
Single-Server Private Information Retrieval
with Sublinear Amortized Time

Henry Corrigan-Gibbs1, Alexandra Henzinger1, and Dmitry Kogan2

1 MIT, Cambridge, MA, USA
henrycg@csail.mit.edu, ahenz@csail.mit.edu

2 Arnac, Inc., Tel Aviv, Israel
dkogan@cs.stanford.edu

Abstract. We construct new private-information-retrieval protocols in
the single-server setting. Our schemes allow a client to privately fetch
a sequence of database records from a server, while the server answers
each query in average time sublinear in the database size. Specifically,
we introduce the first single-server private-information-retrieval schemes
that have sublinear amortized server time, require sublinear additional
storage, and allow the client to make her queries adaptively. Our pro-
tocols rely only on standard cryptographic assumptions (decision Diffie-
Hellman, quadratic residuosity, learning with errors, etc.). They work by
having the client first fetch a small “hint” about the database contents
from the server. Generating this hint requires server time linear in the
database size. Thereafter, the client can use the hint to make a bounded
number of adaptive queries to the server, which the server answers in
sublinear time—yielding sublinear amortized cost. Finally, we give lower
bounds proving that our most efficient scheme is optimal with respect to
the trade-off it achieves between server online time and client storage.

1 Introduction

A private-information-retrieval protocol [34, 35] allows a client to fetch a record
from a database server without revealing which record she has fetched. In the
simplest setting of private information retrieval, the server holds an n-bit database,
the client holds an index i ∈ {1, . . . , n}, and the client’s goal is to recover the
i-th database bit while hiding her index i from the server.

Fast protocols for private information retrieval (PIR) would have an array of
applications. Using PIR, a student could fetch a book from a digital library with-
out revealing to the library which book she fetched. Or, she could stream a movie
without revealing which movie she streamed. Or, she could read an online news
article without revealing which article she read. More broadly, PIR is at the heart
of a number of systems for metadata-hiding messaging [7, 32], privacy-preserving
advertising [70, 8, 60, 88], private file-sharing [40], private e-commerce [66], pri-
vate media-consumption [62], and privacy-friendly web browsing [72].

Unfortunately, the computational cost of private information retrieval is a
barrier to its use in practice. In particular, to respond to each client’s query,

Beimel, Ishai, and Malkin [14] showed that the running time of a PIR server
must be at least linear in the size of the database. This linear-server-time lower
bound holds even if the client communicates with many non-colluding database
replicas. So, for a client to privately fetch a single book from a digital library,
the library’s servers would have to do work proportional to the total length of
all of the books in the library, which is costly both in theory and in practice.

Towards reducing the server-side cost of PIR, a number of prior works [68, 79,
64, 7, 39] observe that clients in many applications of PIR will make a sequence of
queries to the same database. For example, a student may browse many books in
a library; a web browser makes many domain name system (DNS) queries on each
page load [80]; a mail client may check all incoming URLs against a database of
known phishing websites [72, 16]; or, an antivirus software may check the hashes
of executed files against known malware [72]. The lower bound of Beimel, Ishai,
and Malkin [14] only implies that a PIR server will take linear time to respond
to the client’s very first PIR query. This leaves open the possibility of reducing
the server-side cost for subsequent queries. In other words, in the multi-query
setting, we can hope for the amortized server-side time per query to be sublinear
in the database size.

Indeed, there exist an array of techniques for constructing PIR schemes with
sublinear amortized server-side cost. Yet, prior PIR schemes achieving sublin-
ear amortized time come with limitations that make them cumbersome to use
in practice. Schemes that require multiple non-colluding servers [39, 72, 89] de-
mand careful coordination between many business entities, which is a major
practical annoyance [15, 90, 4, 81]. In addition, the security of these schemes is
relatively brittle, since it relies on an adversary not being able to compromise
multiple servers, rather than on cryptographic hardness. Recent offline/online
PIR schemes [39, 89, 72] require, in the single-server setting, the server to per-
form a linear-time preprocessing step for each query. Thus, these schemes cannot
have sublinear amortized time. Batch-PIR schemes [68, 79, 64, 7], which require
the client to make all of her queries at once, in a single non-adaptive batch, do
not apply to many natural applications (e.g., digital library, web browsing), in
which the client decides over time which elements she wants to query.

The world of private-information-retrieval is thus in an undesirable state:
the practical applications are compelling, but existing schemes cannot satisfy
the deployment demands (single server, adaptive queries, small storage, based
on implementable primitives) while avoiding very large server-side costs.

1.1 Our Results

This paper aims to advance the state of the art in private information retrieval by
introducing the first PIR schemes that simultaneously offer a number of impor-
tant properties for use in practice: they require only a single database server, they
have sublinear amortized server time, they allow the client to issue its database
queries adaptively, and they require extra storage sublinear in the database size
(Figure 1). Our schemes further rely only on standard cryptographic primitives
and incur no additional server-side (per client) storage, making them attractive

2

Client Server

query

response

Ω(n)
time
per

query

(a) Standard single-server PIR [74].

ClientClient Server
query 1

response 1
...

query Q
response Q

o(n)
avg.
time
per

query

o(n)
client

storage

(b) This work : Single-server, many-query PIR
with sublinear amortized time and storage.

Fig. 1: Comparison of single-server PIR models, on database size n.

even when many clients query a single database. One limitation of our schemes
is that they require more client-side storage and computation than standard
PIR schemes, though we give lower bounds showing that some of these costs are
inherent to achieving sublinear amortized server time. While the schemes in this
paper may not yet be concretely efficient enough to use in practice, they demon-
strate that sublinear-amortized-time single-server PIR is theoretically feasible.
We hope that future work pushes PIR even closer to practice.

Specifically, in this paper we construct two new families of PIR schemes:

Single-server PIR with sublinear amortized time from linearly homomorphic en-
cryption. First, we show in Theorem 16 that any one of a variety of standard
assumptions—including quadratic residuosity, decision Diffie-Hellman, decision
composite residuosity, and learning with errors—suffices to construct single-
server PIR schemes with sublinear amortized time. In particular, on database
size n, if the client makes at least n1/4 adaptive queries, our schemes have: amor-
tized server time n3/4, amortized communication complexity n1/2, client storage
n3/4, and amortized client time n1/2. (When describing protocol costs in this
section, we hide both log n factors and polynomials in the security parameter.)
More generally, the existence of linearly homomorphic encryption with suffi-
ciently compact ciphertexts and standard single-server PIR with polylogarithmic
communication together imply the existence of our PIR schemes. Our client-side
costs are much larger than those required for standard stateless PIR—which
needs no client storage and requires client time polylogarithmic in the database
size. Our schemes thus reduce server-side costs at some expense to the client.

Single-server PIR with sublinear amortized time and an optimal storage/online-
time trade-off from fully homomorphic encryption. Next, we show in Theorem 19
that under the stronger assumption that fully homomorphic encryption exists,
we can construct PIR schemes with even lower amortized server time and client
storage. In particular, we construct a PIR scheme that on database size n, and
as long as the client makes at least n1/2 queries, has amortized server time n1/2,
amortized communication complexity n1/2, client storage n1/2, and amortized
client time n1/2. (In contrast, from linearly homomorphic encryption, we get
schemes with larger server time and client storage n3/4.)

Lower bounds on multi-query PIR. Finally, we give new lower bounds on PIR
schemes in the amortized (i.e., multi-query) setting. We give one lower bound

3

against PIR schemes that allow the client to make its queries adaptively, and
another against schemes that require the client to make its queries in a non-
adaptive batch. In the adaptive setting, we show in Theorem 21 that any multi-
query PIR scheme on database size n in which: the client stores S bits between
queries, the server stores the database in its original form, and the server runs
in amortized online time T , it must be that ST ≥ n. This lower bound implies
that our fully-homomorphic-encryption-based PIR scheme achieves the optimal
trade-off (up to log n factors and polynomials in the security parameter) between
online server time and client storage, when the servers store the database in
unmodified form.

In Theorem 23, we show that a similar lower bound holds, even if the client
makes all of its queries in a single batch and if the client is able to store some
precomputed information about the database contents. In particular, if the client
stores at most S bits of information, the client makes a batch of Q non-adaptive
queries, the server stores the database in its original form, and the server runs
in amortized time T per query, it must hold that ST +QT ≥ n. This generalizes
the bound of Beimel, Ishai, and Malkin [13], who prove this result for the case
S = 0. Our bound implies that when:

– S < Q, existing batch PIR schemes [68] achieve optimal amortized time even
in the setting in which the client can obtain some preprocessed advice about
the database contents, and

– S > Q, our new fully-homomorphic-encryption-based PIR scheme achieves
optimal amortized time,

up to log n factors and polynomials in the security parameter.

1.2 Overview of Techniques

We construct our new PIR schemes in two steps. First, we construct a new sort of
two-server PIR scheme. Second, we use cryptographic assumptions to “compile”
the two-server scheme into a single-server scheme.

Step 1: Two-server offline/online PIR with a single-server online phase.
In the first step (Section 3), we design a new type of two-server offline/online PIR
scheme [39]. The communication pattern of the two-server schemes we construct
is as follows:

1. Offline phase. In a setup phase, the client sends a setup request to the first
server (the “offline server”). The offline server runs in time at least linear in
the database size and returns to the client a “hint” about the database state.
The hint has size sublinear in the length of the database.

2. Online phases (runs once for each of Q queries). Whenever the client wants
to make a PIR query, it uses its hint to issue a query to the second server
(the “online server”). The online server produces an answer to the query in
time sublinear in the database size and returns its answer to the client. The
total communication in this step is sublinear in the database size.

The client can run the online phase Q times—for some parameter Q deter-
mined by the PIR scheme—using the same hint and without communicating

4

with the offline server. After Q queries, the client discards its hint and reruns
the offline setup phase from scratch.

Prior offline/online PIR schemes [39] require the client to communicate with
both servers in the online phases, whenever the client makes multiple queries
with the same hint. (If the client only ever makes a single query, the client can
communicate with only one server in the online phase, but then the scheme
cannot achieve sublinear amortized time.) In contrast, our schemes crucially
allow the client to only communicate with a single server (the online server) in
the online phase. Unlike schemes for private stateful information retrieval [83],
the online phase in our scheme runs in sublinear time.

To build our two-server offline/online PIR scheme, we give a generic tech-
nique for “compiling” a two-server PIR scheme that supports a single query
with sublinear online time into one that supports multiple queries with sublin-
ear online time. Plugging the existing single-query offline/online PIR schemes
with sublinear online time [39, 89] into this compiler completes the two-server
construction.

Provided that the offline server time is Õ(n) and the number of supported
queries is at least nε, for constant ε > 0, this two-server scheme already allows
adaptive queries and has sublinear total amortized time and sublinear client
storage. The only limitation is that it requires two non-colluding servers.

Step 2: Converting a two-server scheme to a one-server scheme. The
last step (Sections 4 and 5) is to convert the two-server PIR scheme into a one-
server scheme. Following Corrigan-Gibbs and Kogan [39], we have the client en-
crypt the hint request that she sends to the offline server using a fully homomor-
phic encryption scheme. (As we discuss in Section 4, Aiello, Bhatt, Ostrovsky,
and Rajagopalan [2] proposed a similar technique for converting multi-prover
proof systems to single-prover proof systems, formalizing the approach of Biehl,
Meyer, and Wetzel [18].) The offline server can then homomorphically answer
the client’s hint request in the offline phase while learning nothing about it. At
this point, the client can execute both the offline and online phases with the
same server, which completes the construction.

To construct the PIR schemes from weaker assumptions (linearly homo-
morphic encryption), we exploit the linearity of the underlying two-server PIR
scheme. In particular, we show that the hint that the client downloads from
the offline server corresponds to a client-specified linear function applied to the
database. With a careful balancing of parameters and application of linearly ho-
momorphic encryption and standard single-server PIR, we show that the client
can obtain this linear function without revealing it to the database server.

The construction of our most asymptotically efficient PIR scheme, which
appears in Section 5, implicitly follows essentially the same two-step strategy.
The only difference is that achieving the improved efficiency requires us to design
a new two-server offline/online PIR scheme for multiple queries from scratch. The
offline phase of this scheme requires the server to compute non-linear functions
of the client query—and thus requires fully homomorphic encryption—but the
online time of the scheme is lower, which is the source of efficiency improvements.

5

Lower bounds. Our first lower bound (Theorem 21) relates the number S of bits
of information the client stores between queries and the amortized online time
T of the PIR server, for PIR schemes in which the server stores the database in
unmodified form. In particular, we show that ST = Ω̃(n). To prove this lower
bound, we show that if there is a single-server PIR scheme with client storage S
and amortized online T , there exists a two-server offline/online PIR scheme for
a single query with hint size S and online time T . Then, applying existing lower
bounds on such schemes [39] completes the proof.

Our second lower bound (Theorem 23) considers the setting in which the
client makes a batch of queries at once. We prove this result using an incom-
pressibility argument [95, 50, 41, 43, 42, 3], showing that the existence of a
better-than-expected PIR scheme would yield a better-than-possible compres-
sion algorithm. (As we discuss in the full version [38], it is not clear whether it
is possible to derive the same bound from the elegant and more modern “pre-
sampling” method [92, 36, 37].)

1.3 Related Work

Multi-server PIR. Chor, Goldreich, Kushilevitz, and Sudan [35] introduced
private information retrieval and gave the first protocols, which were in the
multi-server information-theoretic setting and achieved communication O(n1/3).
A sequence of works [5, 33, 11, 12, 96, 49, 55, 21, 46, 22] then improved the
communication complexity of PIR, and today’s PIR schemes can achieve sub-
polynomial communication complexity in the information-theoretic setting [46]
and logarithmic communication complexity in the computational setting [22].
Multi-server PIR schemes are more efficient, both in terms of communication
and computation, than single-server schemes. However, the security of multi-
server PIR relies on non-collusion between the servers, which can be hard to
guarantee in practice.

Single-server PIR. Kushilevitz and Ostrovsky [74] presented the first single-
server PIR schemes, based on linearly homomorphic encryption. A sequence of
works then improved the communication complexity of single-server PIR, and
showed how to construct PIR schemes with polylogarithmic communication from
a wide range of public-key assumptions, such as the φ-hiding assumption [28, 53],
the decisional composite-residuosity assumption [30, 77], the decisional Diffie-
Hellman assumption [45], and the quadratic-residuosity assumption [45].

Recent works [1, 6, 52, 81, 4] have used lattice-based encryption schemes
to improve the concrete efficiency of single-server PIR, in terms of both com-
munication and computation. The goal is to get the most efficient single-server
PIR schemes subject to the linear-server-time lower bound. These techniques are
complementary to ours, and applying lattice-based optimizations to our setting
could improve the concrete efficiency of our protocols.

Computational overhead of PIR. All early PIR protocols required the servers
to perform work linear in the database size when responding to a query. Beimel,

6

Table 2: A comparison of single-server, many-query PIR schemes. We present the per-
query, asymptotic costs of each scheme, on a database of size n, where each of m
clients makes many PIR queries and at most m̂ clients may be corrupted. We omit
poly-logarithmic factors in n and m, along with polynomial factors in the security
parameter. For lower bounds, we denote the extra client storage by S. We use ε as an
arbitrarily small, positive constant. We amortize the costs over the number of queries
that minimizes the per-query costs. For each scheme, the table indicates:

– the additional cryptographic assumptions made beyond single-server PIR with poly-
logarithmic communication,

– the number of queries (per client) over which we amortize,

– whether the client makes her queries adaptively or as a batch,

– the amortized number of bits communicated per query,

– the amortized client and server time per query, and

– the additional number of bits stored by the client and the server between queries.

For schemes in the offline/online model, the communication and computation costs are
taken to be the sum of the offline costs, amortized over the number of queries supported
by a single offline phase, and the online costs. The extra server storage does not include
the n-bit database, stored by the server. The extra client storage does not include the
indices queried, even if these indices are queried as a batch.

Per-query time Extra storage

Scheme (extra assumptions) P
er

-c
li
en

t
q
u
er

ie
s

A
d
a
p
ti

v
e?

P
er

-q
u
er

y
co

m
m

.

Client Server Client Server

Batch PIR [68, 64, 6] Q × 1 1 n
Q

0 0

Stateful PIR [83] n1/2 X n1/2 n n † n1/2 0
Single-query single-server PIR

Standard [74, 28] 1 X 1 1 n 0 0

Offline/online [39] (LHE) 1 X n2/3 n2/3 n n2/3 0

Offline/online [39] (FHE) 1 X n1/2 n1/2 n n1/2 0
Download entire DB n1−ε X nε nε nε n 0
Doubly-efficient PIR

Secret key (OLDC) [29, 25] n1−ε X nε nε nε 1 mn
Public key (OLDC+VBB) [25] 1 ∗ X nε nε nε 0 n

Private anonymous data access
Read-only [63] (FHE) 1 ∗ X m̂ m̂ m̂ m̂ m̂n1+ε

This work

Theorem 16 (LHE) n1/4 X n1/2 n1/2 n3/4 n3/4 0

Theorem 19 (FHE) n1/2 X n1/2 n1/2 n1/2 n1/2 0

Lower bounds, for Q queries, on schemes storing the database in its original form
Standard PIR [14] Q × – – ≥ n

Q
– –

This work (Theorem 21) Q X – – ≥ n
S

S 0
This work (Theorem 23) Q × – – ≥ n

S+Q
S 0

† The number of public-key operations is n1/2.
∗ This number of per-client queries assumes that the total number of clients, m, grows sufficently

large.

7

Ishai, and Malkin [14] showed that this is inherent, giving an Ω(n) lower bound
on the server time. Their lower bound applies to both multi-server and single-
server schemes with either information-theoretic or computational security.

Many lines of work have sought to construct PIR schemes with lower com-
putational costs, which circumvent the above linear lower bound:

– PIR with preprocessing denotes a class of schemes in which the server(s) store
the database in encoded form [13, 14, 94], which allows them to respond to
queries in time sublinear in the database size. The first such schemes tar-
geted the multi-server setting. Recent work [25, 29] applies oblivious locally
decodable codes [24, 19, 23] to construct single-server PIR schemes with sub-
linear server time, after a one-time database preprocessing step. However,
these schemes require extra server-side storage per client that is linear in the
database size. While an idealized form of program obfuscation [9] can be used
to drastically reduce this storage [25], the lack of concretely efficient candidate
constructions for program obfuscation rules out the use of these schemes for
the time being. In contrast, the single-server schemes in this paper require
only standard assumptions.

“Offline/online PIR” schemes use a different type of preprocessing: the client
and server run a one-time linear-complexity offline setup process, during which
the client downloads and stores information about the database. After that,
the client can make queries to the database, and the server can respond in
sublinear time. Previous works [39, 89, 72] mostly focus on the two-server
setting, where they achieve sublinear amortized time. In the single-server
setting, previous offline/online PIR schemes [39] allow for only a single online
query after each execution of the offline phase. As a result, in the single-server
setting, the cost of each query is still linear in the database size.

Finally, Lipmaa [78] constructs single-server PIR with slighly sublinear time
by encoding the database as a branching program that is obliviously evaluated
in O(n

logn) operations. The schemes in this work achieve significantly lower
amortized time, yet require the client to make multiple queries.

– Make queries in a non-adaptive batch: When the client knows the entire se-
quence of database queries she will make in advance, the client and server
can use “batch PIR” schemes [68, 61, 65, 64, 7, 31, 6] to achieve sublinear
amortized server time. The multi-server scheme of Lueks and Goldberg [79]
allows the servers to simultaneously process a batch of queries from different
clients, and achieves sublinear per-query time. Our schemes require only one
server and achieve sublinear amortized time, even given a single client making
her queries in an adaptive sequence.

– Download and store the entire database: If the client has enough storage space,
she can keep a local copy of the entire database. The server pays a linear
cost to ship the database to the client, but the client can answer subsequent
database queries on her own with no server work. In contrast, the schemes in
this paper avoid having to store the entire database at the client.

8

– Settle on a sublinear number of public-key operations: Private stateful infor-
mation retrieval [83] schemes improve the concrete efficiency of single-server
PIR by having the server do a sublinear number of public-key operations for
each query. Such schemes [83, 81] still require a linear number of symmetric
key and plaintext operations for each query. In contrast, the schemes in this
paper require sublinear amortized work of any kind, per query.

Communication lower bounds on PIR. A series of works give bounds on
the communication required for multi-server PIR [56, 93]. Single-server PIR con-
structions match the trivial log n lower bound (up to polylogarithmic factors).

Lower bounds for PIR with preprocessing. Beimel, Ishai, and Malkin [13]
proved that if a server can store an S-bit hint and run in amortized time T , then
it must hold that ST ≥ n. Persiano and Yeo [84] recently improved this lower
bound to ST ≥ n log n in the single-server case. In this paper, we are interested
in offline/online PIR schemes, in which the client stores a hint and the server
stores the database in unmodified form.

Lower bounds on oblivious RAM. Recent work proves strong limits on the
performance of oblivious-RAM [58] schemes [26, 69, 75, 76, 73]. These schemes
allow the server to maintain per-client state; in our setting of PIR, the server is
stateless. The PIR setting thus requires different lower-bound approaches [13].

2 Background

Notation. We write the set of positive integers as N. For an integer n ∈ N,
we write [n] = {1, . . . , n} and we write the empty set as ∅. We ignore issues of
integrality, and treat numbers such as n1/2 and n/k as integers. We use poly(·) to
denote a fixed polynomial in its argument. We use the standard Landau notation
O(·) and Ω(·) for asymptotics. When the big-O contains multiple variables, such
as f(n) = O(n/S), all variables other than n are implicit functions of n (which

is the database size when it is not made explicit). The notation Õ(f(n)) hides

polylogarithmic factors in the parameter n, and Õλ(·) hides poly(log n, λ) factors.
For a finite set X , x←R X denotes an independent and uniformly random draw
from X . When unspecified, we take all logarithms base two.

We work in the RAM model, with word size logarithmic in the input length
(i.e., database size n) and polynomial in the security parameter λ. We give
running times up to poly(log n, λ) factors, which makes our results relatively
independent of the specifics of the computational model. An “efficient algorithm”
is one that runs in probabilistic polynomial time in its inputs and in λ.

2.1 Standard Definitions

We begin by defining the standard cryptographic primitives that this work uses.

Pseudorandom permutations. We use the standard notion of pseudorandom
permutations [57]. On security parameter λ ∈ N, a domain size n ∈ N, and a key
space Kλ, we denote a pseudorandom permutation by PRP : Kλ × [n]→ [n].

9

Definition 1 (Linearly homomorphic encryption). Let (Gen,Enc,Dec) be
a public-key encryption scheme. The scheme is linearly homomorphic if, for every
keypair (sk, pk) that Gen outputs,

– the message space is a group (Mpk,+),

– the ciphertext space is a group (Cpk, ·), and

– for every pair of messages m0,m1 ∈Mpk, it holds that

Dec(sk,Enc(pk,m0) · Enc(pk,m1) ∈ Cpk) = Dec(sk,Enc(pk,m0 +m1 ∈Mpk)).

Definition 2 (Gate-by-gate fully homomorphic encryption). We use
(FHE.Gen, FHE.Enc, FHE.Dec, FHE.Eval) to denote a symmetric-key fully homo-
morphic encryption scheme [51]. We say a scheme is a gate-by-gate fully homo-
morphic encryption scheme if the homomorphic evaluation routine FHE.Eval on
a circuit of size |C| and security parameter λ runs in time |C| · poly(log |C| , λ).
Standard fully homomorphic encryption schemes are gate-by-gate [51, 27, 54].

2.2 Definition of Offline/Online PIR

Throughout, we present our new single-server PIR schemes in an offline/online
model [83, 39]. That is, the client first interacts with the server in an offline
phase to obtain a succinct “hint” about the database contents. This hint allows
the client to make many queries in a subsequent online phase. Provided that the
server-side cost is low enough in both phases, the server’s total amortized time
(including the cost of both phases) will be sublinear in the database size.

We now give definitions for one- and two-server offline/online PIR schemes
that support many adaptive queries. Our definition of offline/online PIR differs
from that of prior work in one important way [39, 72]. In our definition, in the
two-server setting, the client may only communicate with a single server in the
online phase. Prior two-server offline/online PIR schemes [39, 72] allow the client
to communicate with both servers in the online phase.

Definition 3 (Offline/online PIR for adaptive queries). An offline/online
PIR scheme for adaptive queries is a tuple of polynomial-time algorithms:

– HintQuery(1λ, n) → (ck, q), a randomized algorithm that takes in a security
parameter λ and a database length n ∈ N, and outputs a client key ck and a
hint request q,

– HintAnswer(D, q) → a, a deterministic algorithm that takes in a database
D ∈ {0, 1}n and a hint request q, and outputs a hint answer a,

– HintReconstruct(ck, a) → h, a deterministic algorithm that takes in a client
key ck and a hint answer a, and outputs a hint h,

– Query(ck, i) → (ck′, st, q), a randomized algorithm that takes in a client key
ck and an index i ∈ [n], and outputs an updated client key ck′, a client query
state st, and a query q,

– AnswerD(q)→ a, a deterministic algorithm that takes in a query q, and gets
access to an oracle that:

10

Experiment 4 (Correctness). Pa-
rameterized by a PIR scheme Π, se-
curity parameter λ ∈ N, number of
queries Q ∈ N, database size n ∈ N,
database D ∈ {0, 1}n, and query se-
quence (i1, . . . , iQ) ∈ [n]Q.

– Compute:

(ck, q)← Π.HintQuery(1λ, n)

a← Π.HintAnswer(D, q)

h← Π.HintReconstruct(ck, a)

– For t = 1, . . . , Q, compute:

(ck, st, q)← Π.Query(ck, it)

a← Π.AnswerD(q)

(h, vi)← Π.Reconstruct(st, h, a)

– Output “1” if vt = Dit for all
t ∈ [Q]. Output “0” otherwise.

Experiment 5 (Security). Param-
eterized by an adversary A, PIR
scheme Π, number of servers k ∈
{1, 2}, security parameter λ ∈ N, num-
ber of queries Q ∈ N, database size n ∈
N, and bit b ∈ {0, 1}.
– Compute:

(ck, q)← Π.HintQuery(1λ, n)

If k = 1: // Single-server security

st← A(1λ, q)

Else: // Two-server security

st← A(1λ)

– For t = 1, . . . , Q, compute:

(st, i0, i1)← A(st)

(ck, , q)← Π.Query(ck, ib)

st← A(st, q)

– Output b′ ← A(st).

• takes as input an index j ∈ [n], and

• returns the j-th bit of the database Dj ∈ {0, 1},
and outputs an answer string a, and

– Reconstruct(st, h, a) → (h′, Di), a deterministic algorithm that takes in a
query state st, a hint h, and an answer string a, and outputs an updated
hint h′ and a database bit Di.

In a deployment, (HintQuery,HintAnswer,HintReconstruct) are executed in the of-
fline phase, while (Query,Answer,Reconstruct) are executed in each online phase.
Furthermore, we say that the PIR scheme supports Q adaptive queries if it sat-
isfies the following notions of (1) correctness and (2) security for Q queries:

Correctness for Q queries. We require that if a client and a server cor-
rectly execute the protocol, the client can recover any Q database records of its
choosing, even if the client chooses these records adaptively. Formally, a multi-
query offline/online PIR scheme Π satisfies correctness for Q queries if for every
λ, n ∈ N, D ∈ {0, 1}n, and every (i1, . . . , iQ) ∈ [n]Q, Experiment 4 outputs “1”
with probability 1− negl(λ).

Security for Q queries. We require that an adversarial (malicious) server
“learns nothing” about which sequence of database records the client is fetch-
ing, even if the adversary can adaptively choose these indices. In the single-server
setting, where the same server runs both the offline and online phase, the adver-
sary is first given the hint request. In the two-server setting, where a separate

11

server runs the offline phase, the adversary only sees the online queries. (This
is sufficient, as an adversarial offline server trivially learns nothing about the
client’s queries since the hint request does not depend on these queries.)

Formally, for an adversary A, multi-query offline/online PIR scheme Π, num-
ber of servers k ∈ {1, 2}, security parameter λ ∈ N, database size n ∈ N, and
bit b ∈ {0, 1}, let WA,k,λ,Q,n,b be the event that Experiment 5 outputs “1” when
parameterized with these values. We define the Q-query PIR advantage of A:

PIRAdvk[A, Π](λ, n) := |Pr[WA,k,λ,Q,n,0]− Pr[WA,k,λ,Q,n,1]| .

We say that a multi-query offline/online PIR scheme Π is k-server secure if,
for all efficient algorithms A, all polynomially bounded functions n(λ), and all
λ ∈ N, PIRAdvk[A, Π](λ, n(λ)) ≤ negl(λ).

Definition 6 (Sublinear amortized time). We say that an offline/online
PIR scheme has sublinear amortized time if the there exists a number of queries
Q ∈ N such that the total server time required to run the offline and online
phases for Q queries on a database of size n is o(Qn). More formally, for every
choice of the security parameter λ ∈ N, database size n ∈ N, and query sequence
(i1, . . . , iQ) ∈ [n]Q, the total running time of HintAnswer (executed once) and
Answer (executed Q times) in Experiment 4 must be o(Qn).

Remark 7 (Handling an unbounded number of queries). A scheme with sublinear
amortized time for some number of queries Q ∈ N immediately implies a scheme
with sublinear amortized time for any larger number of queries, including a
number that is a-priori unbounded. One can obtain such a scheme by “restarting”
the scheme every Q queries and rerunning the offline phase from scratch. The
amortized costs remain the same.

Remark 8 (Malicious security). In our definition (Definition 3), following prior
work [39], the client’s queries do not depend on the server’s answers to prior
queries. In this way, our PIR schemes naturally protect client privacy against
a malicious server—the server learns the same information about the client’s
queries whether or not the server executes the protocol faithfully.

Remark 9 (Correctness failures). Our definition does not require that correct-
ness holds if the client makes a sequence of queries that is correlated with the
randomness it used to generate the hint request. A stronger correctness definition
would guarantee correctness in all cases (i.e., with probability one). Strengthen-
ing our PIR schemes to provide this form of correctness represents an interesting
challenge for future work.

Remark 10 (Handling database changes). In many natural applications of pri-
vate information retrieval, the database contents change often. Näıvely, when-
ever the database contents change, the client and server would need to rerun
the costly hint-generation process. In the limit—when the entire contents of the
database changes between a client’s queries—rerunning the hint-generation step
is inherently required. When the database changes more slowly, prior work on

12

offline/online PIR [72], building on much earlier work in dynamic data struc-
tures [17], shows how to update the client’s hint at modest cost. In particular,
when a constant number of database rows change between each pair of client
queries, the scheme’s costs do not change, up to factors in the security parameter
and logarithmic in the database size. These techniques from prior work apply
directly to our setting, so we do not discuss them further.

3 Two-Server PIR with a Single-Server Online Phase
and Sublinear Amortized Time

In this section, we give a generic construction that converts a two-server of-
fline/online PIR scheme that supports a single query into a two-server offline/online
PIR scheme that supports any number of adaptive queries. The transformation
has three useful properties:

1. If the original PIR scheme has linear offline server time, then the resulting
multi-query scheme has linear offline server time as well.

2. If the original PIR scheme has sublinear online server time, then the resulting
multi-query scheme has sublinear online server time as well.

3. During the online phase—when the client is making its sequence of adaptive
queries—the client only communicates with one of the servers. (In contrast,
prior two-server PIR schemes with sublinear amortized time [39, 72] require
the client to communicate with both servers in the online phase.)

After presenting the generic transformation (Lemma 11) in this section, we in-
stantiate this transformation in Section 4 and use it to construct single-server
PIR schemes with sublinear amortized time.

Lemma 11 (The Compiler Lemma). Let Π be a two-server offline/online
PIR scheme that supports a single query. Then, for any database size n ∈ N,
security parameter λ ∈ N, and number of queries Q < n, Construction 15,
when instantiated with a secure pseudorandom permutation, is a two-server of-
fline/online PIR scheme that supports Q adaptive queries and whose offline and
online phases have communication, computation, and client storage costs domi-
nated by running O(λQ) instances of Π, each on a database of size n/Q.

To prove the lemma, we must show that the scheme of Construction 15
satisfies the claimed efficiency properties, along with correctness and security.
Efficiency follows by construction. We give the full correctness and security ar-
guments in the full version of this paper [38].

Remark 12. In the PIR scheme implied by Lemma 11, the online-phase upload
communication (from the client to server) is in fact only as large as the upload
communication required for running a single instance of the underlying PIR
scheme Π on a database of size n/Q.

Before giving the construction that proves Lemma 11, we describe the idea
behind our approach. We take inspiration from the work of Ishai, Kushilevitz,

13

Ostrovsky, and Sahai [68], who construct “batch” PIR schemes, in which the
client can issue a batch of Q queries at once, and the server can respond to all Q
queries in time Õ(n). (In contrast, answering Q queries using a non-batch PIR
scheme requires server time Ω(Qn).) The crucial difference between our PIR
schemes and prior work on batch PIR is that our schemes allow the client to
make its Q queries adaptively, rather than in a single batch all at once.

Our idea is to first permute the database according to a pseudorandom per-
mutation and then partition the n database records into Q chunks, each of size
n/Q. The key observation is that, if the client makes Q adaptive queries, it is
extremely unlikely that the client will ever need to query any chunk more than λ
times. In particular, by a balls-in-bins argument, the probability, taken over the
random key of the pseudorandom permutation, that any chunk receives more
than λ queries is negligible in λ.

Then, given a two-server offline/online PIR scheme Π for a single query, we
construct a two-server offline/online PIR scheme for many queries as follows:

– Offline phase. The client and the offline server run the offline phase of Π on
each of the Q database chunks λ times. For each of the Q database chunks,
the client then holds λ client keys and hints.

– Online phase. Whenever the client wants to make a database query, it iden-
tifies the chunk in which its desired database record falls. The client finds
an unused client key for that chunk and runs the online phase of Π for that
chunk to produce a query. The client sends the query to the online server,
who answers that query with respect to each of the Q database chunks. Using
the online server’s answers, the client can reconstruct its database record of
interest. Crucially, the client’s query does not reveal to the server the chunk
in which its desired database record falls. Finally, the client then deletes the
client key and hint that it used for this query.

The formal description of our protocol appears in Construction 15.

Remark 13. Construction 15 uses a pseudorandom permutation (PRP) to per-
mute and partition the database. The client then reveals the PRP key it used for
this partitioning to the server. Crucially, the security of our construction does
not rely on the pseudorandomness of the PRP. The PRP security property only
appears in the correctness argument of our scheme (which we give in the full
version of this paper [38]). So, revealing the PRP key to the server in this way
has no effect on the security of the scheme.

Remark 14 (Reducing online download). In the online phase of Construction 15,
the online server’s answer to the client consists of a vector of Q answers a =
((a)1, . . . , (a)Q). The client uses only one of these answers (a)j∗ . To reduce down-
load cost, the client and server can run a single-server PIR protocol, where the
server’s input is the database a of Q answers and the client’s input is the index
j∗ ∈ [Q] of it’s desired answer. This reduces the client’s online download cost by
a factor of Q, at the cost of requiring the server to perform Oλ(Q) public-key
operations in the online phase.

14

Construction 15 (Two-server offline/online PIR for Q adaptive queries
with a single-server online phase). The scheme uses a single-query two-server
offline/online PIR scheme Π and a pseudorandom permutation PRP : Kλ × [n]→
[n]. The scheme is parameterized by a maximum number of queries Q = Q(n) < n.

I. Offline phase.

HintQuery(1λ, n)→ (ck, q).

1. For j ∈ [Q] and ` ∈ [λ]: ((ĉk)j`, (q̂)j`)← Π.HintQuery(1λ, n/Q).

2. Sample k ←R Kλ, set ck← (k, ĉk, ∅), and set q ← (k, q̂).

3. Return (ck, q).

HintAnswer(D, q)→ a.

1. Parse (k, q̂)← q.

2. // Permute the database according to PRP(k, ·) and divide it into Q chunks.
For j ∈ [Q]: Cj ← (DPRP(k,(j−1)(n/Q)+1)‖ . . . ‖DPRP(k,(j+1)(n/Q))) ∈ {0, 1}n/Q.

3. For j ∈ [Q] and ` ∈ [λ]: (a)j` ← Π.HintAnswer(Cj , (q̂)j`).

4. Return a.

HintReconstruct(ck, a)→ h.

1. Parse (k, ĉk, queried)← ck.

2. For j ∈ [Q] and ` ∈ [λ]: (ĥ)j` ← Π.HintReconstruct((ĉk)j`, (a)j`).

3. Set cache← {}. // An empty map (associative array) data structure.

4. Return h = (ĥ, cache).

II. Online phase.

Query(ck, i)→ (ck′, st, q).

1. Parse (k, ĉk, queried)← ck.

2. Find (the unique) i∗ ∈ [n/Q] and j∗ ∈ [Q] so that PRP(k, i) = (j∗−1)(n/Q)+i∗.

3. Find `∗ ∈ [λ] such that (ck)j∗`∗ 6= ⊥.

– If no such `∗ exists or i ∈ queried, sample i∗ ←R [n/Q] and choose a random
j∗ ∈ [Q] and `∗ ∈ [λ] out of those for which (ck)j∗`∗ 6= ⊥.

4. Let (, st′, q′)← Π.Query((ĉk)j∗`∗ , i
∗).

5. Let (ĉk)j∗`∗ ← ⊥, let st ← (st′, i, j∗, `∗), let q ← (k, q′), and let ck′ ←
(k, ĉk, queried ∪ {i}).

6. Return (ck′, st, q).

AnswerD(q)→ a.

1. Parse (k, q′)← q.

2. For j ∈ [Q]: (a)j ← Π.AnswerOj (q′), where Oj(x) := DPRP(k,(j−1)(n/Q)+x).

3. Return a.

Reconstruct(st, h, a)→ (h′, Di).

1. Parse (st′, i, j∗, `∗)← st and parse (ĥ, cache)← h.

2. If cache[i] is not set, let cache[i]← Π.Reconstruct(st′, (ĥ)j∗`∗ , (a)j∗).

3. Set Di ← cache[i]. Set h′ ← (ĥ, cache).

4. Return (h′, Di).

15

4 Single-Server PIR with Sublinear Amortized Time
from DCR, QR, DDH, or LWE

In this section, we use the general transformation of Section 3 to construct the
first single-server PIR schemes with sublinear amortized total time and sublinear
extra storage, allowing the client to make her queries adaptively.

These constructions work in two steps:

– First, we use the Compiler Lemma (Lemma 11) to convert a two-server of-
fline/online PIR scheme for a single query into a two-server offline/online PIR
scheme for multiple adaptive queries, in which the client only communicates
with a single server in the online phase.

– Next, we use linearly homomorphic encryption and single-server PIR to al-
low the client and server to run the offline phase of the two-server scheme
without leaking any information to the server. At this point, we can execute
the functionality of both servers in the two-server scheme using just a single
server. In other words, we have constructed a single-server offline/online PIR
scheme that supports multiple adaptive queries.

The idea of using homomorphic encryption to run a two-server protocol on a
single server arose first, to our knowledge, in the domain of multi-prover interac-
tive proofs. Aiello, Bhatt, Ostrovsky, and Rajagopalan [2] formalized this general
approach, which was initially proposed by Biehl, Meyer, and Wetzel [18]. Subse-
quent work demonstrated that compiling multi-prover proof systems to single-
prover systems requires care [47, 91, 71, 44, 48] (in particular it requires the un-
derlying proof system to be sound against “no-signaling” provers [91]). Corrigan-
Gibbs and Kogan [39] used homomorphic encryption to convert a two-server PIR
scheme to a single-server offline/online PIR scheme that supports a single query
in sublinear online time. Our contribution is to construct a single-server PIR
scheme that supports multiple, adaptive queries and that thus achieves sublin-
ear amortized total time.

We now show that any one of a variety of cryptographic assumptions—the
Decision Composite Residuosity assumption [82, 77], the Quadratic Residuosity
assumption [59], the Decision Diffie-Hellman assumption [20], or the Learning
with Errors assumption [87]—suffices for constructing single-server PIR with
sublinear amortized time:

Theorem 16 (Single-server PIR with sublinear amortized time). Un-
der the DCR, LWE, QR, or DDH assumptions, there exists a single-server of-
fline/online PIR scheme that, on database size n, security parameter λ, and as
long as the client makes at least n1/4 adaptive queries, has

– amortized communication Õλ(n1/2),

– amortized server time Õλ(n3/4),

– amortized client time Õλ(n1/2), and

– client storage Õλ(n3/4).

16

The proof of Theorem 16 will make use of the following two-server offline/online
PIR scheme which is implicit in prior work.

Lemma 17 (Implicit in Theorem 20 of CK20 [39]). There is a two-server
offline/online PIR scheme (with information-theoretic security) that supports a
single query on database size n such that, in the offline phase:

– the client uploads a vector q ∈ {0, 1}n to the offline server,

– the offline server computes the inner product of the database with all n cyclic
shifts of the query vector q (in Õ(n) time using a fast Fourier transform),

– the client downloads Õ(
√
n) bits of the resulting matrix-vector product

and, in the online phase:

– the client uploads Õ(
√
n) bits to the online server,

– the online server runs in time Õ(
√
n), and

– the client downloads one bit.

Proof of Theorem 16. The proof works in two main steps. First, we use Lemma 11
to “compile” the single-query two-server PIR scheme of Lemma 17 into a multi-
query two-server PIR scheme. Second, we use linearly homomorphic encryption—
following the work of Corrigan-Gibbs and Kogan [39] in the single-query setting—
to allow a single server to implement the role of both servers.

Step 1: A stepping-stone two-server scheme. We first construct a two-
server offline/online PIR scheme that: (a) supports multiple queries, (b) has
sublinear online time, and (c) requires only one server in the online phase. To
do so, we use the Compiler Lemma (Lemma 11) to convert the two-server PIR
scheme of Lemma 17 into a two-server PIR scheme satisfying these three goals.

In particular, Lemma 11 and Lemma 17 together imply a two-server of-
fline/online PIR scheme that supports any number of queries Q < n, and whose
offline and online phases consist of running O(λQ) instances of the PIR scheme of
Lemma 17 on databases of size n/Q. The resulting scheme then has the following
structure in the offline phase:

– the client uploads Õλ(Q) bit vectors to the offline server, each of size n/Q,

– the offline server applies a length-preserving linear function to each vector (in
quasi-linear time, as in the Lemma 17 scheme),

– the client downloads a total of Õλ(
√
Qn) bits from the vectors that the server

computes.

And in the online phase,

– the client uploads Õλ(
√
Qn) bits to the online server,

– the online server runs in time Õλ(
√
Qn), and

– the client downloads Õλ(Q) bits.

This scheme requires the existence of one-way functions.

As desired, this scheme supports multiple queries, has sublinear online time
(whenever Q� n), and requires only one server in the online phase. The offline

17

upload cost and the client time of the scheme are Ω̃λ(n)—linear in the database
size, but we remove this limitation later on.

Step 2: Using homomorphic encryption to run the two-server scheme
on one server. Next, we show that the client can fetch the information it
needs to complete the offline phase of the Step-1 scheme without revealing any
information to the server. In the Step-1 scheme, the offline server’s work con-
sists of evaluating a client-supplied linear function over the database and can
thus be performed under linearly homomorphic encryption. For this step, we
will need a linearly homomorphic encryption scheme with ciphertexts of size
Õλ(1), along with a single-server PIR scheme with communication cost and

client time Õλ(1). The existence of both primitives follows from the Decision
Composite Residue (DCR) assumptions [82, 77] and the Learning with Errors
(LWE) assumption [87]. Recent work of Döttling, Garg, Ishai, Malavolta, Mour,
and Ostrovsky [45] shows that the Quadratic Residuosity (QR) assumption [59]
and decision Diffie-Hellman (DDH) assumption [20] also imply these primitives.

In particular, the client first samples a random encryption key for a linearly
homomorphic encryption scheme. Then the client executes the offline phase as
follows:

– The client encrypts each component of its Õλ(Q) bit vectors using the linearly
homomorphic encryption scheme. The client sends these vectors to the server.

– Under encryption, the server applies the length-preserving linear function to
each encrypted vector. As in the Step-1 scheme, this computation takes Õλ(n)
time using an FFT on the encrypted values.

– The client uses a single-server PIR scheme [74], to fetch a total of Õλ(
√
Qn)

components of the ciphertext vectors that the server has computed. Since
modern single-server PIR schemes have communication cost Õλ(1), this step

requires communication and client time Õλ(
√
Qn). Using batch PIR [68, 64,

7], the server can answer this set of queries in time Õλ(n).

Finally, the client decrypts the resulting ciphertexts to recover exactly the same
information that it obtained at the end of the offline phase of the two-server
scheme. At this point, the offline phase has upload Õλ(n), server time Õλ(n),

client time Õλ(n), and download Õλ(
√
Qn). The online phase has upload Õλ(

√
Qn)

bits, server time Õ(
√
Qn), client time Õλ(

√
Qn+Q), and download Õλ(Q).

Final rebalancing. We complete the proof by reducing the offline upload cost
using the standard rebalancing idea [34, Section 4.3]. In particular, we divide
the database into k chunks, of size n′ = n/k, for a parameter k chosen later.

Now, the offline phase has upload Õλ(n/k), server time Õλ(n), client time

Õλ(n/k+
√
Qnk), and download k ·Õλ(

√
Qn/k) and the online phase has upload

Õλ(
√
Qn/k) bits, server time k · Õ(

√
Qn/k), client time Õλ(

√
Qn/k+Qk) and

download k · Õλ(Q). We choose Q and k to balance the following costs, ignoring
poly(λ, log n) factors:

– the amortized offline time: n/Q, and

– the online server time:
√
kQn.

18

To do so, we choose k = n
Q3 and Q ≤ n1/3. This yields a PIR scheme with

amortized server time Õλ(n/Q), amortized client time Õλ(Q2 + n/Q2) and

amortized communication Õλ(Q2 + n/Q2). The client storage is equal to the

(non-amortized) offline download cost, which is Õλ(n/Q).
Finally, to construct the scheme of Theorem 16, we chose Q = n1/4 to min-

imize the offline upload. This causes the amortized server time and the client
storage to become Õλ(n3/4), while the amortized client time and the amortized

communication are both Õλ(n1/2).

Efficiency. The efficiency claims follow immediately from the construction.

Security. The security argument closely follows that of prior work on single-server
offline/online PIR [39]. More formally, the server’s view in an interaction with a
client consists of (1) the client’s encrypted bit vectors sent in the offline phase,
(2) the client’s standard single-server PIR queries sent in the offline phase, (3)
the messages that the client sends in the online phase. To prove security, we can
construct a sequence of hybrid distributions that move from the world in which
the client queries a sequence of database indexes I0 = (i0,1, i0,1, . . . , i0,Q) to the
world in which the client queries a different sequence I1 = (i1,1, i1,1, . . . , i1,Q).
The steps of the argument are:

– replace the encrypted bit vectors with encryptions of zeros, using the semantic
security of the encryption scheme,

– replace the client’s standard single-server PIR query with a query to a fixed
database row, using the security of the underlying single-server PIR scheme,

– swap query sequence I0 with query sequence I1, using the security of the
underlying two-server offline/online PIR scheme,

– swap the client’s standard single-server PIR query and encrypted bit vectors
back again, using the security of these primitives.

Remark 18 (Single-server PIR with Õλ(n2/3) amortized time and communica-
tion). With an alternate rebalancing (taking Q to be n1/3), we can build a
single-server offline/online PIR scheme that, as long as the client makes at least

n1/3 adaptive queries, has amortized communication Õλ(n2/3), amortized server

time Õλ(n2/3), amortized client time Õλ(n2/3), and client storage Õλ(n2/3). This
PIR scheme has better amortized server time than that of Theorem 16, at the
cost of requiring a client upload linear in n in the offline phase. (However, the
amortized communication of this scheme is still sublinear in n.)

5 Single-Server PIR with Optimal Amortized Time and
Storage from Fully Homomorphic Encryption

In this section, we construct a single-server many-query offline/online PIR scheme
directly, rather than through a generic transformation. Assuming fully homomor-
phic encryption (Definition 2), our scheme achieves the optimal tradeoff between
amortized server time and client storage, up to polylogarithmic factors. This fills

19

a gap left open by the protocols of Section 4 and demonstrates that the lower
bound we give in Section 6 is tight. We prove the following result:

Theorem 19 (Single-server PIR with optimal amortized time and stor-
age from fully homomorphic encryption). Assuming gate-by-gate fully ho-
momorphic encryption (Definition 2), there exists a single-server offline/online
PIR scheme that, on security parameter λ ∈ N, database size n ∈ N, and maxi-
mum number of queries Q < n, supports Q adaptive queries with:

– amortized server time Õλ(n/Q),

– client-side storage Õλ(Q),

– amortized communication Õλ(n/Q), and

– amortized client time Õλ(Q+ n/Q).

This new scheme achieves amortized server time better than we could expect
from any protocol derived from the generic compiler of Section 3, given current
state-of-the-art offline/online PIR protocols. To answer each query, that compiler
executes the online phase of a PIR scheme on Q database chunks, each of size
n/Q. Similar to the compiler of Section 3, the PIR scheme here works by splitting
the database into random chunks, so that the client’s distinct adaptive queries
fall into distinct chunks with high probability. However, the new PIR scheme
in this section keeps the mapping of database rows to chunks secret from the
server. (In contrast, in the scheme of Section 3, the client reveals to the server
the mapping of database rows to chunks.) By keeping the mapping of database
rows to chunks secret, in the online phase of this scheme, the server only has
to compute over the contents a single chunk. In this way, we achieve lower
computation than the schemes of Section 4, which execute an online phase for
each database chunk.

In this section, we sketch the ideas behind the PIR scheme that proves The-
orem 19; a complete proof appears in the full version of this paper [38].

Proof idea for Theorem 19. At a very high level, the PIR scheme that we con-
struct works as follows:

1. In an offline phase, the client chooses small, random subsets S1, . . . , Sm ⊆ [n].
For each subset, the client privately fetches from the server the parity of the
database bits indexed by the set.

2. When the client wants to fetch database record i in the online phase, it finds
a subset S ∈ {S1, . . . , Sm} such that i ∈ S. Then, the client usually asks
the server for the parity of the database bits indexed by Sr{i}. The parity
of the database bits indexed by S and Sr{i} give the client enough infor-
mation to recover the value of the ith database record, Di. Then, the client
re-randomizes the set S it just used.

In more detail, our PIR scheme operates as follows: in the offline phase, the
client samples (λ+1) ·Q random subsets of [n], each of size n/Q. We refer to the
first λQ sets as the “primary” sets and to the remaining Q sets as the “backup”
sets. For each set S, the client retrieves the parity of the database bits the set
indexes, i.e.,

∑
j∈S Dj mod 2, from the server, while keeping the set contents

20

hidden using encryption. For each backup set S, the client additionally chooses a
random member of the set S and privately retrieves the database value indexed
by that element, via a batch PIR protocol [68, 64, 7].

With high probability over the client’s random choice of sets, whenever the
client wants to fetch the i-th database record, the client holds a primary set that
contains i. Again with good probability, the client then asks the server for the
parity of the database bits indexed by the punctured set Sr{i}, with which she
can reconstruct the desired database value Di. Finally, the client must refresh
her state, as using the same S to query for another index i′ could leak (i, i′)
to the server and thus break security. To achieve this, the client discards S and
promotes the next available backup set, Sb, to become a new primary set. If
Sb does not already contain i, the client modifies Sb by deleting the set element
whose database value she knows and inserting i; the client recomputes the parity
of this new set using the value of Di she has just retrieved. With this mechanism,
the distribution of the client’s primary sets remains random, ensuring that her
online queries are independent.

There are two failure events in this scheme: it is possible that (a) none of
the primary sets contain the index queried, i, or that (b) the client sends the
server a set other than Sr{i}, as decided by a coin flip (to avoid always sending
a query set that does not contain i). We drive down the probability of either
failure event to negl(λ), by repeating the offline and online phases λ times. Then,
by construction, this scheme satisfies correctness for Q queries. Intuitively, the
scheme is secure because (a) the use of encryption and batch PIR in the offline
phase prevents the server from learning the contents of the presampled sets,
and (b) the client’s online queries are indistinguishable from uniformly random
subsets of [n] of size n/Q− 1, as proved in the full version of this paper [38].

We now discuss the PIR scheme’s efficiency.

Communication and storage. The client can succinctly represent her pre-
sampled sets with only logarithmic-size keys by leveraging pseudorandomness.
Then, in the offline phase, she exchanges only Õλ(Q) bits with the server to
communicate the (encrypted) descriptions and parities of Oλ(Q) randomly sam-
pled sets. The client additionally retrieves the database values of Q indices—one
from each backup set—in Õλ(Q) communication with batch PIR. The client

stores her presampled sets and her state between queries in Õλ(Q) bits. In each
online phase, the client must however hide whether she inserted an index into
her query set (and, if so, which index she inserted). Therefore, the client explic-
itly lists all elements in the punctured set she is querying for (instead of using

pseudorandomness) and thus exchanges Õλ(n/Q) bits with the server.

Computation. In the offline phase, the client retrieves the encrypted parities of
the database bits indexed by each of Oλ(Q) encrypted sets of size n/Q. In the full
version of this paper [38], we present a Boolean circuit that computes the parities

of the database bits of s subsets of [n], each of size `, in Õ(s · `+ n) gates. Our
circuit is inspired by circuits for private set intersection [67, 85, 86] and makes use
of sorting networks [10]. The server can execute the offline phase in Õλ(n) time

21

by running the above circuit under a gate-by-fate fully homomorphic encryption
scheme. Further, the offline server can respond to the client’s batch PIR query in
Õλ(n) time. In each online phase, the server must complete Oλ(n/Q) work per
query, as it computes the parity of a punctured set containing n/Q−1 elements.

Thus, each query requires Õλ(n/Q) amortized total server time.
As for the client, in the offline phase, she generates Oλ(Q) random sets. Using

pseudorandomness to represent each set, the time to generate these sets without
expanding them is Õλ(Q). Also in the offline phase, the client runs a batch PIR

protocol with the server to recover Q database values, requiring at most Õλ(Q)
client time. In the online phase, the client first has to find a primary set that
contains the index i ∈ [n] she wants to read. By generating each set using a
pseudorandom permutation, she can efficiently test whether each set contains
i by inverting the permutation in time Õλ(1). Testing all Oλ(Q) primary sets

takes the client time Õλ(Q). When she finds a succinctly-represented primary

set that contains i, the client expands the set in time Õλ(n/Q) to build her
online query. Finally, promoting a backup set to become a new primary set and,
if necessary, replacing a set element by i takes time Õλ(1). We conclude that the

client’s amortized, per-query time is Õλ(Q+ n/Q).

6 Lower Bounds

In this section, we present lower bounds for multi-query offline/online PIR
schemes in which the server stores the database in its original form—that is, the
server does not preprocess or encode the database. (If preprocessing is allowed,
candidate single-server PIR schemes using program obfuscation can circumvent
our lower bounds [25].)

Remark 20 (Generalization to multi-server PIR). While we present and prove
these lower bounds in the single-server setting, both lower bounds hold for pro-
tocols with any constant number of servers. With multiple servers, T bounds the
database bits probed per query by any online server.

6.1 Lower Bound for Adaptive Schemes

First, we give a new lower bound on the product of the (a) client storage and (b)
online time of any single-server, offline/online PIR scheme for many adaptive
queries. Specifically, we show that in any adaptive, multi-query, offline/online
PIR scheme, where the client stores S bits between queries and the server re-
sponds to each query in amortized time T , it must hold that ST = Ω̃(n). This
new lower bound matches the best adaptive multi-query scheme in the two-
server setting [39, Section 4] and it matches our new scheme (Section 5) in the
single-server setting, up to polylogarithmic factors.

In the following, we say that a single-server PIR scheme for Q adaptive
queries probes T database bits per query on average if, for every sequence of Q
indices and every choice of the client’s randomness, the server makes at most
QT total probes to the database in the process of answering all Q queries.

22

Theorem 21 (Lower bound for adaptive schemes). Consider a computa-
tionally secure, single-server PIR scheme for many adaptive queries, such that,
on security parameter λ ∈ N and database size n ∈ N,

– the server stores the database in its original form,

– the client stores at most S bits between consecutive queries, and

– the server probes T database bits per query on average.

Then, for polynomially bounded n = n(λ) and large enough λ, it holds that

(S + 1) · (T + 1) ≥ Ω̃(n).

We give a complete proof of Theorem 21 in the full version of this paper [38].
Our proof invokes the following lower bound from prior work, which shows that
for any single-query offline/online PIR scheme, either the offline communication
or the online server time must be large:

Theorem 22 ([39, Section 6]). Consider a computationally secure, single-
query, offline/online PIR scheme such that, on security parameter λ ∈ N and
database size n ∈ N,

– the server stores the database in its original form,

– the client downloads C bits in the offline phase,

– the server probes T bits of the database to process each online query, and

– the client recovers its index of interest with probability at least ε ≥ 1/2+Ω(1).

Then, for polynomially bounded n = n(λ), it holds that (C+ 1) · (T + 1) ≥ Ω̃(n).

Proof idea for Theorem 21. We show that any multi-query PIR scheme with
small client storage implies a single-query offline/online PIR scheme with small
offline communication. In more detail, the reduction works as follows:

1. First, we show that, for any many-query PIR scheme Π as in the theorem
statement, there must exist a query sequence that satisfies the following con-
dition: if the client makes PIR queries to each of the indices in this sequence
one at a time, and then makes any subsequent PIR query, the server answers
this last query with at most T database probes in expectation. We call such
a query sequence a good query sequence.

2. Then, we build a single-query PIR scheme using Π and any fixed, good query
sequence for Π. In an offline phase, we first let the PIR server run Π’s offline
phase, and then run as many iterations of Π’s online phase as needed to query
for each index in the good query sequence. At this point, the server sends its
intermediate state from running Π to the client. In an online phase, the client
then runs one iteration of Π’s online phase, using the intermediate state it
received from the server, to query for its index of interest.
By construction, this single-query scheme requires S bits of offline download,
and at most T database probes in expectation in the online phase. Correctness
and security follow from the correctness and security of Π.

3. Finally, we modify the above single-query scheme to makeO(T) online database
probes in the worst case, rather than in expectation.

23

Applying Theorem 22 to this single-query scheme then gives the bound on the
client storage S and the running time T of the PIR scheme.

6.2 Lower Bound for Batch PIR with Advice

The lower bound of section Section 6.1 rules out PIR schemes with small client
storage and small amortized server online time in the adaptive setting. In this
section, we ask whether it is possible to do better if the client makes all of its
queries in a single non-adaptive batch. In particular, we consider schemes for
“batch PIR with advice,” in which a client obtains—via out-of-band means or
via an offline phase—S bits of preprocessed advice about the database contents
(before she knows which indices she wants to query). Then, the client makes a
batch of Q non-adaptive queries, and the server makes at most T database probes
per query (i.e., at most QT probes per batch). We show that ST +QT = Ω̃(n).

For simplicity, we state the theorem in terms of batch PIR with advice, which
we formally define in the full version of this paper [38]. This PIR model is in
fact identical to single-server, multi-query, offline/online PIR, in which the client
makes its queries non-adaptively, up to some syntactic differences.

Theorem 23 (Lower bound for batch PIR with advice). Consider a
computationally secure, single-server batch-PIR-with-advice scheme such that,
on security parameter λ ∈ N, database size n ∈ N, and batch size Q ∈ [n],

– the server stores the database in its original form,

– the client downloads S bits of advice, and

– the server probes at most QT database bits to answer a batch of Q queries.

Then, for polynomially bounded n = n(λ) and large enough λ, it holds that
ST +QT ≥ Ω̃(n).

Theorem 23 shows that it is impossible to get additional speedups from PIR
schemes that both (a) have the client store information, as in the offline/online
PIR model, and (b) jointly process a batch of queries, as in the batch PIR model.
An alternative interpretation of Theorem 23 suggests that adaptivity can “come
for free” in the single-server setting: it requires no more online server time than
standard batch PIR, as long as the client has at least O(Q) storage.

We formally prove Theorem 23 in the full version of this paper [38].

Proof idea for Theorem 23. We prove this theorem via an incompressibility ar-
gument [95, 50, 41, 43, 42, 3], by demonstrating that any batch PIR with advice
scheme that defies this lower bound could be used to compress the database it is
run on—thus, such a PIR scheme cannot exist. We make this argument in steps:

1. First, we define the multi-query Box Problem, an extension of Yao’s Box
Problem [95] in which the players iteratively open many boxes. Informally,
the multi-query Box Problem encodes a game involving two players and an
n-bit string D = (D1, . . . , Dn):

– Initially, the first player examines D and produces an S-bit advice string
to be passed to the second player.

24

– Then, the second player is given the S-bit advice string and a set of Q
indices {i1, . . . , iQ}. The player’s goal is to output (Di1 , . . . , DiQ) ∈ {0, 1}Q.
To solve this task, the second player may read at most QT bits of D.
When the player reads a bit of D whose index lies in the the challenge set
{i1, . . . , iQ}, we say that the player’s query is a “violation” and we require
that the player make at most V violations.

The two players win the game if the second player recovers (Di1 , . . . , DiQ).
We say that a strategy ε-solves the multi-query Box Problem if it allows the
players to win with probability at least ε.

2. With an incompressibility argument, we prove that any strategy that ε-solves
the multi-query Box Problem with a large enough Q and a small enough V
must satisfy that ST +QT = Ω̃(εn).

3. We show that an efficient batch-PIR-with-advice scheme for Q queries, with
advice length S and per-query online time T , gives a good solution to the
multi-query Box Problem. More specifically, given any such PIR scheme, we
devise the following strategy for the multi-query Box Problem:

– Both players treat the n-bit input string D as a database, that the first
player examines and that the second player must recover at Q points.

– Initially, the first player computes and outputs the S-bit advice string that
the batch-PIR-with-advice scheme would have produced on this database.

– Then, the second player takes in the S-bit advice string and Q database
indices to retrieve. The second player retrieves these Q database values
by executing the batch PIR scheme with the advice—probing at most QT
database indices in total, across all Q queries.

In this construction, the second player probes each index in the challenge set
with low probability. (Otherwise, the PIR scheme would leak which values the
player is reading from what indices are probed.) We show that this strategy
(1/2 − negl(λ))-solves the multi-query Box Problem with at most 2Q2T/n
violations. The bounds on any algorithm that solves the multi-query Box
Problem must also apply to the PIR scheme, giving that ST+QT = Ω̃(n).

7 Conclusion

We construct new single-server PIR schemes that have sublinear amortized total
server time. A number of related problems remain open:

– Is it possible to match the performance of our PIR scheme based on fully
homomoprhic encryption (Section 5) while using simpler assumptions?

– Can we construct single-server PIR schemes for many adaptive queries that
achieve optimal Õλ(1) communication, Õλ(n1/2) amortized server time, and

Õλ(n1/2) client storage? Our scheme from Section 5 has larger communica-

tion Õλ(n1/2). One approach would be to design puncturable pseudorandom
sets [39, 89] with short descriptions that support both insertions and deletions.

25

– Our lower bounds in Section 6 only apply to PIR schemes in which the server
stores the database in unencoded form. Can we beat these bounds by having
the server store the database in some encoded form [14]?

Acknowledgements. We thank David Wu and Yuval Ishai for reading an early
draft of this work and for their helpful suggestions on how to improve it. We
thank Yevgeniy Dodis, Siyao Guo, and Sandro Coretti for answering questions
about presampling. We deeply appreciate the support and technical advice that
Dan Boneh gave on this project from the very start. Part of this work was done
when the third author was a student at Stanford University. This work was sup-
ported in part by the National Science Foundation (Award CNS-2054869), a gift
from Google, a Facebook Research Award, and the Fintech@CSAIL Initiative,
as well as the National Science Foundation Graduate Research Fellowship under
Grant No. 1745302 and an EECS Great Educators Fellowship.

References

[1] C. Aguilar-Melchor, J. Barrier, L. Fousse, and M.-O. Killijian. “XPIR:
Private information retrieval for everyone”. In: PoPETs (2016).

[2] W. Aiello, S. Bhatt, R. Ostrovsky, and S. R. Rajagopalan. “Fast verifi-
cation of any remote procedure call: Short witness-indistinguishable one-
round proofs for NP”. In: ICALP. 2000.

[3] Akshima, D. Cash, A. Drucker, and H. Wee. “Time-space tradeoffs and
short collisions in Merkle-Damg̊ard hash functions”. In: CRYPTO. 2020.

[4] A. Ali, T. Lepoint, S. Patel, M. Raykova, P. Schoppmann, K. Seth, and
K. Yeo. “Communication–Computation Trade-offs in PIR”. In: USENIX
Security. 2021.

[5] A. Ambainis. “Upper Bound on the Communication Complexity of Private
Information Retrieval”. In: ICALP. 1997.

[6] S. Angel, H. Chen, K. Laine, and S. T. V. Setty. “PIR with Compressed
Queries and Amortized Query Processing”. In: S&P. 2018.

[7] S. Angel and S. Setty. “Unobservable communication over fully untrusted
infrastructure”. In: SOSP. 2016.

[8] M. Backes, A. Kate, M. Maffei, and K. Pecina. “ObliviAd: Provably Secure
and Practical Online Behavioral Advertising”. In: S&P. 2012.

[9] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vad-
han, and K. Yang. “On the (im)possibility of obfuscating programs”. In:
CRYPTO. 2001.

[10] K. E. Batcher. “Sorting Networks and Their Applications”. In: AFIPS.
1968.

[11] A. Beimel and Y. Ishai. “Information-Theoretic Private Information Re-
trieval: A Unified Construction”. In: ICALP. 2001.

[12] A. Beimel, Y. Ishai, E. Kushilevitz, and J.-F. Raymond. “Breaking the
O(n1/(2k−1)) Barrier for Information-Theoretic Private Information Re-
trieval”. In: FOCS. 2002.

26

[13] A. Beimel, Y. Ishai, and T. Malkin. “Reducing the servers computation
in private information retrieval: PIR with preprocessing”. In: CRYPTO.
2000.

[14] A. Beimel, Y. Ishai, and T. Malkin. “Reducing the Servers’ Computation
in Private Information Retrieval: PIR with Preprocessing”. In: J. Cryptol.
(2004).

[15] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova. “Se-
cure single-server aggregation with (poly) logarithmic overhead”. In: CCS.
2020.

[16] S. Bell and P. Komisarczuk. “An Analysis of Phishing Blacklists: Google
Safe Browsing, OpenPhish, and PhishTank”. In: ACSW. 2020.

[17] J. L. Bentley and J. B. Saxe. “Decomposable Searching Problems I: Static-
to-Dynamic Transformation”. In: J. Algorithms (1980).

[18] I. Biehl, B. Meyer, and S. Wetzel. “Ensuring the integrity of agent-based
computations by short proofs”. In: Mobile Agents. 1998.

[19] K. Blackwell and M. Wootters. “A Note on the Permuted Puzzles Toy
Conjecture”. In: arXiv preprint arXiv:2108.07885 (2021).

[20] D. Boneh. “The decision Diffie-Hellman problem”. In: International Algo-
rithmic Number Theory Symposium. 1998.

[21] E. Boyle, N. Gilboa, and Y. Ishai. “Function secret sharing”. In: EURO-
CRYPT. 2015.

[22] E. Boyle, N. Gilboa, and Y. Ishai. “Function secret sharing: Improvements
and extensions”. In: CCS. 2016.

[23] E. Boyle, J. Holmgren, F. Ma, and M. Weiss. On the Security of Doubly
Efficient PIR. Cryptology ePrint Archive, Report 2021/1113. 2021.

[24] E. Boyle, J. Holmgren, and M. Weiss. “Permuted Puzzles and Crypto-
graphic Hardness”. In: TCC. 2019.

[25] E. Boyle, Y. Ishai, R. Pass, and M. Wootters. “Can we access a database
both locally and privately?” In: TCC. 2017.

[26] E. Boyle and M. Naor. “Is there an oblivious RAM lower bound?” In:
ITCS. 2016.

[27] Z. Brakerski and V. Vaikuntanathan. “Fully homomorphic encryption from
ring-LWE and security for key dependent messages”. In: CRYPTO. 2011.

[28] C. Cachin, S. Micali, and M. Stadler. “Computationally Private Informa-
tion Retrieval with Polylogarithmic Communication”. In: EUROCRYPT.
1999.

[29] R. Canetti, J. Holmgren, and S. Richelson. “Towards doubly efficient pri-
vate information retrieval”. In: TCC. 2017.

[30] Y.-C. Chang. “Single Database Private Information Retrieval with Loga-
rithmic Communication”. In: ACISP. 2004.

[31] H. Chen, Z. Huang, K. Laine, and P. Rindal. “Labeled PSI from fully
homomorphic encryption with malicious security”. In: CCS. 2018.

[32] R. Cheng, W. Scott, E. Masserova, I. Zhang, V. Goyal, T. E. Anderson,
A. Krishnamurthy, and B. Parno. “Talek: Private Group Messaging with
Hidden Access Patterns”. In: ACSAC. 2020.

27

[33] B. Chor and N. Gilboa. “Computationally Private Information Retrieval
(Extended Abstract)”. In: STOC. 1997.

[34] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. “Private Information
Retrieval”. In: FOCS. 1995.

[35] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. “Private Information
Retrieval”. In: J. ACM (1998).

[36] S. Coretti, Y. Dodis, and S. Guo. “Non-uniform bounds in the random-
permutation, ideal-cipher, and generic-group models”. In: CRYPTO. 2018.

[37] S. Coretti, Y. Dodis, S. Guo, and J. Steinberger. “Random Oracles and
Non-uniformity”. In: EUROCRYPT. 2018.

[38] H. Corrigan-Gibbs, A. Henzinger, and D. Kogan. Single-Server Private
Information Retrieval with Sublinear Amortized Time. Cryptology ePrint
Archive, Report 2022/081. 2022.

[39] H. Corrigan-Gibbs and D. Kogan. “Private information retrieval with sub-
linear online time”. In: EUROCRYPT. 2020.

[40] E. Dauterman, E. Feng, E. Luo, R. A. Popa, and I. Stoica. “DORY: An
Encrypted Search System with Distributed Trust”. In: OSDI. 2020.

[41] A. De, L. Trevisan, and M. Tulsiani. “Time Space Tradeoffs for Attacks
against One-Way Functions and PRGs”. In: CRYPTO. 2010.

[42] Y. Dodis, S. Guo, and J. Katz. “Fixing Cracks in the Concrete: Random
Oracles with Auxiliary Input, Revisited”. In: EUROCRYPT. 2017.

[43] Y. Dodis, I. Haitner, and A. Tentes. “On the instantiability of hash-and-
sign RSA signatures”. In: TCC. 2012.

[44] Y. Dodis, S. Halevi, R. D. Rothblum, and D. Wichs. “Spooky encryption
and its applications”. In: CRYPTO. 2016.

[45] N. Döttling, S. Garg, Y. Ishai, G. Malavolta, T. Mour, and R. Ostrovsky.
“Trapdoor hash functions and their applications”. In: CRYPTO. 2019.

[46] Z. Dvir and S. Gopi. “2-Server PIR with Subpolynomial Communication”.
In: J. ACM (2016).

[47] C. Dwork, M. Langberg, M. Naor, K. Nissim, and O. Reingold. Succinct
proofs for NP and Spooky interactions. 2004.

[48] C. Dwork, M. Naor, and G. N. Rothblum. “Spooky interaction and its
discontents: Compilers for succinct two-message argument systems”. In:
CRYPTO. 2016.

[49] K. Efremenko. “3-Query Locally Decodable Codes of Subexponential Length”.
In: SIAM J. Comput. (2012).

[50] R. Gennaro and L. Trevisan. “Lower bounds on the efficiency of generic
cryptographic constructions”. In: FOCS. 2000.

[51] C. Gentry. A fully homomorphic encryption scheme. Ph.D. thesis, Stanford
University. 2009.

[52] C. Gentry and S. Halevi. “Compressible FHE with Applications to PIR”.
In: TCC. 2019.

[53] C. Gentry and Z. Ramzan. “Single-Database Private Information Retrieval
with Constant Communication Rate”. In: ICALP. 2005.

28

[54] C. Gentry, A. Sahai, and B. Waters. “Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based”.
In: CRYPTO. 2013.

[55] N. Gilboa and Y. Ishai. “Distributed point functions and their applica-
tions”. In: EUROCRYPT. 2014.

[56] O. Goldreich, H. Karloff, L. Schulman, and L. Trevisan. “Lower bounds
for linear locally decodable codes and private information retrieval”. In:
CCC. 2002.

[57] O. Goldreich. Foundations of Cryptography. Cambridge University Press,
2001.

[58] O. Goldreich and R. Ostrovsky. “Software protection and simulation on
oblivious RAMs”. In: J. ACM (1996).

[59] S. Goldwasser and S. Micali. “Probabilistic encryption”. In: Journal of
computer and system sciences (1984).

[60] M. Green, W. Ladd, and I. Miers. “A Protocol for Privately Reporting Ad
Impressions at Scale”. In: CCS. 2016.

[61] J. Groth, A. Kiayias, and H. Lipmaa. “Multi-query Computationally-
Private Information Retrieval with Constant Communication Rate”. In:
PKC. 2010.

[62] T. Gupta, N. Crooks, W. Mulhern, S. Setty, L. Alvisi, and M. Walfish.
“Scalable and private media consumption with Popcorn”. In: NSDI. 2016.

[63] A. Hamlin, R. Ostrovsky, M. Weiss, and D. Wichs. “Private Anonymous
Data Access”. In: EUROCRYPT. 2019.

[64] R. Henry. “Polynomial Batch Codes for Efficient IT-PIR”. In: PoPETs
(2016).

[65] R. Henry, Y. Huang, and I. Goldberg. “One (Block) Size Fits All: PIR and
SPIR with Variable-Length Records via Multi-Block Queries”. In: NDSS.
2013.

[66] R. Henry, F. G. Olumofin, and I. Goldberg. “Practical PIR for electronic
commerce”. In: CCS. 2011.

[67] Y. Huang, D. Evans, and J. Katz. “Private Set Intersection: Are Garbled
Circuits Better than Custom Protocols?” In: NDSS. 2012.

[68] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. “Batch codes and
their applications”. In: STOC. 2004.

[69] R. Jacob, K. G. Larsen, and J. B. Nielsen. “Lower bounds for oblivious
data structures”. In: SODA. 2019.

[70] A. Juels. “Targeted Advertising ... And Privacy Too”. In: CT-RSA. 2001.
[71] Y. T. Kalai, R. Raz, and R. D. Rothblum. “How to delegate computations:

the power of no-signaling proofs”. In: STOC. 2014.
[72] D. Kogan and H. Corrigan-Gibbs. “Private Blocklist Lookups with Check-

list”. In: USENIX Security. 2021.
[73] I. Komargodski and W.-K. Lin. “A logarithmic lower bound for oblivious

RAM (for all parameters)”. In: CRYPTO. 2021.
[74] E. Kushilevitz and R. Ostrovsky. “Replication is not needed: Single database,

computationally-private information retrieval”. In: FOCS. 1997.

29

[75] K. G. Larsen and J. B. Nielsen. “Yes, there is an oblivious RAM lower
bound!” In: CRYPTO. 2018.

[76] K. G. Larsen, M. Simkin, and K. Yeo. “Lower bounds for multi-server
oblivious RAM”. In: TCC. 2020.

[77] H. Lipmaa. “An oblivious transfer protocol with log-squared communica-
tion”. In: International Conference on Information Security. 2005.

[78] H. Lipmaa. “First CPIR Protocol with Data-Dependent Computation”.
In: ICISC. 2009.

[79] W. Lueks and I. Goldberg. “Sublinear scaling for multi-client private in-
formation retrieval”. In: Financial Cryptography. 2015.

[80] P. Mockapetris. Domain Names - Concepts and Facilities. RFC 1034. 1987.
url: http://www.rfc-editor.org/rfc/rfc1034.txt.

[81] M. H. Mughees, H. Chen, and L. Ren. “OnionPIR: Response Efficient
Single-Server PIR”. In: CCS. 2021.

[82] P. Paillier. “Public-key cryptosystems based on composite degree residu-
osity classes”. In: EUROCRYPT. 1999.

[83] S. Patel, G. Persiano, and K. Yeo. “Private Stateful Information Re-
trieval”. In: CCS. 2018.

[84] G. Persiano and K. Yeo. “Limits of Preprocessing for Single-Server PIR”.
In: SODA. 2022.

[85] B. Pinkas, T. Schneider, and M. Zohner. “Faster Private Set Intersection
Based on OT Extension”. In: USENIX Security. 2014.

[86] B. Pinkas, T. Schneider, and M. Zohner. “Scalable Private Set Intersection
Based on OT Extension”. In: ACM Transactions on Privacy and Security
(2018).

[87] O. Regev. “On lattices, learning with errors, random linear codes, and
cryptography”. In: J. ACM (2009).

[88] S. Servan-Schreiber, K. Hogan, and S. Devadas. AdVeil: A Private Targeted-
Advertising Ecosystem. Cryptology ePrint Archive, Report 2021/1032. 2021.

[89] E. Shi, W. Aqeel, B. Chandrasekaran, and B. Maggs. “Puncturable Pseu-
dorandom Sets and Private Information Retrieval with Near-Optimal On-
line Bandwidth and Time”. In: CRYPTO. 2021.

[90] E. M. Stark. Splitting up trust. https://emilymstark.com/2021/09/14/
splitting-up-trust.html. Sept. 2021.

[91] Y. Tauman Kalai, R. Raz, and R. D. Rothblum. “Delegation for bounded
space”. In: STOC. 2013.

[92] D. Unruh. “Random Oracles and Auxiliary Input”. In: CRYPTO. 2007.
[93] S. Wehner and R. de Wolf. “Improved Lower Bounds for Locally Decodable

Codes and Private Information Retrieval”. In: ICALP. 2005.
[94] D. Woodruff and S. Yekhanin. “A geometric approach to information-

theoretic private information retrieval”. In: CCC. 2005.
[95] A. Yao. “Coherent Functions and Program Checkers”. In: STOC. 1990.
[96] S. Yekhanin. “Towards 3-query locally decodable codes of subexponential

length”. In: J. ACM (2008).

30

http://www.rfc-editor.org/rfc/rfc1034.txt
https://emilymstark.com/2021/09/14/splitting-up-trust.html
https://emilymstark.com/2021/09/14/splitting-up-trust.html

	Single-Server Private Information Retrieval with Sublinear Amortized Time
	1 Introduction
	1.1 Our Results
	1.2 Overview of Techniques
	1.3 Related Work

	2 Background
	2.1 Standard Definitions
	2.2 Definition of Offline/Online PIR

	3 Two-Server PIR with a Single-Server Online Phase and Sublinear Amortized Time
	Construction 15

	4 Single-Server PIR with Sublinear Amortized Time from DCR, QR, DDH, or LWE
	5 Single-Server PIR with Optimal Amortized Time and Storage from Fully Homomorphic Encryption
	6 Lower Bounds
	6.1 Lower Bound for Adaptive Schemes
	6.2 Lower Bound for Batch PIR with Advice

	7 Conclusion
	References

