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Abstract. We show the following generic result: When a quantum query
algorithm in the quantum random-oracle model outputs a classical value
t that is promised to be in some tight relation with H(x) for some x, then
x can be efficiently extracted with almost certainty. The extraction is by
means of a suitable simulation of the random oracle and works online,
meaning that it is straightline, i.e., without rewinding, and on-the-fly,
i.e., during the protocol execution and (almost) without disturbing it.
The technical core of our result is a new commutator bound that bounds
the operator norm of the commutator of the unitary operator that de-
scribes the evolution of the compressed oracle (which is used to simulate
the random oracle above) and of the measurement that extracts x.
We show two applications of our generic online extractability result. We
show tight online extractability of commit-and-open Σ-protocols in the
quantum setting, and we offer the first complete post-quantum security
proof of the textbook Fujisaki-Okamoto transformation, i.e, without ad-
justments to facilitate the proof, including concrete security bounds.

1 Introduction

Background. Extractability plays an important role in cryptography. In an
extractable protocol, an algorithm A sends messages that depend on some se-
cret s, and while the secret remains private in an honest run of the protocol, an
extractor can learn s via some form of enhanced access to A. The probably most
prominent example is that of zero-knowledge proofs (or arguments) of knowledge,
for which, by definition, there must exist an extractor that manages to extract
a witness from any successful prover. Another example are extractable commit-
ments, which have a wide range of applications. Hash-based extractable commit-
ments are extremely simple to construct and prove secure in the random-oracle
model (ROM) [22]. Indeed, when the considered hash function H is modelled as
a random oracle, the hash input x for the commitment c = H(x), where x = s‖r
? Full version available at https://eprint.iacr.org/2021/280.
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consists of the actual secret s and randomness r, can be extracted simply by
finding a query x to the random oracle that yielded c as an output.

The general notion of extractability comes in different flavors. The most
well-known example is extraction by rewinding. Here, the extractor is allowed
to run A several times, on the same private input and using different random-
ness. This is the notion usually considered in the context of proofs/arguments of
knowledge. In some contexts, extraction via rewinding access is not possible. For
example, the UC security model prohibits the simulator to rewind the adversary.
In other occasions, rewinding may be possible but not desirable due to a loss
of efficiency, which stems from having to run A multiple times. In comparison,
so-called straightline extraction works with a single ordinary run of A, with-
out rewinding. Instead, the extractor is then assumed to know some trapdoor
information, or it is given enhanced control over some part of the setting. For
instance, in the above construction of an extractable commitment, the extractor
is given “read access” to A’s random-oracle queries.

Another binary criterion is whether the extraction takes place on-the-fly, i.e.,
during the run of the protocol, or after-the-fact, i.e., at the end of the execution.
For instance, in the context of proving CCA security for an encryption scheme,
to simulate decryption queries without knowing the secret key, it is necessary to
extract the plaintext for a queried ciphertext on-the-fly; otherwise, the attacker
may abort and not produce the output for which the reduction is waiting.

The extractability of our running example of an extractable commitment in
the ROM is both, straightline and on-the-fly; we refer to this combination as
online extraction. This notion is what we are aiming for: online extractability of
(general) hash-based commitments, but now with post-quantum security.

For post-quantum security, the ROM needs to be replaced by the quantum
random-oracle model (QROM) [4] to reflect the fact that attackers can imple-
ment hash functions on a quantum computer. Here, adversaries have quantum
superposition access to the random oracle. Many ROM techniques fail in the
QROM due to fundamental features of quantum information, such as the so-
called no-cloning principle. In particular, it is impossible to maintain a query
transcript (a fact sometimes referred to as the recording barrier), and so one
cannot simply “search for a query x to the random oracle”, as was exploited for
the (classical) RO-security of the extractable-commitment example.

A promising step in the right direction is the compressed-oracle technique,
recently developed by Zhandry [27]. This technique enables to maintain some
sort of a query transcript, but now in the form of a quantum state. This state
can be inspected via quantum measurements, offering the possibility to learn
some information about the interaction history of the random oracle. However,
since quantum measurements disturb the state to which they are applied, and
this disturbance is often hard to control, this inspection of the query transcript
can per-se, i.e., without additional argumentation, only be done at the end of
the execution (see the Related Work paragraph for more on this).

Our Results. Our main contribution is the following generic extractability
result in the QROM: We consider an arbitrary quantum query algorithm A in

2



the QROM, which announces during its execution some classical value t that
is supposed to be equal to f(x,H(x)) for some x. Here, f is an arbitrary fixed
function, subject to that it must tie t sufficiently to x and H(x), e.g., there
must not be too many y’s with f(x, y) = t; a canonical example is the function
f(x, y) = y so that t is supposed to be t = H(x). In general, it is helpful to think
of t = f(x,H(x)) as a commitment to x. We then show that x can be efficiently
extracted with almost certainty. The extraction works online and is by means of
a simulator S that simulates the quantum random oracle, but which additionally
offers an extraction interface that produces a guess x̂ for x when queried with t.
The simulation is statistically indistiguishable from the real quantum random
oracle, and x̂ is such that whenever A outputs x with f(x,H(x)) = t at some
later point, x̂ = x holds except with negligible probability, while x̂ = ∅ (some
special symbol) indicates that A will not be able to output such an x.

The simulator S simulates the random oracle using Zhandry’s compressed-
oracle technique, and extraction is done via a suitable measurement of the com-
pressed oracle’s internal register. The technical core of our result is a new bound
for the operator norm ‖[O,M ]‖ of the commutator of O, the unitary operator
that describes the evolution of the compressed oracle, and of M , the extraction
measurement. This bound allows us to show that the extraction measurement
only negligibly disturbs the behavior of the compressed oracle, and so can indeed
be performed on-the-fly. At first glance, our technical result has some resem-
blance with Lemma 39 in [27], which also features an almost-commutativity prop-
erty, and, indeed, with Lemma 3 we use (a reformulated version of) Lemma 39
in [27] as a first step in our proof. However, the challenging part of the main proof
consists of lifting the almost-commutativity property of the “local” projectorsΠx

from Lemma 3 to the “global” measurement M .
We emphasize that even though the existence of the simulator with its extrac-

tion interface is proven using the compressed-oracle technique, our presentation
is in terms of a black-box simulator S with certain interfaces and with certain
promises on its behavior, abstracting away all the (mainly internal) quantum
workings. This makes our generic result applicable (e.g. for the applications dis-
cussed below) without the need to understand the underlying quantum aspects.

A first concrete application of our generic result is in the context of so-
called commit-and-open Σ-protocols. These are (typically honest-verifier zero-
knowledge) interactive proofs of a special form, where the prover first announces
a list of commitments and is then asked to open a subset of them, chosen at
random by the verifier. We show that, when implementing the commitments
with a typical hash-based commitment scheme (like committing to s by H(s‖r)
with a random r), such Σ-protocols allow for online extraction of a witness in
the QROM, with a smaller security loss than witness extraction via rewinding.

Equipped with our extractable RO-simulator S, the idea for the above online
extraction is very simple: we simulate the random oracle using S and use its
extraction interface to extract the prover’s commitments from the first message
of the Σ-protocol. As we work out in detail, this procedure gives rise to an
online witness extractor that has a polynomial additive overhead in running
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time compared to the considered prover, and that outputs a valid witness with
a probability that is linear in the difference of the prover’s success probability
and the trivial cheating probability, up to an additive error. Using rewinding
techniques, on the other hand, incurs a square-root loss in success probability
classically and a cube-root loss quantumly for special-sound Σ-protocols, and
typically an even worse loss in case of weaker soundness guarantees, like a k-th-
root loss classically and a (2k+1)-th-root loss quantumly for k-sound protocols.

Our second application is a security reduction for the Fujisaki-Okamoto (FO)
transformation. We offer the first complete post-quantum security proof of the
textbook FO transformation [13], with concrete security bounds. Most of the prior
post-quantum security proofs had to adjust the transformation to facilitate the
proof (like [16]); those security proofs either consider a FO variant that employs
an implicit-rejection routine, or have to resort to an additional “key confirmation”
hash [24] that is appended to the ciphertex, thus increasing the ciphertext size.
The unmodified FO transformation was analyzed in [27] and [18]; however, as
we explain in detail in Appendix A of the full version, the given post-quantum
security proofs are incomplete, both having the same gap.

Beyond its theoretical relevance of showing that no adjustment is neces-
sary, the security of the original unmodified FO transformation with explicit
rejection in particular ensures that the conservative variant with implicit rejec-
tion remains secure even when the decapsulation algorithm is not implemented
carefully enough and admits a side-channel attack that reveals information on
whether the submitted ciphertext is valid or not.

The core idea of our proof for the textbook FO transformation is to use
the extractability of the RO-simulator to handle the decryption queries. Indeed,
letting f(x, y) be the encryption Encpk(x; y) of the message x under the ran-
domness y, a “commitment” t = f(x,H(x)) is then the encryption of x under
the derandomized scheme, and so the extraction interface recovers x.

Related Work. The compressed-oracle technique has proven to be a powerful
tool for lifting classical ROM proofs to the QROM setting. Examples are [19,
10] for quantum query complexity lower bounds and [15] for space-time trade-
off bounds, [9] for the security of succinct arguments, [1] for quantum-access
security, and [3] for a new “double-sided” O2H lemma in the context of the FO
transformation. In these cases, the argument exploits the possibility to extract
information on the interaction history of the algorithm A and the (compressed)
oracle after-the-fact, i.e., at the very end of the run.

In addition, some tools have been developed that allow measuring (the in-
ternal state of) the compressed oracle on-the-fly, which then causes the state,
and thus the behavior of the oracle, to change. In some cases, the disturbance is
significant yet asymptotically good enough for the considered application, caus-
ing “only” a polynomial blow-up of a negligible error term, as, e.g., in [20] for
proving the security of the Fiat-Shamir transformation. In other cases [27, 11],
it is shown for some limited settings that certain measurements do not render
the simulation of the random oracle distinguishable (except for negligible advan-
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tage). The indifferentiability result in [11], for example, only uses measurements
that have an almost certain outcome.

In particular, [27] contains a security reduction for the FO transformation
that implicitly uses a measurement similar to the one we analyze in Section 3,
but without analyzing the disturbance it causes. We discuss this in more detail
in Appendix A of the full version. The same gap exists in follow-up work by Kat-
sumata, Kwiatkowski, Pintore and Prest [18], who follow the FO proof outline
from [27].

2 Preliminaries

For Sect. 3 and 4 (only), we assume some familiarity with the mathematics of
quantum information as well as with the compressed-oracle technique of [27].
Below, we summarize the concepts that will be of particular importance. For a
function or algorithm f , we write Time[f ] to denote the time complexity of (an
algorithm computing) f .

2.1 Mathematical Preliminaries

Let H be a finite-dimensional complex Hilbert space. We use the standard bra-
ket notation for the vectors in H and its dual space. We write ‖|ϕ〉‖ for the
(Euclidean) norm ‖|ϕ〉‖ =

√
〈ϕ|ϕ〉 of |ϕ〉 ∈ H. Furthermore, for an operator

A ∈ L(H), we denote by ‖A‖ its operator norm, i.e., ‖A‖ = max|ψ〉 ‖A|ψ〉‖,
where the max is over all |ψ〉 ∈ H with norm 1. We assume the reader to be
familiar with basic properties of these norms, like triangle inequality, ‖|ϕ〉〈ψ|‖ =
‖|ϕ〉‖‖|ψ〉‖, ‖A|ϕ〉‖ ≤ ‖A‖‖|ϕ〉‖, ‖AB‖ ≤ ‖A‖‖B‖, etc. Less well known may be
the inequality1

‖|ϕ〉〈ψ| − |ψ〉〈ϕ|‖ ≤ ‖|ϕ〉‖‖|ψ〉‖ . (1)

Another basic yet important property that we will exploit is the following.

Lemma 1. Let A and B be operators in L(H) with A†B = 0 and AB† = 0.
Then, ‖A+B‖ ≤ max{‖A‖, ‖B‖}.

Exploiting that ‖A⊗B‖ = ‖A‖‖B‖, the following is a direct consequence.

Corollary 1. If A =
∑
x |x〉〈x| ⊗Ax then ‖A‖ ≤ maxx ‖Ax‖.

Definition 1. For A,B ∈ L(H), the commutator is [A,B] := AB −BA.

Some obvious properties of the commutator are:

[B,A] = −[A,B] = [A,1−B] , [A⊗ 1, B ⊗ C] = [A,B]⊗ C (2)

and [AB,C] = A[B,C] + [A,C]B . (3)

1 It is immediate for normalized |φ〉 and |ψ〉 when expanding both vectors in an or-
thonormal basis containing |ϕ〉 and |ψ〉−〈ϕ|ψ〉|ϕ〉√

1−|〈ϕ|ψ〉|2
, and the general case then follows

by homogeneity of the norms.

5



Combining the right equality in (2) with basic properties of the operator norm,
if ‖C‖ ≤ 1, e.g., if C is a unitary of a projection, we have

‖[A⊗ 1, B ⊗ C]‖ = ‖[A,B]‖‖C‖ ≤ ‖[A,B]‖ . (4)

It is common in quantum information science to write AX to emphasize that
the operator A acts on register X, i.e., on a Hilbert space HX that is labeled
by the X. It is then understood that when applied to registers X and Y , say,
AX acts as A on register X and as identity 1 on register Y , i.e., AX is identified
with AX ⊗ 1Y . Property (4) would then e.g. be written as ‖[AX , BX ⊗ CY ]‖ ≤
‖[AX , BX ]‖. In this work, we will write or not write these subscripts emphasizing
the register(s) at our convenience; typically we write them when the argument
crucially depends on the registers, and we may omit them otherwise.

Another important matrix norm is the trace norm, ‖A‖1 = tr
[√
A†A

]
. For

density matrices ρ and σ, the trace distance is defined as δ(ρ, σ) = 1
2‖ρ − σ‖1.

By equation (9.110) in [21], for any norm-1 vectors |ϕ〉 and |ψ〉,

δ(|ϕ〉〈ϕ|, |ψ〉〈ψ|) ≤ ‖|ϕ〉 − |ψ〉‖ . (5)

For probability distributions p and q, we write δ(p, q) for the total variational
distance; this is justified as ‖ρ0−ρ1‖1 = δ(p0, q1) for ρi =

∑
x pi(x)|x〉〈x|, i = 0, 1.

In case of a hybrid classical-quantum state, consisting of a randomized classical
value x that follows a distribution p and of a quantum registerW with a state ρxW
that depends on x, we write [x,W ] =

∑
x p(x)|x〉〈x|⊗ρxW .2 When the distribution

p and the density operators ρxW are implicitly given by a game (or experiment)
G then we may write [x,W ]G , in particular when considering and comparing
different such games. For instance, we write δ

(
[x,W ]G , [x,W ]G′

)
for the trace

distance of the respective density matrices in game G and in game G′.

2.2 The (Compressed) Random Oracle

The (quantum) random-oracle model. In the random-oracle model, a cryp-
tographic hash functionH : X → Y is treated as an oracle RO that the adversary
needs to query on x ∈ X to learn H(x). The random oracle answers these queries
by means of a uniformly random function H : X → Y. For concreteness, we re-
strict here to Y = {0, 1}n; on the other hand, we do not further specify the
domain X except that we assume it to have an efficiently computable order, so
one may well think of X as X = {1, . . . ,M} for some positive M ∈ Z or as bit
strings of bounded size. We then often write RO(x) instead of H(x) to empha-
size that H(x) is obtained by querying the random oracle and/or to emphasize
the randomized nature of H. In the quantum random oracle model (QROM), a
quantum algorithm A may make superposition queries to RO, meaning that the
oracle acts as unitary |x〉|y〉 7→ |x〉|y ⊕H(x)〉. The QROM still admits classical
queries, which are queries with the query register set to |x〉|0〉 for some x, and
the second register is subsequently measured to obtain the classical output y.
2 In this equality and at other occasions, we use the same letter, here x, for the
considered random variable as well as for a particular value.
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The compressed oracle. We recall here (some version of) the compressed
oracle, as introduced in [27], which offers a powerful tool for QROM proofs. For
this purpose, we consider the multi-register D = (Dx)x∈X , where the state space
of Dx is given by HDx = C[{0, 1}n ∪ {⊥}], meaning that it is spanned by an
orthonormal set of vectors |y〉 labelled by y ∈ {0, 1}n ∪ {⊥}. The initial state is
set to be |⊥〉D :=

⊗
x |⊥〉Dx . Consider the unitary F defined by

F |⊥〉 = |φ0〉 , F |φ0〉 = |⊥〉 and F |φy〉 = |φy〉 ∀ y ∈ {0, 1}n \ {0n} ,

where |φy〉 := H|y〉 with H the Hadamard transform on C[{0, 1}n] = (C2)⊗n.
Exploiting the relation |y〉 = 2−n/2

∑
η(−1)η·y|φη〉, we see that

F |y〉 = |y〉+ 2−n/2 (|⊥〉−|φ0〉) . (6)

When the oracle is queried, a unitary OXYD, acting on the query registers X
and Y and the oracle register D, is applied, given by

OXYD =
∑
x

|x〉〈x|X ⊗OxY Dx with OxY Dx = FDxCNOTY DxFDx , (7)

where CNOT|y〉|yx〉= |y⊕yx〉|yx〉 for y, yx ∈ {0, 1}n, and CNOT|y〉|⊥〉 = |y〉|⊥〉.
As long as no other operations are applied to the state of D, the compressed

oracle exactly simulates the quantum random oracle. Also, the support of the
state of Dx then remains orthogonal to |φ0〉 for all x. However, these properties
may change when, e.g., measurements are performed on D. The oracle may then
behave differently than the quantum random oracle, and the state of D may have
a non-trivial overlap with |φ0〉. Note that, by the convention on CNOT to act
trivially for control registers in state |⊥〉, it holds that OxY Dx |y〉|φ0〉 = |y〉|φ0〉.

We briefly discuss the behavior of the compressed oracle under a classical
query, i.e., a query with the XY -register in state |x〉|0〉 for some x, and where
the Y -register is then measured after the application of OXYD. If Dx is in state ρ
then a classical query on x will give response h with probability tr(|h〉〈h|FρF )—
unless ρ has nontrivial overlap with |φ0〉 and h = 0, in which a classical query
on x will give response 0 with probability tr(|0〉〈0|FρF ) + tr(|⊥〉〈⊥|FρF ). The
latter is an artifact of CNOT defined to act trivially on |y〉|⊥〉, which has the
effect that |φ0〉 is treated like F |0〉. We note that, for any h ∈ Y and ρ = |h〉〈h|,

tr(|h〉〈h|FρF ) = |〈h|F |h〉|2 =
∣∣∣〈h|(|h〉+ 2−n/2(|⊥〉 − |φ0〉)

)∣∣∣2
=
∣∣∣1− 2−n/2〈h|φ0〉

∣∣∣2 =
∣∣∣1− 2−n

∣∣∣2 ≥ 1− 2 · 2−n . (8)

Vice-versa, after a classical query on x with response h, the state of Dx is F |h〉—
unless, the state of Dx prior to the query had a nontrivial overlap with |φ0〉 and
h = 0, then the state after the query is supported by F |0〉 and F |⊥〉 = |φ0〉.

Efficient representation of the compressed oracle. Following [27], one can
make the (above variant of the) compressed oracle efficient. Indeed, by applying
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the standard classical sparse encoding to quantum states with the right choice
of basis, one can efficiently maintain the state D, compute the unitary OXYD,
and extract information from D. More details are given in Appendix B of the
full version. For simplicity, we mostly use the inefficient variant in this paper.

3 Main Technical Result: A Commutator Bound

3.1 Setup and the Technical Statement

Throughout this section, we consider an arbitrary but fixed relation R ⊂ X ×
{0, 1}n. A crucial parameter of the relation R is the number of y’s that fulfill
the relation together with x, maximized over all possible x ∈ X :

ΓR := max
x∈X

∣∣{y ∈ {0, 1}n∣∣(x, y) ∈ R
}∣∣ . (9)

Given the relation R, we consider the following projectors:

Πx
Dx :=

∑
y s.t.

(x,y)∈R

|y〉〈y|Dx and Π∅D := 1D −
∑
x∈X

Πx
Dx =

⊗
x∈X

Π̄x
Dx (10)

with Π̄x
Dx

:= 1Dx −Πx
Dx

. Informally, Πx
Dx

checks whether register Dx contains
a value y 6= ⊥ such that (x, y) ∈ R. We then define the measurementM =MR

to be given by the projectors

Σx :=
⊗
x′<x

Π̄x′

Dx′
⊗Πx

Dx and Σ∅ := 1−
∑
x′

Σx′ =
⊗
x′

Π̄x′

Dx′
= Π∅ (11)

where x ranges over all x ∈ X . Informally, a measurement outcome x means that
register Dx is the first that contains a value y such that (x, y) ∈ R; outcome ∅
means that no register contains such a value. For technical reasons, we consider
the purified measurement MDP = MR

DP ∈ L(HD ⊗HR) given by the unitary3

MDP :=
∑

x∈X∪{∅}

Σx ⊗ Xx : |ϕ〉D|w〉P 7→
∑

x∈X∪{∅}

Σx|ϕ〉D|w + x〉P . (12)

The following main technical result is a bound on the norm of [OXYD,MDP ].

Theorem 1. For any relation R ⊂ X × {0, 1}n and ΓR as defined in Eq. (9),
the purified measurement MDP defined in Eq. (12) almost commutes with the
oracle unitary OXYD:∥∥ [OXYD,MDP ]

∥∥ ≤ 8 · 2−n/2
√

2ΓR .

3 Both in Xx and in w+ x we understand x ∈ X ∪{∅} to be encoded as an element in
Z/(|X |+1)Z, dim(HP ) = d := |X | + 1, and X ∈ L(HP ) is the generalized Pauli of
order d that maps |w〉 to |w + 1〉.
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We note that Lemma 8 in [9] (with the subsequent discussion there) also pro-
vides a bound on a commutator involving OXYD; however, there are various
differences that make the two bounds incomparable. E.g., we consider a specific
measurement whereas Lemma 8 in [9] is for a rather general projector. See further
down for a comparison with Lemma 39 in [27].

Corollary 2. For any state vector |ψ〉 ∈ HWXYDP , with W an arbitrary addi-
tional register, |ψ′〉 := OXYDMDP |ψ〉 and |ψ′′〉 := MDPOXYD|ψ〉 satisfy

δ
(
|ψ′〉〈ψ′|, |ψ′′〉〈ψ′′|

)
≤ 8 · 2−n/2

√
2ΓR .

The same holds for mixed states ρ′ := OXYDMDP ρM
†
DPO

†
XYD and ρ′′ :=

MDPOXYDρO
†
XYDM

†
DP .

Proof. By elementary properties and applying Theorem 1, we have that∥∥|ψ′〉 − |ψ′′〉∥∥ ≤ ∥∥[OXYD,MDP ]
∥∥ ≤ 8 · 2−n/2

√
2ΓR ,

and the claim on the trace distance then follows from (5). The claim for mixed
states follows from purification. ut

3.2 The Proof

We prove the Theorem 1 by means of the following two lemmas.

Lemma 2. Let F and OxY Dx be the unitaries introduced in Sect. 2.2, and let
Πx
Dx

and Π∅D be as in (10). Set Γx :=
∣∣{y ∈ {0, 1}n∣∣(x, y) ∈ R

}∣∣. Then∥∥[FDx , Πx
Dx

]∥∥ ≤ 2−n/2
√

2Γx , as well as∥∥[OxY Dx , Πx
Dx

]∥∥ ≤ 2 · 2−n/2
√

2Γx and
∥∥[OxY Dx , Π∅D]∥∥ ≤ 2 · 2−n/2

√
2Γx .

The bound on ‖[F,Πx]‖ can be considered a compact reformulation of Lemma 39
in [27]. We state it here in this form, and (re-)prove it in Appendix C of the full
version, for convenience and completeness. The conceptually new and technically
challenging ingredient to the proof of Theorem 1 is Lemma 3 below.4

Lemma 3. The purified measurement MDP defined in Equation (12) satisfies∥∥[FDx ,MDP ]
∥∥ ≤ 3

∥∥[FDx , Π
x
D]
∥∥+

∥∥[FDx , Π
∅
D]
∥∥ and∥∥[OxY Dx ,MDP ]

∥∥ ≤ 3
∥∥[OxY Dx , Π

x
D]
∥∥+

∥∥[OxY Dx , Π
∅
D]
∥∥ .

4 The challenging aspect of Lemma 3 is that MDP is made up of an exponential
number of projectors Πx, and thus the obvious approach of using triangle inequality
leads to an exponential blow-up of the error term.
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Proof. We do the proof for the second claim. The first is proven exactly the
same way: the sole property we exploit from OxY Dx is that it acts only on the
Dx register within D, which holds for FDx as well. Let

∆̄ξ :=
⊗
ξ′<ξ

Π̄ξ′

Dξ′

be the projection that accepts if no register Dξ′ with ξ′ < ξ contains a value y′
with (ξ′, y′) ∈ R, and let ∆ξ be the complement. We then have, using that Πξ

and ∆̄ξ act on disjoint registers,

Σξ = ∆̄ξ ⊗Πξ = Πξ∆̄ξ = ∆̄ξΠξ . (13)

We also observe that, with respect to the Loewner order, ∆̄ξ′ ≥ ∆̄ξ for ξ′ < ξ.
Taking it as understood that OxY Dx acts on registers Y and Dx, we can write

[Ox,MDP ] =
∑
ξ

[Ox, Σξ]⊗ Xξ + [Ox, Σ∅]⊗ X∅ . (14)

Exploiting basic properties of the operator norm and recalling that Σ∅ = Π∅D,
we see that the norm of the last term is bounded by ‖[Ox, Σ∅]‖ = ‖[Ox, Π∅]‖.

To deal with the sum in (14), we use 1 = ∆ξ + ∆̄ξ to further decompose

[Ox, Σξ] = ∆̄ξ[Ox, Σξ]∆̄ξ+∆̄ξOx, Σξ]∆ξ+∆ξ[Ox, Σξ]∆̄ξ+∆ξ[Ox, Σξ]∆ξ . (15)

We now analyze the four different terms. For the first one, using (13) we see that

∆̄ξ[Ox,Σξ]∆̄ξ=∆̄ξ
(
OxΣξ−ΣξOx

)
∆̄ξ=∆̄ξOxΠξ∆̄ξ−∆̄ξΠξOx∆̄ξ=∆̄ξ[Ox,Πξ]∆̄ξ ,

which vanishes for ξ 6= x, since then Ox and Πξ act on different registers and
thus commute. For ξ = x, its norm is upper bounded by ‖[Ox, Πx]‖.

We now consider the second term; the third one can be treated the same way
by symmetry, and the fourth one vanishes, as will become clear immediately
from below. Using (13) and ∆̄ξ∆ξ = 0, so that ∆̄ξΣξ = 0, we have

∆̄ξ[Ox, Σξ]∆ξ = ∆̄ξ
(
OxΣξ −ΣξOx

)
∆ξ = ΣξOx∆ξ =: Nξ . (16)

Looking at (14), we want to control the norm of the sum N :=
∑
ξNξ ⊗ Xξ.

To this end, we show that Nξ and Nξ′ have orthogonal images and orthogonal
support, i.e., N†ξ′Nξ = 0 = Nξ′N

†
ξ , for all ξ 6= ξ′. We first observe that if x ≥ ξ

then Ox commutes with ∆ξ, since they act on different registers then, and thus

Nξ = ΣξOx∆ξ = Σξ∆ξOx = Πξ∆̄ξ∆ξOx = 0 ,

exploiting once more that ∆̄ξ∆ξ = 0. Therefore, we only need to consider Nξ, Nξ′
for ξ, ξ′ > x (see Fig. 1 top left), where we may assume ξ > ξ′. For the orthogo-
nality of the images, we observe that

Πξ′∆̄ξ = 0 (17)
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by definition of ∆̄ξ as a tensor product with Π̄ξ′ being one of the components.
Therefore,

(Σξ′)†Σξ = Σξ′Σξ = ∆̄ξ′Πξ′∆̄ξΠξ = 0 ,

and N†ξ′Nξ = 0 follows directly (see also Fig. 1 top right). For the orthogonality
of the supports, we recall that ∆̄ξ′ ≥ ∆̄ξ, and thus ∆ξ′ ≤ ∆ξ, from which it
follows that ∆ξ∆ξ′ = ∆ξ′ . Nξ′N

†
ξ = 0 then follows by exploiting (17) again (see

Fig. 1 bottom).

Πξ

∆ξ ∆̄ξ

Ox

Σξ

Πξ

∆ξ ∆̄ξ

Πξ′

∆̄ξ′ ∆ξ′Ox Ox†

Πξ

∆̄ξ ∆ξ

Πξ′

∆ξ′ ∆̄ξ′Ox† Ox

=

Πξ

∆̄ξ

Πξ′

∆ξ′ ∆̄ξ′Ox† Ox

Fig. 1. Operators Nξ (top left), N†ξ′Nξ (top right), and Nξ′N
†
ξ (bottom), for x < ξ′ < ξ.

These orthogonality properties for the images and supports of the Nξ imme-
diately extend to Nξ ⊗Xξ, so we have

‖N‖ ≤ max
ξ>x
‖Nξ ⊗ Xξ‖ ≤ max

ξ>x
‖Nξ‖

by Lemma 1. Recall from (16) that Nξ = ∆̄ξ[Σξ, Ox]∆ξ. Furthermore, we ex-
ploit that, by definition, Σξ is in tensor-product form and Ox acts trivially on
all components in this tensor product except for the component Π̄x, so that
[Σξ, Ox] = [Π̄x, Ox] by property (4). Thus, ‖Nξ‖ ≤ ‖[Σξ, Ox]‖ = ‖[Π̄x, Ox]‖ =
‖[Πx, Ox]‖ . Using the triangle inequality with respect to the sum versus the last
term in (14), and another triangle inequality with respect to the decomposition
(15), we obtain the claimed inequality. ut

The proof of Theorem 1 is now an easy consequence.

Proof (of Theorem 1). Since OXYD is a control unitary OXYD =
∑
x |x〉〈x| ⊗

OxY Dx , controlled by |x〉, while MDP does not act on register X, it follows that∥∥[OXYD,MDP ]
∥∥ ≤ max

x

∥∥[OxY Dx ,MDP ]
∥∥ .

The claim now follows by combining Lemma 3 with Lemma 2. ut
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3.3 A First Immediate Application

As an immediate application of the commutator bound of Theorem 1, we can
easily derive the following generic query-complexity bound for finding x with
(x,H(x)) ∈ R and ΓR as defined in Eq. (9). Applied to R = X × {0n}, where
ΓR = 1, we recover the famous lower bound for search in a random function.

Proposition 1. For any algorithm A that makes q queries to the random oracle
RO,

Pr
x←ARO

[(
x,RO(x)

)
∈ R

]
≤ 152(q + 1)2ΓR/2

n . (18)

Proof. Consider the modified algorithm A′ that runs A to obtain output x,
makes a query to obtain RO(x) and outputs (x,RO(x)). By Lemma 5 in [27],
we have that5√

Pr
x←A′H

[(x,RO(x)) ∈ R] ≤
√

Pr
x′←GR

[x′ 6= ∅ ] + 2−n/2, (19)

where GR is the following procedure/game: (1) run A′ using the compressed
oracle, and (2) apply the measurementMR to obtain x′ ∈ X ∪{∅}, which is the
same as preparing a register P , applying MDP = MR

DP , and measuring P .
In other words, writing |ψ〉WXY for the initial state of A′ and VWXY for

the unitary applied between any two queries of A′(which we may assume to be
fixed), and setting UWXYD := VWXYOXYD, ΠP := 1P − |∅〉〈∅|P and |Ψ〉 :=

|ψ〉WXY ⊗ |⊥〉⊗|X|D ⊗ |0〉P , we have, omitting register subscripts,√
Pr [x′ 6= ∅ ] =

∥∥ΠMUq+1|Ψ〉
∥∥

≤
q+1∑
i=1

∥∥ΠU i−1[M,U ]Uq+1−i|Ψ〉
∥∥+

∥∥ΠUq+1M |Ψ〉
∥∥

≤ (q + 1)
∥∥[MDP , OXYD]

∥∥+
∥∥ΠPMDP |Ψ〉

∥∥
= (q + 1)

∥∥[MDP , OXYD]
∥∥ ≤ 8 · 2−n/2(q + 1)

√
2ΓR ,

where the last equation exploits that ΠPMDP applied to |⊥〉⊗|X|D ⊗|0〉P vanishes,
and the final inequality is by Theorem 1. Observing (8

√
2 + 1)2 = 129 + 16

√
2 ≈

151.6 finishes the proof. ut

4 Extraction of Random-Oracle Based Commitments

Throughout this Sect. 4, let f : X × Y → T be an arbitrary fixed function with
Y = {0, 1}n. For a hash function H : X → Y, which will then be modelled
as a random oracle RO, we will think and sometimes speak of f(x,H(x)) as a
commitment of x (though we do not require it to be a commitment scheme in
the strict sense). Typical examples are f(x, y) = y and f(x, y) = Encpk(x; y),
where the latter is the encryption of x under public key pk with randomness y.
5 Lemma 5 in [27] applies to an algorithm A that outputs both x and what is supposed
to be its hash value; this is why we need to do this additional query.
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4.1 Informal Problem Description

Consider a query algorithm ARO in the random oracle model, which, during the
course of its run, announces some t ∈ T . This t is supposed to be t = f(x,RO(x))
for some x, and, indeed, ARO may possibly reveal x later on. Intuitively, for the
required relation between x and t to hold, we expect that ARO first has to query
RO on x and only then can output t; thus, one may hope to be able to extract
x from RO early on, i.e., at the time ARO announces t.

This is clearly true when A is restricted to classical queries, simply by check-
ing all the queries made so far. This observation was first made and utilized by
Pass [22] and only requires looking at the query transcript (it can be done in the
non-programmable ROM). As the extractor does not change the course of the
experiment, it works on-the-fly.

In the setting considered here, ARO may query the random oracle in super-
position over various choices of x, making it impossible to maintain a classical
query transcript. On the positive side, since the output t is required to be clas-
sical, ARO has to perform a measurement before announcing t, enforcing such
a superposition to collapse.6 We show here that early extraction of x is indeed
possible in this quantum setting as well.

Note that if the goal is to extract the same x as A will (potentially) output,
which is what we aim for, then we must naturally assume that it is hard for A
to find x 6= x′ that are both consistent with the same t, i.e., we must assume the
commitment to be binding. Formally, we will think of Γ (f) and Γ ′(f), defined as
follows, to be small compared to 2n. When f is fixed, we simply write Γ and Γ ′.

Definition 2. For f : X × {0, 1}n → T , let Γ (f) := maxx,t |{y | f(x, y) = t}
and Γ ′(f) := maxx6=x′,y′ |{y | f(x, y) = f(x′, y′)}| .

For the example f(x, y) = y, we have Γ (f) = 1 = Γ ′(f). For the example
f(x, y) = Encpk(x; y), they both depend on the choice of the encryption scheme
but typically are small, e.g. Γ (f) = 1 if Enc is injective as a function of the
randomness y and Γ ′(f) = 0 if there are no decryption errors.

4.2 The Extractable RO-Simulator S

Towards formalizing the above goal, we introduce a simulator S that replaces RO
and tries to extract x early on, right afterA announces t. In more detail, S acts as
a black-box oracle with two interfaces, the RO-interface S.RO providing access
to the simulated random oracle, and the extraction interface S.E providing the
functionality to extract x early on (see Fig. 3, left). In principle, both interfaces
can be accessed quantumly, i.e., in superposition over different classical inputs,
but in our applications we only use classical access to S.E. We stress that S is
per-se stateful and thus may change its behavior from query to query.

Formally, the considered simulator S is defined to work as follows. It simu-
lates the random oracle and answers queries to S.RO by means of the compressed
6 We can also think of this measurement being done by the interface that receives t.
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oracle. For the S.E interface, upon a classical input t ∈ T , S applies the mea-
surement Mt := MRt from (11) for the relation Rt := {(x, y) | f(x, y) = t} to
obtain x̂ ∈ X ∪ {∅}, which it then outputs (see Fig. 2). In case of a quantum
query to S.E, the above is performed coherently: given the query registers TP ,
the unitary

∑
t |t〉〈t|T ⊗M

Rt
DP is applied to TPD, and TP is then returned.

The extractable RO-oracle S:
Initialization: S prepares its internal register D to be in state |⊥〉D :=

⊗
x |⊥〉Dx .

S.RO-query: Upon a (quantum) RO-query, with query registers XY , S applies OXYD
to registers XYD.

S.E-query: Upon a classical extraction-query with input t, S applies Mt to D and
returns the outcome x̂.

Fig. 2. The (inefficient version of) simulator S, restricted to classical extraction queries.

As described here, the simulator S is inefficient, having to maintain an expo-
nential number of qubits; however, using the sparse representation of the internal
state D, as discussed in Appendix B of the full version, S can well be made ef-
ficient without affecting its query-behavior (see Theorem 2 for details).

The following statement captures the core properties of S. We refer to two
subsequent queries as being independent if they can in principle be performed
in either order, i.e., if the input to one query does not depend on the output
of the other. More formally, e.g., two S.RO queries are independent if they can
be captured by first preparing the two in-/output registers XY and X ′Y ′, and
then doing the two respective queries with XY and X ′Y ′. The commutativity
claim then means that the order does not matter. Furthermore, whenever we
speak of a classical query (to S.RO or to S.E), we consider the obvious classical
variant of the considered query, with a classical input and a classical response.
Finally, the almost commutativity claims are in terms of the trace distance of
the (possibly quantum) output of any algorithm interacting with S arbitrarily
and doing the two considered independent queries in one or the other order.

Theorem 2. The extractable RO-simulator S constructed above, with interfaces
S.RO and S.E, satisfies the following properties.
1. If S.E is unused, S is perfectly indistinguishable from the random oracle RO.

2.a Any two subsequent independent queries to S.RO commute. Thus, two subse-
quent classical S.RO-queries with the same input x give identical responses.

2.b Any two subsequent independent queries to S.E commute. Thus, two subse-
quent classical S.E-queries with the same input t give identical responses.

2.c Any two subsequent independent queries to S.E and S.RO ε-almost-commute
with ε = 8

√
2Γ (f)/2n.

3.a Any classical query S.RO(x) is idempotent.7

7 I.e., applying it twice has the same effect on the state of S as applying it once.
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3.b Any classical query S.E(t) is idempotent.

4.a If x̂ = S.E(t) and ĥ = S.RO(x̂) are two subsequent classical queries then

Pr[f(x̂, ĥ) 6= t ∧ x̂ 6= ∅] ≤ Pr[f(x̂, ĥ) 6= t | x̂ 6= ∅] ≤ 2 · 2−nΓ (f) (20)

4.b If h = S.RO(x) and x̂ = S.E(f(x, h)) are two subsequent classical queries
such that no prior query to S.E has been made, then

Pr[x̂ = ∅] ≤ 2 · 2−n. (21)

Furthermore, the total runtime of S, when implemented using the sparse repre-
sentation of the compressed oracle described in Sect. 2.2, is bounded as

TS = O
(
qRO · qE · Time[f ] + q2RO

)
,

where qE and qRO are the number of queries to S.E and S.RO, respectively.

Proof. All the properties follow rather directly by construction of S. Indeed,
without S.E-queries, S is simply the compressed oracle, known to be perfectly
indistinguishable from the random oracle, confirming 1. Property 2.a follows be-
cause the unitaries OXYD and OX′Y ′D, acting on the same register D but on
distinct query registers, are both controlled unitaries with control register D,
conjugated by a fixed unitary (F⊗|X|). They thus commute. For 2.b, the claim
follows because the unitaries M t

DP and M t′

DP ′ commute, as they are both con-
trolled unitaries with control register D. 2.c is a direct consequence of our main
technical result Theorem 1 (in the form of Cor. 2). 3.a follows because a classical
S.RO query with input x acts as a projective measurement on register Dx, which
is, as any projective measurement, idempotent. Thus, so is the measurementMt,
confirming 3.b.

To prove 4.a, consider the state ρDx̂ of register Dx̂ after the measurement
Mt that is performed by the extraction query x̂ = S.E(t), assuming x̂ 6= ∅. Let
|ψ〉 be a purification of ρDx̂ . By definition of Mt, it holds that Π x̂

Dx̂
|ψ〉 = |ψ〉.

Then, understanding that all operators act on register Dx̂, by definition of Π̄ x̂

the probability of interest is bounded as8

Pr[f(x̂, ĥ) 6= t | x̂ 6= ∅] ≤
∥∥Π̄ x̂F |ψ〉

∥∥2 =
∥∥Π̄ x̂FΠ x̂|ψ〉

∥∥2 ≤ ∥∥Π̄ x̂FΠ x̂
∥∥2

≤
∥∥[F,Π x̂]

∥∥2 ,
where the last inequality exploits that Π̄ x̂Π x̂ = 0. The claim now follows from
Lemma 2.

For 4.b, we first observe that, given that there were no prior extraction
queries, the state of Dx before the h = S.RO(x) query has no overlap with
|φ0〉, and thus the state after the query is F |h〉 (see the discussion above Equa-
tion (8)). For the purpose of the argument, instead of applying the measurement
8 The first inequality is an artefact of the |⊥〉〈⊥|-term in Π̄ x̂ contributing to the
probability of ĥ = 0, as discussed in Sect. 2.2.
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Mf(x,h) to answer the S.E(f(x, h)) query, we may equivalently consider a mea-
surement in the basis {|y〉}, and then set x̂ to be the smallest element X so that
f(x̂, yx̂) = t := f(x, h), with x̂ = ∅ if no such element exists. Then,

Pr[x̂ 6= ∅] = Pr[∃ ξ : f(ξ,yξ) = t] ≥ Pr[f(x, yx) = t]

≥ Pr[yx = h] = |〈h|F |h〉|2 ≥ 1− 2 · 2−n

where the last two (in)equalities are by Equation (8).
ut

4.3 Two More Properties of S

On top of the above basic features of our extractable RO-simulator S, we show
the following two additional, more technical, properties, which in essence capture
that the extraction interface cannot be used to bypass query hardness results.

S
RO E

... ...

A
...

t

S
RO E

t

x̂

A
...

t, x

S
RO E

x

h
t

x̂

Fig. 3. The extractable RO-simulator S, with its S.RO and S.E interfaces, distin-
guished here by queries from the left and right (left), and the games considered in
Prop. 2 (middle) and 3 (right) for ` = 1. Waved arrows denote quantum queries,
straight arrows denote classical queries.

The first property is easiest to understand in the context of the example
f(x, y) = y, where S.E(t) tries to extract a hash-preimage of t, and where the
relations R and R′ in Prop. 2 below then coincide. In this case, recall from
Prop. 1 that, informally, if ΓR is small then it is hard to find x ∈ X so that
t := RO(x) satisfies (x, t) ∈ R. The statement below ensures that this hardness
cannot be bypassed by first selecting a “good” hash value t and then trying to
extract a preimage by means of S.E (Fig. 3, middle).

Proposition 2. Let R′ ⊆ X × T be a relation. Consider a query algorithm A
that makes q queries to the S.RO interface of S but no query to S.E, outputting
some t ∈ T `. For each i, let x̂i then be obtained by making an additional query
to S.E on input ti (see Fig. 3, middle). Then

Pr
t←AS.RO
x̂i←S.E(ti)

[∃ i : (x̂i, ti) ∈ R′] ≤ 128 · q2ΓR/2n ,

where R ⊆ X ×Y is the relation (x, y) ∈ R ⇔ (x, f(x, y)) ∈ R′ and ΓR as in (9).
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Proof. The considered experiment is like the experiment GR in the proof of
Prop. 1, the only difference being that in GR the measurementMR is applied to
register D to obtain x′ (see Fig. 4, middle), while here we have ` measurements
Mti that are applied to obtain x̂i (see Fig. 4, left). Since all measurements are
defined by means of projections that are diagonal in the same basis {|y〉} with
|y〉 ranging over y ∈ (Y ∪ {⊥})X , we may equivalently measure D in that basis
to obtain y (see Fig. 4, right), and let x̂i be minimal so that f(x̂i, yx̂i) = ti (and
x̂i = ∅ if no such value exists), and let x′ be minimal so that (x′, yx′) ∈ R (and
x′ = ∅ if no such value exists). By the respective definitions of Mt

i and MR,
both pairs of random variables (x̂, t) and (x′, t) then have the same distributions
as in the respective original two games. But now, we can consider their joint
distribution and argue that

Pr[∃ i : (x̂i, ti) ∈ R′] = Pr[ ∃ i : (x̂i, f(x̂i, yx̂i)) ∈ R′]
= Pr[∃ i : (x̂i, yx̂i) ∈ R] ≤ Pr[∃x : (x, yx) ∈ R] = Pr[x′ 6= ∅] .

The bound on Pr[x′ 6= ∅] from the proof of Prop. 1 concludes the proof. ut

D

O

... Mt x̂

X

A0

...

AqY ...

... t • t

... MR x′

...

Aq...

... t

... y ; x̂, x′

...

Aq...

... t

Fig. 4. Quantum circuit diagrams of the experiments in the proof of Prop. 2 for ` = 1.

In a somewhat similar spirit, the following ensures that if it is hard in the
QROM to find x and x′ with f(x,RO(x)) = f(x′, RO(x′)) then this hardness
cannot be bypassed by, say, first choosing x, querying h = S.RO(x), computing
t := f(x, h), and then extracting x̂ := S.E(t). The latter will most likely give
x̂ = x, except, intuitively, if S.RO has additionally been queried on a colliding x′.

Proposition 3. Consider a query algorithm A that makes q queries to S.RO
but no query to S.E, outputting some t ∈ T and x ∈ X . Let h then be obtained by
making an additional query to S.RO on input x, and x̂ by making an additional
query to S.E on input t (see Fig. 3, right). Then

Pr
t, x ← AS.RO
h ← S.RO(x)
x̂ ← S.E(t)

[x̂ 6= x ∧ f(x, h) = t] ≤ 40e2(q + 2)3Γ ′(f) + 2

2n
.

More generally, if A outputs `-tuples t ∈ T ` and x ∈ X `, and h ∈ Y` is obtained
by querying S.RO component-wise on x, and x̂ ∈ (X ∪ {∅})` by querying S.E
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component-wise on t, then

Pr
t, x ← AS.RO
h ← S.RO(x)
x̂ ← S.E(t)

[∃ i : x̂i 6= xi ∧ f(xi, hi) = t] ≤ 40e2(q + `+ 1)3Γ ′(f) + 2

2n
.

The proof is similar in spirit to the proof of Prop. 2, but relying on the hardness
of collision finding rather than on (the proof of) Prop. 1, and so is moved to
Appendix C in the full version.

Remark 1. The claim of Prop. 3 stays true when the queries S.RO(xi) are not
performed as additional queries after the run of A but are explicitly among the q
queries that are performed by A during its run. Indeed we observe that the proof
does not exploit that these queries are performed at the end, which additionally
shows that in this case the `-term on the right hand side of the bound vanishes,
i.e., scales as (q + 1)3 rather than as (q + `+ 1)3 .

4.4 Early Extraction

We consider here the following concrete setting. Let A be a two-round query
algorithm, interacting with the random oracle RO and behaving as follows. At
the end of the first round, ARO outputs some t ∈ T , and at the end of the second
round, it outputs some x ∈ X that is supposed to satisfy f(x,RO(x)) = t; on
top, ARO may have some additional (possibly quantum) output W .

We now show how the extractable RO-simulator S provides the means to
extract x early on, i.e., right after A has announced t. To formalize this claim,
we consider the following experiment, which we denote by GAS . The RO-interface
S.RO of S is used to answer all the oracle queries made by A. In addition, as
soon as A outputs t, the interface S.E is queried on t to obtain x̂ ∈ X ∪ {∅},
and after A has finished, S.RO is queried on A’s final output x to generate h.

Informally, we want that A does not notice any difference when RO is re-
placed by S.RO, and that x̂ = x whenever f

(
x, h

)
= t, while x̂ = ∅ implies

that A will fail to output x with f
(
x, h

)
= t. This situation is captured by the

following statement.

Corollary 3. The extractable RO-simulator S is such that the following holds.
For any A that outputs t after q1 queries and x ∈ X and W after an additional
q2 queries, setting q = q1 + q2, it holds that

δ
(
[t, x,RO(x),W ]ARO , [t, x, h,W ]GAS

)
≤ 8(q2 + 1)

√
2Γ/2n and

Pr
GAS

[
x 6= x̂ ∧ f(x, h) = t

]
≤ 8(q2 + 1)

√
2Γ/2n +

40e2(q + 2)3Γ ′(f) + 2

2n
,

Proof. The first claim follows because the trace distance vanishes when S.E(t)
is performed at the very end, after the S.RO(x)-query, in combination with the
(almost-)commutativity of the two interfaces (Theorem 2, 2.a to 2.c). Similarly,
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the second claim follows from Prop. 3 when considering the S.E(t) query to be
performed at the very end, in combination with the (almost-)commutativity of
the interfaces again. ut

The statements above extend easily to multi-round algorithms ARO that
output t1, . . . , t` in (possibly) different rounds, and x1, . . . , x` ∈ X and some
(possibly quantum) output W at the end of the run. We then extend the defi-
nition of GAS in the obvious way: S.E is queried on each output ti to produce
x̂i, and at the end of the run S.RO is queried on each of the final outputs
x1, . . . , x` of A to obtain h = (h1, . . . , h`) ∈ Y`. As a minor extension, we allow
some of the xi to be ⊥, i.e., ARO may decide to not output certain xi’s; the
S.RO query on xi is then not done and hi is set to ⊥ instead, and we declare
that RO(⊥) = ⊥ and f(⊥, hi) 6= ti. To allow for a compact notation, we write
RO(x) = (RO(x1), . . . , RO(x`)) for x = (x1, . . . , x`).

Corollary 4. The extractable RO-simulator S is such that the following holds.
For any A that makes q queries in total, it holds that

δ
(
[t,x, RO(x),W ]ARO , [t,x,h,W ]GAS

)
≤ 8`(q + `)

√
2Γ/2n and

Pr
GAS

[
∃ i : xi 6= x̂i ∧ f(xi, hi)= ti

]
≤ 8`(q+1)

√
2Γ/2n +

40e2(q+`+1)3Γ ′(f)+2

2n
.

5 Extractability of Commit-And-Open Σ-protocols

5.1 Commit-and-Open Σ-protocols

We assume the reader to be familiar with the concept of an interactive proof for
a language L or a relation R, and specifically with the notion of a Σ-protocol.

Here, we consider the notion of a commit-and-open Σ-protocol, which is as
follows. The prover begins by sending commitments a1, ..., a` to the prover, com-
puted as ai = H(xi) for x1, ..., x` ∈ X , where H : X → {0, 1}n is a hash function.
Here, xi can either be the actual message mi to be committed, or mi concate-
nated with randomness. The verifier answers by sending a challenge c, which
is a subset c ⊆ [`] = {1, ..., `}, picked uniformly at random from a challenge
set C ⊆ 2[`], upon which the prover sends the response z = (xi)i∈c. Finally,
the verifier checks whether H(xi) = ai for every i ∈ c, computes an additional
verification predicate V (c, z) and outputs 1 if both check out, 0 otherwise. Such
(usually zero-knowledge) protocols have been known since the concept of zero-
knowledge proofs was developed [5, 14].

Commit-and-open Σ-protocols are (classically) extractable in a straight-forward
manner as soon as a witness can be computed from sufficiently many of the xi’s:
rewind the prover a few times until it has opened every commitment ai at least
once.9 There is, however, an alternative (classical) online extractor if the hash
function H is modelled as a random oracle: simply look at the query transcript
9 Naturally, we can assume [`] =

⋃
c∈C c
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of the prover to find preimages of the commitments a1, ..., a`. As the challenge is
chosen independently, the extractability and collision resistance of the commit-
ments implies that for a prover with a high success probability, the ` extractions
succeed simultaneously with good probability. This is roughly how the proof of
online extractability of the ZK proof system for graph 3-coloring by Goldreich,
Micali and Wigderson [14], instantiated with random-oracle based commitments,
works that was announced in [22] and shown in [23] (Prop. 5).

Equipped with our extractable RO-simulator S, we can mimic the above
in the quantum setting. Indeed, the only change is that the look-ups in the
transcript are replaced with the additional interface of the simulator S. Cor. 4
can then be used to prove the success of extraction using essentially the same
extractor as in the classical case.

5.2 Notions of Special Soundness

The property that allows such an extraction is most conveniently expressed in
terms of special soundness and its variants. Because there are, next to special and
k-soundness, a number of additional variants in the literature (e.g. in the context
of Picnic2/Picnic3 [17] or MQDSS [8]), we begin by formulating a generalized
notion of special soundness that captures in a broad sense that a witness can be
computed from correct responses to “sufficiently many ” challenges.10 While the
notions introduced below can be formulated for arbitrary public-coin interactive
proof systems, we present them here tailored to commit-and-open Σ-protocols.
In [26], Wikström considers a similar notion of general special soundness (but
then for arbitrary multi-round public-coin interactive proof systems); however,
the formalism in [26] is more restrictive in that it requires the set system we
call Smin below to form the set of bases of a matroid. As a consequence, the
r-fold parallel repetition of a k-sound protocol is for instance not captured by
the formalism suggested by Wikström.

In the remainder, Π is thus assumed to be an arbitrary commit-and-open
Σ-protocol for a relation R with associated language L, and C is the challenge
space of Π. Furthermore, we consider a non-empty, monotone increasing set S
of subsets S ⊆ C, i.e., such that S ∈ S ∧ S ⊆ S′ ⇒ S′ ∈ S, and we let
Smin := {S ∈ S |S◦ ( S ⇒ S◦ 6∈ S} consist of the minimal sets in S.

Definition 3. Π is called S-sound if there exists an efficient algorithm
ES(I, x1, . . . , x`, S) that takes as input an instance I ∈ L, strings x1, . . . , x` ∈ X
and a set S ∈ Smin, and outputs a witness for I whenever V (c, (xi)i∈c) = 1 for
all c ∈ S, and outputs ⊥ otherwise.11

Note that there is no correctness requirement on the xi’s with i 6∈
⋃
c∈S c;

thus, those xi’s may just as well be set to be empty strings.
10 Using the language from secret sharing, we consider an arbitrary access structure S,

while the k-soundness case corresponds to a threshold access structure.
11 The restriction for S to be inSmin, rather than inS, is only to avoid an exponentially

sized input. When C is constant in size, we may admit any S ∈ S.
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This property generalizes k-soundness, which is recovered for S = Tk :=
{S ⊆ C | |S| ≥ k}, but it also captures more general notions. For instance,
the r-fold parallel repetition of a k-sound protocol is not k-sound anymore,
but it is T∨rk -sound with T∨rk consisting of those subsets of challenge-sequences
(c1, . . . , cr) ∈ Cr for which the restriction to at least one of the positions is a
set in Tk. This obviously generalizes to the parallel repetition of an arbitrary
S-sound protocol, with the parallel repetition then being S∨r-sound with

S∨r := {S ⊆ Cr | ∃ i : Si ∈ S} ,

where Si := {c ∈ C | ∃ (c1, ..., cr) ∈ S : ci = c} is the i-th marginal of S.
For our result to apply, we need a strengthening of the above soundness

condition where ES has to find the set S himself. This is clearly the case for
S-sound protocols that have a constant sized challenge space C, but also for the
parallel repetition of S-sound protocols with a constant sized challenge space.
Formally, we require the following strengthened notion of S-sound protocols.

Definition 4. Π is called S-sound∗ if there exists an efficient algorithm
E∗S(I, x1, . . . , x`) that takes as input an instance I ∈ L and strings x1, . . . , x` ∈
X , and outputs a witness for I whenever there exists S ∈ S with V (c, (xi)i∈c) = 1
for all c ∈ S, and outputs ⊥ otherwise.

S-sound Σ-protocols may—and often do—have the property that a dis-
honest prover can pick any set Ŝ = {ĉ1, . . . , ĉm} 6∈ S of challenges ĉi ∈ C and
then prepare x̂1, . . . , x̂` in such a way that V (c, (x̂i)i∈c) = 1 if c ∈ Ŝ, i.e., after
having committed to x̂1, . . . , x̂` the prover can successfully answer challenge c if
c ∈ Ŝ. We call this a trivial attack. The following captures the largest success
probability of such a trivial attack, maximized over the choice of Ŝ:

pStriv :=
1

|C|
max
Ŝ 6∈S
|Ŝ| . (22)

When there is no danger of confusion, we omit the superscript S. Looking
ahead, our result will show that for any prover that does better than the triv-
ial attack by a non-negligible amount, online extraction is possible. For special
sound commit-and-open Σ-protocols, ptriv = 1/|C|, and for k-sound protocols,
ptriv = (k−1)/|C|. Furthermore, our definition of S-soundness allows a straight-
forward parallel repetition lemma on the combinatorial level providing an expres-
sion for ptriv of parallel-repeated commit-and-open Σ-protocols (the proof is an
easy computation).

Lemma 4. Let Π be S-sound. Then pS
∨r

triv =
(
pStriv

)r.
5.3 Online Extractability in the QROM

We are now ready to define our extractor and prove that it succeeds. Equipped
with the results from the previous section, the intuition is very simple. Given a
(possibly dishonest) prover P, running the considered Σ-protocol in the QROM,
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we use the simulator S to answer P’s queries to the random oracle but also
to extract the commitments a1, . . . , a`, and if the extracted x̂1, . . . , x̂` satisfy
the verification predicate V for sufficiently many challenges, we can compute a
witness by applying E∗S.

The following relates the success probability of this extraction procedure to
the success probability of the (possibly dishonest) prover.

Theorem 3. Let Π be an S-sound∗ commit-and-open Σ-protocol where the first
message consists of ` commitments. Then it admits an online extractor E in the
QROM that succeeds with probability

Pr[E succeeds] ≥ 1

1− ptriv
(
Pr[PRO succeeds]− ptriv − ε

)
where (23)

ε = 8
√

2 `(2q + `+ 1)/
√

2n +
40e2(q + `+ 1)3Γ ′(f) + 2

2n

and ptriv is defined in Eq. (22). For q ≥ `+ 1, the bound simplifies to

ε ≤ 34`q/
√

2n + 2365q3/2n .

Furthermore, the running time of E is bounded as TE = TP1
+TE∗S +O(q21), where

TP1
and TE∗S are the respective runtimes of P1 and E∗S.
Recall that ptriv = (k−1)/|C| for k-soundness, giving a corresponding bound.

We note that the bound (23) is tight, and the additive term ε has a matching
attack for some schemes, see Section 5.4 of the full version.

Proof. We begin by describing the extractor E . First, using S.RO to answer P’s
queries, E runs the prover P until it announces a1, . . . , a`, and then it uses S.E to
extract x̂1, ..., x̂`. I.e., E acts as S in Cor. 4 for the function f(x, h) = h and runs
the game GPS to the point where S.E outputs x̂1, ..., x̂` on input a1, . . . , a`. As a
matter of fact, for the purpose of the analysis, we assume that GPS is run until
the end, with the challenge c chosen uniformly at random, and where P then
outputs xi for all i ∈ c (and ⊥ for i 6∈ c) at the end of GPS ; we also declare that
P additionally outputs c and a1, . . . , a` at the end. Then, upon having obtained
x̂1, ..., x̂`, the extractor E runs E∗S on x̂1, ..., x̂` to try to compute a witness. By
definition, this succeeds if Ŝ := {ĉ ∈ C |V (ĉ, (x̂i)i∈ĉ) = 1} is in S.

It remains to relate the success probability of E to that of the prover PRO.
By the first statement of Cor. 4, writing xc = (xi)i∈c, RO(xc) = (RO(xi))i∈c,
ac = (ai)i∈c, etc., we have, writing V (c,xc) instead of V (c,xc) = 1 for brevity,

Pr[PRO succeeds] = Pr
PRO

[V (c,xc) ∧RO(xc) = ac]

≤ Pr
GPS

[V (c,xc) ∧ hc = ac] + δ1
(24)

with δ1 = 8
√

2 `(q + `)/
√

2n. Omitting the subscript GPS now,

Pr[V (c,xc) ∧ hc = ac]

≤Pr[V (c,xc) ∧ hc = ac ∧ xc = x̂c] + Pr[hc = ac ∧ xc 6= x̂c]

≤Pr[V (c, x̂c)] + Pr[∃ j ∈ c : xj 6= x̂j ∧ hj = aj ] ≤ Pr[V (c, x̂c)] + δ2 (25)
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with δ2 = 8
√

2 `(q + 1)/
√

2n + 40e2(q+`+1)3Γ ′(f)+2
2n , where the last inequality is

by the second statement of Cor. 4, noting that, by choice of f , the event hj = aj
is equal to f(xj , hj) = aj . Recalling the definition of Ŝ,

Pr[V (c, x̂c) = 1] = Pr[c ∈ Ŝ] ≤ Pr[Ŝ ∈ S] + Pr[c ∈ Ŝ | Ŝ 6∈ S] Pr[Ŝ 6∈ S] (26)
≤ Pr[E succeeds] + ptriv(1− Pr[E succeeds]).

The last inequality holds as c is chosen at random independent of the x̂i, and
hence independent of the event Ŝ 6∈ S. Combining (24), (25) and (26), we obtain

Pr[PRO succeeds] ≤ Pr[E succeeds] + ptriv(1− Pr[E succeeds]) + δ1 + δ2

and solving for Pr[E succeeds] gives the claimed bound. ut

Application to Fiat Shamir Signatures. In Appendix E of the full ver-
sion, we discuss the impact on Fiat Shamir signatures, in particular on the
round-3 signature candidate Picnic [7] in the NIST standardization process for
post-quantum cryptographic schemes. In short, a crucial part in the chain of
arguments to prove security of Fiat Shamir signatures is to prove that the un-
derlying Σ-protocol is a proof of knowledge. For post-quantum security, so far
this step relied on Unruh’s rewinding lemma, which leads (after suitable general-
ization), to a (2k+1)-th root loss for a k-sound protocols. For commit-and-open
Σ-protocols, Theorem 3 can replace Unruhs rewinding lemma when working in
the QROM, making this step in the chain of arguments tight up to unavoidable
additive errors.

As an example, Theorem 3 implies a sizeable improvement over the current
best QROM security proof of Picnic2 [7, 17, 6]. Indeed, Unruh’s rewinding lemma
implies a 6-th root loss for the variant of special soundness the underlying Σ-
protocol possesses [12], while Theorem 3 is tight.

6 QROM-Security of Textbook Fujisaki-Okamoto

6.1 The Fujisaki-Okamoto Transformation

The Fujisaki-Okamoto (FO) transform [13] is a general method to turn any
public-key encryption scheme secure against chosen-plaintext attacks (CPA) into
a key-encapsulation mechanism (KEM) that is secure against chosen-ciphertext
attacks (CCA). We can start either from a scheme with one-way security (OW-
CPA) or from one with indistinguishability (IND-CPA), and in both cases obtain
an IND-CCA secure KEM. We recall that a KEM establishes a shared key, which
can then be used for symmetric encryption.

We include the (standard) formal definitions of a public-key encryption scheme
and of a KEM in Appendix F of the full version, and we recall the notions of
δ-correctness and γ-spreadness there. In addition, we define a relaxed version of
the latter property, weak γ-spreadness (see Def. F.4), where the ciphertexts are
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only required to have high min-entropy when averaged over key generation12.
The security games for OW-CPA security of a public-key encryption scheme and
for IND-CCA security of a KEM are given in Section 6.1 of the full version. The
formal specification of the FO transformation, mapping a public-key encryption
scheme PKE = (Gen,Enc,Dec) and two suitable hash functions H and G (which
will then be modeled as random oracles) into a key encapsulation mechanism
FO[PKE, H,G] = (Gen,Encaps,Decaps), is given in Fig. 5.

Gen
1: (sk, pk)← Gen
2: return (sk, pk)

Encaps(pk)

3: m $←M
4: c← Encpk(m;H(m))
5: K := G(m)
6: return (K, c)

Decapssk(c)
7: m := Decsk(c)
8: if m = ⊥ or Encpk(m;H(m)) 6= c

return ⊥
9: else return K := G(m)

Fig. 5. The KEM FO[PKE, H,G], obtained by applying the FO transformation to PKE.

6.2 Post-Quantum Security of FO in the QROM

Our main contribution here is a new security proof for the FO transformation in
the QROM. In contrast to most previous works on the topic, our result applies to
the standard FO transformation, without any adjustments. Next to being CPA
secure, we require the underlying public-key encryption scheme to be so that
ciphertexts have a lower-bounded amount of min-entropy (resulting from the
encryption randomness), captured by the mentioned spreadness property. This
seems unavoidable for the FO transformation with explicit rejection and without
any adjustment, like an additional key confirmation hash (as e.g. in [24]).

Theorem 4. Let PKE be a δ-correct public-key encryption scheme satisfying
weak γ-spreadness. Let A be any IND-CCA adversary against FO[PKE, H,G],
making qD ≥ 1 queries to the decapsulation oracle Decaps and qH and qG
queries to H : M → R and G : M → K, respectively, where H and G are
modeled as random oracles. Let q := qH + qG + 2qD. Then, there exists a OW-
CPA adversary B against PKE with

ADV[A]IND-CCA
kem ≤ 2q

√
ADVOW-CPA

pke [B] + 24q2
√
δ + 24q

√
qqD · 2−γ/4 .

Furthermore, B has a running time TB ≤ TA +O
(
qH · qD · Time[Enc] + q2

)
.

We start with a proof outline, which is simplified in that it treats FO[PKE, H,G]
as an encryption scheme rather than as a KEM. We will transform the adversary
A of the IND-CCA game into a OW-CPA adversary against the PKE in a number
12 This seems relevant e.g. for lattice-based schemes, where the ciphertext has little (or

even no) entropy for certain very unlikely choices of the key (like being all 0).
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of steps. There are two main challenges to overcome. (1) We need to switch from
the deterministic challenge ciphertext c∗ = Encpk(m∗;H(m∗)) that A attacks to
a randomized challenge ciphertext c∗ = Encpk(m∗; r∗) that B attacks. We do this
by re-programming H(m∗) to a random value right after the computation of c∗,
which is equivalent to keeping H but choosing a random r∗ for computing c∗. For
reasons that we explain later, we do this switch from H to its re-programmed
variant, denoted H�, in two steps, where the first step (from Game 0 to 1) will
be “for free”, and the second step (from Game 1 to 2) is argued using the O2H
lemma ([25], we use the version given in [2], Theorem 3). (2) We need to answer
decryption queries without knowing the secret key. At this point our extractable
RO-simulator steps in. We replace H�, modelled as a random oracle, by S, and
we use its extraction interface to extractm from any correctly formed encryption
c = Encpk(m;H�(m)) and to identify incorrect ciphertexts.

One subtle issue in the argument above is the following. The O2H lemma
ensures that we can find m∗ by measuring one of the queries to the random
oracle. However, given that also the decryption oracle makes queries to the ran-
dom oracle (for performing the re-encryption check), it could be the case that
one of those decryption queries is the one selected by the O2H extractor. This
situation is problematic since, once we switch to S to deal with the decryption
queries, some of these queries will be dropped (namely when S.E(c) = ∅). This
is problematic because, per-se, we cannot exclude that this is the one query that
will give us m∗. We avoid this problem by our two-step approach for switching
from H to H�, which ensures that the only ciphertext c that would bring us in
the above unfortunate situation is the actual (randomized) challenge ciphertext
c∗ = Encpk(m∗; r∗), which is forbidden by the specification of the security game.

Proof (of Theorem 4). Games 0 to 8 below gradually turn A into B (in the
full version we provide pseudocode for the hybrids that compactly illustrates the
change from hybrid to hybrid. ). We analyze the sequence of hybrids for a fixed
key pair (sk, pk). For a key pair (sk, pk), let ADVsk[A]

IND-CCA
kem be A’s advantage,

δsk the maximum decryption error probability and gsk the maximum probability
of any ciphertext, so that E

[
δsk
]
≤ δ and E

[
gsk
]
≤ 2−γ , with the expectation

over (sk, pk)← Gen.13
Game 0 is the IND-CCA game for KEMs, except that we provide G and H

via arandom oracle F , by setting H(x) := F (0||x) and G(x) := F (1||x).14 When
convenient, we still refer to F (0‖·) as H and F (1‖·) as G. This change does not
affect the view of the adversary nor the outcome of the game; therefore,

Pr[b = b′ in Game 0] = 1/2 + ADVsk[A]
IND-CCA
kem .

In Game 1, we introduce a new oracle F � by setting F �(0‖m∗) := r�

and F �(1‖m∗) := k� for uniformly random r� ∈ R and k� ∈ K, while let-
ting F �(b‖m) := F (b‖m) for m 6= m∗ and b ∈ {0, 1}. We note that while the
13 We can assume without loss of generality that pk is included in sk.
14 These assignments seem to suggest that R = K, which may not be the case. Indeed,

we understand here that F : M → {0, 1}n with n large enough, and F (0||x) and
F (1||x) are then cut down to the right size.

25



joint behavior of F � and F depends on the choice of the challenge message m∗,
each one individually is a purely random function, i.e., a random oracle. In line
with F , we write H� for F �(0‖·) and G� for F �(1‖·) when convenient.

Using these definitions, Game 1 is obtained from Game 0 via the following
modifications. After m∗ and c∗ have been produced and before A is executed, we
compute c� := Encpk(m∗; r�) = Encpk(m∗;H�(m∗)), making a query to H� to
obtain r�. Furthermore, for every decapsulation query by A, we let Decaps use
H� and G� instead ofH and G for checking correctness of the queried ciphertexts
ci and for computing the key Ki, except when ci = c� (which we may assume to
happen at most once), in which case Decaps still uses H and G. We claim that

Pr[b = b′ in Game 1] = Pr[b = b′ in Game 0] =
1

2
+ ADVsk[A]

IND-CCA
kem .

Indeed, for any decryption query ci, we either have Decsk(ci) =: mi 6= m∗

and thus F �(b‖mi) = F (b‖mi), or else mi = m∗; in the latter case we then
either have ci = c�, where nothing changes by definition of the game, or else
Encpk(m∗;H(m∗)) = c∗ 6= ci 6= c� = Encpk(m∗;H�(m∗)), and hence the re-
encryption check fails and Ki := ⊥ in either case, without querying G or G�.
Therefore, the input-output behavior of Decaps is not affected.

In Game 2, all oracle calls by Decaps (also for ci = c�) and all calls by A
are now to F �. Only the challenge ciphertext c∗ = Encpk(m∗;H(m∗)) is still
computed using H, and thus with randomness r∗ = H(m∗) that is random and
independent of m∗ and F �. Hence, looking ahead, we can think of c∗ as the
input to the OW-CPA game that the to-be-constructed attacker B will attack.
Similarly, K∗0 = G(m∗) is random and independent of m∗ and F �, exactly as
K∗1 is, which means that A can only win with probability 1

2 .
By the O2H lemma ([2], Theorem 3), the difference between the respective

probabilities of A guessing b in Game 1 and 2 gives a lower bound on the
success probability of a particular procedure to find an input on which F and
F � differ, and thus to find m∗. Formally,

2(qH + qG + 2)
√

Pr[m′ = m∗ in Game 3]

≥|Pr[b′ = b in Game 1]− Pr[b′ = b in Game 2]|

=
1

2
+ ADVsk[A]

IND-CCA
kem − 1

2
= ADVsk[A]

IND-CCA
kem

where Game 3 is identical to Game 2 above, except that we introduce and
consider a new variable m′ (with the goal that m′ = m∗), obtained as follows.
Either one of the qH+qG queries from A to H� and G� is measured, or one of the
two respective queries from Decaps to H� and G� upon a possible decryption
query c� is measured, and, in either case, m′ is set to be the corresponding
measurement outcome. The choice of which of these qH + qG + 2 queries to
measure is done uniformly at random.15

15 If this choice instructs to measure Decaps’s query to H� or to G� for the decryption
query c�, but there is no decryption query ci = c�, m′ := ⊥ is output instead.
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We note that, since we are concerned with the measurement outcome m′
only, it is irrelevant whether the game stops right after the measurement, or
it continues until A outputs b′. Also, rather than actually measuring Decaps’
classical query to H� or G� upon decryption query ci = c� (if instructed to do
so), we can equivalently set m′ := mi = Decsk(c�).

ForGame 4, we consider the function f :M×R→ C, (m, r) 7→ Encpk(m; r),
and we replace the random oracle H� with the extractable RO-simulator S from
Theorem 2. Furthermore, at the very end of the game, we invoke the extractor
interface S.E to compute m̂i := S.E(ci) for each ci that A queried to Decaps
in the course of its run. By the first statement of Theorem 2, given that the S.E
queries take place only after the run of A,

Pr[m′ = m∗ in Game 4] = Pr[m′ = m∗ in Game 3] .

Applying Prop. 2 for R′ := {(m, c) : Decsk(c) 6= m}, we get that the event P † :=[
∀i : m̂i = mi∨m̂i = ∅

]
holds except with probability ε1 := 128(qH+qD)2ΓR/|R|

for ΓR as in Prop. 2, which here means that ΓR/|R| = δsk. Thus

Pr[m′ = m∗ ∧ P † in Game 4] ≥ Pr[m′ = m∗ in Game 4]− ε1 .

In Game 5, we query S.E(ci) at runtime, that is, as part of the Decaps
procedure upon input ci, right after S.RO(m) has been invoked as part of the re-
encryption check. Since S.RO(m) and S.E(ci) now constitute two subsequent
classical queries, it follows from the contraposition of 4.b of Theorem 2 that
except with probability 2 · 2−n, m̂i = ∅ implies Encpk(mi;S.RO(mi)) 6= ci.
Applying the union bound, we find that P † implies P :=

[
∀i : m̂i = mi ∨

(m̂i = ∅ ∧ Encpk(mi;S.RO(mi)) 6= ci)
]
except with probability qD · 2 · 2−n.

Furthermore, By 2.c of that same Theorem 2, each swap of a S.RO with a S.E
query affects the final probability by at most 8

√
2Γ (f)/|R| = 8

√
2gsk. Thus,

setting ε2 := 2qD ·
(
(qH + qD) · 4

√
2gsk + 2−n

)
,

Pr[m′ = m∗ ∧ P in Game 5] ≥ Pr[m′ = m∗ ∧ P † in Game 4]− ε2

In Game 6, Decaps uses m̂i instead of mi to compute Ki. That is, it sets
Ki := ⊥ if m̂i = ∅ and Ki := G�(m̂i) otherwise. Also, if instructed to output
m′ := mi where ci = c�, then the output is set to m′ := m̂i instead. In all cases,
Decaps still queries S.RO(mi), so that the interaction pattern between Decaps
and S.RO remains as in Game 5. Here, we note that if the event Pi :=

[
m̂i =

mi ∨ (m̂i = ∅ ∧ Encpk(mi;S.RO(mi)) 6= ci)
]
holds for a given i then the above

change will not affect Decaps’ response Ki, and thus neither the probability
of Pi+1. Therefore, by induction, Pr[P in Game 6] = Pr[P in Game 5], and
since conditioned on the event P the two games are identical, we have

Pr[m′ = m∗ ∧ P in Game 6] = Pr[m′ = m∗ ∧ P in Game 5].

In Game 7, instead of obtaining m′ by measuring a random query of A
to either S.RO or G, or outputting m̂i with ci = c�, here m′ is obtained by
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measuring a random query of A to either S.RO or G, or outputting m̂i for a
random i ∈ {1, . . . , qD}, where the first cases is chosen with probability (qH +
qG)/(qH + qG + 2qD), and the second otherwise. As conditioned on choosing the
first case, or the second one with i = i�, Game 7 equals Game 6, we have

Pr[m′ = m∗ in Game 7] ≥ qH + qG + 2

qH + qG + 2qD
· Pr[m′ = m∗ in Game 6] .

InGame 8, we observe that the response to the query S.RO(m∗), introduced
in Game 1 to compute c�, and the responses to the queries that Decaps makes
to S.RO on input mi do not affect the game anymore, so we can drop these
queries, or, equivalently, move them to the end of the game’s execution. Invoking
2.c of Theorem 2 again and setting ε3 = (qD + 1) · qH · 8

√
2gsk, we get

Pr[m′ = m∗ in Game 8] ≥ Pr[m′ = m∗ in Game 7]− ε3 ,

We now see that Game 8 works without knowledge of the secret key sk, and
thus constitutes a OW-CPA attacker B against PKE, which takes as input a public
key pk and an encryption c∗ of a random messagem∗ ∈M, and outputsm∗ with
the given probability, i.e, ADVsk[B]

OW-CPA
pke ≥ Pr[m′ = m∗ in Game 8]. We note

that the oracle G� can be simulated using standard techniques. Backtracking all
the above (in)equalities and setting ε23 := ε2 + ε3, qHG := qH + qG etc. and
q := qH + qG + 2qD, we get the following bounds,

ADVsk[A]IND-CCA
kem ≤ 2(qHG + 2)

√
qHG + 2qD
qHG + 2

(
ADVsk[B]

OW-CPA
pke + ε3

)
+ ε1 + ε2

≤ 2(qHG + 2qD)

√
ADVsk[B]

OW-CPA
pke + ε23 + 2(qHG + 2)

√
ε1

≤ 2q
(√

ADVsk[B]
OW-CPA
pke +

√
ε23 +

√
ε1

)
(27)

and

√
ε23 =

√
2qD ·

(
4
(
(qH + qD) + (qD + 1)qH

)√
2gsk + 2−n

)
≤ 6
√
qHqD ·

(
g
1/4
sk + 2−n/2

)
≤ 12

√
qqD · g1/4sk , (28)

where we have used that 2−n ≤ gsk ≤ 1 in the last line. Taking the expectation
over (sk, pk) ← Gen, applying Jensen’s inequality and using qH + qD ≤ q once
more, we get the claimed bound. Finally, we note that the runtime of B is given
by TB = TA + TDecaps + TG + TS , where apart from its oracle queries Decaps
runs in time linear in qD, and by Theorem 2 S and G can be simulated in time
TS = O

(
qRO · qE · Time[f ] + q2RO

)
= O

(
qH · qD · Time[Enc] + q2

)
. ut
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