to a particular public username

! Department of Computing and Mathematical Sciences, California Institute of Tech-
nology, USA. vidick@caltech.edu

!! Division of Physics, Mathematics and Astronomy, California Institute of Technology,
USA. tinazhang@caltech.edu

1 These three works give inequivalent definitions, but the differences are not important
for the purpose of this introduction.

2 Thomas Vidick and Tina Zhang

x, and a proof of knowledge protocol in this setting could allow the prover to
demonstrate that it possesses the credentials to access sensitive information.

The formal definition of a classical proof of knowledge for NP relations R was
settled in a series of works (see [BG92] for a summary) in the 1990s. The stan-
dard definition is as follows: the prover P is said to ‘know’ a witness w if there
is an extractor E which, given black-box access to P (including the ability to
rewind P and run it again on different messages from the verifier), can efficiently
compute w. The applications of classical proofs of knowledge include identifica-
tion protocols [FFS88], signature schemes [CL06], and encryption schemes secure
against chosen-ciphertext attack [SJ00].

In this work, we consider a particular generalisation of the classical concept
of a proof of knowledge to the quantum setting. We imagine a situation where
the verifier remains classical, but the prover is quantum, and where the wit-
ness w is in general a quantum state; and we ask the prover to ‘convince’ the
verifier that it knows that state. We call this type of protocol a classical proof
of quantum knowledge. Recently, there have been works which show how a fully
classical verifier can, under cryptographic assumptions, delegate a quantum com-
putation on encrypted data to a quantum server [Mah18a], verify that such a
server performed the computation correctly [Mah18b], delegate the preparation
of single-qubit states to the server in a composable fashion [GV19], and test
classically that the server prepared an EPR pair in its own registers [MV20].
In short, as long as classical computational resources and classical communica-
tion channels remain less expensive than their quantum counterparts, it will be
natural to wish to use classical devices to test quantum functionality. Although
we focus here on information-theoretic rather than computational security, the
current paper can be considered part of the preceding line of work.

Quantum proofs of quantum knowledge (i.e. proof of knowledge protocols for
quantum witnesses in which quantum interaction is allowed) have recently been
explored by [BG19] and [CVZ19]; these two papers give a definition for quantum
proofs of quantum knowledge, and exhibit several examples which meaningfully
instantiate the definition. Here, we consider the more challenging question of
defining and constructing proofs of knowledge for quantum witnesses in which
the verifier and the interaction are classical. In this setting there is an interesting
difficulty involved in constructing an extractor: how does one argue that a quan-
tum prover ‘knows’ a certain quantum state if the only information which the
prover ‘reveals’ is classical? A first approach, following the classical definition,
would only allow the extractor to access classical transcripts from the protocol.
Under such a restriction, the problem the extractor faces becomes one of recon-
structing a witness ρ based entirely on classical measurement outcomes. It is
not hard to convince ourselves that this problem probably has no solution for
any non-trivial class of quantum states, as indeed it may be as hard as quantum
state tomography [HHJ+17]. This observation makes it clear that we must allow
the extractor to engage in some sort of quantum interaction with the prover.

Our first contribution in this paper is to provide an adequate definition of a
proof of quantum knowledge for the setting where the communication between

Classical proofs of quantum knowledge 3

verifier and prover is classical. In order to circumvent the difficulty described
in the preceding paragraph, we adopt a definition of ‘black-box access to the
prover’ which is naturally suited to the quantum setting. Informally speaking,
we model the prover as a unitary map U that acts on two quantum registers,
one which is private (and which is used for storing its internal state) and one
which is public (used for sending and receiving messages). In each round of
the real protocol, the verifier places a classical message in the public ‘message
register’, and the prover then runs the unitary U , before the message register
is measured in the computational basis; the measurement result is the message
that the prover sends to the verifier for that round. We define ‘black-box access
to the prover’ as follows: we allow the extractor to place any quantum state in
the public ‘message register’, as well as run the prover’s unitary U , which acts
on both registers, or its inverse U†; we do not allow the extractor to access the
prover’s private register except through U or U†. We do, however, allow it to
place a coherent superposition of messages in the message register, even though
the verifier (in a real protocol) would only ever put one classical message there.
We make use of this latter possibility in our instantiations of this definition.

This definition matches the definition of ‘black-box access to a quantum
machine’ used in previous works [Unr12]. We emphasise that, even though we
consider protocols with purely classical communication, the extractor according
to this definition of ‘black-box access’ is allowed to coherently manipulate a uni-
tary implementation of the prover, and the message registers are not necessarily
measured after each round of interaction. This possibility was allowed in [Unr12],
but not used; here we make essential use of it when we construct our extrac-
tors. We note also that this definition of ‘black-box access’ matches the definition
given in prior works (e.g. [Wat09]) of the ‘black-box access’ to a malicious verifier
which a zero-knowledge simulator for a post-quantumly zero-knowledge proof of
knowledge is allowed to have.

Having formalised what ‘black-box access to the prover’ means in our context,
we move to the task of defining a ‘proof of quantum knowledge’ for our setting.
We have two main applications in mind for a ‘proof of quantum knowledge’: one
of them (proofs of knowledge for QMA witnesses) is natural given the standard
formulation of classical proofs of knowledge for NP witnesses, but the other
(proofs of knowledge for quantum money states [AFG+12]) is both natural and
unique to the quantum setting. The quantum money application does not fit
well into the standard formalism which is used for NP and QMA verification.
Therefore, in order to formulate our definition of a ‘proof of quantum knowledge’
generally enough that we can capture both applications, we introduce a broader
framework that mirrors frameworks recently introduced for similar purposes in
the classical literature. Formally, we base our definition of a ‘proof of quantum
knowledge’ on the notion of an ‘agree-and-prove scheme’ introduced recently
in [BJM19]. The main innovation in this framework is that it allows the instance
x and the proof relation R to be determined dynamically through interactions
between the prover, the verifier, and possibly a trusted setup entity (such as
the provider of a common random string or a random oracle). This framework

4 Thomas Vidick and Tina Zhang

lends itself remarkably well to our applications. Since we do not need all the
possibilities that it allows, we introduce a somewhat simplified version which is
sufficient for our purposes; details are given in Section 3.

In Section 4 we show two elementary but potentially interesting properties
of our definition of a ‘proof of quantum knowledge’. The first property is that,
if a classical proof of quantum knowledge leaves the witness state intact, then
the witness state can be cloned by an unbounded adversary. This is a simple
no-go result which precludes certain types of proofs of quantum knowledge in
the scenarios which we consider. The second property is that, under certain
conditions on the parameters in the definition, a proof of knowledge protocol for
a hard-to-clone witness state can also be used as a quantum money verification
protocol. This result formalises the intuition that the property of being a ‘proof
of quantum knowledge’ is stronger than the property of being a quantum money
verification protocol: the latter implies that no adversary can pass verification
twice given access to only one money bill, and the former formalises the notion
that no adversary can pass even once unless it is possible to efficiently compute
the money bill by interacting with said adversary.

Our second main contribution is to provide several examples of protocols
which can be shown to be proofs of knowledge under our definition, and in so
doing introduce some techniques that may possibly find use in the analysis of
such protocols. As we have mentioned, instantiating a secure quantum money
scheme is a natural application for a proof of quantum knowledge protocol.
Conversely, quantum money verification protocols are natural candidates for ex-
amples of proofs of quantum knowledge: in a quantum money protocol, there is
a prover who holds a purported money state, and who wishes to demonstrate
to the verifier (who might be the bank or an independent citizen) that it does
indeed ‘hold’ or ‘possess’ the quantum money state. The first person to describe
quantum money was Wiesner [Wie83], who proposed money states that are ten-
sor products of n qubits, each qubit of which is chosen uniformly at random
from the set {|0〉 , |1〉 , |+〉 , |−〉}. Wiesner’s states can be described classically by
2n classical bits, and in a quantum money scheme this classical description is
kept secret by the bank; a typical classical description is the pair of strings (x, θ),
where the money state can be described (denoting byHi a Hadamard gate on the
ith qubit of the state and identities on all other qubits) as |$〉x,θ =

!
i H

θi
i |x〉.

We choose to analyse as our first example of a proof of knowledge a private-
key, destructive classical money verification protocol between a prover and the
bank for Wiesner’s quantum money states which has been described previously
in [MVW12]. The protocol is as follows: the verifier issues a uniformly random
challenge string c to the prover, which encodes the bases (standard or Hadamard)
in which the prover should measure the money state; the prover measures the
ith qubit of the state in the standard basis if ci = 0, or in the Hadamard basis
if ci = 1, and sends all the measurement outcomes as a string m to the verifier;
and the verifier checks that, whenever ci = θi, mi = xi. The property which
makes this protocol and these states interesting is that no prover who is given
only one copy of the money state can pass verification twice.

Classical proofs of quantum knowledge 5

Perhaps surprisingly, showing even that this simple protocol is a proof of
knowledge according to our definition turns out to be a non-trivial task. We
may examine the following illustration of the difficulty. Consider, firstly, the
following näıve approach to designing an extractor for the protocol described
in the preceding paragraph. Recall that, according to our model of ‘black-box
access’, the prover can be considered a unitary process; we denote by Uc the
unitary that the prover applies to its private register and the message register
in response to challenge c. The extractor could pick a challenge c at random,
apply Uc, and then attempt to apply some unitary to the message register to
‘correct’ for the challenge bases in order to recover the original money state.
(For example, if n = 4, and c = 0110, the extractor could apply the unitary
U0110, and then apply H2H3 to the message register in hopes of recovering the
original money state. This strategy would work on the honest prover, who simply
measures the real money state in the bases indicated by c in order to obtain its
message to the verifier; we may imagine that few meaningful deviations from this
pattern are possible.) However, the prover (upon receipt of the challenge) may
take its honest money state and decide to apply Pauli X (bit-flip) gates to some
arbitrary subset of the qubits of the money state which it was told to measure
in the Hadamard basis, and Pauli Z (phase-flip) gates to a subset of the qubits
which it was told to measure in the standard basis. If the prover now measures
the result in the bases indicated by c, it will pass with probability 1—but the
state that it measures in the c basis in this scenario is almost certainly not the
correct money state. (The exception is when c = θ.)

A little thought will show that this is a fairly general obstacle to the ex-
tractor’s constructing the money state from the state residing in the prover’s
message registers immediately before it performs the measurement whose out-
comes it will send to the verifier. Since we know very little about what the prover
might be doing to the money state at any other stage in its execution, meanwhile,
it is difficult to reason about finding the money state in the prover’s registers
at other points in its operation. This simple argument shows that, in order to
design an effective extractor, it is crucial to consider the prover’s responses to
all challenges c at once—the question, of course, is one of how.

Our way of overcoming these difficulties builds on results from the literature
on nonlocal games. The key idea of our security proof for the Wiesner money
verification protocol is as follows. Let the party which chooses and prepares the
money state |$〉x,θ =

!
i H

θi
i |x〉 that the prover receives be known as Alice, and

let the prover be known as Bob. Consider the following thought experiment:
instead of preparing |$〉x,θ, Alice could prepare n EPR pairs and send half of
each one to Bob. Let E(θ) = {|$〉〈$|x,θ | x ∈ {0, 1}n} be a general measurement
(POVM). Then, if Alice measures E(θ) on her side of the state, and obtains the
outcome x, Alice’s and Bob’s joint state will collapse to two copies of |$〉x,θ. Note
that, from Bob’s perspective, the protocol is the same regardless of whether Alice
sent EPR pairs and then measured E(θ), or whether she chose x and θ uniformly
at random and sent him |$〉x,θ to begin with. However, if Bob succeeds with
high probability in the money verification protocol, then he also succeeds with

6 Thomas Vidick and Tina Zhang

high probability at recovering a subset of the string x which represents Alice’s
measurement outcomes after she measures the POVM E(θ), and which also
forms part of the classical description of the money state |$〉x,θ. This observation
makes it possible to apply a theorem from [NV16] which states that, if two
noncommunicating parties exhibit correlations like those which Alice and Bob
exhibit in this thought experiment, then they must once have shared EPR pairs,
up to local isometry. Since Alice is honest and did nothing to her shares of the
EPR pairs, the local isometry on her side is the identity map. Then, in order to
recover the original money state, the proof-of-knowledge extractor simply has to
execute the correct isometry on Bob’s side. This isometry can be implemented
efficiently using only black-box access to the prover; this step, however, crucially
makes use of the fact that the extractor can implement controlled versions of
the prover’s unitaries on a superposition of messages of its choice. A detailed
analysis is given in section 5.1.

Although the efficacy of this technique for showing that a protocol is a proof
of knowledge depends strongly on the structure of the Wiesner verification pro-
tocol, we are also able to apply it to one other example. Wiesner states were
the earliest and are the best-known kind of quantum money states, but there
are other kinds, and one sort which has received some recent attention is the
class of subspace states introduced in a quantum money context by [AC12].
Subspace states are states of the form 1√

|A|

"
x∈A |x〉 for some n/2-dimensional

subspace A ∈ Zn
2 , and they have similar no-cloning properties to those of Wies-

ner states; they are also of additional interest because they have been used in
several schemes which make steps toward the goal of public-key quantum money
[AC12], [Zha19], and in constructions of other quantum-cryptographic primitives
such as quantum signing tokens [BDS16]. We were not able to find a simple clas-
sical verification protocol for subspace states that we could show to be a proof of
quantum knowledge. Nonetheless, in Section 5.2, we propose a classical (private-
key) verification protocol for what we call one-time-padded subspace states (that
is, subspace states which have had random Pauli one-time-pads applied to them
by the bank), and we are able to show under our new definition, using similar
techniques to those which we applied to Wiesner states, that this simple veri-
fication protocol is a proof of knowledge for one-time-padded subspace states.
This verification protocol is remarkable for having a challenge from the verifier
that is only one bit long.

Our final contribution is to show that, under our definition, a classical ar-
gument of quantum knowledge exists for any relation in the class QMA.2 The
notion of a QMA relation was formalised jointly by [BG19] and [CVZ19], as a
quantum analogue to the idea of an NP relation which was described in the
first paragraphs of this introduction. [BG19] and [CVZ19] show that any QMA
relation has a quantum proof of quantum knowledge. The protocol that we show

2 Argument systems differ from proof systems only in that the honest prover must be
efficient, and that soundness is required to hold only against efficient provers. In this
case, ‘efficient’ means quantum polynomial-time.

Classical proofs of quantum knowledge 7

to be a classical argument of quantum knowledge for QMA relations, mean-
while, is the classical verification protocol introduced recently by [Mah18b]. Ma-
hadev [Mah18b] shows, under cryptographic assumptions, that quantum proper-
ties (in her case, any language in BQP) can be decided by a classical polynomial-
time verifier through classical interaction alone with a quantum polynomial-time
prover. We note that the proofs of the main results in [Mah18b] include state-
ments which can be used to make the verification protocol which [Mah18b] intro-
duces into a classical argument of quantum knowledge in the sense in which we
have defined the latter. The main work that needs to be done in order to show
this is to establish that the quantum witness, which as shown in [Mah18b] always
exists for the case of a successful prover, can be extracted from the prover in a
black-box manner. While all the required technical components for establishing
this are already present in [Mah18b], we make the statement explicit. (In com-
parison, our proofs that specific quantum money schemes satisfy our definition
of a proof of quantum knowledge do not use any cryptographic assumptions, and
the protocols which we consider are very simple compared with the [Mah18b]
protocol.) The [Mah18b] verification protocol can be shown to be an argument
of quantum knowledge for any QMA relation; the only caveat, which was also
a caveat for the quantum proofs of quantum knowledge for QMA exhibited by
[BG19] and [CVZ19], is that an honest prover in the protocol may require mul-
tiple copies of a witness in order that the extractor can succeed in extracting
one copy. We refer the reader to Section 6 for details.

Acknowledgements. We thank Alexandru Gheorghiu for useful feedback and Or
Sattath for comments. Thomas Vidick is supported by NSF CAREER Grant
CCF-1553477, AFOSR YIP award number FA9550-16-1-0495, MURI Grant FA9550-
18-1-0161 and the IQIM, an NSF Physics Frontiers Center (NSF Grant PHY-
1125565) with support of the Gordon and Betty Moore Foundation (GBMF-
12500028). This material is based upon work supported by DARPA under Agree-
ment No. HR00112020023. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Government or DARPA.

2 Preliminaries

2.1 Terminology and notation

Due to space constraints, we refer the reader to the full version [VZ21] for basic
notation and terminology.

2.2 Black-box quantum provers

Due to space constraints, we refer the reader to the full version [VZ21] for
a discussion of the definitions we will now present relating to the notion of
‘black-box access’. Formally, we use a similar framework to that which is de-
scribed in [Unr12, Section 2.1] in order to capture black-box access to quantum

8 Thomas Vidick and Tina Zhang

provers. The following definitions of interactive quantum machines and oracle
access to an interactive quantum machine are taken (with some modifications)
from [Unr12]; a similar formulation of these definitions of [Unr12] appears in
[CVZ19]. The modifications which we introduce are primarily for convenience in
dealing with the situation where the verifier is known to be classical, instead of
(potentially) quantum as it is in [Unr12].

Remark 1. Even though the possibility is not used in [Unr12], the framework pre-
sented there explicitly allows the extractor to coherently implement controlled
versions of the prover’s unitaries on a superposition of messages from the veri-
fier. As we argued in the introduction, it is necessary to give this power to the
extractor in our context (see e.g. [BCC+20] for impossibility results in related
settings).

Interactive quantum machines. An interactive quantum machine is a machine
M with two quantum registers: a register S for its internal state, and a register
N for sending and receiving messages (the network register). Upon activation, M
expects in N a message, and in S the state at the end of the previous activation.
At the end of the current activation, N contains the outgoing message of M ,
and S contains the new internal state of M . A machine M gets as input: a
security parameter λ ∈ N, a classical input x ∈ {0, 1}∗, and a quantum input
|Φ〉, which is stored in S. Formally, machine M is specified by a family of unitary
circuits {Mλx}λ∈N,x∈{0,1}∗ and a family of integers {rMλx}λ∈N,x∈{0,1}∗ . Mλx is the
quantum circuit that M performs on the registers S and N upon invocation. rλx
determines the total number of messages/invocations. We might omit writing
the security parameter and/or the classical input x when they are clear from
the context. We say that M is quantum-polynomial-time (QPT for short) if
the circuit Mλx has size polynomial in λ + |x|, the description of the circuit is
computable in deterministic polynomial time in λ+ |x| given λ and x, and rλ,x
is polynomially bounded in λ and x.

Oracle access to an interactive quantum machine. We say that a quantum algo-
rithm A has oracle access to an interactive quantum machine M (with internal
register S and network register N) running on |Φ〉 to mean the following. We
initialise S to |Φ〉 and N to |0〉, we give A the security parameter λ and its
own classical input x, and we allow A to execute (a controlled version of) the
quantum circuit Mλx′ (for any x′) specifying M , and (a controlled version of)
its inverse (recall that these act on the internal register S and on the network
register N of M). Moreover, we allow A to provide and read messages from M
(formally, we allow A to act freely on the network register N). We do not allow
A to act on the internal register S of M , except via Mλx′ or its inverse.

Interactive classical machines. An interactive classical machine is a machine C
with two classical registers: a register T for its internal state, and a register N
for sending and receiving messages (the network register). Upon activation, C
expects in N a message, and in T the state at the end of the previous activation.

Classical proofs of quantum knowledge 9

At the end of the current activation, N contains the outgoing message of C,
and T contains the new internal state of M . A machine C gets as input: a
security parameter λ ∈ N, a classical input x ∈ {0, 1}∗, a random input u ∈
{0, 1}p(λ+|x|) for some function p ∈ N, and a classical auxiliary input t ∈ {0, 1}|T|,
which is stored in T. Formally, machine C is specified by a function p ∈ N,
a family of classical circuits {Cλxu}λ∈N,x∈{0,1}∗,u∈{0,1}p(λ+|x|) and a family of

integers {rCλx}λ∈N,x∈{0,1}∗ . Cλxu is the classical circuit that C performs on the
registers T and N upon invocation. Without loss of generality, for convenience’s
sake, we assume that Cλxu is reversible. rCλx determines the total number of
messages/invocations. We might omit writing the security parameter and/or
the input when they are clear from the context. We say that C is probabilistic-
polynomial-time (PPT for short) if p is a polynomial, the circuit Cλxu has size
polynomial in λ+|x|, the description of the circuit is computable in deterministic
polynomial time in λ + |x| given λ, x and u, and rCλx is polynomially bounded
in λ and x.

Oracle access to an interactive classical machine We say that a quantum al-
gorithm A has oracle access to an interactive classical machine C running on
string t to mean the following. We initialise C’s internal register T to t and the
network register N to the all-zero string. We give A the security parameter and
its own classical input x. Each time A wishes to run C (or its inverse), it must
submit an input x′ on which to run C (or its inverse). Upon receiving A’s choice
of x′, we choose u uniformly at random, and then we run the classical circuit
Cλx′u (or its inverse); recall that these act on the internal register T and on the
network register N of C. Moreover, we allow A to provide and read messages
from C (formally, we allow A to act freely on the network register N). We do not
allow A to act on the internal register T of C, except via Cλx′u or its inverse.

Definition 1. We use the terminology interactive Turing machine (ITM) to re-
fer to either an interactive classical machine or an interactive quantum machine.
If the ITM is bounded-time, we may refer to a PPT ITM or a QPT ITM to
clarify which model is used. An interactive oracle machine is an ITM that in
addition has query access to an oracle.

Interaction between an interactive quantum machine and an interactive classi-
cal machine Let M = ({Mλx}, {rMλx}) be an interactive quantum machine with
internal register S and network register N. Let C = ({p, Cλx′u}, {rCλx′}) be an
interactive classical machine with internal register T and network register N. For
a given CQ state ρTS ∈ D(HT ⊗HS), we define the interaction (C(x′),M(x))ρTS

as the following quantum process: initialize register N to |0〉; initialise registers
S and T to the CQ state ρTS; alternately apply Mλx to registers S and N and
Cλx′u (for a uniformly chosen u ∈ {0, 1}p(λ+|x′|) each time) to registers T and
N, measuring N in the computational basis after each application of either Mλx

or Cλx′u; stop applying Mλx after rMλx times and Cλx′u after rCλx′ times, and
finally output the output of the circuit Cλx′u. We denote the random variable

10 Thomas Vidick and Tina Zhang

representing this output by 〈C(x′),M(x)〉ρTS
. We call the rMλx + rCλx′ measure-

ment outcomes which are obtained after performing as many standard basis
measurements of N during a single execution of the interaction (C(x′),M(x))ρTS

the transcript for this execution.

2.3 Implementing oracles

Some of our formal definitions rely on ‘oracles’, which we generally visualise as
functions O : {0, 1}∗ → {0, 1}∗ to which query access is given. We refer the
reader to the full version [VZ21] for some brief remarks on how query access to
these oracles (which, expressed as functions, may take an exponential number of
bits to specify) can be implemented efficiently in the number of queries made to
the oracle, and also on our assumption that any query submitted to an oracle is
measured in the standard basis before being answered.

3 Quantum Agree-and-Prove schemes

To define the intuitive notion of a ‘proof of quantum knowledge’ in sufficient
generality so that we can capture both quantum money verification and QMA
verification we introduce a quantum variant of the ‘agree-and-prove’ framework
from [BJM19], extending their formalism to our setting in which the prover and
the witness are quantum, and simplifying some aspects of the formalism that
are less important for the applications we have in mind. For convenience, we
preserve much of the notation from [BJM19]. The reader might wish to consult
the full version of this paper [VZ20] for a discussion of the intuition behind this
agree-and-prove framework; the reader can also refer to [BJM19] for additional
motivation and explanations relating to the framework.

In the next subsection we formalise the notion of a scenario. The following
section discusses input generation algorithms; the one after that formalises proto-
cols, and the one after that lays down the security conditions for agree-and-prove
schemes.

3.1 Scenario

Definition 2 (Agree-and-Prove Scenario for quantum relations). An
agree-and-prove (AaP for short) scenario for quantum relations is a triple (F ,R, C)
of interactive oracle machines satisfying the following conditions:

– The setup functionality F is a QPT ITM taking a unary encoding of a
security parameter λ as input. The ITM F runs an initialization procedure
init, and in addition returns the specification of an oracle (which we also
model as an ITM) OF (i, q, arg). The oracle function takes three arguments:
i ∈ {I, P, V } denotes a ‘role’, q denotes a keyword specifying a query type,
and arg denotes the argument for the query.3

3 In [BJM19], OF has an additional function: when it is called with the argument
QUERIES, OF (QUERIES) returns a list of tuples representing all of the queries made

Classical proofs of quantum knowledge 11

There are three different options for the ‘role’ parameter, which exists to
allow F to release information selectively depending on the party asking
for it. The roles I, P and V correspond respectively to the input generator
(Definition 3), the prover, and the verifier.

– The agreement relation C is a QPT oracle machine taking a unary encoding
of the security parameter λ and a statement as inputs, and producing a
decision bit as output.4

– The proof relation R is a QPT oracle machine taking a unary encoding of
the security parameter λ, a (classical) statement x and a (quantum) witness
ρW as inputs, and outputting a decision bit.

3.2 Input generation

Before we formalise the notion of an agree-and-prove protocol, we introduce the
notion of an input generation algorithm, which is an algorithm that produces
the auxiliary inputs that the prover and the verifier receive before they begin
interacting. The input generation algorithm models ‘prior knowledge’ which the
prover and the verifier may possess. For a fuller discussion of the motivation for
the input generation algorithm, please see the full version [VZ21].

Definition 3 (Input Generation Algorithm). An input generation algo-
rithm I for an agree-and-prove scenario S is a machine I taking a unary encod-
ing of the security parameter λ as input and producing a CQ state ρAUXV AUXP

specifying the auxiliary inputs for the verifier (in the classical register AUXV)
and prover (in the quantum register AUXP) respectively as output. We may use
the shorthand ρAUXP

≡ TrAUXV

#
ρAUXV AUXP

$
and ρAUXV

≡ TrAUXP

#
ρAUXV AUXP

$
.

3.3 Protocol

Once a scenario has been fixed we can define a protocol for that scenario. Infor-
mally, the protocol specifies the actions of the honest parties. Each party, prover
and verifier, is decomposed into two entities that correspond to the two phases,
“agree” and “prove”, of the protocol.

Definition 4 (Agree-and-prove protocol). An agree-and-prove protocol is
a tuple (I, P1, P2, V1, V2) consisting of a set I of input generation algorithms
together with the following four interactive oracle machines (P1, P2, V1, V2):

to OF by the prover P and the replies that were given. This functionality is available
only to the extractor, not to the parties I, P and V , and it is necessary in order
to permit the design of an efficient extractor for some protocols, particularly those
in the random oracle model (see, for example, the discussion at the bottom of page
10 in [BJM19]). Since we do not need to use this functionality in our protocols, we
omit it here.

4 In [BJM19] the agreement relation also takes two auxiliary inputs. We will not need
this.

12 Thomas Vidick and Tina Zhang

– A (honest) first phase QPT prover P1 taking a unary encoding of the security
parameter λ and a (quantum) auxiliary input ρAUXP

as inputs. It produces
a (classical) statement xP or ⊥ as output, as well as a (quantum) state ρstP .

– A (honest) first phase PPT verifier V1 taking a unary encoding of the security
parameter λ and a (classical) auxiliary input AUXV as inputs. It produces a
(classical) statement xV or ⊥ as output, as well as a (classical) state stV .

– A (honest) second phase QPT prover P2 taking a classical instance x and
a quantum state ρstP as input, as well as a unary encoding of the security
parameter λ, and producing as output a bit that indicates whether the proof
has been accepted.

– A (honest) second phase PPT verifier V2 taking a classical instance x and
a state string stV as input, as well as a unary encoding of the security
parameter λ, and producing as output a bit that indicates whether it accepts
or rejects.

Note that in this definition the verifier is required to be a classical proba-
bilistic polynomial time ITM. In general one may extend the definition to allow
for quantum polynomial time verifiers; since our focus is on classical protocols
we restrict our attention to classical verifiers. We also restrict the honest prover
to run in quantum polynomial time; for soundness, this restriction will be lifted
for the case of proofs of knowledge and maintained for the case of arguments of
knowledge.

3.4 Security conditions

We now specify the correctness and soundness conditions associated with an
agree-and-prove scenario S.

Definition 5 (Completeness experiment). We define the following com-
pleteness experiment for an agree-and-prove protocol K = (I, P1, P2, V1, V2) in
the context of a scenario S = (F , C,R):

1. An input generation algorithm I ∈ I is executed. It is allowed to query
OF (I, ·, ·). It produces the CQ state ρAUXV AUXP

, and passes input ρAUXP
to

P1 and ρAUXV
to V1.

2. The interaction (V1, P1)ρAUXV AUXP
is executed (during which V1 and P1 are

allowed to query OF (V, ·, ·) and OF (P, ·, ·), respectively), and if either V1

or P1 returns ⊥, or if xV ∕= xP , the agree phase returns 0. Otherwise, the
outputs of V1 and P1 are passed to V2 and P2, respectively, and the agree
phase returns 1. If the agree phase returns 1, let the CQ state representing
the joint distribution of stV and ρstP be denoted by ρstV stP , and let x =
xP = xV be the instance that V1 and P1 have agreed on.

3. The interaction (V2(x), P2(x))ρstV stP
is executed (during which V2 and P2

are allowed to query OF (V, ·, ·) and OF (P, ·, ·), respectively), and the out-
come of the proof phase is set to the value which V2 returns at the end of
the protocol.

Classical proofs of quantum knowledge 13

The completeness experiment returns 1 if the agree phase and the proof phase
both return 1.

Definition 6 (Soundness experiment). We define the following soundness
experiment for an agree-and-prove protocol K = (I, P1, P2, V1, V2) and an ex-
tractor E, in the context of a scenario S = (F , C,R):

1. An input generation algorithm Î is executed. It is allowed to queryOF (I, ·, ·).
It produces the CQ state ρAUXV AUXP

, and passes input ρAUXP
to P̂1 and ρAUXV

to V1.
2. The interaction (V1, P̂1)ρAUXV AUXP

is executed (during which V1 and P̂1 are
allowed to query OF (V, ·, ·) and OF (P, ·, ·), respectively), and if either V1

or P1 returns ⊥, or if xV ∕= xP , the agree phase returns 0. Otherwise, the
outputs of V1 and P̂1 are passed to V2 and P̂2, respectively, and the agree
phase returns 1. If the agree phase returns 1, let the CQ state representing
the joint distribution of stV and ρstP be denoted by ρstV stP , and let x =
xP = xV be the instance that V1 and P̂1 have agreed on.

3. If the agree phase returns 1 in step 2, the extractor E is provided with the
transcript of the interaction (V1, P̂1)ρAUXV AUXP

and the instance x resulting

from the agree phase, along with oracle access to P̂2 running on input ρstP
(where ρstP is the prover’s half of the joint CQ state ρstV stP). In addition
the extractor can access the oracle OF using any of the roles in {I, P}. It
outputs a state ρ.

We are now ready to give the formal definition of security.

Definition 7 (Security of Protocol for Quantum Agree-and-Prove Sce-
nario). Let λ be a security parameter. Let c,κ, δ : N → [0, 1]. A protocol
K = (I, P1, V1, P2, V2) for a scenario (F , C,R) is secure with completeness c, up
to knowledge error κ, and with extraction distance parameter δ if the following
conditions hold:

– Correctness: The completeness experiment (Definition 5) returns 1 with
probability at least c, and in addition the statement x = xV = xP that
is agreed on during the completeness experiment is such that C(1λ, x) = 1,
whenever the honest parties P and V are provided with their inputs by some
input generation algorithm I ∈ I. 5

– Soundness: There exists a QPT ITM E (called the “extractor”) such that the
following holds. Let P̂ = (P̂1, P̂2) be a potentially dishonest prover for K and
Î an arbitrary input generation algorithm. Let x be an instance such that,
conditioned on the agree phase of K returning 1 and the instance x being
agreed upon, the prover P̂2 succeeds with probability p > κ in the proof phase
of K. Then the state ρ returned by the extractor in the soundness experiment

5 Note that, for completeness, we require that the input generation algorithm is chosen
from a set I of ‘honest’ algorithms. Here we depart from [BJM19], where input
generation is always unrestricted (even when the verifier and the prover are honest).
We refer the reader to the full version [VZ21] for a fuller discussion of this subject.

14 Thomas Vidick and Tina Zhang

(Definition 6), conditioned on the agree phase of the soundness experiment
returning 1 and x being agreed on, is such that Pr[R(1λ, x, ρ) = 1] > 1−δ(p),
where δ, which may depend on λ, is such that δ(p) < 1 for all p > κ. The
expected number of steps of extractor E is required to be bounded by a
polynomial in λ/(p−κ), if executing the prover’s unitary on any input counts
as a unit-time procedure.

When the soundness condition only holds under the restriction that P̂ must
be implemented by a QPT ITM we say that the protocol is computationally
secure, or that it is an argument system (as opposed to a proof system, which is
sound against all possible provers).

Remark 2. When we wish to emphasize the connection between secure agree-
and-prove protocols and the more usual notion of a ‘proof of knowledge’, we
sometimes refer to an AaP scenario that satisfies Definition 7 as a ‘classical
proof (or argument) of quantum knowledge’. (Formally, proofs and arguments of
knowledge can be formulated as protocols for AaP scenarios which have trivial
agreement phases and which have as a proof relation an NP or a QMA relation;
see Section 6.) When we use this terminology, it will be clear from context what
the ‘knowledge’ is that we are referring to.

3.5 Agree-and-Prove scenario for quantum money

As an example of a concrete agree-and-prove scenario, we define an agree-and-
prove scenario that captures the scenario which arises in the problem of verifying
quantum money. We firstly lay down the ‘standard’ security definitions for a
quantum money scheme, and in so doing introduce some notation and some
objects that will be useful in formulating quantum money in the agree-and-prove
framework.

Definition 8. A “quantum money scheme” is specified by the following objects,
each of which is parametrized by a security parameter λ:

– A algorithm Bank taking a string r as a parameter which initialises a database
of valid money bills in the form of a table of tuples (id, public, secret, |$〉id).
id represents a unique identifier for a particular money bill; public and secret
represent, respectively, public and secret information that may be necessary
to run the verification procedure for the bill labeled by id; and |$〉id is the
quantum money state associated with the identifier id. The string r should
determine a classical map Hr such that Hr(id) = (public, secret).6

– A verification procedure Ver(x, public, secret, ρW) that is a QPT algorithm
which decides when a bill is valid.

In addition the scheme should satisfy the following conditions:

6 The string r represents any random choices that Bank might make while generating
valid bills; we make this string explicit for later convenience.

Classical proofs of quantum knowledge 15

1. Completeness: for any valid money bill (id, public, secret, |$〉id) in the database
created by Bank,

Pr
#
Ver(id, public, secret, |$〉〈$|id)

$
≥ cM (λ) ,

for some function cM (·). We refer to cM as the completeness parameter of
the money scheme.

2. No-cloning: Consider the following game played between a challenger and
an adversary: the challenger selects a valid money bill (id, public, secret, |$〉id)
and sends (id, public, |$〉id) to the adversary; the adversary produces a state
σAB . Then for any adversary in this game,7

Pr
r

#
Ver(id, public, secret,TrB(σAB)) = 1

and Ver(id, public, secret,TrA(σAB)) = 1
$
≤ µM (λ) ,

for some function µM (·). We refer to µM as the cloning parameter of the
money scheme. Note that the probability of the adversary’s success is cal-
culated assuming that the string r which Bank takes is chosen uniformly at
random.

Fix a quantum money scheme according to Definition 8, with completeness
parameter cM and cloning parameter µM . We call an agree-and-prove scenario
(FM , CM ,RM) that takes the form below a ‘quantum money scenario with com-
pleteness parameter cM and cloning parameter µM ’.

– Setup functionality FM (1λ): The setup should run an initialization procedure
initM that instantiates8 a database BM whose records are of the form (and
the distribution) that Bank would have produced running on a uniformly
random input r. The setup should also return a specification of how the
following oracles should be implemented:
• OFM

(I, id): returns an identifier id such that the bill (id, public, secret, |$〉id)
is in BM .9

• OFM
(·, public, id): Returns the public string associated with id. Returns

⊥ if no record in BM with the identifier id exists.
• OFM

(I, getMoney, id): If no record in BM with identifier id exists, returns
⊥. Otherwise, returns |$〉id the first time it is called. If called again with
the same id argument, returns ⊥.

7 Many quantum money schemes are information-theoretically secure; however, it is
also possible to consider computationally secure schemes by replacing ‘any’ with ‘any
QPT’.

8 initM doesn’t necessarily need to actually allocate memory for the database; since
the database will only ever be accessed through the oracle OFM , it is possible to
‘instantiate’ the database using the method described in Section 2.3.

9 Which identifier is returned is at the discretion of any particular instantiation of
this function. Intuitively, this oracle is used to represent identifiers of bills that have
been generated in the past and are thus available in an “environment” that I may
have access to.

16 Thomas Vidick and Tina Zhang

• OFM
(V, secret, id): accesses BM and returns the secret string associated

with id. Returns ⊥ if no record in BM with the identifier id exists.
– Agreement relation COFM (1λ, id): outputs 1 if and only if a record in BM

with identifier id exists.
– Proof relation ROFM (1λ, x, ρW): interprets x as an id (outputting ⊥ if this

fails), sets public ← OFM
(V, public, x) and secret ← OFM

(V, secret, x),
and executes Ver(x, public, secret, ρW).

4 Simple properties

4.1 Nondestructive proofs of quantum knowledge imply cloning

In this section we formalize the intuitive claim that a non-destructive proof of
quantum knowledge implies the ability to clone the underlying witness state. To
formalize this statement we make a number of assumptions that help simplify
the presentation. More general statements can be proven depending on one’s
needs; see the end of the section for further discussion.

We use definitions and notation from Section 2.2 and Section 3.

Definition 9 (Nondestructive interaction). Let P = ({Pλx}, {rPλx}) be an
interactive quantum machine, and let V = (p, {Vλxu}, {rVλx}) be an interac-
tive classical machine. Fix a security parameter λ. A nondestructive interaction
(V (x), P (x′))ρTS

between V and P for some CQ state ρTS is an interaction in
which the execution of (V (x), P (x′))ρTS

is unitary (including the standard-basis
measurements of the network register that take place during the execution) for
all possible random inputs u to V . More formally, for any choice of rVλx random
strings u1, . . . , urVλx

used during the interaction (V (x), P (x′))ρTS
, there exists a

unitary U acting on registers N, T and S such that the joint state of the registers
N, T and S is identical after U has been applied to them (assuming they are
initialised as described in Section 2.2) to their joint state after the execution of
(V (x), P (x′))ρTS

using the random strings u1, . . . , urVλx
.

Definition 10 (Oracle access to an interactive quantum machine with
power of initialisation). Recall the definition of oracle access to an interactive
quantum machine given in Section 2.2. In that section, the initial state |Φ〉 on
which the quantum machine is run is fixed. We say that a quantum algorithm
A has oracle access to an interactive quantum machine M with power of initial-
isation if A can do all the things described in Section 2.2, and in addition can
initialise M ’s internal register S to a state of its choosing (but cannot read S,
only write to it).

Proposition 1. Let λ be a security parameter, let (F , C,R) be an agree-and-
prove scenario, and let K = (I, P1, P2, V1, V2) be a protocol for (F , C,R) with a
classical honest verifier V = (V1, V2), knowledge error κ and extraction distance
δ. Let P̂ = (P̂1, P̂2) be a prover for K.

Let Î be any input generation algorithm, and x and ρTS an instance and a
CQ state respectively such that the agree phase of K, executed with Î, V1 and P̂1,

Classical proofs of quantum knowledge 17

has positive probability of ending with x being agreed on, and such that the joint
state of stV and stP conditioned on x being agreed on is ρTS.

Suppose further that (i) the interaction
%
V2(x), P̂2(x)

&

ρTS

is nondestructive,

(ii) the oracle OF does not keep state during the second phase of the protocol, i.e.
any query to it by V2 or P̂2 can be repeated with the same input-output behavior,
and (iii) the success probability of P̂2 conditioned on instance x being agreed on
is at least κ. Then there exists a procedure A 10 such that the following holds.

Let ROF
λx (·) be the function such that ROF

λx (ρ) = ROF (1λ, x, ρ), and let the

single-bit-valued function
#
ROF

λx

$⊗2
(·) be the function whose output is the AND

of the outcomes obtained by executing the tensor product of two copies of ROF
λx (·)

on the state that is given as argument. Then the procedure A, given as input x,
a copy of a communication transcript from the agree phase that led to x, and
black-box access to V2 and P̂2 as interactive machines (including any calls they
might make to OF) running on ρTS, with power of initialisation for P̂2, can
produce a state σ such that

Pr[
#
ROF

λx

$⊗2
(σ) = 1] > 1− 2δ − negl(λ). (1)

Proof. Due to space constraints, we refer the reader to the full version [VZ21]
for the proof.

Discussion. Due to space constraints, we refer the reader to the full version
[VZ21] for a discussion of potential extensions of Proposition 1, including to
the case where the protocol is not perfectly nondestructive but only ‘slightly
destructive’, and to the case where computationally efficient cloning might be
desirable.

4.2 Proofs of quantum knowledge are also quantum money
verification protocols

The other simple property which we prove is that, under certain assumptions on
the parameters in Definition 7, any protocol satisfying Definition 7 can be used
as a quantum money verification protocol. Proposition 2 formalises the intuition
that the property of being a ‘proof of quantum knowledge’ is stronger than the
property of being a quantum money verification protocol: the latter implies that
no adversary can pass verification twice given access to only one money bill, and
the former formalises the notion that no adversary can pass even once unless it is
possible to efficiently compute the money bill by interacting with said adversary.

10 A is in general not efficient. It is also allowed slightly more invasive access to P̂2 than
a typical extractor. This is acceptable because A is not an extractor, but a cloning
procedure. We refer the reader to the full version [VZ21] for a fuller discussion of
this topic.

18 Thomas Vidick and Tina Zhang

Formalising interactive quantum money verification. Before we state Proposition
2, we must formalise what it means to ‘be a quantum money verification proto-
col’. The standard definition of quantum money security (Definition 8) indicates
what this means for a passive verification procedure, in which the verification
procedure Ver is just an isometric map, but we need to formalise what it means
for an interactive protocol. Due to space constraints, we refer the reader to the
full version [VZ21] for a fuller motivation of the definition that we state below,
and in particular of the no-communication assumption between provers P̂A and
P̂B .

Definition 11 (Interactive quantum money verification procedure). Let
λ be a security parameter, and let (FM , CM ,RM) be a quantum money scenario
(as defined in Section 3.5). A protocol K = (I, P1, P2, V1, V2) for (FM , CM ,RM)
(see Definition 7) is an interactive verification procedure with completeness c and
cloning error s for the quantum money scenario (FM , CM ,RM) if the following
two conditions hold.11 (Probabilities in these conditions are calculated assuming
that r, the randomness that Bank takes as input, is drawn from the uniform
distribution. See Definition 8 for a definition of Bank.)

1. Completeness: The protocol K has completeness c according to Definition 7.
2. Soundness: let P̂A = (P̂A,1, P̂A,2) and P̂B = (P̂B,1, P̂B,2) be two provers for

K, and let Î be an algorithm that generates inputs for both of them. We
define a no-cloning game as follows:

(a) Î prepares a (potentially entangled) joint state ρAB . During this phase,
Î is allowed to call the oracle OFM

using the role I. At the end of this
phase, Î gives ρA = TrB(ρAB) to P̂A, and ρB = TrA(ρAB) to P̂B .

(b) Holding ρA, P̂A executes K with a copy of the honest verifier of K, the
latter of which we denote by VA = (VA,1, VA,2). Likewise, holding ρB , P̂B

also executes K with a copy of the honest verifier of K, which we denote
by VB = (VB,1, VB,2). During the protocol executions, P̂A and P̂B are
not allowed to communicate, but they are allowed to call the oracle OF
using the role P .

(c) P̂A and P̂B win the game if and only if the same instance x is agreed
upon in the agree phases of both copies of K played in step 2, and in
addition both VA and VB output 1 at the end of the game.

We say that the protocol K for the quantum money scenario (FM , CM ,RM)
is secure against cloning with cloning error s if any pair of provers (P̂A, P̂B)
with any input generation algorithm Î wins the no-cloning game with prob-
ability less than s.

11 This definition is distinct from the definition of security of a protocol K described in
Definition 7. The latter is a security definition that can apply to any AaP scenario,
and the present definition is a new definition tailored to quantum money that is a
natural extension of the standard “no-cloning”-based definition recalled in Section 8.
Our aim in this section, in fact, is to show that (qualitatively speaking) Definition
7 implies Definition 11.

Classical proofs of quantum knowledge 19

We are now ready to formally present our lemma which captures the fact that
a secure agree-and-prove protocol can be used as a quantum money verification
procedure. We refer the reader to the full version [VZ21] for an exposition of the
parameters that appear in Proposition 2.

Proposition 2. Let λ be a security parameter, and let (FM , CM ,RM) be a quan-
tum money scenario (as defined in Section 3.5). Let K = (I, P1, P2, V1, V2) be a
protocol for a quantum money agree-and-prove scenario (FM , CM ,RM). Let µM

be the cloning parameter for the quantum money scenario (FM , CM ,RM).

Define δ0 ≡ 2−
√
3

2 . Suppose there is a function κ(·) such that K is a (c =
1−negl(λ), δ)–secure protocol with knowledge error κ(λ) and extraction distance δ
(the latter of which we assume is a function of the prover’s success probability p as

well as the security parameter λ) such that δ0−δ(p(λ),λ) > 1
2
µM (λ)
ε·κ(λ) for arbitrary

ε > 0 and sufficiently large λ whenever p is a function such that p(λ) > κ(λ) for
sufficiently large λ.

Then K is an interactive quantum money verification protocol for the money
scenario (FM , CM ,RM) (in the sense defined in Definition 11) with completeness
1− negl(λ) and cloning error (1 + ε)κ.

Proof. Due to space constraints, we refer the reader to the full version [VZ21]
for the proof.

Amplification. The bound on the maximum success probability of a cloning ad-
versary which comes out of Proposition 2 is linear in the knowledge error of the
agree-and-prove protocol which is being used as a money verification protocol.
A typical expectation in a quantum money scenario is that any cloning adver-
sary will only succeed with negligible probability (see Definition 11 of [AC12],
for example), but in our analyses of quantum money verification protocols in
Sections 5.1 and 5.2, we only get constant (and not negligible) knowledge error.
Therefore, in the full version [VZ21], we present a sequential amplification lemma
which shows that a money scheme equipped with a classical agree-and-prove pro-
tocol that has constant knowledge error (and other parameters similar to those
which we obtain in Sections 5.1 and 5.2) can be modified into a money scheme
which admits only cloning adversaries that pass with negligible probability.

5 Proofs of quantum knowledge for quantum money
states

In this section we apply our notion of proofs of quantum knowledge to the prob-
lem of certifying quantum money. We give two examples for two protocols from
the literature, Wiesner’s quantum money in Section 5.1 and Aaronson and Chris-
tiano’s public-key quantum money based on hidden subspaces in Section 5.2.

20 Thomas Vidick and Tina Zhang

5.1 PoQK for Wiesner money states

Our first concrete example of an Agree-and-Prove scheme for a quantum property
is a verification protocol for Wiesner’s quantum money states. Any Wiesner state
can be described by 2λ classical bits; a typical classical description is the pair of
strings $ = (v, θ) ∈ {0, 1}2λ, where the associated money state is

|$〉v,θ =
%'

i

Hθi
i

&
|v〉 , (2)

in which |v〉 = ⊗i |vi〉 and Hi denotes a Hadamard on the ith qubit and identities
on all other qubits. In the notation of Definition 8, valid bills in this scheme are
quadruples (id, public, secret, |$〉id) such that id is an arbitrary string, public is
empty, secret = (v, θ) ∈ {0, 1}λ × {0, 1}λ and |$〉id = |$〉v,θ. The verification pro-
cedure Ver(x, public, secret, ρW) parses secret = (v, θ) and measures each qubit
of ρW in the basis indicated by θ. It accepts if and only if the outcomes obtained
match v. This scheme clearly has completeness parameter 1, and it was shown
in [MVW12] that its cloning parameter is µW (λ) = (3/4)λ.

Scenario 12 We instantiate the generic AaP scenario for quantum money de-
scribed in Section 3.5 as follows:

– Setup functionality FW (1λ):
• initW initializes a random oracle H taking strings of length 2λ to strings
of length 2λ.12 In addition, it initializes an empty database BW that is
destined to contain a record of all quantum money bills in circulation.

• OFW
(I, getId): generates id ∈ {0, 1}2λ uniformly at random. Sets (v, θ) =

H(id), secret = (v, θ) and |$〉 = |$〉v,θ. If id already appears in BW , then
returns ⊥. Otherwise, add (id, public, secret, |$〉v,θ) to BW . Return id.

• OFW
(·, public, id), OFW

(I, getMoney, id), and OFW
(V, secret, id): as

described in Section 3.5.
– Agreement relation COFW

W (1λ, id): The agreement relation is the same as it
is in Section 3.5.

– Proof relation ROFW

W (1λ, x, ρW): The proof relation firstly queries OFW
(V, secret, x)

in order to get a tuple (v, θ). (If OF (V, secret, x) returns ⊥, then R rejects.)
Then it implements the Wiesner money verification procedure: it applies!

i H
θi
i to its quantum input ρW , measures all qubits in the computational

basis, and accepts if and only if the outcome is v.

Protocol 13 We define our proof of knowledge protocol KW = (IW , P1, P2, V1, V2)
for the scenario (FW , CW ,RW). An honest input generation algorithm I ∈ IW
calls OFW

(I, getId) repeatedly until it obtains a string id ∈ {0, 1}2λ such that
id ∕=⊥. It then queries OF (I, getMoney, id), obtains a quantum state ρW , and
gives (id, ρW) to the prover (it gives nothing to the verifier). In the agreement
phase, the prover P1 parses the auxiliary input ρAUXP

which it gets from I as a
classical string id ∈ {0, 1}2λ in addition to a quantum state ρW . (If this fails,

12 Formally the oracle is implemented in the standard way, recalled in Section 2.3.

Classical proofs of quantum knowledge 21

the prover halts.) Then the prover sends id to V1 and outputs the statement
xP = id and the quantum state ρstP = ρW . V1, upon receiving id from P1,
queries OFW

(V, public, id). If this returns ⊥ the verifier aborts. Otherwise, V1

outputs xV = id and stV = ⊥.

This completes the description of the (honest) prover and verifier in the first
(agree) phase. We now describe the interaction between the (honest) prover and
verifier, P2 and V2, in the second (proof) phase:

1. V2 queries OFW
(V, secret, id). If it obtains ⊥, V2 aborts. Otherwise, let

$ = (v, θ) be the classical description obtained.

2. V2 sends a uniformly random c ∈ {0, 1}λ to the prover.

3. For each i ∈ {1, . . . , n} if the ith bit of c is 0, P2 measures the ith qubit
of ρstP in the standard basis; and if it is 1, it measures the ith qubit in the
Hadamard basis. Let β ∈ {0, 1}λ denote the outcomes obtained. P2 sends β
to V2.

4. Let s = c · θ + c̄ · θ̄, where · denotes componentwise multiplication. In other
words, si = 1 if and only if ci = θi. V2 checks that, whenever si = 1, it holds
that vi = βi. If not, then it returns 0.

Lemma 1. There is a constant κ < 1 such that Protocol KW (Protocol 13) is a
secure agree-and-prove protocol for (FW , CW ,RW) (Scenario 12) with complete-
ness 1, knowledge error κ, and extraction distance δ = O(µ1/4), where µ = 1−p
and p is the prover’s success probability.

Proof. Due to space constraints, we refer the reader to the full version [VZ21]
for the full proof. For intuition, we provide below a sketch of the main step, the
design of the extraction procedure.

Our first step is to argue that we can replace FW from Scenario 12 with
a new setup functionality F ′

W such that the prover is (perfectly) unable to
distinguish the two. FW and F ′

W differ mainly in their implementations of
OF (I, getMoney, id): while FW chooses v and θ uniformly and returns a money
state |$〉v,θ to the prover when getMoney is called, F ′

W returns half EPR pairs to
the prover. (The number of such half-pairs is λ, the length of the money state.)
F ′

W keeps the halves of the EPR pairs that it does not give to the prover in a
register A. Then, when the verifier calls OF ′

W
(V, secret, id) in step 1 of Protocol

13, F ′
W chooses a basis string θ ∈ {0, 1}λ uniformly and measures the state in

A in the bases determined by θ. This action collapses the state in A to the state
|$〉v,θ for some uniformly random v ∈ {0, 1}λ. For convenience, we will refer to a
version of Scenario 12 with FW replaced with F ′

W as ‘the purified Scenario 12’.

We then use the prover’s unitary (Mλx′ in Section 2.2, which the extractor
has black-box access to) in order to define a set of 2 · 2λ measurement operators
XB(s), ZB(s) for s ∈ {0, 1}λ that act on the prover’s private space P as well as
the message register M. We design XB(s), ZB(s) so that, for any c, θ ∈ {0, 1}λ,
the outcome of measuring ZB(c · θ) is equal to the single bit ⊕i:ci=θi=0βi, and
likewise the outcome of measuring XB(c̄ · θ̄) is equal to ⊕i:ci=θi=1βi (given that

22 Thomas Vidick and Tina Zhang

the prover’s private state is initialised the way that it is at the start of the prove
stage of Protocol 13 in the purified Scenario 12). 13

We define corresponding measurement operators XA(s), ZA(s) which act on
the register A, and which simply act as σX(s),σZ(s) on the A register (where
σZ(s) ≡

(
i σ

si
Z,i, with σZ,i representing σZ on the ith qubit, and σX(s) is defined

analogously). Recall the verifier’s check in step 4 of Protocol 13. We argue that,
if the verifier’s check passes, the outcomes of measuring ZA(c · θ) and ZB(c · θ)
(on the registers on which they are respectively defined) are equal, and likewise
the outcomes of measuring XA(c̄ · θ̄) and XB(c̄ · θ̄) are equal. 14

We then apply a theorem similar to [NV16, Theorem 14] which states that, if
we can define operators XA(s), ZA(s), XB(s), ZB(s) for all s ∈ {0, 1}λ satisfying
certain conditions (which we satisfy), and if we can show that, for some state
|ψ〉AB , 〈ψ|AB ZA(c · θ) ⊗ ZB(c · θ) |ψ〉AB = 1 and 〈ψ|AB XA(c̄ · θ̄) ⊗ XB(c̄ ·
θ̄) |ψ〉AB = 1 with high probability over uniformly chosen c, θ (in the previous
paragraph we argued that these relations hold when |ψ〉AB is the joint state of
registers A,M,P at the start of the prove phase of Protocol 13 in the purified
Scenario 12, with A = A and B = MP), then there is a local isometry of the
form ΦA ⊗ ΦB which, applied to |ψ〉AB , transforms |ψ〉AB (approximately) into
shared EPR pairs between A and B. In our case, this means that we can recover
the shared entanglement which initially existed between registers A and PM due
to the EPR pairs which F ′

W created and shared with the prover. In our case, it
is also true that ΦA is the identity map. We show in the full version of this proof
that this conclusion about the purified Scenario 12 implies that we can recover
the money state up to some error in the real Scenario 12 by applying ΦB to the
registers P and M, and also that the extractor can apply ΦB efficiently using
black-box access to the prover. (This step uses the fact that the extractor can
execute the prover’s unitary coherently on a message register which has been
initialized in a quantum superposition.)

5.2 PoQK for subspace money states

Our second example of a proof of quantum knowledge protocol is a verification
protocol for a modification of Aaronson and Christiano’s subspace states [AC12].
Aaronson and Christiano present a quantum money scheme in which a λ-qubit
money state, with λ ∈ N a security parameter, is specified by a (secret) (λ/2)-
dimensional subspace A ⊆ Zλ

2 , and defined as |A〉 = 1√
|A|

"
x∈A |x〉. In the nota-

tion of Definition 8, valid bills in this scheme are quadruples (id, public, secret, |$〉id)
such that id is an arbitrary string, public is empty15, secret = Z = {z1, . . . , zλ/2}
13 Formally, we mean that ZB(c · θ) and XB(c̄ · θ̄) both commute with the measure-

ment that produces β when F ′
W ’s choice of basis string is θ and when the verifier’s

choice of challenge is c, and that performing the measurement which produces β
and computing ⊕i:ci=θi=0βi (resp. ⊕i:ci=θi=1βi) always gives the same outcome as
measuring ZB(c · θ) (resp. XB(c̄ · θ̄)).

14 The reader should feel free to check that this holds given the previous paragraph.
15 What we describe here is actually a private-key version of the Aaronson-Christiano

scheme, equipped with a verification procedure which is similar to a verification pro-

Classical proofs of quantum knowledge 23

is a basis for a (λ/2)-dimensional subspace A of Zλ
2 , and |$〉id = |A〉. One

possible (quantum-verifier) verification procedure Ver(x, public, secret, ρW) for
these bills parses secret = Z and then performs the projective measurement
H⊗λPA⊥H⊗λPA on ρW (where PA is a projection onto all standard basis strings
in A, i.e. PA =

"
x∈A |x〉〈x|, and PA⊥ is a projection onto all standard basis

strings in A⊥), and accepts if and only if the outcome is 1. The scheme (when
equipped with this verification procedure) has completeness parameter 1, and
it was shown in [AC12] that its cloning parameter is µAC(λ) ≤ cλ for some
constant c < 1. 16

As we mentioned in the introduction, we do not know if it is possible to devise
a natural proof of quantum knowledge for the Aaronson-Christiano subspace
states as they have thus far been described. Nonetheless, we are able to give
a proof of knowledge for a version of the subspace scheme in which a (secret)
quantum one-time pad has been applied to every subspace state.

Notation. Before we define the associated AaP scenario, we introduce some
notation:

– Let |$〉v,θ be a Wiesner money state representing the string v encoded in
bases θ, as in (2).

– Let {si : i ∈ {1, . . . ,λ}} = {100...0, 010...0, 001...0, . . . , 000...1} be the stan-
dard basis for Zλ

2 .
– Let Z = {zi : i ∈ {1, . . . ,λ}} be a basis for Zλ

2 .
– Let W be the unitary on (C2)⊗λ defined as follows:

W : W |x〉 = W |x1s1 + · · ·+ xλsλ〉
= |x1z1 + · · ·+ xλzλ〉 . (3)

– Let Lθ for a string θ ∈ {0, 1}λ be the subspace of Zλ
2 whose elements are

always 0 in the positions where θi = 0, and can be either 0 or 1 in the
positions where θi = 1.

– Let X(a) for some vector a = (a1, . . . , aλ) ∈ Zλ
2 denote the tensor product of

λ single-qubit gates which is Pauli X in those positions i where ai = 1, and
I otherwise. Define Z(b) similarly. Let XZ(d), for a basis Z = {zj}, denote
the operator '

j

#
X(zj)

$dj
,

where zj denotes a particular vector from the basis set Z, and dj denotes
the jth bit of d. Define ZZ(e) similarly.

cedure used in [BDS16]. Aaronson and Christiano originally proposed this subspace
scheme with the idea of making progress towards public-key quantum money. As
such, in their original scheme, public is not empty.

16 In fact Aaronson and Christiano show the stronger result that this bound holds even
if the adversary is given black-box access to a pair of measurement operators that
respectively implement projections on A and A⊥.

24 Thomas Vidick and Tina Zhang

– Let

|$〉v,θ,Z ≡ 1)
|Lθ|

*

λ∈Lθ

XZ(d)ZZ(e) |λ1z1 + · · ·+ λnzn〉 , (4)

with di = vi for i such that θi = 0 (and di = 0 for all other i), and ei = vi for
i such that θi = 1 (and ei = 0 for all other i). Note that the distribution of
|$〉v,θ,Z over uniform v, θ,Z is identical (ignoring global phase) to that of a
uniformly random subspace state with a uniformly random Pauli one-time-
pad applied to it, because the coordinates of d and e which we have forced
to be zero (instead of uniformly random) would only add a global phase to
the state.

Scenario 14 We instantiate the generic AaP scenario for quantum money de-
scribed in Section 3.5 as follows:

– Setup functionality FAC(1
λ):

• initAC initializes a random oracle H taking strings of length 2λ+λ2 to
strings of length 2λ+ λ2.17 In addition, it initializes an empty database
BAC that is destined to contain a record of all quantum money bills in
circulation.

• OFW
(I, getId): generates v ∈ {0, 1}λ and θ ∈ {0, 1}λ such that |θ|H = n

2
uniformly at random and selects Z = {zi : i ∈ {1, . . . ,λ}} a uniformly
random basis for Zλ

2 . Sets id = H−1((v, θ,Z)), 18 secret = (v, θ,Z) and
|$〉id = |$〉v,θ,Z defined in (4). Adds (id, public, secret, |$〉id) to BAC . Re-
turns id.

• OFAC
(·, public, id), OFAC

(I, getMoney, id), and OFAC
(V, secret, id): as

described in Section 3.5.
– Agreement relation COFAC

W (1λ, id): The agreement relation is the same as it
is in Section 3.5.

– Proof relation ROFW

AC (1λ, x, ρW): The proof relation firstly queries OFW
(V, secret, x)

in order to get a tuple (v, θ,Z). (If OF (V, secret, x) returns ⊥, then R re-
jects.) Then it applies Z(e)X(d) to its quantum input ρW , where d and
e are defined in terms of (v, θ) the same way that they are below equa-
tion (4). Following that, it defines A to be the subspace generated by the
vectors zi ∈ Z such that θi = 1, and then it follows the subspace money ver-
ification procedure: it performs the projective measurement H⊗λPA⊥H⊗λPA

on Z(e)X(d)ρWX(d)Z(e) (where PA is a projection onto all standard ba-
sis strings in A, i.e. PA =

"
x∈A |x〉〈x|, and PA⊥ is a projection onto all

standard basis strings in A⊥), and accepts if and only if the outcome is 1.

Protocol 15 We define a proof of knowledge protocol KAC for the scenario
(FAC , CAC ,RAC). The agreement phase is identical to that in Protocol 13, except
that now id has length 2λ+ λ2. The second phase is similar but not identical, as
the verifier’s challenge now consists of a single bit:

17 Formally the oracle is implemented in the standard way, recalled in Section 2.3.
18 We use H−1 and not H here because we specified in Section 3.5 that H maps ids to

(public, secret) pairs.

Classical proofs of quantum knowledge 25

1. V2 queries OFAC
(V, secret, id). If it obtains ⊥, V2 aborts. Otherwise, let

$ = (v, θ,Z) be the classical description obtained.
2. V2 sends a uniformly random bit c ∈ {0, 1} to the prover.
3. If c = 0 the prover P2 measures the state ρstP it received from P1 in the

standard basis, obtaining a λ-bit string of outcomes m ∈ {0, 1}λ, and sends
m to the verifier. If c = 1 then P2 measures in the Hadamard basis and
likewise sends the outcomes m to V2.

4. If c = 0 the verifier V2 checks that m+Wd is in the subspace A spanned by
{zi : θi = 1}, where Z = {z1, . . . , zλ}. If c = 1 then V2 checks that m+We
is in A⊥.

Finally, the class of input generation algorithms IAC used for completeness is
the same as the class IW in Protocol 13.

Lemma 2. There exists a constant κ < 1 such that Protocol KAC (Protocol 15)
is secure with completeness 1, up to knowledge error κ, and with extraction
distance δ = O(µ1/4), where µ = 1− p and p the prover’s success probability, for
the subspace AaP scenario (FAC , CAC ,RAC) (Scenario 14).

Proof. The proof is similar to that of Lemma 1. Due to space constraints, we
refer the reader to the full version [VZ21] for the proof.

6 Arguments of Quantum Knowledge for QMA relations

The main result of this section is Theorem 1, which gives a classical-verifier
protocol to verify any QMA relation (a natural quantum analogue of an NP
relation; we recall the definition in Section 6.1 below). Since this protocol is only
sound against QPT provers, we refer to it as a ‘classical argument of quantum
knowledge’. We note that, for general QMA relations, the completeness prop-
erty from Definition 5 requires the honest prover to hold multiple copies of the
QMA witness in order to succeed with high probability. It is still possible for
completeness to hold with a single witness if one assumes that the QMA relation
takes a specific form; see the statement of Theorem 1 below.

Our construction is based on the classical verification protocol for QMA
introduced in [Mah18b], which we review in Section 6.2. Before doing so we
introduce the Agree-and-Prove scenario.

6.1 Agree-and-Prove scenario for QMA relations

We first recall the quantum extension of an NP relationR, following [CVZ19,BG19].

Definition 16 (QMA relation). A QMA relation is specified by a triple
(Q,α,β) where α,β : N → [0, 1] satisfy β(n) ≤ α(n) for all n ∈ N and
Q = {Qn}n∈N is a uniformly generated family of quantum circuits such that
for every n, Qn takes as input a string x ∈ {0, 1}n and a quantum state |ψ〉
on p(n) qubits (i.e. Qn takes n + p(n) input qubits for some polynomial p that
is implicitly specified by Q, and is assumed to immediately measure its first n
input qubits in the computational basis) and returns a single bit.

26 Thomas Vidick and Tina Zhang

To a QMA relation (Q,α,β) we associate two sets

RQ,α =
+

n∈N

,
(x,σ) ∈ {0, 1}n ×D(Cp(n))

-- Pr(Qn(x,σ) = 1) ≥ α
.

and

NQ,β =
+

n∈N

,
x ∈ {0, 1}n

-- ∀σ ∈ D(Cp(n)) , Pr(Qn(x,σ) = 1) < β
.
.

We say that a (promise) language L = (Lyes, Lno) is specified by the QMA
relation (Q,α,β) if

Lyes ⊆
,
x ∈ {0, 1}∗

-- ∃σ ∈ D(Cp(n)) , (x,σ) ∈ RQ,α

.
, (5)

and Lno ⊆ NQ,β . Note that, whenever α−β > 1/ poly(n), any language L that is
specified by (Q,α,β) lies in QMA. Conversely, any language in QMA is specified
by some QMA relation in a straightforward (non-unique) way.

The local Hamiltonian problem In the following, we make use of Kitaev’s circuit-
to-Hamiltonian construction [KSVV02,KR03], which associates with any promise
language L = (Lyes, Lno) ∈ QMA and x ∈ Lyes ∪ Lno an instance of the local
Hamiltonian problem. An instance of the local Hamiltonian problem is specified
by a local Hamiltonian operator H and two real numbers α > β. The instance
is a ‘YES instance’ if H has smallest eigenvalue at most α, and a ‘NO instance’
if it is at least β.

Agree-and-Prove scenario. Fix a QMA relation (Q,α,β). We associate an AaP
scenario to Q as follows.

– Setup functionality FQ(1
λ). We consider a “trivial” setup, i.e. the initializa-

tion procedure does nothing and there is no associated oracle OFQ
.

– Agreement relation CQ(1λ, x): returns 1 for any λ and x.19

– Proof relation RQ(1
λ, x, ρ): executes the verification circuit Q|x| on the pair

(x, ρ) and returns the outcome.

We end by presenting some assumptions on a QMA relation under which our
results will hold. Let (Q,α,β) be a QMA relation. We require that the relation
satisfies the following properties:

(Q.1) The completeness parameter α is negligibly close to 1, and the soundness
parameter β is bounded away from 1 by an inverse polynomial.

19 The agreement relation does not even require that x ∈ RQ,α ∪ NQ,β , as in general
this cannot be efficiently verified.

Classical proofs of quantum knowledge 27

(Q.2) For any x ∈ {0, 1}n there is a local Hamiltonian H = Hx that is efficiently
constructible from x and satisfies the following. First, we assume that H is
expressed as a linear combination of tensor products of Pauli operators with
real coefficients chosen such that − Id ≤ H ≤ Id. Second, whenever there is σ
such that (x,σ) ∈ RQ,α, then Tr(Hσ) is negligibly close to −1 and moreover
any σ such that Tr(Hσ) ≤ −1+δ satisfies Pr(Q|x|(x,σ) = 1) ≥ 1−r(|x|)q(δ)
for some polynomials q, r depending on the relation only. Third, whenever
x ∈ NQ,β then the smallest eigenvalue of H is larger than −1 + 1/s(|x|),
where s is another polynomial depending on the relation only.

The first of these assumptions is benign and can be made without loss of gen-
erality; the second assumption is a little more restrictive. For a fuller discussion
of these assumptions, we refer the reader to the full version [VZ21].

6.2 The protocol

In the following subsection we recall the high-level structure of the verification
protocol from [Mah18b], on which our AaP protocol for the scenario given in
Section 6.1 will be based.

The verification protocol from [Mah18b] In the protocol from [Mah18b],
which we will refer to as the verification protocol, the input to the verifier is
an n-qubit Hamiltonian H that is expressed as a linear combination of tensor
products of σX and σZ Pauli operators. The input to the prover is a ground
state of H. Both parties also receive a security parameter λ. At a high level, the
verification protocol has the following structure:

1. The verifier selects a basis string h ∈ {0, 1}n according to a distribution that
depends on H. The verifier then randomly samples a pair of keys, (pk, sk),
consisting of a public key pk and secret key sk. (The distribution according
to which (pk, sk) is sampled depends on h.) The choice of keys specifies an
integer w of size poly(n,λ). The verifier sends pk to the prover.

2. The prover returns an n-tuple of commitment strings y = (y1, . . . , yn), where
each yi lies in some alphabet Y.

3. The verifier selects a challenge bit c ∈ {0, 1} and sends c to the prover.
4. If c = 0 (“test round”), the prover returns a string b ∈ {0, 1}n and x1, . . . , xn ∈

{0, 1}w. If c = 1 (“Hadamard round”), the prover returns a string b ∈ {0, 1}n
and d1, . . . , dn ∈ {0, 1}w.

5. In case c = 0 the verifier uses pk, y, b and x1, . . . , xn to make a decision to
accept or reject. (In a test round the verifier never checks any properties of
the prover’s state; it only checks that the prover is, loosely speaking, doing
the correct operations.) In case c = 1 the verifier uses sk to decode y, b
and d1, . . . , dn into decoded measurement outcomes (m1, . . . ,mn) ∈ {0, 1}n.
(For the case of a honest prover, the decoded outcomes m correspond to the
outcomes of measuring a ground state of H in the bases indicated by h, with
hi = 0 indicating that the ith qubit should be measured in the computational

28 Thomas Vidick and Tina Zhang

basis and hi = 1 that the ith qubit should be measured in the Hadamard
basis. The prover remains ignorant throughout the entire protocol of the
verifier’s choice of h.)

6. In case c = 1 the verifier makes a decision based on the decoded measurement
outcomes and the instance x, as described in [Mah18c, Protocol 8.1].

To model the verifier and prover in the protocol as ITMs, in accordance with
the formalism in Definition 6, we introduce registers associated with each party
and the messages that they send. Let K and C denote registers that contain the
verifier’s first and second messages respectively, i.e. the key pk and the challenge
bit c. Let T denote the verifier’s private space. Let Y denote the register measured
by the prover to obtain the prover’s first message y, and M the register measured
to obtain the prover’s second message (b, x1, . . . , xn) or (b, d1, . . . , dn), depending
on c = 0 or c = 1 respectively. Let S denote the prover’s private space.

The natural description of the prover as an ITM consists of (i) its initial state
σ ∈ D(HYMS), (ii) a unitary V0 acting on KYMS, and (iii) two unitaries V and
V ′ acting on MS, where V is the action of the prover on challenge c = 0 and V ′

its action on challenge c = 1. In either case the register M is measured in the
computational basis to obtain the prover’s answer.20

For convenience we introduce a slightly different representation of the prover,
that matches the presentation from [Mah18b] and which can be straightforwardly
simulated given black-box access to the natural representation described in the
previous paragraph. First, we replace V0 by the unitary U0 = V V0. Note that this
is well-defined and does not change the prover’s first message, since V does not
act on Y. Second, we define U = H⊗(n+nw)V ′V †, where the Hadamard gates act
on the (n+ nw) qubits in register M. It is then immediate that given a natural
representation of the prover as three unitaries (V0, V, V

′) the pair of unitaries
(U0, U) provides a different representation of the same prover, who now behaves
as follows:

1. Upon reception of pk, the prover applies U0 to its initial state (to which |pk〉
has been appended), measures the first n log |Y| qubits in the computational
basis and returns the outcome;

2. Upon reception of c = 0, the prover directly measures the first (remaining)
n+ nw qubits in the computational basis and returns the outcome;

3. Upon reception of c = 1, the prover applies the unitary U , measures the first
(remaining) n+ nw qubits in the Hadamard basis and returns the outcome.

In both cases c = 0 and c = 1 we denote the first n qubits measured by the prover
(in step 2 or in step 3, respectively), whose associated measurement outcomes
are denoted by b in the protocol, the committed qubits.

20 This description slightly departs from the ‘canonical’ formalism introduced in Sec-
tion 2.2 by using different symbols for the prover’s unitaries associated with different
rounds as well as different challenges. It is not hard to find an equivalent description
that uses the language from Section 2.2. In this case, the four registers KYCM would
all be considered network registers, and are thus accessible to the extractor.

Classical proofs of quantum knowledge 29

The Agree-and-Prove protocol In this section we define a protocol KQ for
the AaP scenario (FQ, CQ,RQ) associated to a QMA relation (Q,α,β) as in
Section 6.1. Recall that an Agree-and-Prove protocol consists of two phases, an
“agree” phase and a “prove” phase. The agree phase in protocol KQ is simple:

– The prover P1 takes as input 1λ and a CQ state ρAUXP
. It interprets the

classical part of ρ as a string z ∈ {0, 1}n and the quantum part as ℓ witnesses
σ1, . . . ,σℓ each of the same number of qubits. (We assume that the integers
n and ℓ are both encoded in a canonical way in the state ρAUXP

.) It sends
z to the verifier and outputs the statement xp = z and the quantum state
ρstP = (σ1, . . . ,σℓ) (which may in general be entangled).

– The verifier V1 takes as input 1λ and a classical auxiliary input ρAUXv . It
parses ρAUXv as the specification (in binary) of an input length n followed
by a string x ∈ {0, 1}n. It receives z from P1. If z ∕= x it aborts. Otherwise,
it produces the statement xv = x.

For the proof phase V2 and P2 behave exactly as the verifier and prover do in
the verification protocol described in Section 6.2, first defining the Hamiltonian
Hv and Hp from their respective statements xv and xp according to assump-
tion (Q.2). Note that Hv (resp. Hp) acts on poly(n) qubits, with n = |xv| (resp.
n = |xp|). Of course, when all parties are honest, xv = xp.

To complete the description of the protocol we define a class of of input-
generation algorithms under which completeness holds. We consider only input
generation algorithms that generate positive instances of the language, accom-
panied with ℓ copies of a valid proof, where ℓ ≥ 1 is a parameter. That is, for

any ℓ ≥ 1, I(ℓ)
Q contains any input generation algorithm I that returns a CQ

state of the form
*

x∈{0,1}∗

px ||x|, x〉〈|x|, x|AUXV
⊗
#
|x〉〈x|⊗ σ⊗ℓ

x

$
AUXP

, 21 (6)

where (px) is any distribution over positive instances for the QMA relation, i.e.
the set /

x : ∃σ, (x,σ) ∈ RQ,α

0
,

and moreover for each x, σx is such that (x,σx) ∈ RQ,α.

6.3 Arguments of Quantum Knowledge for QMA relations

We state the main result of this section.

Theorem 1. Let (Q,α,β) be a QMA relation that satisfies properties (Q.1)
and (Q.2) described in Section 6.1. There exists a polynomially bounded ℓ = ℓ(n)
such that the following holds. Under the Learning with Errors assumption the
protocol presented in Section 6.2 is secure with completeness c (for the class of

input generation algorithms I(ℓ)
Q), up to knowledge error κ and with extraction

21 For clarity we omit explicitly writing out |x| in both registers.

30 Thomas Vidick and Tina Zhang

distance δ for the Agree-and-Prove scenario (FQ, CQ,RQ), where: c is negligibly
close to 1; κ is bounded away from 1 by an inverse polynomial; δ = poly(1 −
p) poly(n) (for any prover success probability p > κ).

Proof. Due to space constraints, we refer the reader to the full version [VZ21]
for the proof.

6.4 Sequential amplification

Due to space constraints, we refer the reader to the full version [VZ21] for a
treatment of sequential amplification of the [Mah18c] protocol.

References

AC12. Scott Aaronson and Paul Christiano. Quantum money from hidden sub-
spaces. In Proceedings of the forty-fourth annual ACM Symposium on The-
ory of Computing, 2012. 1, 4.2, 5.2

AFG+12. Scott Aaronson, Edward Farhi, David Gosset, Avinatan Hassidim, Jonathan
Kelner, and Andrew Lutomirski. Quantum money. Commun. ACM,
55(8):84–92, August 2012. 1

BCC+20. Christian Badertscher, Alexandru Cojocaru, Léo Colisson, Elham Kashefi,
Dominik Leichtle, Atul Mantri, and Petros Wallden. Security limita-
tions of classical-client delegated quantum computing. arXiv preprint
arXiv:2007.01668, 2020. 1

BDS16. Shalev Ben-David and Or Sattath. Quantum tokens for digital signatures.
arXiv preprint arXiv:1609.09047, 2016. 1, 15

BG92. Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In
Annual International Cryptology Conference, pages 390–420. Springer, 1992.
1

BG19. Anne Broadbent and Alex B Grilo. Zero-knowledge for QMA from locally
simulatable proofs. arXiv preprint arXiv:1911.07782, 2019. 1, 6.1

BJM19. Christian Badertscher, Daniel Jost, and Ueli Maurer. Agree-and-prove: Gen-
eralized proofs of knowledge and applications. IACR Cryptol. ePrint Arch.,
2019:662, 2019. 1, 3, 3, 4, 5

CL06. Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In
Cynthia Dwork, editor, Advances in Cryptology - CRYPTO 2006, pages 78–
96, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. 1

CVZ19. Andrea Coladangelo, Thomas Vidick, and Tina Zhang. Non-interactive
zero-knowledge arguments for QMA, with preprocessing. arXiv preprint
arXiv:1911.07546, 2019. 1, 2.2, 6.1

FFS88. Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity.
Journal of cryptology, 1(2):77–94, 1988. 1

GMR89. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on Computing,
18(1):186–208, 1989. 1

GV19. Alexandru Gheorghiu and Thomas Vidick. Computationally-secure and
composable remote state preparation. In 2019 IEEE 60th Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 1024–1033. IEEE,
2019. 1

Classical proofs of quantum knowledge 31

HHJ+17. Jeongwan Haah, Aram W Harrow, Zhengfeng Ji, Xiaodi Wu, and Nengkun
Yu. Sample-optimal tomography of quantum states. IEEE Transactions on
Information Theory, 63(9):5628–5641, 2017. 1

KR03. Julia Kempe and Oded Regev. 3-local Hamiltonian is QMA-complete. Quan-
tum Information and Computation, 3(3):258–264, 2003. 6.1

KSVV02. Alexei Yu Kitaev, Alexander Shen, Mikhail N Vyalyi, and Mikhail N Vyalyi.
Classical and quantum computation. Number 47. American Mathematical
Soc., 2002. 6.1

Mah18a. Urmila Mahadev. Classical homomorphic encryption for quantum circuits.
In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pages 332–338. IEEE, 2018. 1

Mah18b. Urmila Mahadev. Classical verification of quantum computations. In Foun-
dations of Computer Science (FOCS), 2018 IEEE 59th Annual Symposium
on, pages 259–267, Oct 2018. 1, 6, 6.2, 6.2, 6.2

Mah18c. Urmila Mahadev. Classical verification of quantum computations. arXiv
preprint arXiv:1804.01082, 2018. 6, 6.4

MV20. Tony Metger and Thomas Vidick. Self-testing of a single quantum device
under computational assumptions. arXiv preprint arXiv:2001.09161, 2020.
1

MVW12. Abel Molina, Thomas Vidick, and John Watrous. Optimal counterfeiting
attacks and generalizations for Wiesner’s quantum money. In Conference on
Quantum Computation, Communication, and Cryptography. Springer, 2012.
1, 5.1

NV16. Anand Natarajan and Thomas Vidick. Robust self-testing of many-qubit
states. arXiv e-prints, page arXiv:1610.03574, Oct 2016. 1, 5.1

SJ00. Claus Schnorr and Markus Jakobsson. Security of signed ElGamal encryp-
tion. In International Conference on the Theory and Application of Cryp-
tology and Information Security, volume 1976, pages 73–89, 12 2000. 1

TW87. Martin Tompa and Heather Woll. Random self-reducibility and zero knowl-
edge interactive proofs of possession of information. In 28th Annual Sym-
posium on Foundations of Computer Science (sfcs 1987), pages 472–482.
IEEE, 1987. 1

Unr12. Dominique Unruh. Quantum proofs of knowledge. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
pages 135–152. Springer, 2012. 1, 2.2, 1

VZ20. Thomas Vidick and Tina Zhang. Classical zero-knowledge arguments for
quantum computations. Quantum, 4:266, 2020. 3

VZ21. Thomas Vidick and Tina Zhang. Classical proofs of quantum knowledge,
2021. 2.1, 2.2, 2.3, 3.2, 5, 4.1, 4.1, 4.2, 10, 4.2, 4.2, 4.2, 5.1, 5.2, 6.1, 6.3, 6.4

Wat09. John Watrous. Zero-knowledge against quantum attacks. SIAM Journal on
Computing, 39(1):25–58, 2009. 1

Wie83. Stephen Wiesner. Conjugate coding. ACM SIGACT News, 15(1):78–88,
1983. 1

Zha19. Mark Zhandry. Quantum lightning never strikes the same state twice. In
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 408–438. Springer, 2019. 1

