
Key Guessing Strategies for Linear
Key-Schedule Algorithms in Rectangle Attacks 1

Xiaoyang Dong1, Lingyue Qin1(�), Siwei Sun2,3, and Xiaoyun Wang1,4,5

1 Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China
{xiaoyangdong,qinly,xiaoyunwang}@tsinghua.edu.cn

2 School of Cryptology, University of Chinese Academy of Sciences, Beijing, China
3 State Key Laboratory of Cryptology, Beijing, China

sunsiwei@ucas.ac.cn
4 Key Laboratory of Cryptologic Technology and Information Security, Ministry of

Education, Shandong University, Jinan, China
5 School of Cyber Science and Technology, Shandong University, Qingdao, China

Abstract. When generating quartets for the rectangle attacks on ci-
phers with linear key-schedule, we find the right quartets which may
suggest key candidates have to satisfy some nonlinear relations. However,
some quartets generated always violate these relations, so that they will
never suggest any key candidates. Inspired by previous rectangle frame-
works, we find that guessing certain key cells before generating quartets
may reduce the number of invalid quartets. However, guessing a lot of
key cells at once may lose the benefit from the early abort technique,
which may lead to a higher overall complexity. To get better tradeoff, we
build a new rectangle framework on ciphers with linear key-schedule with
the purpose of reducing overall complexity or attacking more rounds.

In the tradeoff model, there are many parameters affecting the overall
complexity, especially for the choices of the number and positions of key
guessing cells before generating quartets. To identify optimal parame-
ters, we build a uniform automatic tool on SKINNY as an example, which
includes the optimal rectangle distinguishers for key-recovery phase, the
number and positions of key guessing cells before generating quartets,
the size of key counters to build that affecting the exhaustive search step,
etc. Based on the automatic tool, we identify a 32-round key-recovery
attack on SKINNY-128-384 in the related-key setting, which extends the
best previous attack by 2 rounds. For other versions with n-2n or n-3n,
we also achieve one more round than before. In addition, using the previ-
ous rectangle distinguishers, we achieve better attacks on round-reduced
ForkSkinny, Deoxys-BC-384 and GIFT-64. At last, we discuss the conver-
sion of our rectangle framework from related-key setting into single-key
setting and give new single-key rectangle attack on 10-round Serpent.

Keywords: Rectangle · Automated Key-recovery · SKINNY · ForkSkinny
· Deoxys-BC · GIFT

1The full version of the paper is available at https://ia.cr/2021/856.

https://ia.cr/2021/856

2 X. Dong et al.

1 Introduction

The boomerang attack [60] proposed by Wagner, is an adaptive chosen plaintext
and ciphertext attack derived from differential cryptanalysis [15]. Wagner con-
structed the boomerang distinguisher on Ed by splitting the encryption function

into two parts Ed = E1◦E0 as shown in Figure 1, where two differentials α
E0−−→ β

with probability p and γ
E1−−→ δ with probability q are combined into a boomerang

distinguisher. The probability of a boomerang distinguisher is estimated by:

Pr[E−1d (E(x)⊕ δ)⊕ E−1d (E(x⊕ α)⊕ δ) = α] = p2q2. (1)

The adaptive chosen plaintext and ciphertext of boomerang attack can be
converted into a chosen-plaintext attack that is known as amplified boomerang
attack [45] or rectangle attack [13]. In rectangle attack, only α and δ are fixed
and the internal differences β and γ can be arbitrary values as long as β 6= γ.
Hence, the probability would be increased to 2−np̂2q̂2, where

p̂ =

√∑
βi
Pr2(α→ βi) and q̂ =

√∑
γj
Pr2(γj → δ). (2)

The boomerang attack and rectangle attack have been successfully applied to
numerous block ciphers, including Serpent [13,12], AES [18,14], IDEA [11], KASUMI
[38], Deoxys-BC [29], etc. Recently, a new variant of boomerang attack was de-
veloped and applied to AES, named as retracing boomerang attack [35]. There
are two steps when applying the boomerang and rectangle attack, i.e., building
distinguishers and performing key-recovery attacks. In building distinguishers,
Murphy [51] pointed out that two independently chosen differentials for the
boomerang can be incompatible. He also showed that the dependence between
two differentials of the boomerang may lead to larger probability, which is also
discovered by Biryukov et al. [16]. To further explore the dependence and increase
the probability of boomerang, Biryukov and Khovratovich [18] introduced the
boomerang switch technique including the ladder switch and S-box switch. Then,
those techniques were generalized and formalized by Dunkelman et al. [37,38] as
the sandwich attack. Recently, Cid et al. [28] introduced the boomerang connec-
tivity table (BCT) to clarify the probability around the boundary of boomerang
and compute more accurately. Later, various improvements or further studies
[23,5,57,61,30,21,22] on BCT technique enriched boomerang attacks.

Given a distinguisher, we usually need more complicated key-recovery algo-
rithms to identify the right quartets [45,13] when performing rectangle attack
than boomerang attack. Till now, a series of generalized key-recovery algorithms
[13,12,14] for the rectangle attacks are introduced. In this paper, we focus on
further exploration on the generalized rectangle attacks. Undoubtedly, generaliz-
ing the attack algorithms is very important in the development of cryptanalytic
tools, such as the generalizations of the impossible differential attacks [25,24],
linear attacks [39], invariant attacks [9], meet-in-the-middle attacks [27,32], etc.

Key Guessing Strategy in Rectangle Attacks with Linear Key-schedule 3

E1

E0

E1

E0

E1

E0

E1

E0

α

β

α

β
γ

γ

δ

δ

C1

C2

P1

P2

C3

C4

P3

P4

Fig. 1: Boomerang attack.

Our Contributions. When performing the rectangle attacks, we usually add
several rounds before and after the rectangle distinguisher. Then, the input and
output differences (α, δ) of the rectangle distinguisher propagate to certain trun-
cated form (α′, δ′) in the plaintext and ciphertext. Similar with the differential
attack, in rectangle attack we first collect data and generate quartets whose
plaintext difference and ciphertext difference meet (α′, δ′). Then the early-abort
technique [49] is applied to determine key candidates for each quartet. However,
for ciphers with linear key schedule, we find that many quartets meet (α′, δ′)
never suggest any key candidates. In further study, we find the right quartets
that suggest key candidates have to meet certain nonlinear relations. However,
many quartets meeting (α′, δ′) always violate those nonlinear relations for all
the key guessing, and thereby never suggest any key candidates. This feature is
peculiar for rectangle attack on ciphers with linear key schedule, and it rarely
appears in other differential-like attack.

Inspired from the previous rectangle attacks [13,12,62], we find that guessing
certain key cells before generating quartets may avoid many invalid quartets in
advance. However, guessing a lot of key cells as a whole may lose the advantage
of early-abort technique [49], which may lead to higher complexity. In addition,
we have to take the exhaustive search step into consideration. Hence, to get a
tradeoff between so many factors affecting the complexity, we introduce a new
generalized rectangle attack framework on ciphers with linear key schedule.

When evaluating dedicated cipher with the tradeoff framework, we have to
identify many attack parameters, such as finding an optimal rectangle distin-
guisher for our new key-recovery attack framework, determining the number
and positions of guessed key cells before generating quartets, as well as the size
of key counters, etc. Hence, in order to launch the optimal key-recovery attacks
with our tradeoff model, we build a uniform automatic tool for SKINNY as an
example, which is based on a series of automatic tools [30,41,52] on SKINNY pro-
posed recently, to determine a set of optimal parameters affecting the attack
complexity or the number of attacked rounds. Note that in the field of auto-
matic cryptanalysis, there are many works focusing on searching for distinguish-
ers [19,20,50,59,54,46,17], but only a few works [31,56,52] deal with the uniform
automatic models that take the distinguisher and key-recovery as a whole opti-

4 X. Dong et al.

mization model. Thanks to our uniform automatic model, we identify a 32-round
key-recovery attack on SKINNY-128-384, which attacks two more rounds than the
best previous attacks [52,41]. In addition, for other versions of SKINNY with n-2n
or n-3n, one more round is achieved.

Table 1: Summary of the cryptanalytic results.

SKINNY

Version Rounds Data Time Memory Approach Setting Ref.

64-128

22 263.5 2110.9 263.5 Rectangle RK [47]
23 262.47 2125.91 2124 ID RK [47]
23 262.47 2124 277.47 ID RK [53]
23 271.4 279 264.0 ID RK [3]
23 260.54 2120.7 260.9 Rectangle RK [41]
24 261.67 296.83 284 Rectangle RK [52]
25 261.67 2118.43 264.26 Rectangle RK Full Ver. [33]

64-192

27 263.5 2165.5 280 Rectangle RK [47]
29 262.92 2181.7 280 Rectangle RK [41]
30 262.87 2163.11 268.05 Rectangle RK [52]
31 262.78 2182.07 262.79 Rectangle RK Full Ver. [33]

128-256

22 2127 2235.6 2127 Rectangle RK [47]
23 2124.47 2251.47 2248 ID RK [47]
23 2124.41 2243.41 2155.41 ID RK [53]
24 2125.21 2209.85 2125.54 Rectangle RK [41]
25 2124.48 2226.38 2168 Rectangle RK [52]
25 2120.25 2193.91 2136 Rectangle RK Full Ver. [33]
26 2126.53 2254.4 2128.44 Rectangle RK Full Ver. [33]

128-384

27 2123 2331 2155 Rectangle RK [47]
28 2122 2315.25 2122.32 Rectangle RK [64]
30 2125.29 2361.68 2125.8 Rectangle RK [41]
30 2122 2341.11 2128.02 Rectangle RK [52]
32 2123.54 2354.99 2123.54 Rectangle RK Sect. 5.1

ForkSkinny

128-256
26 2125 2254.6 2160 ID RK [6]

(256-bit key)
26 2127 2250.3 2160 ID RK [6]
28 2118.88 2246.98 2136 Rectangle RK [52]
28 2118.88 2224.76 2118.88 Rectangle RK Full Ver. [33]

Deoxys-BC

128-384

13 2127 2270 2144 Rectangle RK [29]
14 2127 2286.2 2136 Rectangle RK [62]
14 2125.2 2282.7 2136 Rectangle RK [63]
14 2125.2 2260 2140 Rectangle RK Full Ver. [33]

GIFT

64-128
25 263.78 2120.92 264.1 Rectangle RK [44]
26 260.96 2123.23 2102.86 Differential RK [58]
26 263.78 2122.78 263.78 Rectangle RK Full Ver. [33]

As the second application, we perform our new key-recovery framework on
round-reduced ForkSkinny [1,2], Deoxys-BC-384 [43] and GIFT-64 [4] with some
previous proposed distinguishers. All the attacks achieve better complexities
than before, which also proves the efficiency of our tradeoff model. At last,

Key Guessing Strategy in Rectangle Attacks with Linear Key-schedule 5

we discuss the conversion of our attack framework from related-key setting to
single-key setting. Since our related-key attack framework is on ciphers with
linear key-schedule, it is trivial to convert it into a single-key attack by assigning
the key difference as zero. We then apply the new single-key framework to the
10-round Serpent6 and achieve better complexity than the previous rectangle
attack [12]. We summarize our main results in Table 1.

2 Generalized Key-Recovery Algorithms for the
Rectangle Attacks

There have been several key-recovery frameworks of rectangle attacks [13,12,14]
introduced before. We briefly recall them with the symbols from [12]. Let E be a
cipher which is described as a cascade E = Ef ◦Ed◦Eb as shown in Figure 2. The
probability of the Nd-round rectangle distinguisher on Ed is given by Eq. (2).
Ed is surrounded by the Nb-round Eb and Nf -round Ef . Then the difference α
of the distinguisher propagates to a truncated differential form denoted as α′

by E−1b , and δ propagates to δ′ by Ef . Denote the number of active bits of the
plaintext and ciphertext as rb and rf . Denote the subset of subkey bits which is
involved in Eb as kb, which affects the difference of the plaintexts by decrypting
the pairs of internal states with difference α. Then denote mb = |kb|. Let kf be
the subset of subkey bits involved in Ef and mf = |kf |.

rb

α′

⊕

k0

SB L ⊕

k1

SB

α

· · · ⊕

kR−2

δ

SB L ⊕

kR−1

SB ⊕

kR

δ′

EfEdEb

rf

Fig. 2: Framework of rectangle attack on E.

Related-key boomerang and rectangle attacks were proposed by Biham et al.
in [14]. Assuming one has a related-key differential α → β over E0 under a key
difference ∆K with probability p̂ and another related-key differential γ → δ over
E1 under a key difference ∇K with probability q̂. If the master key K1 is known,
the other three keys are all determined, where K2 = K1 ⊕∆K,K3 = K1 ⊕∇K
and K4 = K1 ⊕∆K ⊕ ∇K. A typical example of the successful application of
the boomerang attack is the best known related-key attack on the full versions
of AES-192 and AES-256, presented by Biryukov and Khovratovich [18].

6The example attack only wants to prove the efficiency of our model in single-key
setting. There are better attacks on Serpent achieved by differential-linear cryptanal-
ysis [34,48].

6 X. Dong et al.

As shown by Biham, Dunkelman and Keller [11], when the key schedule
is linear, the related-key rectangle attack is similar to the single-key rectangle
framework. Different from non-linear key schedule, the differences between the
subkeys of K1, K2, K3 and K4 are all determined in each round for linear key
schedule. Hence, if we guess parts of the subkeys of K1, all the corresponding
parts of subkeys of K2, K3 and K4 are determined by xoring the differences
between the subkeys. In this paper, we focus on the rectangle attacks on ciphers
with linear key schedule and list the previous frameworks below. In addition, we
give a comprasion of different frameworks in Section 3.2 and Section 6.

2.1 Attack I: Biham-Dunkelman-Keller’s Attack

At EUROCRYPT 2001, Biham, Dunkelman and Keller introduced the rectangle
attack [13] and applied it to the single-key attack on Serpent [10]. We trivially
convert it to a related-key model with linear key schedule:

1. Create and store y structures of 2rb plaintexts each, and query the 2rb plain-
texts under K1, K2, K3 and K4 for each structure.

2. Initialize the key counters for the (mb +mf)-bit subkey involved in Eb and
Ef . For each (mb +mf)-bit subkey, do:
(a) Partially encrypt plaintext P1 under K1 to the position of α by the

guessed mb-bit subkey, and partially decrypt it with K2 to get the plain-
text P2 within the same structure after xoring the known difference α.

(b) With mf -bit subkey, decrypt C1 to the position of δ of the rectangle
distinguisher and encrypt it to the ciphertext C3 after xoring δ. Similarly,
we find C4 from C2 and generate the quartet (C1, C2, C3, C4).

(c) Check whether ciphertexts (C3, C4) exist in our data. If these ciphertexts
exist, we partially encrypt corresponding plaintexts (P3, P4) under Eb
with mb-bit subkey, and check whether the difference is α. If so, increase
the corresponding counter by 1.

Complexity. Choosing
y =
√
s · 2n/2−rb/p̂q̂, (3)

we get about (y · 22rb)2 · 2−2rb · 2−np̂2q̂2 = s, where s is the expected number of
right quartets. Therefore, the total data complexity for the 4 oracles with K1,
K2, K3 and K4 is

4y · 2rb =
√
s · 2n/2+2/p̂q̂. (4)

In Step 2, the time complexity is about 2mb+mf ·4y·2rb = 2mb+mf ·√s·2n/2+2/p̂q̂.
The memory complexity is 4y · 2rb + 2mb+mf to store the data and key counters.

2.2 Attack II: Biham-Dunkelman-Keller’s Attack

At FSE 2002, Biham, Dunkelman and Keller introduced a more generic algo-
rithm to perform the rectangle attack [12] in the single-key setting. Later, Liu

Key Guessing Strategy in Rectangle Attacks with Linear Key-schedule 7

et al. [47] converted the model into related-key setting for ciphers with linear
key schedule. The high-level strategy of this model is to generate quartets by
birthday paradox without key guessing, whose plaintexts and ciphertexts meet
the truncated difference α′ and δ′, respectively. Then, recover the key candidates
for each quartet. The steps are:

1. Create and store y structures of 2rb plaintexts each, and query the 2rb plain-
texts under K1, K2, K3 and K4 for each structure.

2. Initialize an array of 2mb+mf counters, where each corresponds to an (mb +
mf)-bit subkey guess.

3. Insert the 2rb ciphertexts into a hash table H indexed by the n − rf in-
active ciphertext bits. For each index, there are 2rb · 2rf−n plaintexts and
corresponding ciphertexts for each structure, which collide in the n−rf bits.

4. In each structure S, we search for a ciphertext pair (C1, C2), and choose a
ciphertext C3 by the n−rf inactive ciphertext bits of C1 from hash table H.
Choose a ciphertext C4 indexed by the n− rf inactive ciphertext bits of C2

from hash table H, where the corresponding plaintexts P4 and P3 are in the
same structure. Then we obtain a quartet (P1, P2, P3, P4) and corresponding
ciphertexts (C1, C2, C3, C4).

5. For the quartets obtained above, determine the key candidates involved in
Eb and Ef using hash tables and increase the corresponding counters.

Complexity. The data complexity is the same as Eq. (4) given at Attack I,
with the same y given by Eq. (3).

I Time I: The time complexity to generate quartets in Step 3 and 4 is about
y2 · 22rb · 2rf−n + (y · 22rb+rf−n)2 = s · 2rf /p̂2q̂2 + s · 22rb+2rf−n/p̂2q̂2and
y2 · 24rb+2rf−2n = s · 22rb+2rf−n/p̂2q̂2 quartets remain.

I Time II: The time complexity to deduce the right subkey and generate the
counters in Step 5 is y2 · 24rb+2rf−2n · (2mb−rb + 2mf−rf) = s · 2rb+rf−n ·
(2mb+rf + 2mf+rb)/p̂2q̂2.

2.3 Attack III: Zhao et al.’s Related-Key Attack

For block ciphers with linear key-schedule, Zhao et al. [62,64] proposed a new
generalized related-key rectangle attack as shown below:

1. Construct y structures of 2rb plaintexts each. For each structure, query the
2rb plaintexts under K1, K2, K3 and K4.

2. Guess the mb-bit subkey involved in Eb:
(a) Initialize a list of 2mf counters.
(b) Partially encrypt plaintext P1 with K1 to obtain the intermediate values

at the position of α, and xor the known difference α, and then partially
decrypt it to the plaintext P2 under K2 within the same structure. Con-
struct the set S1 and also S2 in similar way:

S1 = {(P1, C1, P2, C2) : EbK1
(P1)⊕ EbK2

(P2) = α},
S2 = {(P3, C3, P4, C4) : EbK3

(P3)⊕ EbK4
(P4) = α}.

8 X. Dong et al.

(c) The size of S1 and S2 is y · 2rb . Insert S1 into a hash table H1 indexed
by the n− rf inactive bits of C1 and n− rf inactive bits of C2. Similarly
build H2. Under the same 2(n− rf)-bit index, randomly choose (C1, C2)
from H1 and (C3, C4) from H2 to construct the quartet (C1, C2, C3, C4).

(d) We use all the quartets obtained above to determine the key candidates
involved in Ef and increase the corresponding counters. This phase is a
guess and filter procedure, whose time complexity is denoted as ε.

Complexity. The data complexity is the same as Eq. (4) given by Attack I,
with the same y given by Eq. (3).

I Time I: The time complexity to generate S1 and S2 is about 2mb · y · 2rb .
I Time II: We generate 2mb · (y2rb)2 · 2−2(n−rf) = 2mb · y2 · 22rb−2(n−rf) =
s · 2mb−n+2rf /p̂2q̂2quartets from Step 2(c). The time to generate the key
counters is (s · 2mb−n+2rf /p̂2q̂2) · ε.

3 Key-Guessing Strategies in the Rectangle Attack

Suppose Figure 2 shows a framework for differential attack, then Ed is a dif-
ferential trail α 7→ δ. In the differential attack, we collect plaintext-ciphertext
pairs by traversing the rb active bits of plaintext to construct a structure. Store
the structure indexed by the n − rf inactive bits of ciphertext in a hash table
H. Thereafter, we generate (P1, C1, P2, C2) by randomly picking (P1, C1) and
(P2, C2) from H within the same index. For each structure, with the birthday
paradox, we expect to get 22rb−1−(n−rf) plaintext pairs, and the differences of
plaintexts and ciphertexts in each pair conform to the truncated form α′ and
δ′, respectively. Using the property of truncated differential of the ciphertext
to filter wrong pairs in advance due to the birthday paradox is an efficient and
generic way in differential attack and its variants, such as impossible differential
attack, truncated differential attack, boomerang attack, rectangle attack, etc.

In Attack II of the rectangle attack, Biham, Dunkelman and Keller [12] also
generated the quartets using birthday paradox. For each quartet (P1, P2, P3, P4),
the plaintexts and ciphertexts also conform to the truncated forms (α′, δ′ in
Figure 2), i.e., P1 ⊕ P2 and P3 ⊕ P4 are of truncated form α′, C1 ⊕ C3 and
C2 ⊕ C4 are of truncated form δ′. However, when deducing key candidates for
each of the generated quartets, we find that the rectangle attack enjoys a very big
filter ratio. In other words, the ratio of right quartets which satisfy the input and
output differences of the rectangle distinguisher (α, δ in Figure 2) and suggest
key candidates is very small, when compared to the number of the quartets that
satisfy the truncated differential (α′, δ′) in the plaintext and ciphertext.

For the differential attack, given a pair conforming to (α′, δ′), it will suggest
2mb+mf−(rb+rf) key candidates. However, for the rectangle attack, given a quar-
tet conforming to (α′, δ′), it will suggest 2mb+mf−2(rb+rf) key candidates due
to the filter in both sides of the boomerang. Hence, if 2(rb + rf) is bigger than
mb+mf , some quartets conforming to (α′, δ′) may never suggest key candidates.

Key Guessing Strategy in Rectangle Attacks with Linear Key-schedule 9

Here is an example of Eb part in Figure 3. Since we are considering linear key
schedule, we have k2b = k1b⊕∆, k3b = k1b⊕∇ and k4b = k1b⊕∆⊕∇ with fixed
(∆,∇). Hence, when k1b is known, all other k2b, k3b and k4b are determined. Let
S be an Sbox. Then we have

S(k1b ⊕ P1)⊕ S(k2b ⊕ P2) = α, (5)

S(k3b ⊕ P3)⊕ S(k4b ⊕ P4) = α. (6)

For a quartet (P1, P2, P3, P4), when (P1, P2) is known, together with k1b ⊕
k2b = ∆, we can determine a value for k1b and k2b by Eq. (5). Then k3b, k4b
are determined. Hence, by Eq. (6), P4 is determined by P3. Hence, P4 is fully
determined by (P1, P2, P3) within a good quartet, which may suggest a key. For
certain quartets, (P1, P2, P3, P4) may violate the nonlinear relations (e.g., Eq.
(5) and (6)), so that it will never suggest a key.

S

⊕k1b

S

⊕k2b
S

⊕k3b

S

⊕k4b

α′

α

α′

α
X1

X2

P1

P2

X3

X4

P3

P4

Fig. 3: Nonlinear relations in key-
recovery phase.

Ef

Ef

X1

E1

E0

Eb

X2

E1

E0

Eb

X3

E1

E0

Eb

X4

E1

E0

Eb

α′

α

β

α′

α

β
γ

γ

δ

δ

δ′

δ′
C1

C2

P1

P2

C3

C4

P3

P4

Fig. 4: Filter with internal state.

According to the analysis of Attack I and Attack III in Section 2, both
of them guess (part of) key bits before generating the quartets, i.e., (mb +mf)-
bit and mb-bit key are guessed in Attack I and Attack III, respectively. For
example in Figure 3, if we guess k1b in Eb, we can deduce k2b, k3b, k4b. Then,
for given P1 and P3, we compute P2 and P4 with Eq. (5) and (6), respectively.
Thereafter, a quartet (P1, P2, P3, P4) is generated under guessed key k1b, which
meets the input difference α. In this way, we can avoid some invalid quartets
that never suggest a key in advance.

However, if we guess all the key bits (kb in Eb and kf in Ef) at once and
then construct quartets as Attack I, we may lose the benefit from the early
abort technique [49], which tests the key candidates step by step, by reducing
the size of the remaining possible quartets at each time, without (significantly)

10 X. Dong et al.

increasing the time complexity. Guessing a lot of key bits at once may reduce
the number of invalid quartets, but may also lead to higher overall complexity.
To get a better tradeoff, we try to guess all kb and part of kf , denoted as k′f
whose size is m′f . With partial decryption, we may gain more inactive bits (or
bits with fixed differences) from the internal state as shown in Figure 4.

3.1 New Related-key Rectangle Attack with Linear Key Schedule

With the above analysis, we derive a new tradeoff of the rectangle attack frame-
work with linear key schedule, which tries to obtain better attacks by the overall
consideration on various factors affecting the complexity and the number of at-
tacked rounds. We list our tradeoff model in Algorithm 1. Before diving into it,
we give Figure 5 to illustrate which key to guess.

mb mf

mb m′
f

x mb +mf − x Kc[]Kx

x mb +m′
f − x Kx̃

Fig. 5: The guessed key in Algorithm 1

Totally, mb-bit kb and mf -bit kf are involved in Eb and Ef . Among them,
we first guess mb-bit kb and m′f -bit k′f before generating quartets. Then we use
both the inactive bits of the ciphertexts and the difference of internal states
computed by k′f to act as early filters. In order to possibly reduce the memory
cost of key counters, we introduce an auxiliary variable x and guess x-bit Kx in
Line 3 before initializing the (mb+mf −x)-bit key counter Kc[]. The remaining
(mb +m′f − x)-bit Kx̃ is guessed in Line 5 of Algorithm 1.

Complexity. Choosing
y =
√
s · 2n/2−rb/p̂q̂, (7)

we get about (y · 22rb)2 · 2−2rb · 2−np̂2q̂2 = s, where s is the expected number of
right quartets. Therefore, the total data complexity for the 4 oracles with K1,
K2, K3 and K4 is

4y · 2rb =
√
s · 2n/2+2/p̂q̂. (8)

I Time I (T1): In Line 7 to 26 of Algorithm 1, the time complexity is about

T1 = 2x+mb+m
′
f−x · y · 2rb · 2 =

√
s · 2mb+m′f+n/2+1/p̂q̂. (9)

I Time II (T2): In Line 29, we generate about

2x+mb+m
′
f−x · y2 · 22rb−2(n−rf)−2hf = s · 2mb+m′f−n+2rf−2hf /p̂2q̂2 (10)

quartets. The time complexity of Line 32 to generate the key counters is

T2 = (s · 2mb+m′f−n+2rf−2hf /p̂2q̂2) · ε. (11)

Key Guessing Strategy in Rectangle Attacks with Linear Key-schedule 11

Algorithm 1: Related-key rectangle attack with linear key schedule
(Attack IV)

1 Construct y structures of 2rb plaintexts each
2 For structure i (1 ≤ i ≤ y), query the 2rb plaintexts by encryption under K1,

K2, K3 and K4 and store them in L1[i], L2[i], L3[i] and L4[i]
3 for each of the x-bit key Kx, which is a part of (mb +m′f)-bit K1 do
4 Kc ← [] /* Key counters of size 2mb+mf−x */

5 for each of (mb +m′f − x)-bit Kx̃ of K1 involved in Eb and Ef do
6 S1 ← [], S2 ← []
7 for i from 1 to y do
8 for (P1, C1) ∈ L1[i] do
9 /* Partially encrypt P1 to α under guessed K1 and

partially decrypt to get the plaintext P2 ∈ L2[i] */

10 P2 = E−1
bK1⊕∆K

(EbK1
(P1)⊕ α)

11 S1 ← (P1, C1, P2, C2)

12 end
13 for (P3, C3) ∈ L3[i] do
14 P4 = E−1

bK1⊕∆K⊕∇K
(EbK1⊕∇K

(P3)⊕ α)

15 S2 ← (P3, C3, P4, C4)

16 end

17 end
18 /* S1={(P1,C1,P2,C2) : (P1,C1)∈L1,(P2,C2)∈L2,EbK1

(P1)⊕EbK2
(P2)=α}

S2={(P3,C3,P4,C4) : (P3,C3)∈L3,(P4,C4)∈L4,EbK3
(P3)⊕EbK4

(P4)=α} */

19 H ← []
20 for (P1, C1, P2, C2) ∈ S1 do
21 /* Assuming the first hf-bit internal states of X1 and

X2 are derived by decrypting (C1, C2) with k′f */

22 X1[1, · · · , hf] = E−1
fK1

(C1), X2[1, · · · , hf] = E−1
fK1⊕∆K

(C2)

23 /* Assume the inactive bits of δ′ are first n− rf bits */

24 τ=(X1[1,· · ·,hf], X2[1,· · ·,hf], C1[1,· · ·,n− rf], C2[1,· · ·,n− rf])
25 H[τ]← (P1, C1, P2, C2)

26 end
27 for (P3, C3, P4, C4) ∈ S2 do
28 X3[1, · · · , hf] = E−1

fK1⊕∇K
(C3), X4[1, · · · , hf] = E−1

fK1⊕∆K⊕∇K
(C4)

29 τ ′=(X3[1,· · ·,hf], X4[1,· · ·,hf], C3[1,· · ·,n− rf], C4[1,· · ·,n− rf])
Access H[τ ′] to find (P1, C1, P2, C2) to generate quartet
(C1, C2, C3, C4).

30 for each generated quartet do
31 Determine the other (mf −m′f)-bit key k′′f involved in Ef

32 Kc[Kx̃‖k′′f]← Kc[Kx̃‖k′′f] + 1 /* Denote the time as ε */

33 end

34 end

35 end
36 /* Exhaustive search step */

37 Select the top 2mb+mf−x−h hits in the counter to be the candidates, which
delivers an h-bit or higher advantage. Guess the remaining k− (mb +mf)
bit keys combined with the guessed x subkey bits to check the full key.

38 end

12 X. Dong et al.

I Time III (T3): The time complexity of the exhaustive search is

T3 = 2x · 2mb+mf−x−h · 2k−(mb+mf) = 2k−h. (12)

For choosing h (according to the success probability Eq. (14)), the conditions
mb +mf − x− h ≥ 0 and x ≤ mb +m′f have to be satisfied.

The memory to store the key counters and the data structures is

2mb+mf−x + 4y · 2rb = 2mb+mf−x +
√
s · 2n/2+2/p̂q̂. (13)

3.2 On the Success Probability and Exhaustive Search Phase

The success probability given by Selçuk [55] is evaluated by

Ps = Φ(

√
sSN − Φ−1(1− 2−h)√

SN + 1
), (14)

where SN = p̂2q̂2/2−n is the signal-to-noise ratio, with an h-bit or higher ad-
vantage. s is the expected number of right quartets, which will be adjusted to
achieve a relatively higher Ps, usually s = 1, 2, 3. In previous Attack I, II,

III and our Attack IV, after generating the kc-bit key counter, we select the
top 2kc−h hits in the counters to be the candidates, which delivers an h-bit or
higher advantage, and determine the right key by exhaustive search.

In Attack I/II, the size of key counters is 2mb+mf . Hence, we have to pre-
pare a memory with size of 2mb+mf to store the counters. Then the complexity
of exhaustive search is 2(mb+mf−h) × 2k−(mb+mf) = 2k−h, where h ≤ mb +mf .
Hence, the time of exhaustive search is larger than 2k−(mb+mf).

In Attack III, the size of key counter is 2mf , which is smaller than Attack

I/II. Then the complexity of the exhaustive search is 2mb×2mf−h×2k−(mb+mf) =
2k−h for Attack III, where h < mf because the size of key counters is 2mf .
Hence, the time complexity is larger than 2k−mf . Compared to Attack I/II,
the memory is reduced but the time may be increased.

In Attack IV, the size of key counter is bigger than 2mb+mf−x, which is
smaller than Attack I/II, but may be larger than Attack III by choosing x.
The time complexity of exhaustive search (T3 in Attack IV) is 2x×2mb+mf−x−h×
2k−(mb+mf) = 2k−h with h < mb + mf − x and x ≤ mb + m′f . Hence, the time

is larger than 2k−(mb+mf−x) with a key counter of size 2mb+mf−x. Namely, we
can further tradeoff the time and memory by tweaking x between the two points
achieved by Attack I/II (x = 0) and Attack III (x = mb).

As shown in Algorithm 1 and its complexity analysis, we have to determine
various parameters to derive a better attack. Many parameters are determined
by the boomerang distinguishers, such as mb, mf , rb, rf and p̂q̂. Parameters like
x affect the exhaustive search. Moreover, we have to determine the m′f -bit k′f
including the number of cells and their positions. All these parameters affect the
overall complexity of our tradeoff attacks.

To determine a series of optimal parameters, we take SKINNY as an example
to build a fully automatic model to identify the boomerang distinguishers with
optimal key-recovery parameters in the following section.

Key Guessing Strategy in Rectangle Attacks with Linear Key-schedule 13

4 Automatic Model For SKINNY

SKINNY [7] is a family of lightweight block cipher proposed by Beierle et al. at
CRYPTO 2016, which follows an SPN structure and a TWEAKEY framework
[42]. Denote n as the block size and ñ as the tweakey size. There are six main
versions SKINNY-n-ñ: n = 64, 128, ñ = n, 2n, 3n. The internal state is viewed as
a 4 × 4 square array of cells, where c is the cell size. For more details of the
cipher’s structure, please refer to Section A of the full version of the paper and
[7]. The MC operation adopts non-MDS binary matrix:

MC


a
b
c
d

 =


a⊕ c⊕ d

a
b⊕ c
a⊕ c

 and MC
−1


α
β
γ
δ

 =


β

β ⊕ γ ⊕ δ
β ⊕ δ
α⊕ δ

 . (15)

Lemma 1 [6] For any given SKINNY S-box S and any two non-zero differences
δin and δout, the equation Si(y)⊕Si(y⊕δin) = δout has one solution on average.

4.1 Previous Automatic Search Models for Boomerang
Distinguishers on SKINNY

On SKINNY, there are several automatic models on searching for boomerang
distinguishers. The designers of SKINNY [7] first gave the Mixed-Integer Linear
Programming (MILP) model to search for truncated differentials of SKINNY.
Later, Liu et al. [47] tweaked the model to search for boomerang distinguishers.
At EUROCRYPT 2018, Cid et al. [28] introduced the the Boomerang Connec-
tivity Table (BCT) to compute the probability of the boomerang distingusher.
Later, Song et al. [57] studied the probability of SKINNY’s boomerang distin-
guisher with an extended BCT technique. Hadipour et al. [41] introduced a
heuristic approach to search for a boomerang distinguisher with a set of new
tables. They first searched for truncated differential with the minimum number
of active S-boxes with an MILP model based on Cid et al.’s [29] model. At the
same time, the switching effects in multiple rounds were considered. Then, they
used the MILP/SAT models to get actual differential characteristic and experi-
mentally evaluated the probability of the middle part. Almost at the same time,
Delaune, Derbez and Vavrille [30] proposed a new automatic tool to search for
boomerang distinguishers and provided their source code to facilitate follow-up
works. They also introduced a sets of tables which help to calculate the probabil-
ity of the boomerang distinguisher. With the tables to help roughly evaluate the
probability, they used an MILP model to search for the upper and lower trails
throughout all rounds by automatically handling the middle rounds. Then a CP
model was applied to search for the best possible instantiations. Recently, Qin
et al. [52] combined the key-recovery attack phase and distinguisher searching
phase into one uniform automatic model to attack more rounds. Their extended
model tweaked the previous models of Hadipour et al. [41] and Delaune et al.
[30] for searching for the entire (Nb +Nd +Nf) rounds of a boomerang attack.

14 X. Dong et al.

The aim is to find new boomerang distinguishers in the related-tweakey setting
that give a key-recovery attack penetrating more rounds.

4.2 Our Model to Determine the Optimal Distinguisher

In Dunkelman et al.’s (related-key) sandwich attack framework [37], the Nd-
round cipher Ed is considered as Ẽ1 ◦ Em ◦ Ẽ0, where Ẽ0, Em, Ẽ1 contain
r0, rm, r1 rounds, respectively. Let p̃ and q̃ be the probabilities of the upper
differential used for Ẽ0 and the lower differential used for Ẽ1. The middle part
Em specifically handles the dependence and contains a small number of rounds.
If the probability of generating a right quartet for Em is t, the probability of the
whole Nd-round boomerang distinguisher is p̃2q̃2t. In the following, we use the
above symbols in our search model.

Following the previous automatic models [52,30,41], we introduce a uniform
automatic model to search for good distinguishers for the new rectangle attack
framework in Algorithm 1. We search for the entire (Nb + Nd + Nf) rounds of
a boomerang attack by adding new constraints and new objective function, and
takes all the critical factors affecting the complexities into account.

In our extended model searching the entire (Nb + Nd + Nf) rounds of a
boomerang attack, we use similar notations as [52,30], where Xu

r and X l
r denote

the internal state before SubCells in round r of the upper and lower differentials.
We only list the variables that appear in our new constraints, i.e. DXU[r][i] (0 ≤
r ≤ Nb + r0 + rm, 0 ≤ i ≤ 15) and DXL[r][i] (0 ≤ r ≤ rm + r1 +Nf , 0 ≤ i ≤ 15)
are on behalf of active cells in the internal states, and KnownEnc (0 ≤ r ≤
Nb − 1, 0 ≤ i ≤ 15) is on behalf of the mb-bit subtweakeys involved in the Nb
extended rounds, i.e.,

∑
0≤r≤Nb−2, 0≤i≤7 KnownEnc[r][i] corresponds to the total

amount of guessed mb-bit key in Eb. The constraints in Eb are the same as Qin
et al.’s [52] model. In the following, we list the differences in our model.

Modelling propagation of cells with known differences in Ef . Since
we are going to filter quartets with certain cells of the internal state with fixed
differences, we need to model the propagation of fixed differences in Ef . Taking
the key-recovery attack on 32-round SKINNY-128-384 as an example (see Figure
6), the cells with fixed differences are marked by and . We define a binary
variable DXFixed[r][i] for the i-th cell of Xr and a binary variable DWFixed[r][i]
for the i-th cell of Wr (0 ≤ r ≤ Nf − 1, 0 ≤ i ≤ 15), where DXFixed[r][i] = 1 and
DWFixed[r][i] = 1 indicate that the differences of corresponding cells are fixed.
For the first extended round after the lower differential, the difference of each
cell is fixed: ∀ 0 ≤ i ≤ 15, DXFixed[0][i] = 1.

In the propagation of the fixed differences, after the SC operation, only the
differences of inactive cells are fixed. In the ART operation, the subtweakey
differences do not affect whether the differences are fixed. Let permutation
PSR = [0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14, 15, 12] represent the SR operation,

DWFixed[r][i] = ¬DXL[rm + r1 + r][PSR[i]],∀ 0 ≤ r ≤ Nf − 1, 0 ≤ i ≤ 15.

Key Guessing Strategy in Rectangle Attacks with Linear Key-schedule 15

STK31 X31 Y31 Z31 W31

1c

⊕SC
AC

ART

SR MC

STK30 X30 Y30 Z30 W30

1c
⊕SC

AC
ART

SR MC

STK29 X29 Y29 Z29 W29

58
58

⊕SC
AC

ART

SR MC

STK28 X28 Y28 Z28 W28

58 ⊕ 58 58SC
AC

ART

SR MC

STK27 X27 Y27 Z27 W27

50
50

⊕SC
AC

ART

SR MC

Fig. 6: The cells with fixed differences in Nf -round of the attack on
SKINNY-128-384.

The constraints on the impact of the MC operation by Equation (15) on the
internal state are given below: ∀ 0 ≤ r ≤ Nf − 2, 0 ≤ i ≤ 3,





DXFixed[r + 1][i] = DWFixed[r][i] ∧ DWFixed[r][i+ 8] ∧ DWFixed[r][i+ 12],

DXFixed[r + 1][i+ 4] = DWFixed[r][i],

DXFixed[r + 1][i+ 8] = DWFixed[r][i+ 4] ∧ DWFixed[r][i+ 8],

DXFixed[r + 1][i+ 12] = DWFixed[r][i] ∧ DWFixed[r][i+ 8].

Modelling cells that could be used to filter quartets in Ef . Note that in
our attack framework in Algorithm 1, we guess m′f -bit k′f of kf involved in Nf
extended rounds to obtain a 2hf -bit filter. To identify smaller m′f with larger
hf , we define a binary variable DXFilter[r][i] for i-th cell of Xr and a binary
variable DWFilter[r][i] for i-th cell of Wr (0 ≤ r ≤ Nf − 1, 0 ≤ i ≤ 15), where
DXFilter[r][i] = 1 and DWFilter[r][i] = 1 indicate that the corresponding cells
can be used as filters. Note that, the (n− rf) inactive bits of the ciphertext are
also indicated by DWFilter. For each cell in Xr, if the difference is nonzero and

fixed, we can choose the cell as filter, i.e.
SC−→ . For

SC−→ , the cell is not a
filter because it has been used as filter in Wr. The valid valuations of DXFixed,
DXL and DXFilter are given in Table 2.

Table 2: All valid valuations of DXFixed, DXL and DXFilter for SKINNY.

DXFixed[r][i] DXL[rm + r1 + r][i] DXFilter[r][i]

0 1 0
1 0 0
1 1 1

16 X. Dong et al.

In the last round, WNf−1 can be computed from the ciphertexts, and the
cells with fixed differences of WNf−1 can be used as filters, i.e., the (n − rf)
inactive bits: ∀ 0 ≤ i ≤ 15, DWFilter[Nf − 1][i] = DWFixed[Nf − 1][i].

Since we extend Nf rounds with probability 1 at the bottom of the distin-
guisher, then the differences of Wr are propagated to Xr+1 with probability 1
with the MC operation, and there will be more cells of Wr with fixed differences
than the cells of Xr+1 with fixed differences. Hence, these extra cells with fixed
differences in Wr can act as filters. We give two examples of how to determine
which cells of Wr can be used for filtering:

MC MC−1

Wr Xr+1 W ′
r Wr

Fig. 7: Example (1).

MC MC−1

Wr Xr+1 W ′
r Wr

Fig. 8: Example (2).

1. Example (1): Figure 7 shows the propagation of fixed differences, i.e., DWFixed
and DXFixed, where cells denote the unfixed differences. In Figure 7, the
differences of Wr[0, 1, 3] are fixed (marked by). After the MC operation,
only the difference of Xr+1[1] is fixed. Since there are three cells with fixed
differences in Wr but only one cell with fixed difference in Xr+1, we can
use two cells of Wr as filters (the one cell of fixed difference in Xr+1 has
been used in the SC computation). To determine which cells acting as fil-
ters, we apply the MC−1 operation to Xr+1 and get fixed difference of W ′r[0],
which means if ∆Xr+1[1] is fixed, then ∆Wr[0] will be certainly fixed. Since
Xr+1[1] has been used as filter in the SC computation, Wr[0] will not act as
filter redundantly. Hence, only Wr[1, 3] can be used as filters (marked by).

2. Example (2): In Figure 8, only the difference of Wr[1] is fixed, which is
marked by . After applying the MC operation, all the differences of Xr+1

are unfixed. So applying the MC−1 operation to Xr+1, all the differences of
W ′r are unfixed. Hence, the difference of Wr[1] need to be fixed, which can
be used for filtering (marked by).

All valid valuations of DWFixed and DWFilter please refer to Section B of
the full version of the paper. Note that DXFixed is only used as the intermediate
variable to determine DWFilter, since DXFixed is fully determined by DWFixed.

Denoting the sets of all possible valuations listed in Table 2 and Table 8 in
the full version of the paper by Pi and Qi, there are





(DXFixed[r][i],DXL[rm + r1 + r][i], DXFilter[r][i]) ∈ Pi, ∀ 0 ≤ r ≤ Nf − 1, 0 ≤ i ≤ 15,

(DWFixed[r][i],DWFixed[r][i+ 4], DWFixed[r][i+ 8], DWFixed[r][i+ 12],

DWFilter[r][i],DWFilter[r][i+ 4], DWFilter[r][i+ 8], DWFilter[r][i+ 12]) ∈ Qi,

∀ 0 ≤ r ≤ Nf − 2, 0 ≤ i ≤ 3.

Key Guessing Strategy in Rectangle Attacks with Linear Key-schedule 17

We define a binary variable DXisFilter[r][i] for i-th cell of Xr and a binary
variable DWisFilter[r][i] for i-th cell of Wr (0 ≤ r ≤ Nf − 1, 0 ≤ i ≤ 15), where
DXisFilter[r][i] = 1 and DWisFilter[r][i] = 1 indicate that the corresponding
cells are chosen as filters before generating quartets. ∀ 0 ≤ r ≤ Nf−1, 0 ≤ i ≤ 15,
DXisFilter[r][i] ≤ DXFilter[r][i], DWisFilter[r][i] ≤ DWFilter[r][i].

Modeling the guessed subtweakey cells in Ef for generating the quar-
tets. We define a binary variable DXGuess[r][i] for i-th cell of Xr and a binary
variable DWGuess[r][i] for i-th cell of Wr (0 ≤ r ≤ Nf − 1, 0 ≤ i ≤ 15), where
DXGuess[r][i] = 1 and DWGuess[r][i] = 1 indicate that the corresponding cells
need to be known in decryption from ciphertexts to the cells acting as filters.
So whether STKr[i] should be guessed is also identified by DXGuess[r][i], where
0 ≤ r ≤ Nf − 1 and 0 ≤ i ≤ 7.

For the round 0, only cells used to be filters in the internal state need to be
known: ∀ 0 ≤ i ≤ 15, DXGuess[0][i] = DXisFilter[0][i].

From round 0 to round Nf − 1, the cells in Wr need to be known involve
two types: cells to be known from Xr over the SR operation, and cells used to
be filters in Wr:

DWGuess[r][i] = DWisFilter[r][i]∨DXGuess[r][PSR[i]], ∀ 0 ≤ r ≤ Nf−1, 0 ≤ i ≤ 15.

In round 0 to round Nf − 2, the cells in Xr+1 need to be known involve two
types: cells to be known from Wr over the MC operation, and cells used to be
filters in Xr+1: ∀ 0 ≤ r ≤ Nb − 2, 0 ≤ i ≤ 3





DXGuess[r + 1][i] = DWGuess[r][i+ 12] ∨ DXisFilter[r + 1][i],

DXGuess[r + 1][i+ 4] = DWGuess[r][i] ∨ DWGuess[r][i+ 4] ∨ DWGuess[r][i+ 8]∨
DXisFilter[r + 1][i+ 4],

DXGuess[r + 1][i+ 8] = DWGuess[r][i+ 4] ∨ DXisFilter[r + 1][i+ 8],

DXGuess[r + 1][i+ 12] = DWGuess[r][i+ 4] ∨ DWGuess[r][i+ 8] ∨ DWGuess[r][i+ 12]∨
DXisFilter[r + 1][i+ 12].

We have
∑

0≤r≤Nf−1, 0≤i≤7 DXGuess[r][i] to indicate the m′f -bit key guessed
for generating quartets.

Modelling the advantage h in the key-recovery attack. In our Algorithm
1 in Section 3.1, the advantage h determines the exhaustive search time, where
h should be smaller than the number of key counters, i.e. h ≤ mb +mf −x. The
x-bit guessed subkey should satisfy x ≤ mb +m′f , and also determine the size of

memory 2mb+mf−x to store the key counters. So we need a balance between x and
h to achieve a low time and memory complexities. We define an integer variable
Adv for h and an integer variable x. To describe mf (not m′f here), we define a
binary variable KnownDec[r][i] for i-th cell of Yr (0 ≤ r ≤ Nf − 1, 0 ≤ i ≤ 15),
where KnownDec[r][i] = 1 indicates that the corresponding cell should be known
in the decryption from ciphertext to the position of known δ. Then whether

18 X. Dong et al.

STKr[i] should be guessed is also identified by KnownDec[r][i], where 0 ≤ r ≤
Nf − 1 and 0 ≤ i ≤ 7. In the first round extended after the distinguisher, only
the active cells need to be known: ∀ 0 ≤ i ≤ 15, KnownDec[0][i] = DXL[rm + r1][i].

In round 1 to round Nf − 1, the cells in Yr+1 need to be known involve two
types: cells to be known from Wr over the MC and SB operation, and active cells
in Xr+1: ∀ 0 ≤ r ≤ Nb − 2, 0 ≤ i ≤ 3




KnownDec[r + 1][i] = DXL[rm + r1 + r + 1][i] ∨ KnownDec[r][PSR[i+ 12]],

KnownDec[r + 1][i+ 4] = DXL[rm + r1 + r + 1][i+ 4] ∨ KnownDec[r][PSR[i]]∨
KnownDec[r][PSR[i+ 4]] ∨ KnownDec[r][PSR[i+ 8]],

KnownDec[r + 1][i+ 8] = DXL[rm + r1 + r + 1][i+ 8] ∨ KnownDec[r][PSR[i+ 4]],

KnownDec[r + 1][i+ 12] = DXL[rm + r1 + r + 1][i+ 12] ∨ KnownDec[r][PSR[i+ 4]]∨
KnownDec[r][PSR[i+ 8]] ∨ KnownDec[r][PSR[i+ 12]].

We have
∑

0≤r≤Nf−1, 0≤i≤7 KnownDec[r][i] to indicate the mf -bit key.

The objective function. As in Sect. 3.1, the time complexities of our new
attack framework involve three parts: Time I (T1), Time II (T2) and Time
III (T3). We need to balance those time complexities T1, T2 and T3.

The constraints for probability p̃2tq̃2 of the boomerang distinguisher are same
as [30], where DXU, DXL and DXU ∧ DXL are on behalf of p̃, q̃ and t. KnownEnc is
on behalf of mb, and we do not repeat the details here. To describe T1, we have:

T1 =
∑

0≤r≤r0−1, 0≤i≤15

w0 · DXU[Nb + r][i] +
∑

0≤r≤r1−1, 0≤i≤15

w1 · DXL[rm + r][i]+

∑
0≤r≤rm−1, 0≤i≤15

wm · (DXU[Nb + r0 + r][i] ∧ DXL[r][i])+

∑
0≤r≤Nb−2, 0≤i≤7

wmb · KnownEnc[r][i] +
∑

0≤r≤Nf−1, 0≤i≤7

wmf · DXGuess[r][i] + cT1 ,

where cT1
indicates the constant factor 2n/2+1, and w0, w1, wm, wmb , wmf are

weights factors discussed later.
For describing T2 (let ε = 1), we have:

T2 =
∑

0≤r≤r0−1, 0≤i≤15

2w0 · DXU[Nb + r][i] +
∑

0≤r≤r1−1, 0≤i≤15

2w1 · DXL[rm + r][i]+

∑
0≤r≤rm−1, 0≤i≤15

2wm · (DXU[Nb + r0 + r][i] ∧ DXL[r][i])+

∑
0≤r≤Nb−2, 0≤i≤7

wmb · KnownEnc[r][i] +
∑

0≤r≤Nf−1, 0≤i≤7

wmf · DXGuess[r][i]−

∑
0≤r≤Nf−1, 0≤i≤15

whf · (DXisFilter[r][i] + DWisFilter[r][i]) + cT2 ,

where
∑

0≤r≤Nf−1, 0≤i≤15 whf ·(DXisFilter[r][i]+DWisFilter[r][i]) corresponds

to the total filter 2(n− rf) + 2hf according to Equation (10), and cT2 indicates
a constant factor 2n.

Key Guessing Strategy in Rectangle Attacks with Linear Key-schedule 19

For T3, we have T3 = cT3 − Adv, where cT3 = ñ for SKINNY-n-ñ.
For the advantage h and x, we have constraints:





x ≤
∑

0≤r≤Nb−2, 0≤i≤7

KnownEnc[r][i] +
∑

0≤r≤Nf−1, 0≤i≤7

DXGuess[r][i],

Adv + x ≤
∑

0≤r≤Nb−2, 0≤i≤7

KnownEnc[r][i] +
∑

0≤r≤Nf−1, 0≤i≤7

KnownDec[r][i].

So we get a uniformed objective:

Minimize obj, obj ≥ T1, obj ≥ T2, obj ≥ T2. (16)

4.3 Comparisons between Qin et al.’s Model and Ours

Different from Qin et al.’s [52] uniform automatic key-recovery model, which is
about the rectangle attack framework by Zhao et al. [64], our automatic model
for Algorithm 1 needs additional constraints to determine hf -bit internal states
acting as filters and m′f -bit subtweakey needed to guess in the Nf extended
rounds. Moreover, in Qin et al.’s [52] model, only the time complexity of (Time
II of Zhao et al.’s model [64] in Section 2.3) generating quartets is considered.
However, in our model we have to consider more time complexity constraints,
i.e., Time I, Time II and Time III in Algorithm 1. All these differences lead to
better attacks than Qin et al.’s attacks. Especially we gain 32-round attack on
SKINNY-128-384, while Qin et al.’s model only achieves 30 rounds.

4.4 New Distinguishers for SKINNY

With our new model, we add such conditions to the automatic searching model
in [30,52] to search for new distinguishers. Due to that different parameters
have different coefficients in the formula of the time complexity, we give them
different weights to model the objective more accurately. For SKINNY, the max-
imum probability in the DDT table both for 4-bit S-box and 8-bit S-box is
2−2. Then considering the switching effects similar to [41], we adjust the weight
whf = 2wmb = 2wmf = 4w0 = 4w1 = 8wm = 8 for c = 4 and whf = 2wmb =
2wmf = 8w0 = 8w1 = 16wm = 16 for c = 8. Similarly, the constants cT1

and cT2

are set to 33 and 64 for c = 4, and to 65 and 128 for c = 8. We use different
Nb, Nd and Nf . Nb is chosen from 2 to 4 and Nf is 4 or 5 usually. Nd is chosen
based on experience, which is shorter than previous longest distinguishers.

By searching for new truncated upper and lower differentials using the MILP
model and get instantiations using the CP model following the open source
[30], we obtain new distinguishers for SKINNY-128-384, SKINNY-64-192 and
SKINNY-128-256. For SKINNY-64-128, we find the distinguisher in [52] is op-
timal. To get more accurate probabilities of the distinguishers, we calculate the
probability p̃ and q̃ considering the clustering effect. For the middle part, we eval-
uate the probability using the method in [57,41,30] and experimentally verify the

20 X. Dong et al.

probability. The experiments use one computer equipped with one RTX 2080 Ti
and the results of our experiments are listed in Table 3. Our source codes are
based on the open source by Delaune, Derbez and Vavrille [30], which is provided
in https://github.com/key-guess-rectangle/key-guess-rectangle.

Table 3: Experiments on the middle part of boomerang distinguishers for SKINNY.

Version Nd rm Probability t Complexity Time

64-192 22 6 2−17.88 230 21.9s
128-384 23 3 2−20.51 231 30.6s
128-256 18 4 2−35.41 240 16231.8s
128-256 19 4 2−26.71 235 481.2s

We list the 23-round boomerang distinguisher for SKINNY-128-384 in Table 4.
For more details of the boomerang distinguishers for other versions of SKINNY,
we refer to Section J of the full version of the paper. In addition, we summarize
the previous boomerang distinguishers for a few versions of SKINNY in Table 5.

Table 4: The 23-round related-tweakey boomerang distinguisher on
SKINNY-128-384.

r0 = 11, rm = 3, r1 = 9, p̃ = 2−32.18, t = 2−20.51, q̃ = 2−15.11, p̃2tq̃2 = 2−115.09

∆TK1 = 00, 00, 00, 00, 00, 00, 00, 00, 24, 00, 00, 00, 00, 00, 00, 00

∆TK2 = 00, 00, 00, 00, 00, 00, 00, 00, 07, 00, 00, 00, 00, 00, 00, 00

∆TK3 = 00, 00, 00, 00, 00, 00, 00, 00, e3, 00, 00, 00, 00, 00, 00, 00

∆X0 = 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 20

∇TK1 = 00, 8a, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00

∇TK2 = 00, 0c, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00

∇TK3 = 00, 7f, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00

∇X23 = 00, 00, 00, 00, 00, 00, 00, 00, 00, 50, 00, 00, 00, 00, 00, 00

5 Improved Attacks on SKINNY

In this section, we give the first 32-round attack on SKINNY-128-384 using the
distinguisher in Section 4.4 with our new rectangle attack framework. We also
give improved attacks on other versions (n-2n and n-3n). For more details, please
refer to Section D in the full version of the paper.

5.1 Improved Attack on 32-round SKINNY-128-384

We use the 23-round rectangle distinguisher for SKINNY-128-384 given in Table
4, whose probability is 2−np̃2tq̃2 = 2−128−115.09 = 2−243.09. Prepending 4-round

https://github.com/key-guess-rectangle/key-guess-rectangle

Key Guessing Strategy in Rectangle Attacks with Linear Key-schedule 21

Table 5: Summary of related-tweakey boomerang distinguishers for SKINNY. Nd
is the round of distinguishers; Nb +Nd +Nf is the total attacked round.

Version Nd Probability p̃2q̃2t Nb +Nd +Nf Ref.

64-128

17 2−29.78 - [57]
17 2−48.72 21 [47]
19 2−51.08 23 [41]
19 2−54.36 - [30]
18 2−55.34 24 [52]
18 2−55.34 25 Ours

64-192

22 2−42.98 - [57]
22 2−54.94 26 [47]
23 2−55.85 29 [41]
23 2−57.93 - [30]
22 2−57.73 30 [52]
22 2−57.56 31 Ours

128-256

18 2−77.83 - [57]
18 2−103.84 22 [47]
20 2−85.77 - [30]
21 2−116.43 24 [41]
19 2−116.97 25 [52]
18 2−108.51 25 Ours
19 2−121.07 26 Ours

128-384

22 2−48.30 - [57]
23 2−112 27 [47]
23 2−112 28 [64]
24 2−86.09 - [30]
25 2−116.59 30 [41]
22 2−101.49 30 [52]
23 2−115.09 32 Ours

Eb and appending 5-round Ef , we attack 32-round SKINNY-128-384 as illus-
trated in Figure 9. As introduced in Section 2, the numbers of active bits of
the plaintext and ciphertext are denoted as rb and rf , and the numbers of sub-
key bits involved in Eb and Ef are denoted as mb and mf . In the first round,
we use subtweakey ETK0 = MC ◦ SR(STK0) instead of STK0, and there is
ETK0[i] = ETK0[i + 4] = ETK0[i + 12] = STK0[i] for 0 ≤ i ≤ 3. So we have
rb = 12·8 = 96 by W ′0. As shown in Figure 9, the cells are needed to be guessed
in Eb, including 3 cells in STK2, 7 cells in STK1, 8 cells in ETK0. Hence,
mb = 18 · 8 = 144. In the Ef , we have rf = 16 · 8 = 128 and mf = 24 · 8 = 192.
There are 7 cells in STK31 and 4 cells STK30 marked by red boxes to be
guessed in advance, i.e., m′f = 11 · 8 = 88. Then, we get 8 cells in the inter-
nal states (marked by red boxes in W30, W29 and X29) as additional filters with
the guessed m′f -bit key, i.e., hf = 8 ·8 = 64. Due to the tweakey schedule, we de-
duce STK28[3, 7] from ETK0[1, 0], STK2[0, 2] and STK30[7, 1]. So there are only
(mf−2c) = 176-bit subtweakey unknown in Ef after mb-bit key is guessed in Eb.

22 X. Dong et al.

As shown in Table 6, we have k′f = {STK30[1, 3, 5, 7], STK31[0, 2, 3, 4, 5, 6, 7]}
marked in red indexes and hf = {X29[11],W29[5, 7, 13, 15],W30[5, 8, 15]} marked
in bold. Finally, we give the attack according to Algorithm 1 as follows:

Active cell with fixed difference 0aa

Active cell Both the difference and the value are needed

Zero difference, but the value is needed

Value is needed to fast filter quartets

STK31 X31 Y31 Z31 W31

1c

⊕SC
AC

ART

SR MC

STK30 X30 Y30 Z30 W30

1c
⊕SC

AC
ART

SR MC

STK29 X29 Y29 Z29 W29

58
58

⊕SC
AC

ART

SR MC

STK28 X28 Y28 Z28 W28

58 ⊕ 58 58SC
AC

ART

SR MC

STK27 X27 Y27 Z27 W27

50
50

⊕SC
AC

ART

SR MC

23-round rectangle distinguisher of SKINNY-128-384

STK3 X3 Y3 Z3 W3

c0 c0

20
20

20 ⊕
20

20
20

20
20
20SC

AC
ART

SR MC

STK2 X2 Y2 Z2 W2

61

⊕SC
AC

ART

SR MC

STK1 X1 Y1 Z1 W1

61 ⊕SC
AC

ART

SR MC

ETK0 X0 Y0 Z ′
0 W ′

0

SC
AC

SR MC ⊕

Fig. 9: The 32-round attack against SKINNY-128-384.

1. Construct y =
√
s · 2n/2−rb/

√
p̃2tq̃2 =

√
s · 225.54 structures of 2rb = 296

plaintexts each according to Eq. (7). For each structure, query the 296 ci-
phertexts by encryptions under K1, K2, K3 and K4. Hence, the data com-

Key Guessing Strategy in Rectangle Attacks with Linear Key-schedule 23

Table 6: Internal state used for filtering and involved subtweakeys for 32-round
SKINNY-128-384.

Round Filter Involved subtweakeys

1
30

∆W30[5] = 0 STK31[5]
2 ∆W30[8] = 0 STK31[4]
3 ∆W30[15] = 0 STK31[3]

4

29

∆W29[5] = 0 STK30[5], STK31[0, 6, 7]
5 ∆W29[7] = 0 STK30[7], STK31[2, 4, 5]
6 ∆W29[10] = 0 STK30[6], STK31[1, 7]
7 ∆W29[13] = 0 STK30[1], STK31[0, 5]
8 ∆W29[15] = 0 STK30[3], STK31[2, 7]
9 ∆X29[11] = 0x58 STK30[5], STK31[0, 6]

10

28

∆W28[5] = 0 STK29[5], STK30[0, 6, 7], STK31[1, 2, 3, 4, 7]
11 ∆W28[11] = 0 STK29[7], STK30[2, 4], STK31[1, 3, 5, 6]
12 ∆W28[13] = 0 STK29[1], STK30[0, 5], STK31[3, 4, 6]
13 ∆W28[15] = 0 STK29[3], STK30[2, 7], STK31[1, 4, 6]

14
27

∆W27[7] = 0 STK28[7], STK29[2, 4, 5], STK30[0, 1, 3, 5, 6], STK31[0, 1, 2, 3, 4, 5, 6, 7]
15 ∆W27[15] = 0 STK28[3], STK29[2, 7], STK30[1, 4, 6], STK31[0, 3, 5, 6, 7]
16 ∆X27[9] = 0x50 STK28[7],STK29[2, 4], STK30[1, 3, 5, 6], STK31[0, 1, 2, 5, 6, 7]

plexity is
√
s·2n/2+2/

√
p̃2tq̃2 =

√
s·2123.54 according to Eq. (8). The memory

complexity in this step is also
√
s · 2123.54.

2. Guess x-bit key (part of the kb and k′f involved in Eb and Ef):

(a) Initialize a list of 2mb+mf−2c−x = 2320−x counters. The memory com-
plexity in this step is 2320−x.

(b) Guess (mb +m′f − x) = (232− x)-bit key involved in Eb and Ef :

i. In each structure, we partially encrypt P1 under mb-bit subkey to
the positions of known differences of Y3, and partially decrypt it to
the plaintext P2 (within the same structure) after xoring the known
difference α. The details can refer to Section C in the full version of
the paper. Do the same for each P3 to get P4. Store the pairs in S1

and S2. Totally, mb = 18 · 8 = 144-bit key are involved.
ii. The size of S1 and S2 is y · 2rb =

√
s · 2121.54. For each element

in S1, with m′f = 88-bit k′f , we can obtain 2hf = 2 · 64 = 128
internal state bits as filters. So partially decrypt (C1, C2) in S1

with k′f to get {W30[5, 8, 15],W29[5, 7, 13, 15], X29[11]} as filters. In-
sert the element in S1 into a hash table H indexed by the hf =
64-bit {W30[5, 8, 15],W29[5, 7, 13, 15], X29[11]} of C1 and hf = 64-
bit {W̄30[5, 8, 15], W̄29[5, 7, 13, 15], X̄29[11]} of C2. For each element
(C3, C4) in S2, partially decrypt it with k′f to get the 2hf = 128 in-
ternal state bits, and check against H to find the pairs (C1, C2),
where (C1, C3) and (C2, C4) collide at the 2hf = 128 bits. Ac-
cording to Eq. (9), the data collection process needs T1 =

√
s ·

2mb+m
′
f+n/2+1/

√
p̃2tq̃2 =

√
s · 2144+88+64+1+57.54 =

√
s · 2354.54.

We get s · 2mb+m′f−2hf−n+2rf /(p̃2tq̃2) = s · 2144+88−128+128+115.09 =
s · 2347.09 quartets according to Eq. (11).

24 X. Dong et al.

iii. On ε: for each of s · 2347.09 quartets, determine the key candidates
and increase the corresponding counters. According to Eq. (11), this
step needs T2 = s ·2347.09 ·ε. We refer the readers to Table 7 to make
the following guess-and-filter steps clearer.

A. In round 31: guessing STK31[1] and together with k′f as shown
in Table 7, we compute Z30[6, 14] and peel off round 31. Then
∆Y30[6] and ∆X30[14] are deduced. For the 3rd column of X30 of
(C1, C3), we obtain ∆X30[6] = ∆X30[14] from Eq. (15). Hence,
we obtain ∆X30[6] and deduce STK30[6] by Lemma 1. Similarly,
we deduce STK ′30[6] for (C2, C4). Since ∆STK30[6] is fixed, we
get an 8-bit filter. s ·2347.09 ·28 ·2−8 = s ·2347.09 quartets remain.

B. In round 30: guessing STK30[0], we compute Z29[1, 9, 13] as
shown in Table 7. Then ∆Y29[1] and ∆X29[9, 13] are deduced.
For the 2nd column of X29 of (C1, C3), we can obtain ∆X29[1] =
∆X29[9] = ∆X29[13]. Hence, we obtain ∆X29[1] and deduce
STK29[1]. Similarly, we deduce STK ′29[1] for (C2, C4), which
is an 8-bit filter. For both (C1, C3) and (C2, C4), ∆X29[9] =
∆X29[13] is an 8-bit filter. s ·2347.09 ·28 ·2−8 ·2−8 ·2−8 = s ·2331.09
quartets remain.

C. Guessing STK30[2, 4], we compute Z29[3, 7, 15] and peel off round
30. Then ∆Y29[3, 7] and ∆X29[15] are deduced. For the 4th col-
umn of X29 of (C1, C3), we can obtain ∆X29[3] = ∆X29[7] =
∆X29[15]. Hence, we obtain ∆X29[3, 7] and deduce STK29[3, 7].
Similarly, we deduce STK ′29[3, 7] for (C2, C4), which is a 16-bit
filter. s · 2331.09 · 216 · 2−16 = s · 2331.09 quartets remain.

D. In round 29: guessing STK29[2, 5], we compute Z28[3, 11, 15].
Then ∆Y28[3] and ∆X28[11, 15] are deduced. For the 4th col-
umn of X28 of (C1, C3), we can obtain ∆X28[3] = ∆X28[11] =
∆X28[15] . Since STK28[3] can be deduced from the known
ETK0[1], STK2[0] and STK30[7], we can compute X28[3] and
∆X28[3]. For both (C1, C3) and (C2, C4), ∆X28[3] = ∆X28[15]
and ∆X28[11] = ∆X28[15] are two 8-bit filter. s · 2331.09 · 216 ·
2−16 · 2−16 = s · 2315.09 quartets remain.

E. Guessing STK29[4], we decrypt two rounds to get X27[9] with
known STK28[7]. In round 27, ∆X27[9] = 0x50 is an 8-bit filter
for both (C1, C3) and (C2, C4). s · 2315.09 · 28 · 2−16 = s · 2307.09
quartets remain.

So for each quartet, ε = 28 · 4
32 + 28 · 4

32 + 2−16 · 216 · 4
32 + 2−16 · 216 ·

4
32 + 2−32 · 28 · 8

32 ≈ 26.01 and T2 = s · 2353.1.
(c) (Exhaustive search) Select the top 2mb+mf−2c−x−h = 2320−x−h hits in

the counter as the key candidates. Guess the remaining k− (mb +mf −
2c) = 64-bit key to check the full key. According to Eq. (12), T3 = 2k−h.

In order to balance T1, T2, T3 and memory complexity and achieve a high
success probability, we set the excepted number of right quartets s = 1, the
advantage h = 40 and x = 208 (x ≤ mb + m′f = 232, h ≤ mb + mf − 2c − x =

Key Guessing Strategy in Rectangle Attacks with Linear Key-schedule 25

320− x) with Eq. (14). Then we have T1 = 2354.54, T2 = 2353.1 and T3 = 2344.
In total, the data complexity is 2123.54, the memory complexity is 2123.54, and
the time complexity is 2354.99. The success probability is about 82.1%.

Table 7: Tweakey recovery for 32-round SKINNY-128-384, where the red bytes
are among k′f or obtained in the previous steps.

Step Internal state Involved subtweakeys

A
Z30[6] STK31[7]
Z30[14] STK31[1]

B
Z29[1] STK30[5], STK31[6]
Z29[9] STK30[7], STK31[2, 4]
Z29[13] STK30[0], STK31[3, 4]

C
Z29[3] STK30[7], STK31[4]
Z29[7] STK30[4], STK31[3, 5, 6]
Z29[15] STK30[2], STK31[1, 6]

D
Z28[3] STK29[7], STK30[4], STK31[3, 5, 6]
Z28[11] STK29[5], STK30[0, 6], STK31[1, 3, 4, 7]
Z28[15] STK29[2], STK30[1, 6], STK31[0, 5, 7]

E X27[9] STK28[7],STK29[2, 4], STK30[1, 3, 5, 6], STK31[0, 1, 2, 5, 6, 7]

6 Conclusion and Further Disscussion

We introduce a new key-recovery framework for the rectangle attacks on ciphers
with linear schedule with the purpose of reducing the overall complexity or
attacking more rounds. We give a uniform automatic model on SKINNY to search
for distinguishers which are more proper for our key-recovery framework. With
the new rectangle distinguishers, we give new attacks on a few versions of SKINNY,
which achieve 1 or 2 more rounds than the best previous attacks.

Further discussion. For ForkSkinny, Deoxys-BC and GIFT, we do not give
the automatic models but only apply our new rectangle attack framework in
Algorithm 1 with the previous distinguishers. For ForkSkinny, we find that the
21-round distinguisher on ForkSkinny-128-256 in [52] is also optimal for our new
rectangle attack model. Our attack on 28-round ForkSkinny-128-256 with 256-
bit key reduces the time complexity of [52] by a factor of 222. For Deoxys-BC-384,
our attack reduces the time complexity of the best previous 14-round attack [63]
by a factor of 222.7 with similar data complexity. For GIFT-64, our rectangle
attack uses the same rectangle distinguisher with Ji et al. [44], but achieves
one more round. Moreover, compared with the best previous attack achieved by
differential attack by Sun et al. [58], our rectangle attack achieves the same 26
rounds. The details can refer to Section F, G, H of the full version of the paper.

For single-key setting, our tradeoff key-recovery model in Section 3 and Zhao
et al.’s model [62] can be trivially converted into the single-key model by just let-
ting the differences of the keys be 0. We also give an attack on 10-round Serpent

26 X. Dong et al.

reusing the rectangle distinguisher by Biham, Dunkelman and Keller [13] and
achieving better time complexity (see Section I in the full version of the paper).

Overall analysis of the four attack models. To better understand different
key-recovery rectangle models, we give an overall analysis of the four attack
models in Section 2 and 3. There are some differences in the four models:

– The Attack I of Section 2.1 guesses all the (mb +mf)-bit key at once and
generates the quartets;

– The Attack II of Section 2.2 does not guess the key involved in Eb and Ef
when generating quartets, and uses hash tables in the key-recovery process.

– The Attack III of Section 2.3 only guesses mb-bit key in Eb to generate
quartets and the key-recovery process is just a guess and filter process.

– Our new attack of Section 3.1 guesses mb-bit key in Eb and m′f -bit key in
Ef to generate quartets, which increases the time of generating quartets but
reduces the number of quartets to be checked in the key-recovery process.

For all the attack models, the data complexities are the same, which depend on
the the probability of the rectangle distinguisher and the expected number of
right quartets s. To analyze different time complexities, we first compare time
complexities of the key-recovery process. Suppose, p̂q̂ = 2−t and s is small and
ignored, we approximate the four complexities to be





Attack I : TI = 2mb+mf+n/2+t+2, (17)

Attack II : TII = 2mb+rb+2rf−n+2t + 2mf+2rb+rf−n+2t, (18)

Attack III : TIII = 2mb+2rf−n+2t · ε, (19)

Attack IV : TIV = 2mb+2rf−n+m′f−2hf+2t · ε. (20)

To compare TII and TIII, when ε ≤ 2rb , the complexity of Attack III is
lower than Attack II. In the key-recovery process of Attack III, the early
abort technique [49] is usually applied to make the ε very small, i.e., the key-
recovery phase on 32-round SKINNY-128-384.

To compare TIII and TIV, when m′f − 2hf ≤ 0, the complexity of Attack IV

is lower than Attack III. For the attack where an hf -bit filter with an m′f -bit
guessed subkey satisfy m′f − 2hf ≤ 0, Attack IV is better than Attack III.

To compare TI, TII and TIII, we assume that the probability p̂2q̂2 is larger
than 2−n but the gap is small. Then n/2+t can be approximated by n and 2t ≈ n.
Thereafter, the complexities can be further estimated as 2mb+mf+n+2 for Attack
I, 2mb+rb+2rf +2mf+2rb+rf for Attack II and 2mb+2rf ·ε for Attack III. When
22rf ·ε < 2mf+n+2, the complexity of Attack III is lower than Attack I. When
rb + 2rf < mf + n+ 2 and 2rb + rf < mb + n+ 2, the complexity of Attack II

is lower than Attack I.

Hence, different models perform differently for different parameters.

Key Guessing Strategy in Rectangle Attacks with Linear Key-schedule 27

Future work. Generally, the model is suitable for most block ciphers with linear
key schedule. In fact, we also apply our method to CRAFT [8] and Saturnin [26].
For CRAFT, we find a better rectangle attack. However, the attack is inferior
to the attack proposed in [40]. For Saturnin, we failed to get any improved
attack. We plan to further investigate how to improve the current attacks by
applying a more complicated key-bridging technique [36]. For example, in the
32-round attack on SKINNY, “we deduce STK28[3, 7] from ETK0[1, 0], STK2[0, 2]
and STK30[7, 1]”. The current automatic model does not cover the key-bridging
technique. Future work is to adopt this technique into the automatic model to
find more effective key relations.

Acknowledgments. This work is supported by National Key R&D Program of
China (2018YFA0704701, 2018YFA0704704), the Major Program of Guangdong
Basic and Applied Research (2019B030302008), Major Scientific and Technolog-
ical Innovation Project of Shandong Province, China (2019JZZY010133), Natu-
ral Science Foundation of China (61902207, 61772519, 62032014, 62072270) and
the Chinese Major Program of National Cryptography Development Foundation
(MMJJ20180101, MMJJ20180102).

References

1. Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar, Arnab
Roy, and Damian Vizár. Forkcipher: A new primitive for authenticated encryption
of very short messages. In ASIACRYPT 2019, Proceedings, Part II, pages 153–182.

2. Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar, Arnab
Roy, and Damian Vizár. ForkAE v. Submission to NIST Lightweight Cryptography
Project, 2019.

3. Ralph Ankele, Subhadeep Banik, Avik Chakraborti, Eik List, Florian Mendel,
Siang Meng Sim, and Gaoli Wang. Related-key impossible-differential attack on
reduced-round SKINNY. In ACNS 2017, volume 10355, pages 208–228.

4. Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng
Sim, and Yosuke Todo. GIFT: A small present - towards reaching the limit of
lightweight encryption. In CHES 2017, Proceedings, volume 10529, pages 321–345.

5. Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman. DLCT: A
new tool for differential-linear cryptanalysis. In EUROCRYPT 2019, Proceedings,
Part I, volume 11476, pages 313–342.

6. Augustin Bariant, Nicolas David, and Gaëtan Leurent. Cryptanalysis of Forkci-
phers. IACR Trans. Symmetric Cryptol., 2020(1):233–265, 2020.

7. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
family of block ciphers and its low-latency variant MANTIS. In CRYPTO 2016,
Proceedings, Part II, pages 123–153.

8. Christof Beierle, Gregor Leander, Amir Moradi, and Shahram Rasoolzadeh.
CRAFT: lightweight tweakable block cipher with efficient protection against DFA
attacks. IACR Trans. Symmetric Cryptol., 2019(1):5–45, 2019.

9. Tim Beyne. Block cipher invariants as eigenvectors of correlation matrices. J.
Cryptol., 33(3):1156–1183, 2020.

28 X. Dong et al.

10. Eli Biham, Ross J. Anderson, and Lars R. Knudsen. Serpent: A new block cipher
proposal. In FSE ’98, Proceedings, pages 222–238.

11. Eli Biham, Orr Dunkelman, and Nathan Keller. New cryptanalytic results on
IDEA. In ASIACRYPT 2006, Proceedings, pages 412–427.

12. Eli Biham, Orr Dunkelman, and Nathan Keller. New results on boomerang and
rectangle attacks. In FSE 2002, Revised Papers, volume 2365, pages 1–16.

13. Eli Biham, Orr Dunkelman, and Nathan Keller. The rectangle attack - rectangling
the serpent. In EUROCRYPT 2001, Proceeding, volume 2045, pages 340–357.

14. Eli Biham, Orr Dunkelman, and Nathan Keller. Related-key boomerang and rect-
angle attacks. In EUROCRYPT 2005, Proceedings, volume 3494, pages 507–525.

15. Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems.
J. Cryptology, 4(1):3–72, 1991.

16. Alex Biryukov, Christophe De Cannière, and Gustaf Dellkrantz. Cryptanalysis of
SAFER++. In CRYPTO 2003, Proceedings, volume 2729, pages 195–211.

17. Alex Biryukov, Luan Cardoso dos Santos, Daniel Feher, Vesselin Velichkov, and
Giuseppe Vitto. Automated truncation of differential trails and trail clustering in
ARX. Cryptology ePrint Archive, Report 2021/1194.

18. Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the full
AES-192 and AES-256. In ASIACRYPT 2009, volume 5912, pages 1–18.

19. Alex Biryukov and Ivica Nikolic. Automatic search for related-key differential
characteristics in byte-oriented block ciphers: Application to aes, camellia, khazad
and others. In EUROCRYPT 2010, Proceedings, pages 322–344.

20. Alex Biryukov and Vesselin Velichkov. Automatic search for differential trails in
ARX ciphers. In CT-RSA 2014, volume 8366, pages 227–250.

21. Xavier Bonnetain, Léo Perrin, and Shizhu Tian. Anomalies and vector space search:
Tools for S-box analysis. In ASIACRYPT 2019, Part I, volume 11921, pages 196–
223.

22. Hamid Boukerrou, Paul Huynh, Virginie Lallemand, Bimal Mandal, and Marine
Minier. On the feistel counterpart of the boomerang connectivity table introduction
and analysis of the FBCT. IACR Trans. Symmetric Cryptol., 2020(1):331–362,
2020.

23. Christina Boura and Anne Canteaut. On the boomerang uniformity of crypto-
graphic sboxes. IACR Trans. Symmetric Cryptol., 2018(3):290–310, 2018.

24. Christina Boura, Virginie Lallemand, Maŕıa Naya-Plasencia, and Valentin Suder.
Making the impossible possible. J. Cryptol., 31(1):101–133, 2018.

25. Christina Boura, Maŕıa Naya-Plasencia, and Valentin Suder. Scrutinizing and im-
proving impossible differential attacks: Applications to CLEFIA, Camellia, LBlock
and Simon. In ASIACRYPT 2014, Part I, volume 8873, pages 179–199.

26. Anne Canteaut, Sébastien Duval, Gaëtan Leurent, Maŕıa Naya-Plasencia, Léo Per-
rin, Thomas Pornin, and André Schrottenloher. Saturnin: a suite of lightweight
symmetric algorithms for post-quantum security. IACR Trans. Symmetric Cryp-
tol., 2020(S1):160–207, 2020.

27. Anne Canteaut, Maŕıa Naya-Plasencia, and Bastien Vayssière. Sieve-in-the-middle:
Improved MITM attacks. In CRYPTO 2013, Proceedings, Part I, volume 8042,
pages 222–240.

28. Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. Boomerang
connectivity table: A new cryptanalysis tool. In EUROCRYPT 2018, Proceedings,
Part II, volume 10821, pages 683–714.

29. Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. A security anal-
ysis of Deoxys and its internal tweakable block ciphers. IACR Trans. Symmetric
Cryptol., 2017(3):73–107, 2017.

Key Guessing Strategy in Rectangle Attacks with Linear Key-schedule 29

30. Stéphanie Delaune, Patrick Derbez, and Mathieu Vavrille. Catching the
fastest boomerangs application to SKINNY. IACR Trans. Symmetric Cryptol.,
2020(4):104–129, 2020.

31. Patrick Derbez and Pierre-Alain Fouque. Automatic search of meet-in-the-middle
and impossible differential attacks. In CRYPTO 2016, Part II, pages 157–184.

32. Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved key recovery
attacks on reduced-round AES in the single-key setting. In EUROCRYPT 2013,
Proceedings, pages 371–387.

33. Xiaoyang Dong, Lingyue Qin, Siwei Sun, and Xiaoyun Wang. Key guessing strate-
gies for linear key-schedule algorithms in rectangle attacks. Cryptology ePrint
Archive, Report 2021/856, 2021. https://ia.cr/2021/856.

34. Orr Dunkelman, Sebastiaan Indesteege, and Nathan Keller. A differential-linear
attack on 12-round Serpent. In INDOCRYPT 2008, volume 5365, pages 308–321.

35. Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir. The retracing
boomerang attack. In EUROCRYPT 2020, Part I, volume 12105, pages 280–309.

36. Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved single-key attacks on
8-round AES-192 and AES-256. In ASIACRYPT 2010, Proceedings, pages 158–176.

37. Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-key
attack on the KASUMI cryptosystem used in GSM and 3g telephony. In CRYPTO
2010, Proceedings, volume 6223, pages 393–410.

38. Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-key at-
tack on the KASUMI cryptosystem used in GSM and 3G telephony. J. Cryptology,
27(4):824–849, 2014.

39. Antonio Flórez-Gutiérrez and Maŕıa Naya-Plasencia. Improving key-recovery in
linear attacks: Application to 28-round PRESENT. In EUROCRYPT 2020, Pro-
ceedings, Part I, pages 221–249.

40. Hao Guo, Siwei Sun, Danping Shi, Ling Sun, Yao Sun, Lei Hu, and Meiqin Wang.
Differential attacks on CRAFT exploiting the involutory s-boxes and tweak addi-
tions. IACR Trans. Symmetric Cryptol., 2020(3):119–151, 2020.

41. Hosein Hadipour, Nasour Bagheri, and Ling Song. Improved rectangle attacks on
SKINNY and CRAFT. IACR Trans. Symmetric Cryptol., 2021(2):140–198, 2021.

42. Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block ciphers:
The TWEAKEY framework. In ASIACRYPT 2014, Proceedings, Part II, volume
8874, pages 274–288.

43. Jérémy Jean, Ivica Nikolić, Thomas Peyrin, and Yannick Seurin. Submission
to CAESAR : Deoxys v1.41, October 2016. http://competitions.cr.yp.to/

round3/deoxysv141.pdf.
44. Fulei Ji, Wentao Zhang, Chunning Zhou, and Tianyou Ding. Improved (related-

key) differential cryptanalysis on GIFT. Accepted to SAC 2020.
45. John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified boomerang attacks

against reduced-round MARS and Serpent. In FSE 2000, volume 1978, pages
75–93.

46. Stefan Kölbl, Gregor Leander, and Tyge Tiessen. Observations on the SIMON
block cipher family. In CRYPTO 2015, Part I, volume 9215, pages 161–185.

47. Guozhen Liu, Mohona Ghosh, and Ling Song. Security analysis of SKINNY
under related-tweakey settings. IACR Transactions on Symmetric Cryptology,
2017(3):37–72, 2017.

48. Meicheng Liu, Xiaojuan Lu, and Dongdai Lin. Differential-linear cryptanalysis
from an algebraic perspective. In CRYPTO 2021, Part III, volume 12827, pages
247–277.

https://ia.cr/2021/856
http://competitions.cr.yp.to/round3/deoxysv141.pdf
http://competitions.cr.yp.to/round3/deoxysv141.pdf

30 X. Dong et al.

49. Jiqiang Lu, Jongsung Kim, Nathan Keller, and Orr Dunkelman. Improving the
efficiency of impossible differential cryptanalysis of reduced camellia and MISTY1.
In CT-RSA 2008, Proceedings, volume 4964, pages 370–386.

50. Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and linear
cryptanalysis using mixed-integer linear programming. In Inscrypt 2011, Revised
Selected Papers, pages 57–76.

51. Sean Murphy. The return of the cryptographic boomerang. IEEE Transactions on
Information Theory, 57(4):2517–2521, 2011.

52. Lingyue Qin, Xiaoyang Dong, Xiaoyun Wang, Keting Jia, and Yunwen Liu. Au-
tomated search oriented to key recovery on ciphers with linear key schedule ap-
plications to boomerangs in SKINNY and ForkSkinny. IACR Trans. Symmetric
Cryptol., 2021(2):249–291, 2021.

53. Sadegh Sadeghi, Tahereh Mohammadi, and Nasour Bagheri. Cryptanalysis of re-
duced round SKINNY block cipher. IACR Transactions on Symmetric Cryptology,
2018(3):124–162, 2018.

54. Yu Sasaki and Yosuke Todo. New impossible differential search tool from design
and cryptanalysis aspects - revealing structural properties of several ciphers. In
EUROCRYPT 2017, Proceedings, Part III, volume 10212, pages 185–215.

55. Ali Aydin Selçuk. On probability of success in linear and differential cryptanalysis.
J. Cryptology, 21(1):131–147, 2008.

56. Danping Shi, Siwei Sun, Patrick Derbez, Yosuke Todo, Bing Sun, and Lei Hu.
Programming the demirci-selçuk meet-in-the-middle attack with constraints. In
ASIACRYPT 2018, Proceedings, Part II, volume 11273, pages 3–34.

57. Ling Song, Xianrui Qin, and Lei Hu. Boomerang connectivity table revisited.
application to SKINNY and AES. IACR Transactions on Symmetric Cryptology,
2019(1):118–141, 2019.

58. Ling Sun, Wei Wang, and Meiqin Wang. Accelerating the search of differential
and linear characteristics with the SAT method. IACR Trans. Symmetric Cryptol.,
2021(1):269–315, 2021.

59. Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song. Auto-
matic security evaluation and (related-key) differential characteristic search: Ap-
plication to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block
ciphers. In ASIACRYPT 2014, Proceedings, Part I, pages 158–178.

60. David A. Wagner. The boomerang attack. In FSE ’99, Proceedings, volume 1636,
pages 156–170.

61. Haoyang Wang and Thomas Peyrin. Boomerang switch in multiple rounds. appli-
cation to AES variants and deoxys. IACR Trans. Symmetric Cryptol., 2019(1):142–
169, 2019.

62. Boxin Zhao, Xiaoyang Dong, and Keting Jia. New related-tweakey boomerang and
rectangle attacks on Deoxys-BC including BDT effect. IACR Trans. Symmetric
Cryptol., 2019(3):121–151, 2019.

63. Boxin Zhao, Xiaoyang Dong, Keting Jia, and Willi Meier. Improved related-
tweakey rectangle attacks on reduced-round Deoxys-BC-384 and Deoxys-I-256-128.
In INDOCRYPT 2019, Proceedings, pages 139–159.

64. Boxin Zhao, Xiaoyang Dong, Willi Meier, Keting Jia, and Gaoli Wang. Generalized
related-key rectangle attacks on block ciphers with linear key schedule: applications
to SKINNY and GIFT. Designs, Codes and Cryptography, 88(6):1103–1126, 2020.

	Key Guessing Strategies for Linear Key-Schedule Algorithms in Rectangle Attacks
	Introduction
	Our Contributions.

	Generalized Key-Recovery Algorithms for the Rectangle Attacks
	Attack I: Biham-Dunkelman-Keller's Attack
	Complexity.

	Attack II: Biham-Dunkelman-Keller's Attack
	Complexity.

	Attack III: Zhao et al.'s Related-Key Attack
	Complexity.

	Key-Guessing Strategies in the Rectangle Attack
	New Related-key Rectangle Attack with Linear Key Schedule
	Complexity.

	On the Success Probability and Exhaustive Search Phase

	Automatic Model For SKINNY
	Previous Automatic Search Models for Boomerang Distinguishers on SKINNY
	Our Model to Determine the Optimal Distinguisher
	Modelling propagation of cells with known differences in Ef.
	Modelling cells that could be used to filter quartets in Ef.
	Modeling the guessed subtweakey cells in Ef for generating the quartets.
	Modelling the advantage h in the key-recovery attack.
	The objective function.

	Comparisons between Qin et al.'s Model and Ours
	New Distinguishers for SKINNY

	Improved Attacks on SKINNY
	Improved Attack on 32-round SKINNY-128-384

	Conclusion and Further Disscussion
	Further discussion.
	Overall analysis of the four attack models.
	Future work.
	Acknowledgments.

