
On Building Fine-Grained One-Way Functions
from Strong Average-Case Hardness

Chris Brzuska1, Geoffroy Couteau2

1 Aalto University, Finland
2 CNRS, IRIF, Université de Paris, France

Abstract. Constructing one-way functions from average-case hardness
is a long-standing open problem. A positive result would exclude Pessi-
land (Impagliazzo ’95) and establish a highly desirable win-win situation:
either (symmetric) cryptography exists unconditionally, or all NP prob-
lems can be solved efficiently on the average. Motivated by the lack of
progress on this seemingly very hard question, we initiate the investiga-
tion of weaker yet meaningful candidate win-win results of the following
type: either there are fine-grained one-way functions (FGOWF), or non-
trivial speedups can be obtained for all NP problems on the average.
FGOWFs only require a fixed polynomial gap (as opposed to superpoly-
nomial) between the running time of the function and the running time
of an inverter. We obtain three main results:
Construction. We show that if there is an NP language having a very
strong form of average-case hardness, which we call block finding hard-
ness, then FGOWF exist. We provide heuristic support for this very
strong average-case hardness notion by showing that it holds for a ran-
dom language. Then, we study whether weaker (and more natural) forms
of average-case hardness could already suffice to obtain FGOWF, and
obtain two negative results:
Separation I. We provide a strong oracle separation for the implication
(∃ exponentially average-case hard language =⇒ ∃ FGOWF).
Separation II. We provide a second strong negative result for an even
weaker candidate win-win result. Namely, we rule out a black-box proof
for the implication (∃ exponentially average-case hard language whose
hardness amplifies optimally through parallel repetitions =⇒ ∃ FGOWF).
This separation forms the core technical contribution of our work.

1 Introduction

In his celebrated 1995 position paper [Imp95], Impagliazzo describes his per-
sonal view of the study of average-case complexity, an emergent (at the time)
and fundamental area of computational complexity initiated in a seminal work
of Levin [Lev86], which aims to characterize NP problems which are not only
hard for a worst-case choice of inputs, but also for natural distributions over
the inputs. In Impagliazzo’s view, our current understanding of the landscape
of complexity theory is best described by considering five possible worlds we

2 Chris Brzuska, Geoffroy Couteau

Cryptomania
PKE

Minicrypt
OWF but no PKE

Pessiland
avgP ̸= DistNP but no OWF

Heuristica
P ̸= NP but avgP = DistNP

Algorithmica
P = NP

cryptographer’s
wonderland

“the worst of all
possible worlds”
Impagliazzo, 1995

algorithmist’s
wonderland

OWF ⇏
PKE [IR90]

avgP ̸= DistNP
⇏ OWF [Wee06]
P ̸= NP ⇏
avgP ̸= DistNP
[FF93,BT03]
[AGGM06,BB15]

Fig. 1: Impagliazzo’s five worlds

might live in, which are now commonly known as the five worlds of Impagli-
azzo, corresponding to the five possible outcomes regarding the existence of
worst-case hardness in NP, average-case hardness in NP, one-way function, and
public-key cryptography. The corresponding five worlds, Algorithmica, Heuris-
tica, Pessiland, Minicrypt, and Cryptomania, and their relations are summa-
rized on Figure 1. Algorithmica and Heuristica correspond to the “algorithmist’s
wonderland”, where all NP languages can be decided efficiently on the average.
Cryptomania and Minicrypt correspond to the “cryptographer’s wonderland”,3
where one-way functions (and therefore, stream ciphers, signatures, pseudoran-
dom functions, etc.) exist. Eventually, Pessiland is what Impagliazzo describes
as “the worst of all possible worlds”: a world in which many NP problems might
be untractable (even on natural instances), yet no one-way function (and thus
no cryptography) exists.

One-Way Functions based on Average-Case Hardness. In this article,
we study whether (the existence of) average-case hard NP problems imply (the
existence of) one-way functions. Conceptually, a positive answer to this ques-
tion rules out Pessiland, i.e., it constitutes a win-win result: Either all NP
problems can be solved efficiently, on the average, or cryptographic one-way
functions exist. Little progress has been made on this question in the past
two-and-a-half decades. There is a partial explanation for this lack of success:
we know that any construction of one-way functions from average-case hard
NP problems must rely on non-black-box techniques (Wee [Wee06] attributes
this simple observation to Impagliazzo and Rudich). Indeed, similar separa-
tions [IR90,FF93,BT03,AGGM06,BB15] are known between any two of Impagli-
azzo’s worlds. However, there, the situation is much more satisfying: At the
3 Though we heard that lately, some cryptographers have been found dreaming of an

even higher heaven, the mysterious land of Obfustopia.

On Building FGOWFs from Strong AC Hardness 3

bottom of the hierarchy, we know that stronger exponential worst-case assump-
tions imply that avgP ̸= DistNP [Yao82,WB86,Sud97,Lev87,STV01]. At the top
of the hierarchy, we know that exponentially secure one-way functions imply a
weak, but useful notion of public-key cryptography, namely fine-grained public-
key cryptography where there is a polynomial (rather than superpolynomial)
gap between the time to encrypt and the time needed to break the cryptosys-
tem [Mer78,BGI08]. Interestingly, the very first publicly-known work on public-
key cryptography, the 1974 project proposal of Merkle4 (published much later
in [Mer78]) achieves exactly such a weak notion of security: Merkle shows that
an ideal OWF (modeled as a random oracle) can be used to construct a key
agreement protocol where the honest parties run in time n, while the best at-
tack requires time n2. The assumption of an ideal OWF was later relaxed to
the existence of exponentially hard OWFs by Biham, Goren and Ishai [BGI08].
Hence, in essence, Merkle establishes a weak exclusion of Minicrypt, by show-
ing that strong hardness in Minicrypt already implies some nontrivial form of
public-key cryptography, with a quadratic gap between the attacker’s runtime
and the honest parties’ runtime.

1.1 Our Contribution: Inbetween Heuristica and Pessiland

The above result suggests a natural relaxation of Impagliazzo’s program: rather
than ruling out Pessiland entirely, one could hope to show that sufficiently strong
forms of average-case hardness suffice to construct weak forms of cryptography.
Such a result would still have a very desirable win-win flavor. For example, if
one shows that exponential average-case hardness implies fine-grained one-way
functions, it would show that either all NP problems admit nontrivial (subex-
ponential) algorithms on the average, or there must exist some form of cryptog-
raphy, with a polynomial security gap. As the computational power increases,
such a gap translates to an increasingly larger runtime gap on concrete instances
and thus a larger concrete security margin in realistic situations.

We can also consider starting from even stronger forms of average-case hard-
ness. A very natural target is non-amortizing average-case hardness, which states
(in essence) that deciding whether k words (x1, · · · , xk) belong to a language L
is k times harder (on average) than deciding membership of a single word. This
stronger form of average-case hardness is closely related to the widely stud-
ied notion of proofs of work [BRSV18]. Building fine-grained one-way functions
from this strong form of average-case hardness would still be a very meaningful
win-win: it would show that either we can obtain nontrivial savings on average
for all NP problems when amortizing over many instances (which would be an
algorithmic breakthrough), or there must exist some weak form of cryptography.

In this work, we initiate the study of these intermediate layers between
Heuristica and Pessiland, obtaining both positive and negative results.

4 Ralph Merkle, 1974 project proposal for CS 244 at U.C. Berkeley, http://www.
merkle.com/1974/

http://www.merkle.com/1974/
http://www.merkle.com/1974/

4 Chris Brzuska, Geoffroy Couteau

Fine-Grained OWFs from Block-Finding Hardness. We mentioned above
two natural strengthenings of average-case hardness: exponential average-case
hardness, and non-amortizable average-case hardness (deciding whether k words
(x1, · · · , xk) belong to L is k times harder that deciding membership of a sin-
gle word). Here, we consider even stronger notions: we assume that there is a
language where it is already hard to decide, given k random words (x1, · · · , xk),
whether their language membership satisfies some local structure. As a sim-
ple example of such a notion, consider the following (average-case) block-finding
hardness notion: given k random words x⃗ = (x1, · · · , xk) and a t ≈ log k-bit
string s, computed as the t language membership bits of a randomly chosen
sequence of t consecutive words in x⃗, find these consecutive words. The notion
states (informally) that finding such a sequence (when it exists, and with prob-
ability significantly better than the random guess) cannot be done much faster
than by brute-forcing a significant fraction of all the language membership.

To get an intuition of this problem, it is helpful to consider an even sim-
pler formulation: given k random words (x1, · · · , xk) with the promise that t
consecutive words are not in the language, find these t consecutive words (with
probability significantly better than 1/k). For a very hard language, it is not
clear how to do this without naively brute-forcing the language membership of
Ω(k/t) words. We show that this (very strong) average-case hardness notion al-
ready gets us outside of Pessiland: if there is a block-finding hard language, then
there exists fine-grained one-way functions (with a quadratic hardness gap).

Heuristically evaluating the assumption on random languages. Given that this
strong form of average-case hardness is new, we provide some heuristic analysis to
support the intuition that it plausibly holds for some hard languages. To do so, we
introduce a convenient tool for this heuristic analysis, a random language model
(RLM), analogous to how the random oracle model [BR93] is used to heuristically
study the security of constructions when instantiated with a sufficiently strong
hash function. The RLM provides oracle access to a truly random NP-language
L. In the RLM, each bitstring x ∈ {0, 1}n belongs to L with probability exactly
1/2, and the membership witness for a word x ∈ L∩{0, 1}n is a uniformly random
bitstring from {0, 1}n.5 To check membership to the language, the parties have
access to an oracle Chk which, on input a pair (x, w) ∈ {0, 1}n×{0, 1}n, returns
1 if x ∈ L and w is the right corresponding witness, and 0 otherwise. Finding
out whether a random bitstring x ∈ {0, 1}n belongs to L requires 2n−1 calls to
Chk on the average.6

5 Of course, this heuristic is simplified: most real languages can have more than a
single witness, and the choice of having |w| = |x| is a somewhat arbitrary way of
tuning the hardness to make it exactly 2n. Still, we believe that there is value in
using a simple model to heuristically analyze the plausibility of an assumption –
even though, as any heuristic model, it must fail on artificial counter examples.

6 More precisely, it requires 2n−1 calls to Chk on the average to find a witness of
language membership if x is indeed in the language. In turn, it requires 2n calls to
confirm that there is indeed no witness if x is not in the language.

On Building FGOWFs from Strong AC Hardness 5

The RLM captures idealized hard language where it is not only (exponen-
tially) hard to decide language membership, but also hard to sample an element
of the language with probability significantly better than 1/2 (hence, in particu-
lar, it is also hard to generate a word together with the corresponding witness).
This captures hard languages where no further structure is assumed beyond the
ability to efficiently check a candidate witness; note that the ability to sample
instances together with their witness is exactly the additional structure which
implies the existence of one-way functions [Imp95], hence the question of build-
ing one-way functions from average-case hardness asks precisely about whether
this can be done without assuming this additional structure to start with.

In this work, we prove that a random language satisfies block-finding hard-
ness, providing some heuristic support for this strong form of average-case hard-
ness. Hence, we get as a corollary:

Corollary 1 (Informal). In the Random Language model, there exists a fine-
grained one-way function which can be evaluated with n oracle calls, but cannot
be inverted with o(n2) calls to the random language.

Constructing a FGOWF from block-finding hardness. At a (very) high level, the
construction proceeds as follows: suppose that there exists hard puzzles where
sampling a random puzzle p is easy (it takes time, say, O(1)), but finding the
unique solution s = s(p) to the puzzle, and verifying that a candidate solution s
to the puzzle is correct, are comparatively harder (they take some much larger
respective times N1 and N2 with N1 ≈ N2). For example, such puzzles can be
constructed by sampling |s| words (x1, · · · , x|s|), and asking for the length-|s|
bitstring of the bits indicating for each word xi whether it belongs to a given
hard language L. Then we construct a fine-grained OWF as follows: an input to
the function is a list of n puzzles (p1, · · · , pn) for some bound n, and an integer
i ≤ n. The function F (p1, · · · , pn, i) first solves the puzzle pi, and outputs the
solution s(pi) together with (p1, · · · , pn). Evaluating F takes time O(n)+N1; on
the other hand, when L is an ideally hard language, inverting F requires brute-
forcing many of the pi, which takes time O(n ·N2). Setting n ≈ N1 ≈ N2 gives a
quadratic hardness gap. We refer to Section 3 for a technical overview and the
full version of this work [BC20] for a formal proof and analysis of block-finding
hardness in the RLM.

Average-Case Hard Languages and Fine-Grained OWF. With the above,
we know that a sufficiently strong form of average-case hardness suffices to con-
struct fine-grained one-way functions. The natural next question is whether
weaker forms of average-case hardness could possibly suffice. We consider the
two natural notions we mentioned previously: exponential average-case hard-
ness, and the stronger non-amortizing exponential average-case hardness. For
both, our main results are negative and rule out relativizing (black-box) con-
structions.

For exponential average-case hard languages, we show that any construction
of fine-grained OWF from an (even exponentially) average-case hard language,

6 Chris Brzuska, Geoffroy Couteau

even with an arbitrarily small polynomial security gap N1+ε (for any absolute
constant ε > 0), must make a non-black-box use of the language. We prove
this by exhibiting an oracle relative to which there exists an exponentially hard
language, but no fine-grained one-way functions:

Theorem 2 (Informal). There is an oracle relative to which there exists an
exponentially secure average-case hard language, but any candidate fine-grained
OWF f can be inverted with probability O(1) and Õ(N) calls to the oracle, where
N denotes the number of oracle calls to compute f in the forward direction.

Black-Box Separation Between Non-Amortizable Average-Case Hard
Languages and Fine-Grained OWF. We then investigate whether non-
amortizability (which states, roughly, that deciding membership of k random
instances to L should take O(k) times longer than deciding membership of a sin-
gle instance to L) suffices to construct fine-grained OWFs. As we explained, this
would still constitute a very interesting win-win result: it would show that either
weak forms of cryptography exist unconditionally, or nontrivial speedups can be
achieved for all NP problems when amortizing over many random instances.
Below, we sketch another motivation for studying this setting.

Non-Amortizability Helps Circumvent Black-Box Impossibilities. Non-amortiza-
bility features have proven to be a key approach to overcoming black-box im-
possibility results for cryptographic primitives. For example, the Biham-Goren-
Ishai construction [BGI08] of fine-grained key agreement from exponential OWFs
only provides an inverse-polynomial bound on the probability that an attacker
retrieves the shared key when relying on Yao’s XOR Lemma. In turn, when rely-
ing on a (plausible) version of the XOR Lemma stating that success probability
decreases exponentially fast in the number of XORed instances, the adversary’s
success probability can be brought down to negligible. Yet, this “Dream XOR
Lemma” cannot be proven under black-box reductions [BGI08]. An even more
striking example is given by Simon’s celebrated black-box separation between
one-way functions and collision-resistant hash functions [Sim98]: Holmgren and
Lombardi [HL18] recently showed that a one-way product function (i.e., a OWF
that amplifies twice, meaning that inverting f on two random images (y1, y2)
takes twice the time of inverting f on a single random image) suffices to circum-
vent Simon’s impossibility result and build a collision-resistant hash function (in
a black-box way).

A Black-Box Separation. Motivated by the above, we investigate the possibility
of building fine-grained OWFs from non-amortizable average-case hard languages
(i.e., languages whose average-case hardness amplifies through parallel repeti-
tions). Unfortunately, our result turns out to be negative: we prove that there is
no black-box construction of an N1+ε-hard OWF (where N is the time it takes to
evaluate the function in the forward direction), for an arbitrary constant ε > 0,
even from an exponentially average-case hard language whose hardness ampli-
fies at an exponential rate through parallel repetition. Conceptually, our second

On Building FGOWFs from Strong AC Hardness 7

negative result separates fine-grained one-way functions from a much stronger
primitive and can thus be seen as a much stronger result. Note, however, that
technically, the two negative results are incomparable since the first one rules
out relativizing reductions whereas the latter rules out black-box reductions, see
the beginning of Section 3 for a discussion.

Theorem 3 (Informal). There is no black-box construction of an N1+ε-hard
OWF f , for an arbitrary constant ε > 0, from exponentially average-case hard
languages L whose hardness amplifies at an exponential rate through parallel
repetition.

In the nomenclature of Reingold, Vadhan and Trevisan [RTV04], we rule out
a ∀∃-weakly-reduction, a slightly weaker notion than a relativizing reduction.
Namely, the reduction can access the adversary. Our result becomes a full oracle
separation if the fine-grained one-way function f would be given black-box access
to the adversary A as well. Reingold, Vadhan and Trevisan point out that in
some cases, the adversary A can be embedded into the oracle O, but doing so
did not seem straightforward for our case and is left as an open question. In
the CAP nomenclature of Baecher, Brzuska and Fischlin [BBF13], we rule out
NNN reductions, since the construction f can depend on the language L, and
the reduction C can depend on both, the adversary and the primitive, i.e., each
of these dependencies can be seen as non-black-box, thus NNN.

Why study non-amortizability? In the past, non-amortizability proved key
to overcome related limitations. For example, if one wants to build fine-grained
key exchange with overwhelming security from (exponential) OWFs, a strong
non-amortizability property (dubbed dream XOR lemma) is known to be neces-
sary [BGI08]. Non-amortizability also allows bridging the gap between OWF and
CRHFs [HL18]. Moreover, a very natural and —initially— promising-looking ap-
proach towards fine-grained cryptography from weaker-than-usual assumptions
inherently goes through (and stops at) non-amortizable languages. Finally, a
positive result (non-amortizable languages give FGOWF) would give a really
nice win-win (algorithms efficiency vs cryptographic security) result.

Let us elaborate on the approach being natural and looking promising. The
goal (FGOWFs from “weaker” assumptions) was set forth in [BRSV17], with
a promising path: starting from a worst-case assumption (the exponential time
hypothesis (ETH)), one gets structured average-case hardness (through the or-
thogonal vector problem (OV)); furthermore, this was pushed to non-amortizable
hardness in follow-up work [BRSV18]. Then, [BRSV17] asked: can we push this
OV-based construction further, up to FGOWFs?

One way to read our contributions is the following: our positive result can
easily be framed as an OV-based construction (solving a block becomes finding
x such that F (x) = 1, where F is an explicit low-degree polynomial). The key
technique in [BRSV17,BRSV18] are a worst-case to average-case reduction and
an average-case to non-amortizability reductions using the Berlekamp-Welch al-
gorithm, which inherently only works for search OV. Block-finding hardness, on

8 Chris Brzuska, Geoffroy Couteau

the other hand, formalizes what we would need to prove to achieve FG-OWF
from ETH through this approach. Then, our last separation says: the further the
Berlekamp-Welch techniques seems to get us (i.e., to non-amortizing hardness)
won’t suffice (in a black-box way) to achieve what we need, with any candidate
construction. In other words, we need new non-black-box techniques that go
beyond the Berlekamp-Welch algorithm. Since non-amortizability proved key to
overcome related limitations in the past, we actually attempted to prove security
of our construction from non-amortizing hardness for a long time.

1.2 A Core Abstract Lemma: the Hitting Lemma

At the heart of both our positive result and our black-box separations is an
abstract lemma, which we call the Hitting Lemma. While the statement of the
lemma is very intuitive, its proof is quite technical, and forms one of the core
technical contributions of this work. In its abstract form, the Hitting Lemma is
a very general probability statement about a simple two-player game between a
challenger and an adversary. It shows up naturally on three seemingly unrelated
occasions in our work, hence it seems likely that it can have other applications,
and we believe it to be of independent interest.

At a high level, the Hitting Lemma provides a strong Chernoff-style bound
on the number of witnesses which an adversary can possibly find given oracle
access to the relation of a hard language. More precisely, we state the Hitting
Lemma in an abstract way, as a game with the following structure:

– First, the game chooses a list of sets Vi. Each set Vi has size bounded by
some value 2n and can be thought of as the set of candidate witnesses for a
size-n word.

– In each set Vi, the game chooses a uniformly random witness ri. The sets Vi

are allowed to have different sizes, to capture the more general setting where
the adversary already obtained preliminary information excluding candidate
witnesses.

– Eventually, the adversary interacts with an oracle Guessr1···rℓ
which, on input

(i, x), returns 1 if x = ri and ⊥ otherwise.

We call a query (i, x) such that Guessr1···rℓ
(i, x) = 1 a hitting query (or a hit).

The goal of the adversary is to get as many distinct hits as possible within a
bounded number of queries. Intuitively, the most natural strategy to maximize
the number of hits is to proceed as follows: first pick the smallest set Vi, and
query arbitrary positions one by one, until a hit is obtained. Then, pick the
second smallest set Vj and keep proceeding the same way, until all of the ri are
found or the query budget is exhausted.

In essence, the Hitting Lemma states that the above natural strategy is really
the best possible strategy, in a strong sense. Namely, denoting mQ the average
number of hits obtained by a Q-query adversary following the above strategy,
the Hitting Lemma shows that for any possible adversarial strategy, the proba-
bility of getting O(mQ) + c distinct hits using Q queries decreases exponentially

On Building FGOWFs from Strong AC Hardness 9

with c (for some explicit constant in the O(·)). The proof combines a reduction
to a simpler probabilistic statement, proven by induction over Q, with a tight
concentration bound on the winning probability of the above natural strategy.

Interestingly, the Hitting Lemma extends directly to the non-uniform setting,
where the adversary is allowed to receive an arbitrary k-bit advice about the
Guess oracle; this properties turns out to be crucial in some of our results. Our
bound shows that this advice cannot provide more than k additional hits. More
precisely, for any possible adversarial strategy where the adversary receives an
arbitrary k-bit advice about the oracle, the probability of getting O(mQ)+k + c
hits decreases exponentially with c. We refer to Section 6 for the full statement
and analysis of the Hitting Lemma.

Analogy with the ROM. In the Random Oracle Model, a long line of work (see
for example [Hel80], [Unr07,DGK17,CDGS18] and references therein) has estab-
lished the hardness of inverting an idealized random function in a non-uniform
setting, given a bounded-length advice about the oracle. These results have
proven to be important and powerful tools to reason about the Random Or-
acle Model. At a high level, the hitting lemma provides a comparable tool in
the Random Language Model, and captures the hardness of deciding language
membership for an idealized hard language, even given a non-uniform advice,
and even when the adversary tries to amortize over many instances.

1.3 On the Significance of our Results

We now address some points about how our results should be interpreted, and
what they imply.

On Basing FGOWF on the average-case hardness of a concrete NP-
complete language. Our impossibility results rule out constructions of fine-
grained one-way function that would work using black-box access to an arbitrary
average-case hard language. However, it seems plausible that a construction of
FGOWFs from the average-case hardness of an arbitrary language could pro-
ceed differently. Typically, such a construction could first reduce the language
to a SAT instance (or any other NP-complete problem) using a non-black-box
(e.g. Karp) reduction. Then, the construction of FGOWF would build upon the
concrete structure of SAT; such a construction would not be ruled out by our
results.

Implications of our negative results. In this setting, our negative results should
be interpreted as saying that if such a construction is possible, then it must
crucially rely on specific structural hardness properties of the chosen language,
and not solely on natural properties such as its exponential hardness, or its non-
amortizability. As it turns out, this has implications to previous attempts of
basing cryptography on weaker hardness assumptions. The work of [BRSV17]
showed constructions of fine-grained average-case hard languages from the strong

10 Chris Brzuska, Geoffroy Couteau

exponential-time hypothesis (SETH), using a worst-case to average-case reduc-
tion based on the orthogonal vector problem. A major open problem left in
their work, which they discuss at length, is whether their construction could
be strenghtened to give FGOWFs. In a subsequent work [BRSV18], the authors
made a step in the right direction, building proofs of work from SETH (build-
ing upon their result in [BRSV17]). Their construction precisely exploits that
due to the specific structure of the orthogonal vector problem, it is possible to
show non-amortizability of their fine-grained average-case hard language, which
suffices to build proofs of work. Our result shows that this non-amortizability
does not suffice to build FGOWFs: if there is a construction, it must rely on a
different structural hardness property.

In fact, we initially designed the construction of FGOWF from block-finding
hardness as a construction based on the average-case hard puzzles of [BRSV18],
and dedicated an important effort to trying to reduce its security to the non-
amortizable average-case hardness of this puzzle, viewing this approach as the
most promising direction to based FGOWFs on a worst-case hardness assump-
tion such as SETH. After failing to prove it secure, we realized that our lack of
success might be inherent, and turned this realization into a proof by demon-
strating the impossibility of basing a FGOWF on non-amortizing hardness in a
blackbox way. We hope and believe that our negative results will therefore guide
future attempts of basing FGOWFs on weaker assumptions, even attempts that
do not ultimately aim at building them from arbitrary hard languages.

Implications of our positive results. Furthermore, our positive result hints pre-
cisely at the type of hardness which could suffice to build FGOWFs: intuitively,
what is needed is that the concrete language satisfies some form of pattern find-
ing hardness, where given a list of words (x1, · · · , xn), finding whether there is
a sub-vector of words whose membership bits (i.e. the vector of bits indicating
for each word whether it is in the language) satisfy a given pattern should re-
quire deciding membership of a large fraction of all words. This is formalized as
block-finding hardness in our work (see Section 3.1 and the full version of this
work [BC20]). We note that other related forms of hardness – where one must
decide whether the membership bits of a vector of words satisfy some locally
testable property – can also be shown to imply FGOWFs. We note that actu-
ally, a very similar type of structural hardness has been used in [LLW19] to build
fine-grained one-way functions from concrete average-case hard problems.

1.4 Related Work

Fine-Grained Cryptography. We already pointed out that Merkle’s construc-
tion [Mer78] provides the first example of fine-grained cryptography (as well
as the first known example of public-key cryptography). It was further studied
in [BGI08,BM09], and generalized to the quantum setting in [BS08,BHK+11].
Fine-grained cryptography has only become an explicit subject of study re-
cently. The work of [BRSV17,BRSV18] constructs proofs of work from explicit
fine-grained average-case hard languages which can be based on the strong

On Building FGOWFs from Strong AC Hardness 11

exponential-time hypothesis (SETH), and explicitly poses the problem of build-
ing fine-grained one-way functions (while showing some barriers for basing them
on SETH via natural approaches). The work of [DVV16] studies a different form
of fine-grained cryptography, showing cryptosystems secure against resource-
bounded adversaries, such as adversaries in NC1, under a worst-case hardness
assumption. Eventually, the work of [LLW19] is the most closely related to ours:
it shows constructions of fine-grained one-way functions and fine-grained encryp-
tion schemes from the average-case hardness of concrete problems, such as the
Zero-k-Clique problem.

Hardness in Pessiland. While building one-way functions from average-case
hardness has remained elusive, some works have investigated other useful forms
of hardness which could possibly reside in Pessiland. In particular, in [Wee06],
Wee shows that the existence of non-trivial succinct 2-round argument systems
for some languages in NP cannot be excluded from Pessiland in a black-box way.

Oracle Techniques. Besides new ideas, our oracle separation relies on several es-
tablished techniques. We use the two-oracle technique of [Sim98,HR04] where one
oracle implements the base primitive and the second oracle breaks constructions
built from this primitive. As we argue about the efficiency of the constructed one-
way function, we use similar techniques to Gennaro and Trevisan [GT00] who
describe the emulation of a random oracle based on a bounded-length string,
implicitly applying a compression argument. We use Borel-Cantelli to extract a
single oracle from a distribution of random oracles as the seminal work on black-
box separations by Impagliazzo and Rudich [IR89]. In order to make our oracle
deterministic, we use the hashing trick of Valiant-Vazirani [VV85] to obtain a
unique value out of many pre-image for a one-way function. In particular, we
hash evaluation paths similar to Bogdanov and Brzuska [BB15] who separate
size-verifiable one-way functions from NP-hardness.

On the Relation to Two Recent Works. In a recent work [PV20], Pass and Venki-
tasubramaniam show that TFNP (the class of total NP search problems) is un-
conditionally hard in Pessiland. More precisely, they show the following: if there
exists average-case hard languages, then either there exists average-case hard
TFNP problems, or there exists one-way functions. We note that, since their con-
structions are black-box, combining their result with our work further implies
the following result stating that proving that total search average-case hardness
suffices to construct fine-grained one-way functions is likely to be hard, since any
such black-box proof would unconditionally imply the existence of (full-fledged)
one-way functions:

Theorem 4 (this work + [PV20], informal). If there is a black-box con-
struction of N1+ε-hard one-way function, for an arbitrary constant ε > 0, from
average-case TFNP hardness, then one-way functions exist unconditionally.

In another recent work [PL20], Pass and Liu showed that mild average-case
hardness of computing time-bounded Kolmogorov complexity already suffices to

12 Chris Brzuska, Geoffroy Couteau

establish (in a black-box way) the existence of one-way functions. In particular,
we note that, combined with our results, this implies that even exponentially-
strong, self-amplifiable average-case hardness in NP does not imply (in a black-
box way) mild average-case hardness of time-bounded Kolmogorov complexity.

Theorem 5 (this work + [PL20], informal). There is no black-box reduc-
tion from the mild average-case hardness of computing time-bounded Kolmogorov
complexity to the existence of exponentially average-case hard languages whose
hardness amplifies at an exponential rate via parallel repetition.

2 Preliminaries

2.1 Notation, Computational Models and Oracles

For any n ∈ N, [n] denotes the set {1, · · · , n}. Throughout this paper, we repre-
sent algorithms as families of boolean circuits (one for each input length), and
use circuit size (i.e., the number of wires) as the main measure of efficiency.
We model oracle access by allowing circuits to have oracle gates. We measure
the size of such an oracle circuit as for a standard circuit, as the number of its
wires. Typically, if an oracle takes an n-bit entry as input and outputs an m-bit
response, this will be modeled by a fan-in-n fan-out-m oracle gate (hence this
gate will contribute n + m to the total circuit size).

As in the standard model for boolean circuits, the wires typically carry bit
values. For simplicity and readability, we will generally allow the wires to directly
carry other special symbols, such as ⊥ and err (converting a circuit in this model
to a “purely boolean” circuit only introduces some constant blowup which has
no impact on our asymptotic results). By default, even when we do not mention
it explicitly, we allow all (standard and oracle) gates to receive the symbol err
as one of their inputs. If a gate receives err as one of its inputs, it returns the
err on all of its output wires. We use pseudo-code as a description language and
only argue about the size of the corresponding circuit informally.

2.2 Fine-Grained One-Way Functions

We start by introducing the notion of a fine-grained one-way function (FG-OWF).
At a high level, an (ε, δ)-FG-OWF is a function f (modeled as a family {fm}m

of circuits, one for each input size) such that all circuits of size o(|f |1+δ) have
probability at most ε to find a preimage of f(x) for a random input x.

Definition 6 (Fine-Grained One-Way Function). Let ε : N 7→ R+ be a
positive function and δ > 0 be a constant. A function f : {0, 1}∗ → {0, 1}∗ is an
(ε, δ)-fine-grained one-way function if for all circuit families C = {Cm}m∈N and
all large enough m, if |Cm| < |fm|1+δ, then we have

Prz←${0,1}m

[
Cm(f(z), 1m) ∈ f−1(f(z))

]
≤ ε(m).

On Building FGOWFs from Strong AC Hardness 13

One can also consider a slightly weaker notion, namely a fine-grained one-
way function distribution (FG-OWFD), were the hardness of inversion should
hold with respect to a randomly sampled function f from a distribution D.

Definition 7 (Fine-Grained One-Way Function Distribution). Let ε :
N 7→ R+ be a positive function and δ > 0 be a constant. A distribution D
over functions f : {0, 1}∗ → {0, 1}∗ is an (ε, δ)-fine-grained one-way function
distribution if for all circuit families C = {Cm}m∈N and all large enough m, if
|Cm| < |fm|1+δ for all f in the support of D, then it holds that

Prz←${0,1}m,f←$D

[
Cm(f, f(z), 1m) ∈ f−1(f(z))

]
≤ ε(m).

Any distribution over FG-OWFs induces a FG-OWFD, but the converse need
not hold in general.

2.3 Languages

The class NP contains all languages L of the form L = {x | ∃w, (|w| = poly(|x|))∧
(R(x, w) = 1)}, where R is a relation computable by a polysize uniform circuit.
This definition naturally extends to the case where an oracle O is available; in
this case, we say that the oracle language LO is in NPO if it is of the above form,
where R is computable by a uniform oracle circuit with |R| = poly(|x|). When
the oracle O is clear from the context, we will sometimes abuse this notation and
simply say that the oracle language LO is in NP. For a string x, we will denote
by L(x) the bit which is 1 if x ∈ L, and 0 otherwise. We will also extend this
definition to vectors of strings x⃗ in a natural way.

Average-Case Hard Languages. We now define (exponentially) average-case
hard languages (EACHLs). Note that the exponential hardness in the following
definition refers to the success probability of the algorithm.

Definition 8 (Exponential Average-Case Hardness). A language L is ex-
ponentially average-case hard if for any circuit family C = {Cn}n∈N and all large
enough n,

Prx←${0,1}n [Cn(x) = L(x)] ≤ 1
2 + |Cn|

2n
.

Note that in the most common definition of EACHLs, one does usually not
consider an exact bound |Cn|, and instead define a language to be exponen-
tially hard if a polytime algorithm Cn finds L(x) with probability at most
1/2 + poly(n)/2n for a random word x ∈ {0, 1}n. However, since we will work
in the fine-grained setting, we settle for a stricter definition, with an explicit
relation between the running time of Cn and the probability of finding L(x).
Similarly as for FG-OWFs, we can also define a weaker notion of exponential
average-case hard language distributions (EACHLD):

14 Chris Brzuska, Geoffroy Couteau

Definition 9 (Exponential Average-Case Hard Language Distribution).
A distribution D over languages L is exponentially average-case hard if for any
circuit family C = {Cn}n∈N and all large enough n,

Prx←${0,1}n,L←$D[Cn(x,L) = L(x)] ≤ 1
2 + |Cn|

2n
.

Note that any distribution over EACHLs induces an EACHLD, but the con-
verse need not hold in general.

2.4 Pairwise independent hash-functions

Definition 10. For all j, i ∈ N, we call a distribution Hj,i over functions h :
{0, 1}j 7→ {0, 1}i+2 a distribution of pairwise independent hash-functions, if for
all p, p′ ∈ {0, 1}j with p ̸= p′, it holds that

Prh←$Hj,i+2

[
h(p) = 0i+2]

= 2−i−2

Prh←$Hj,i+2

[
h(p′) = 0i+2]

= 2−i−2

Prh←$Hj,i+2

[
h(p) = h(p′) = 0i+2]

= 2−2i−4

The following fact is used, e.g., by Valiant and Vazirani in their randomized
reduction which solves SAT given a UniqueSAT oracle [VV85].

Claim 1 For all sets S ⊆ {0, 1}j such that 2i ≤ |S| ≤ 2i+1, it holds that

Prh←$Hj,i+2

[
∃!p ∈ S : h(p) = 0i+2]

≥ 1
8 .

3 Technical Overview: FGOWFs from Block-Finding
Hardness

We first introduce the Random Language Model (RLM), which captures ideal-
ized average-case hard languages, in the same way that random oracles capture
idealized one-way functions.7 We will use this model as a heuristic tool to analyze
the new form of average-case hardness which we will introduce next. We note
that this model has limitations: it is a simplified model, and it is actually not
too hard to directly build a fine-grained OWF in this model (e.g. one can define
the function F which maps x to the list of language memberships of the words
x||1, x · · · , x||n′, for an appropriate choice of n′8). However, such simplified con-
structions do not correspond to any natural form of average-case hardness that
could be formulated on standard NP languages. Rather, our goal is only to use
7 More formally, since we consider an oracle sampled from a distribution over oracles,

as for the Random Oracle Model, this captures average-case hard language distribu-
tions. I.e., the hardness of a language is averaged over the choice of the instance and
the sampling of the oracle.

8 We thank an anonymous reviewer for pointing out this construction.

On Building FGOWFs from Strong AC Hardness 15

the RLM as a heuristic rule of thumb to evaluate the plausibility of our new
average-case hardness notion.

We define a random language L as follows: for each integer n and each word
x ∈ {0, 1}n, sample a uniformly random bit B[x]. Then the elements of L are all
x with B[x] = 1. For notational convenience, we extend this notation to vectors:
given a vector x⃗ of words, B(x⃗) denotes the vector of the bits B[xi]. For each
x ∈ {0, 1}n, we also sample a uniformly random witness W [x] ←$ {0, 1}n. To
check membership to the language, we introduce an oracle Chk defined as follows:
on input a pair (x, w), the oracle checks whether B[x] = 0 or w ̸= W [x]. If one of
these conditions hold, it outputs ⊥; otherwise, it outputs 1 (See Figure 2). It is
relatively easy to see that to check membership of a candidate word x to L given
access to Chk, the best possible strategy is to query (x, w) for all possible values
w ∈ {0, 1}n, hoping to hit the uniformly random value W [x]. Hence, deciding
membership of a word x to L requires on the average 2n−1 queries to Chk, which
shows that L is (exponentially) average-case hard.

Distribution T
for n ∈ N :

for x ∈ {0, 1}n :
W [x]←$ {0, 1}n

B[x]←$ {0, 1}
return (W, B)

Chk[W, B](x, w)
if W [x] = w ∧B[x] = 1

return 1
else return ⊥

Fig. 2: Distribution T for sampling a random
language LO = {x ∈ {0, 1}∗ | B[x] = 1}
with associated list of witnesses W . The oracle
O = Chk[W, B] allows to check membership of
a word x ∈ LO given witness W [x].

We now define the notion
of block-finding hardness. We
will show that (1) block-finding
hardness holds for a random
language, and (2) if there is
a block-finding hard language,
then there is an explicit con-
struction of a FG-OWF f such
that every adversary running in
time N(n)2−ν for an arbitrar-
ily small constant ν has only a
negligible probability of invert-
ing f (in n) – id est, there ex-
ists a (negl(n), 1− ν)-FG-OWF,
where negl(n) denotes some negligible function of n.

3.1 Block-Finding Hardness of L

Informally, we say that a language satisfies block-finding hardness if for any
adversary A and any large enough n, the following holds: The adversary A
is given N ≤ 2n/k many length-k vectors x⃗i of distinct words xi,j ∈ {0, 1}n

together with the string s = B[x⃗i] (the vector of language membership bits for
the words in x⃗i) for a uniformly random block index i ←$ [N]. If A finds the
block index i with probability significantly better than guessing, it must run
in time Ω̃(N · 2n) (in the RLM, this corresponds to making Ω̃(N · 2n) queries
to Chk). Intuitively, this means that (up to polylogarithmic factors) the best
strategy to find i is to find out the language membership bits of some of the
words in each of the blocks, by brute-forcing every possible witness for these
words, until one finds membership bits that are consistent with s. Slightly more
formally, we show the following:

16 Chris Brzuska, Geoffroy Couteau

Lemma 11 (Block-Finding Hardness of L – Informal Version). For any
adversary C, n ∈ N, block size k, and number of blocks N (with k · N ≤ 2n),
and any tuple of blocks (x⃗i)i≤N = (xi,1, · · · , xi,k)i≤N such that all the xi,j are
distinct:

Pri←$[N][Cn((x⃗j)j , B[x⃗i]) = i] ≤ 1
Õ(N)

·
(
|Cn|
2n

+ 1
)
· 2O(k).

In the RLM, the language L satisfies block-finding hardness essentially be-
cause distinct words have truly independent witnesses and language membership
bits. More formally, the above lemma will follow from a strong and generic con-
centration bound, the hitting lemma. We state and formally prove the hitting
lemma separately in Section 6, Lemma 19, since it turns out that this lemma
provides a very convenient and versatile tool to bound the success probability
of an adversary which attempts to decide membership of words in an oracle
language (the hitting lemma will be needed on three different occasions in this
paper). In the context of proving the block-finding hardness of L, we will need
a variant of the hitting lemma of the following form:

Lemma 12 (Simplified Hitting Lemma with Advice – Informal Ver-
sion). For every integers n, N, k ∈ N with kN ≤ 2n, vector y⃗ of kN words,
adversary A getting y⃗ and B[y⃗i] for a random i (where y⃗i is a vector of k words),
and for every integer c ≥ 1,

Pr(W,B)←T

[
#Hit ≥ O(|A|)

2n
+ k + c

]
≤ 2−O(c),

where #Hit counts the number of witnesses found by A for distinct words of
length n among the entries of y⃗.

At the same time, conditioned on making less than M hits in different blocks,
it is straightforward to show that A can find i with probability M/N : intuitively,
this is because if i belongs to one of the N −M blocks where no hits were made,
then the indices of all these blocks are perfectly equiprobable conditioned on the
view of A. Applying Bayes rule to combine the above bounds, the probability
that A finds i is upper bounded by the probability that A finds i conditioned
on making less than M hits, plus the probability of making more than M hits.
Therefore, for any M , the probability that A finds i is upper bounded by

M

N
+ 2−O(M−|A|/2n−k).

From there, an appropriate choice of M (depending on |A|, N, and n) suffices to
conclude that A finds i with probability at most 1

Õ(N) ·
(
|Cn|
2n + 1

)
· 2O(k), which

concludes the proof.

On Building FGOWFs from Strong AC Hardness 17

From Block-Finding Hardness to Fine-Grained One-Way Function. A
block-finding hard language immediately leads to a FG-OWF with a quadratic
hardness gap: the input to the function is a list of N = 2n/k blocks x⃗ of distinct
words x⃗i together with an index i. Evaluating the function is done by brute-
forcing the languages membership bits of the words in x⃗i, which takes at most
k ·2n queries to Chk, and outputting (x⃗, s = B[x⃗i]). By the block finding hardness
of L, inverting the function on a random input, on the other hand, requires
Õ(N · 2n) = Õ(22n/k) queries to Chk to succeed with constant probability when
the index i is uniquely defined (i.e., there is a unique index i such that the block
x⃗i satisfies s = B[x⃗i]). This can be guaranteed to hold except with negligible
probability, by choosing k = ω(log n). Overall, this leads to a FG-OWF with
quadratic hardness gap (up to polylogarithmic factors), with some small but
non-negligible inversion probability ε. Parallel amplification can then be used to
make the inversion probability negligible, leading to the following corollary:

Corollary 13. For any ε > 0, there exists a (negl(m), 1 − ε)-fine-grained one-
way function distribution in the Random Language Model.

4 Overview: no FGOWFs from Average-Case Hardness

Next, we study the possibility of instantiating the above construction using an
average-case hard language, instead of a block-finding hard language. At first
sight, it is not clear that average-case hardness suffices, since our construction
crucially relies on the block-finding hardness of the language, a seemingly much
stronger property. Indeed, we show that there exists no construction of essentially
any non-trivial FG-OWF making a black-box use of an exponentially average-
case hard language. To do so, we exhibit an oracle distribution relative to which
there is an exponentially average-case hard language, but no FG-OWF, even with
arbitrarily small hardness gap. This proof is the only part of our paper that does
not require the hitting lemma.

Language Description. We start by introducing our language. Our oracle
defines a somewhat exotic language: for each integer k, we let all words x ∈
{0, 1}n such that k = ⌈log n⌉ have the same random witness w ←$ {0, 1}2k , and
we put either all these words simultaneously inside or outside the language, by
picking the same random membership bit bk for all of them. Intuitively, this
provides an extreme example of a language which is still hard to decide (since
given a word x ∈ {0, 1}n, one must still enumerate over 22⌈log n⌉

> 2n candidate
witnesses to find out whether x ∈ L), but whose hardness does not amplify at all
(since finding a witness for a single word x gives the witness for all words whose
bitlength is close to that of x). This aims at capturing the intuition that any
candidate FG-OWF built from an average-case hard language L must somehow
leverage some amplification properties of the hardness of L. Then, the oracle
Chk is similar as before: on input (x, w), it returns ⊥ if x /∈ L or w is not the
right witness for x, and 1 otherwise. We will show that any oracle adversary A

18 Chris Brzuska, Geoffroy Couteau

requires O(2n) queries to decide membership of a word x ∈ {0, 1}n to L. The
proof is relatively straightforward and relies on the fact that the membership of
x to L remains random conditioned on the view of A as long as A did not make
any hit, i.e., a query with the right witness for x.

Inexistence of FG-OWF Relative to Chk. Next, we show that for any con-
stant δ, there exists an oracle algorithm A such that for any candidate FG-OWF
f , A (given access to Chk) of size bounded by |f |1+δ which inverts f with prob-
ability 0.99. The adversary works as follows: for any integer k, it checks whether
the function will make “too many” queries of the form (x, w) with x of length n
such that k = ⌈log n⌉ (we call this a k-query), where “too many” is defined as
(22k)ε for a value ε = (1 + δ/2)−1. Intuitively, making more than this number
of queries ensures that f will have a noticeable probability of making a hitting
query. For all such “heavy queries”, A makes all possible (22k) queries to Chk
with respect to some fixed word x, until he finds the witness. A also does the
same for all k-queries with k ≤ B(ε) for some bound B(ε) to be determined
later, even when they do not correspond to heavy query (this is to avoid some
“border effects” of small queries in the probability calculations). Note that this
allows A to find the witness for all words of length n such that k = ⌈log n⌉, since
they all share the same witness. A defines the following oracle-less function f ′

that contains all the hardcoded witnesses that A recovered. Now, on input x, f ′

runs exactly as f and if f makes a k-query (x, w) for some k, then f ′ proceeds
as follows:

– If k corresponds to a heavy query, then, using (22k) queries, A already com-
puted the witness for all k-queries and thus f ′ contains the hardcoded witness
to correctly answer the query.

– If k does not correspond to a heavy query, f ′ simulates the answer of the
oracle as ⊥.

We prove that with high probability (at least 0.999), the function f ′ agrees
with f on a random input x; this is because f ′ disagrees with f only if there
is a k-query with k > 10 where f makes less than (22k)ε queries, yet hits a
witness (for all other types of queries, A finds the witness by brute-force, hence
it can always simulate correctly the answer of the oracle). But this happens
only with probability 1 −

∑∞
k=B(ε)+1(22k)ε · 2−2k , which is bounded by 0.999

by picking a sufficiently large bound B(ε) such that (1− ε)2B(ε) > B(ε). Then,
by a straightforward probability calculation, the probability that inverting f ′

(which A can easily do locally since f ′ is oracle-less) corresponds to successfully
inverting f on a random input x can be lower-bounded by 0.9992 > 0.99, which
concludes the proof.

5 Overview: no FG-OWF from Non-Amortizable Hardness

Note that the techniques from our simpler oracle separation crucially exploit
that the hardness of the average-case hard language implemented by Chk does

On Building FGOWFs from Strong AC Hardness 19

not amplify well (in fact, this is the reason why the hitting lemma is not needed
in the analysis). We are thus interested in understanding whether we can still
provide a black-box impossibility result even when the underlying average-case
hard language satisfies non-amortizable exponential hardness, or whether non-
amortizable average-case hard languages suffice to construct a fine-grained one-
way function.

We call a language L (exponentially) self-amplifiable average-case hard if for
any superlogarithmic (computable, total) function ℓ(·), for any circuit family
C = {Cn : {0, 1}ℓ(n)·n 7→ {0, 1}n}n∈N of size at most 2O(n) · ℓ(n), and for all large
enough n ∈ N,

Prx←${0,1}ℓ·n [Cn(x⃗) = L(x⃗)] ≤ poly(n) · 2−
(

ℓ(n)− Õ(|Cn|)
2O(n)

)
.

Informally, this means that to find the language membership bits of ℓ(n)
challenge words, the best an adversary Cn can do (up to polylogarithmic factors
in |Cn| and constant factors in n) is to brute-force as many membership bits as
it can (roughly, Õ(|Cn|)/2n since brute-forcing a single membership bit requires
O(2n) queries), and guessing the ℓ(n)− Õ(|Cn|)/2n missing membership bits at
random. Note that self-amplifiable average-case hardness is especially interesting
when the circuit Cn is allowed to run in time larger than 2n (for small circuits,
of size much smaller than 2n, the standard average-case hardness notion already
bounds their probability of guessing correctly a single entry of L(x⃗)). In this
range, the poly(n) factor in our definition is absorbed in the Õ(|Cn|) term in the
exponent (note also that adversaries of size larger than 2O(n) · ℓ(n) can solve the
full challenge by brute-force).

Our main result rules out black-box reductions from any exponentially self-
amplifiable average-case hard language to fine-grained one-way functions, with
arbitrarily small hardness gap. Slightly more formally, we prove the following
theorem:

Theorem 14 (Informal). There exists an oracle O and an oracle language LO

such that for any fine-grained one-way function f , there exists an (inefficient)
adversary A that inverts f with probability close to 1 such that L remains ex-
ponentially self-amplifiable average-case hard against any candidate reduction C
given oracle access to both O and A.

We prove Theorem 14 which is phrased in terms of reductions by establishing
Theorem 15 which is phrased in terms of oracle worlds.

Theorem 15 (Language Hardness and Good Inversion, Informal). There
exists an oracle O and an oracle Inv such that for all oracle functions f , there
exists an inverter A of size |A| = Õ(|f |) which, given oracle access to (O, Inv)
and input (f, y), outputs a preimage of y with respect to fO with probability
close to 1. Moreover, there exists an oracle language LO which is exponentially
self-amplifiable average case hard against any candidate reduction C given oracle
access to (O, Inv).

20 Chris Brzuska, Geoffroy Couteau

Theorem 15 is slightly different from our main theorem: the inverter A is now
required to be efficient, but gets the help of an additional oracle Inv. Furthermore,
the reduction C is now given oracle access to (O, Inv) instead of (O,A); the
implication follows from the fact that the code of A is linear in its input size,
and thus, its code can be hardcoded into the code of C, hence the reduction
CO,A in our main theorem can be emulated by a reduction CO,Inv

A in Theorem 15,
where |CA| ≈ |C|. To prove Theorem 15, we rely on a standard method in oracle
separations: we first prove a variant of Theorem 15 with respect to a distribution
over oracles O, Inv (where both the success probability of the inverter and the
probability of breaking the self-amplifiable average-case hardness of L will be
over the random choice of O, Inv as well). Then, we apply the Borel-Cantelli
lemma to show that with measure 1 over the choice of the oracle, the oracle
is “good” and thus, in particular, a single good oracle exists as required by
Theorem 15. In summary, to prove Theorem 15 we prove two theorems relative
to an explicit distribution T over oracles O, Inv:

Theorem 16 (Language Hardness, Informal). For any ℓ : N 7→ N, circuit
family C = {Cn}n, and for all large enough n ∈ N,

Prx⃗←${0,1}ℓ·n,(O,Inv)←$T
[
CO,Inv

n (x⃗) = LO(x⃗)
]
≤ poly(n) · 2−

(
ℓ(n)− Õ(|Cn|)

2O(n)

)
.

Theorem 17 (Efficient Inversion, Informal). Let f : {0, 1}∗ → {0, 1}∗ be
an oracle function. There exists an efficient inverter AO,Inv(f, .) for f . More
precisely, A is of size |A| = Õ(|f |) and for sufficiently large m ∈ N, it holds that

Prz←${0,1}m,(O,Inv)←$T
[
fO(AO,Inv(f, fO(z))) = fO(z)

]
≈ 1.

5.1 Defining the Oracle Distribution T

The distribution T samples a triple (W, B, H) where:

– B defines a random language L: for every x ∈ {0, 1}∗, B[x] is set to 0 or 1
with probability 1/2;

– W defines a set of random witnesses: for any n ∈ N and x ∈ {0, 1}n, W [x]
is set to a uniformly random bitstring wx of length n.

– H contains a pairwise independent hash-function for each triple (i, C, y),
where i ∈ N, C is an encoding of a circuit and y is a bitstring.

A sample (W, B, H) from T defines a pair of oracles (O, Inv), where the oracle
O = (Chk, Pspace) is defined as follows:

– Chk is a membership checking oracle: on input (x, w), it returns ⊥ if W [x] ̸=
w, and B[x] otherwise. Note that this means that relative to Chk, L is a
random language in NP∩co-NP, since Chk allows to check both membership
and non-membership in L, given the appropriate witness. A hit is a query
to Chk which does not output ⊥. To emphasize the dependency of L on O,
we use the notation LO.

On Building FGOWFs from Strong AC Hardness 21

– Pspace is a PSPACE oracle which allows the caller to efficiently perform
computations that do not involve calls to the oracles Chk, Inv.

We now turn our attention to the oracle Inv, which is the most involved com-
ponent: Inv must be defined such that there is an efficient oracle algorithm A
which can, given access to O, Inv, invert any candidate one-way function fO, yet
no algorithm (reduction) can break the self-amplifiable average-case hardness of
the language LO given access to O, Inv. Hence, the goal of Inv is, given an input
(f, y), to help compute preimages z of y with respect to the oracle function fO,
but with carefully chosen safeguards to guarantee that Inv cannot be abused to
decide the language LO. Our solution relies on two crucial safeguards, which we
describe below.
First Safeguard: Removing Heavy Paths. The oracle Inv refuses to invert
functions f on outputs y if the query-path from the preimage z to y in fO

is “too lucky” with respect to O. To understand this, consider the following
folklore construction of a worst-case one-way function f : on input (x, w), it
queries Chk(x, w) and outputs (x, 1) if the check succeeds, and (x, 0) otherwise.
Then, querying Inv on input (f, (x, 1)) allows the adversary to find the witness
w associated to x efficiently, since the function f makes only a single query and
thus the inversion query Inv(f, (x, 1)) has small cost for A.

But since fO is a normal (average-case) one-way function, we can allow the
oracle to not invert on a too lucky evaluation path, if we can show that it still
inverts sufficiently often. Concretely, on input (f, y), the oracle Inv computes
the set S of all paths from an input z to y = fO(z), defined as the sequence of
input-output pairs. Then, for all k ≤ |f |, Inv discards from this set S all k-heavy
paths, i.e., the paths along which the number of Chk hits on k-bit inputs is much
higher9 than expected, i.e., N(k)/2k−1, where N(k) is the number of Chk gates
with k-bit inputs in f .

If S is not empty, then Inv samples a uniformly random element from S and
returns the set of queries made on the path to the adversary. Since oracles need
to be deterministic, we derandomize the sampling via the use of the pairwise
independent hash-function stored in the third output H of T at H[log|S|, f, y]
by the Valiant-Vazirani [VV85] trick that ensures that with probability 1

8 , there
is only a unique value in S that hashes to 0log(|S|−1). Note that it suffices to
return the set of query-answer pairs, as the adversary can use the Pspace oracle
to find an input z that leads to y with this set of query-answer pairs produced
by fO. I.e., the Pspace uses the set to emulate the answers to queries made by
f and discards a candidate z as soon as it makes a query not in the set.

Let us return to the issue of k-lightness. Firstly, note that we need to check for
lightness for all values k, since the oracle Inv accepts functions that make queries
to Chk on different k-values, and the Inv-oracle does not “know” the length of
the xi-values for which C tries to decide membership. Secondly, we now need to
clarify that we consider the number of hits as too high above its expected value

9 Determining an appropriate bound on much higher is crucial to avoid that deciding
LO becomes too easy. We return to this issue shortly.

22 Chris Brzuska, Geoffroy Couteau

if there are more than O(N(k))/2k + log2(|f |) k-hits on the evaluation path. In
this case, if |f | = O(2k), then on input length k, the adversary could essentially
get the same number of hits without Inv queries by using a circuit of slightly
bigger size Õ(|f |) that only makes Chk queries. The point of the additive log2 |f |
term is to ensure (via a concentration bound) that on a uniformly random input
z, the probability that the path on z is light is at least 1 − 1

superpoly|f | (while at
the same time, the language hardness is maintained).

In turn, when |f | is smaller than, say, 2 k
6 , then the additive log2 |f | term turns

out to allow for too many hits. In this case, the probability of making even a single
hit is 2−

5(k−1)
6 and thus exponentially small in k whereas O(N(k))/2k + log2 |f |

might potentially allow for many hits. Thus, before performing all steps described
in the first saveguard, we first replace f by a shaved function fs, described below.
Second Safeguard: Shaving high levels. We shave all Chk-gates of |f | that
are for large input length k, i.e., for all Chk-gates with input length k such that
|f | ≤ 2 k

6 . To do so, we replace f by a shaved function fs where the answers of
such Chk queries are hardcoded to be ⊥. The probability (over O and z) that
this changes the behaviour of f is equal to the probability of making a hit on
one of these high levels and thus 2−

5(k−1)
6 for the smallest k such that |f | ≤ 2 k

6 ,
i.e., k ≥ 6 log(|f |). Thus, 2−

5(k−1)
6 ≤ m−3, where m = |z|. Note that later, in

the Borel-Cantelli Lemma, we need to sum over these bad events, and thus, it
is important that the sum of m−3 over all m is a constant.
Putting Everything Together. Finally, with the above two safeguards, our
oracle Inv works as follows: on input (f, y), it first shaves f of its higher-level
Chk gates, computing fs ← shave(f). Then, it constructs the set S of all paths
from some input z to y = fO

s (z), where a path is defined to be the set of all
query pairs to O made during the evaluation of fs on z. Afterwards, it removes
from S all paths which are too heavy, where a path is called heavy if there is a
k such that it contains a number N(k) k-Chk queries, out of which more than
O(N(k))/2k + log2|f | are hits. Eventually, it returns a path from this set S of
light paths using the hashing trick to derandomize the sampling.

As we already outlined, the last output H of T is therefore a set which
contains, for every possible triple (i, f, y) where i is an integer, f is an oracle
function, and y is a bitstring, a hash function h = H[i, f, y]. The guarantee
offered by h is that for any set S′ of size 2i−1 ≤ |S′| ≤ 2i, the probability of the
random choice of h = H[i, f, y] that S′ contains exactly one entry s such that
h(s) = 0 is at least 1/8. Hence, after it computes the set S of light paths, Inv
compute the unique integer i such that 2i−1 ≤ |S| ≤ 2i, retrieves h← H[i, f, y],
and output the unique path p ∈ S such that h(p) = 0, or ⊥ if there is no unique
such path. Note that this oracle Inv can fail to return a valid path from an
input z to the target output y in f for three reasons: because shaving caused
fs to differ from f on input z (we show that this is unliquely for a random z),
because the path from z to y is heavy (again, we show that this is unlikely), and
because there is not a unique p ∈ S such that h(p) = 0 (but with probability at
least 1/8, there will be a unique such p). This last source of failure can be later
removed by a straightforward parallel amplification, by querying Inv on many

On Building FGOWFs from Strong AC Hardness 23

pairs (fk, y) where the fi are functionally equivalent variants of f (in which case
the corresponding hk = H[i, fk, y] are independently random by construction).
Note that we could have also hardcoded “true” randomness into Inv instead of
using the hashing trick. However, as we will see, the hashing trick enables a
compression argument since (a) the hash-functions are sampled independently
from W and B and (b) the sampling can be emulated when only knowing a
single element in the set as well as the size of the set S. Details follow in the
next section.

5.2 Proving Theorem 16

Fix a function ℓ : N 7→ N, a circuit family C, and an integer n ∈ N. We want
to bound the probability, over the choice of x⃗←$ {0, 1}ℓ(n)·n and (O, Inv)←$ T ,
that CO,Inv

n (x⃗) = LO(x⃗). We proceed in two steps:

– First, we prove an emulation lemma which states that there is an explicit
algorithm EmuO which emulates CO,Inv

n without calling the oracle Inv, but
using instead some partial information g(W, B, H) about (W, B, H). By em-
ulating, we mean that EmuO(x⃗, g(W, B, H)) = CO,Inv

n (x⃗), and Emu makes the
same number of queries to O as Cn.

– Second, we use the hitting lemma, which we already mentioned in Section 3
(in the technical overview about the existence of FG-OWFs in the RLM), to
bound the number of hits on x⃗ that Emu can possibly make (where a hit on
x⃗ is a query of the form (xi, W [xi]) to Chk, from which Emu learns whether
xi ∈ LO).

The Emulation Lemma. Concretely, we give an explicit algorithm Emu such
that EmuO(L, x⃗, Cn) = CO,Inv

n (x⃗) and Emu makes the same queries to O as Cn,
where the leakeage string L contains the following information:

– The sets H and (W¯⃗x, B¯⃗x) of all witnesses and membership bits except for
those corresponding to the entries of x⃗ (intuitively, this corresponds to giving
to Emu all information about Inv which is sampled independently of the
W [xi], B[xi] and does not help with finding LO(x⃗)).

– The sets (W Hit, BHit) which contains all Chk-hits on x⃗ in paths obtained by
Cn through queries to Inv.

– The set W Hit which contains all other (non-hitting) Chk-query pairs in paths
obtained by Cn through queries to Inv.

– A list I which for each query (f, y) of Cn to Inv indicates whether this query
returned ⊥ or not, and if it did not, the value i which was used to select the
hash function h = H[i, f, y].

The emulation proceeds by using its information: Emu runs Cn internally on
input x⃗, forwarding its queries to O. Each time Cn makes a query (f, y) to Inv,
Emu first retrieves from I the information whether Inv outputs ⊥ or not. If it
does not, Emu tries all possible inputs z to fO, but without actually querying O:

24 Chris Brzuska, Geoffroy Couteau

for each possible input z, Emu runs fO(z) by retrieving the answers of O from
the sets (W¯⃗x, B¯⃗x, W Hit, BHit, W Hit). If fO(z) makes a query whose answer is not
contained in these sets or if fO(z), Emu discards candidate z.

After trying all inputs to f , Emu has a set S′ of candidate inputs z, with
a corresponding path. Then, it retrieves the index i from I and selects h ←
H[i, f, y], and sets the output of Inv on (f, y) to be the unique path p associated
to some z ∈ S′ such that h(p) = 0; by construction, there will be a unique such
path. The correctness of the emulation follows by construction and by definition
of the sets (W¯⃗x, B¯⃗x, W Hit, BHit, W Hit) which Emu gets as input.

This emulation highlights the rationale behind the design of Inv: the use
of a hash function h to select the output guarantees that, on top of the sets
(W¯⃗x, B¯⃗x, W Hit, BHit, W Hit), Emu will only need to receive a relatively small amount
of additional “leakage”, corresponding to the list of all values i for each query to
Inv. Now, by definition, i is at most log |S|, where S is a set of paths in f , hence
|S| ≤ 2|f |. Therefore, i ≤ |f |, hence i can be represented using at most log |f |
bits. By construction, a query (f, y) to Inv can leak information about x⃗ only if
|f | ≥ 2n/C , because otherwise all n-Chk gates gets removed by shave(f). Hence,
our emulator gets a total amount of leakage about x⃗ bounded by |Cn|/2O(n).
From there, we want to prove that

Prx⃗←${0,1}ℓ·n,(O,Inv)←$T
[
CO,Inv

n (x⃗) = LO(x⃗)
]
≤ poly(n) · 2−

(
ℓ(n)− Õ(|Cn|)

2O(n)

)
.

We will do so by proving that

Prx⃗←${0,1}ℓ·n,(O,Inv)←$T

[
EmuO(L, x⃗, Cn) = LO(x⃗)

]
≤ poly(n) · 2−

(
ℓ(n)− Õ(|Cn|)

2O(n)

)
. (1)

Bounding Equation 1 is the goal of the hitting lemma.

Applying the Hitting Lemma. The hitting lemma states that for any circuit
Cn, any algorithm A having only access to the inputs and oracles of Cn’s emulator
(i.e., B has only access to the oracle O and L) cannot possibly make too many
hit, even though the emulator gets |Cn|/2O(n) bits of leakage about the oracle.
Let HitO

B(L, x⃗, Cn) be the random variable that counts the number of hits on x⃗
made by A on input (L, x⃗, Cn).

Lemma 18 (Hitting Lemma with Advice, Informal). For every ℓ(·), pos-
itive integers q, large enough n, challenge x⃗, L with |W Hit| = q and list I rep-
resented by a string length |I| = |Cn|/2O(n), adversaries Cn,B, and for every
integer c ≥ 1,

Pr(W,B,H)←T |L
Ī

[
HitO
B(L, x⃗, Cn) ≥ O(|Cn|) + q

2n
+ c + |I|

]
≤ 1

2γ·c ,

where γ > 1, and where the probability is taken over the random sampling of
(W, B, H)←$ T , conditioned on L.

We first explain how the hitting lemma implies Equation 1. First, if EmuO

got a total number of hits t on x⃗, either through queries to O or through the

On Building FGOWFs from Strong AC Hardness 25

hits contained in W Hit, then conditioned on all observation seen by Emu, ℓ(n)− t
bits of LO(x⃗) are truly undetermined. Hence,

Prx⃗←${0,1}ℓ·n,(O,Inv)←$T

[
EmuO(LĪ , x⃗, Cn) = LO(x⃗)

∣∣ Emu gets ≤ t hits on x⃗
]
≤ 2−(ℓ−t).

Now, the number of hits seen by Emu is bounded by HitO
Emu(LĪ , x⃗, Cn)+|W Hit|,

where |W Hit| is at most poly(n)· Õ(|Cn|)
2n : this follows from the fact that the number

of hits in W Hit is bounded by design by the fact that Inv on input (f, y) only
returns light paths, which cannot contain more than poly(n) · Õ(|f |)

2n hits. The
result follows by relying on the fact that

Prx⃗←${0,1}ℓ·n,(O,Inv)←$T

[
EmuO(LĪ , x⃗, Cn) = LO(x⃗)

]
=

∑
t

Pr[Emu gets ≤ t hits on x⃗] · Pr
[
EmuO(LĪ , x⃗, Cn) = LO(x⃗) |Emu gets t hits

]
≤

∑
t

2−(ℓ−t) · Pr[Emu gets ≤ t hits on x⃗].

Now, the bound of Equation 1 will be obtained by plugging the bound on

Pr[Emu gets ≤ t hits on x⃗] ≤ HitO
Emu(L, x⃗, Cn) + |W Hit|,

by using the hitting lemma to bound HitO
Emu(L, x⃗, Cn). The proof then follows

from the hitting lemma, to which we devote Section 6.

5.3 Proving Theorem 17
Let f : {0, 1}∗ → {0, 1}∗ be an oracle function. We exhibit an efficient inverter
AInv(f, .) for f , such that

Prz←${0,1}m,(O,Inv)←$T
[
fO(AO,Inv(f, fO(z))) = fO(z)

]
≈ 1.

A works as follows: to invert a function f : {0, 1}m 7→ {0, 1}∗ given an image y, it
queries Inv log3 m times on independent inputs (fk, y), where each fk are syntac-
tically different but functionally equivalent to f (this guarantees that the failure
probabilities introduced by the choice of the hash function h are independent).
Then, it takes a path p returned by any successful query to Inv (if any), and
returns a uniformly random preimage z consistent with this path (this requires
a single query to the PSPACE oracle). The proof that A is a successful inverter
proceeds by a sequence of lemmas. First, we define fapprox as fs = shave(f),
except that it outputs ⊥ on any input z such that the path in fO

s (z) is not light.

First Lemma. The first lemma states that

PrO,z←${0,1}m

[
fO

approx(z) = fO
s (z)

]
≈ 1.

This lemma will follow again from the Hitting lemma, which provides a strong
concentration bound on the probability that the path of fO

s (z) is light: by this
concentration bound, it follows that the path is light with probability at least
1 − log |f | · 2−O(log2 |f |) (recall that a path is heavy if, for some k, it contains
N(k) k-Chk queries, and more than O(N(k)) + log2 |f | hits).

26 Chris Brzuska, Geoffroy Couteau

Second Lemma. The second lemma states that

PrO,z←${0,1}m

[
fO

s (z) = fO(z)
]
≈ 1.

This lemma follows from the definition of shaving: since only Chk gates with
k ≥ 6 log |f | are shaved, the probability that fO

s (z) ̸= fO(z) is bounded by the
sum

∑
k≥6 log(|f |) 2− 5k

6 ≤ 4/m3. Combining the above lemmas with an averaging
argument, we will show that

Prz←${0,1}m

[
f(f−1

approx(f(z), 1m)) = f(z)
]
≈ 1.

When A makes a single query to Inv, its overall success probability is approxi-
mately 1/8. Since all queries have independent probability of failing due to an
unfortunate choice of h, we will show that A inverts successfully with probability

Prz←${0,1}m,(O,Inv)←$T
[
fO(AO,Inv(f, fO(x))) = fO(x)

]
≈ 1−

(
7
8

)log3 m

.

Note that A, on input f , sends log3 m ≤ log3 |f | queries to Inv, selects one of the
path from the successful queries, and queries it to the PSPACE oracle to select
the preimage z it outputs. Therefore, the size of A is |A| = Õ(|f |).

6 The Hitting Lemma

For any r⃗ = r1 · · · rℓ, we define an oracle Guessr⃗(i, r∗) as taking an input r∗

and an index i and checking whether ri = r∗. If so, the oracle returns 1. Else,
the oracle returns ⊥. We define HitGuessr⃗ (A) as the number of distinct queries A
makes which returns something different than ⊥.

Lemma 19 (Abstract Hitting Lemma). For every positive integer q, large
enough n, ℓ = ℓ(n), sets V1, · · · , Vℓ of size 1 ≤ |Vi| ≤ 2n such that q = ℓ · 2n −∑ℓ

i=1|Vi|, for every adversary A, and for every integer c ≥ 1, ∃α > 0, ∃γ > 1:

Prr⃗←$V1×···×Vℓ

[
HitGuessr⃗ (A) ≥ 16 · qryA + q

2n
+ c

]
≤ α

2γc
.

The hitting lemma gives a strong Chernoff-style bound on the number of distinct
hits which an arbitrary adversary A can make using qryA queries. The strength
of this bound allows to show that the bound degrades gracefully even if A is
additionally given an arbitrary advice string of bounded size about the truth
table of the Guess oracle. We discuss applications and variants of the Hitting
Lemma in the full version of this work [BC20], and now turn to its proof.

6.1 Proof of the Hitting Lemma – Proof Structure

On Building FGOWFs from Strong AC Hardness 27

Algorithm BQ

qry← 0; r∗
1 , · · · , r∗

ℓ ← ⊥
for i = 1 to ℓ :

for j ∈ [1, vi] :
qry← qry + 1
if qry = Q then return (r∗

1 , · · · , r∗
ℓ)

if Guessr⃗(i, fi(j)) then r∗
σ(i) ← fi(j); break

return (r∗
1 , · · · , r∗

ℓ)

Fig. 3: Q-query adversary BQ

The goal of A is to find as
many distinct ri’s as possible,
where each ri is sampled ran-
domly from a set Vi of size
|Vi| ≤ 2n, given access to an
oracle which indicates whether
a guess is correct or not. Intu-
itively, A’s best possible strat-
egy is to first choose the small-
est set Vi1 , query its elements to
Guess (in arbitrary order) until
it finds ri1 , then move on to the
second smallest set Vi2 , and so
on. The proof of the abstract hitting lemma closely follows this intuition: we
first show that this strategy is indeed the best possible strategy, then bound it’s
success probability using a second moment concentration bound. Formally, for
any Q ≥ 1, let BQ be a Q-query adversary that implements the following simple
strategy: order V1, · · · , Vℓ by increasing size, as Vσ(1), · · · , Vσ(ℓ) for some fixed
permutation σ such that |Vσ(1)| ≤ · · · ≤ |Vσ(ℓ)|. For every i ≤ ℓ, let vi ← |Vσ(i)|,
and let fi be an arbitrary bijection between [vi] and Vσ(i). The algorithm BQ is
given on Figure 3.

The adversary BQ sequentially queries the values of the sets Vi ordered by
increasing size, following an arbitrary ordering of the values inside each Vi, until
it finds ri (after which it moves to the next smallest larger set) or exhausts its
budget of Q queries. To simplify notations, for any vector u⃗ ∈ [v1] × · · · × [vℓ],
we write π(u⃗) = f−1

1 (uσ−1(1)), · · · , f−1
ℓ (uσ−1(ℓ)). Observe that for any t ∈ N,

Prr⃗←$V1×···×Vℓ

[
HitGuessr⃗ (BQ) ≥ t

]
= Pru⃗←$[v1]×···×[vℓ]

[
HitGuessπ(u⃗)(BQ) ≥ t

]
= Pru⃗←$[v1]×···×[vℓ]

[
t∑

i=1
ui ≤ Q

]
,

where the last equality follows from the fact that BQ queries the positions one
by one in a fixed order, and needs exactly ui queries to find rσ(i) = fσ(i)(ui)
for i = 1 to t. The proof of the hitting lemma derives directly from two claims.
The first claim states that no Q-query adversary can make t distinct hits with
probably better than that of BQ:

Claim 2 (BQ’s strategy is the best possible strategy) For every integers
n, Q, ℓ = ℓ(n), sets V1, .., Vℓ of size 1 ≤ |Vi| ≤ 2n, and for any Q-query algorithm
A and integer t,

Prr⃗←$V1×···×Vℓ

[
HitGuessr⃗ (A) ≥ t

]
≤ Pru⃗←$[v1]×···×[vℓ]

[
t∑

i=1
ui ≤ Q

]
.

By construction, the average number of hits Er⃗[HitGuessr⃗ (BQ)] made by BQ

is the largest value m such that
∑m

i=1
vi+1

2 ≤ Q. Recall that q = ℓ · 2n −

28 Chris Brzuska, Geoffroy Couteau∑ℓ
i=1|Vi| = ℓ · 2n −

∑ℓ
i=1 vi and vi ≤ 2n for every i, which implies in particular

that
∑m

i=1 vi ≥ m · 2n − q. We thus bound m as a function of Q, q, and 2n:

m∑
i=1

vi + 1
2 ≤ Q ⇐⇒ m +

m∑
i=1

vi ≤ 2Q

=⇒ m + m · 2n − q ≤ 2Q ⇐⇒ m ≤ 2Q + q

2n + 1 .

The second claim states, in essence, that the probability over r⃗ that BQ does t
hits decreases exponentially with the distance of t to the mean m (up to some
multiplicative constant).

Claim 3 (Bounding BQ’s number of hits) There exists constants α > 0 and
γ > 1 such that for every ℓ(·), positive integers q, Q, large enough n, integers
v1, · · · , vℓ with 1 ≤ vi ≤ 2n such that q = ℓ · 2n −

∑ℓ
i=1 vi, and for every integer

c ≥ 1,
Pru⃗←$[v1]×···×[vℓ]

[
t∑

i=1
ui ≤ Q

]
≤ α

2γc
, where t = 16 ·Q + q

2n
+ c.

We prove Claim 2 and Claim 3 in the full version of this work [BC20].

Acknowledgements

We thank Félix Richart for help with the experimental verification of some prob-
ability claims, and the anonymous Eurocrypt reviewers for their careful proof-
reading of the paper. C. Brzuska supported by the academy of Finland. G.
Couteau supported by the ANR SCENE.

References

AGGM06. A. Akavia, O. Goldreich, S. Goldwasser, and D. Moshkovitz. On basing
one-way functions on NP-hardness. In 38th ACM STOC, pages 701–710.
ACM Press, May 2006.

BB15. A. Bogdanov and C. Brzuska. On basing size-verifiable one-way functions
on NP-hardness. In TCC 2015, Part I, LNCS 9014, pages 1–6. Springer,
Heidelberg, March 2015.

BBF13. P. Baecher, C. Brzuska, and M. Fischlin. Notions of black-box reduc-
tions, revisited. In ASIACRYPT 2013, Part I, LNCS 8269, pages 296–315.
Springer, Heidelberg, December 2013.

BC20. C. Brzuska and G. Couteau. Towards fine-grained one-way functions
from strong average-case hardness. Cryptology ePrint Archive, Report
2020/1326, 2020. https://eprint.iacr.org/2020/1326.

BGI08. E. Biham, Y. J. Goren, and Y. Ishai. Basing weak public-key cryptography
on strong one-way functions. In TCC 2008, LNCS 4948, pages 55–72.
Springer, Heidelberg, March 2008.

https://eprint.iacr.org/2020/1326

On Building FGOWFs from Strong AC Hardness 29

BHK+11. G. Brassard, P. Høyer, K. Kalach, M. Kaplan, S. Laplante, and L. Salvail.
Merkle puzzles in a quantum world. In CRYPTO 2011, LNCS 6841, pages
391–410. Springer, Heidelberg, August 2011.

BM09. B. Barak and M. Mahmoody-Ghidary. Merkle puzzles are optimal -
an O(n2)-query attack on any key exchange from a random oracle. In
CRYPTO 2009, LNCS 5677, pages 374–390. Springer, Heidelberg, August
2009.

BR93. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM CCS 93, pages 62–73. ACM Press,
November 1993.

BRSV17. M. Ball, A. Rosen, M. Sabin, and P. N. Vasudevan. Average-case fine-
grained hardness. In 49th ACM STOC, pages 483–496. ACM Press, June
2017.

BRSV18. M. Ball, A. Rosen, M. Sabin, and P. N. Vasudevan. Proofs of work from
worst-case assumptions. In CRYPTO 2018, Part I, LNCS 10991, pages
789–819. Springer, Heidelberg, August 2018.

BS08. G. Brassard and L. Salvail. Quantum merkle puzzles. In Second Inter-
national Conference on Quantum, Nano and Micro Technologies (ICQNM
2008), pages 76–79. IEEE, 2008.

BT03. A. Bogdanov and L. Trevisan. On worst-case to average-case reductions
for NP problems. In 44th FOCS, pages 308–317. IEEE Computer Society
Press, October 2003.

CDGS18. S. Coretti, Y. Dodis, S. Guo, and J. P. Steinberger. Random oracles and
non-uniformity. In EUROCRYPT 2018, Part I, LNCS 10820, pages 227–
258. Springer, Heidelberg, April / May 2018.

DGK17. Y. Dodis, S. Guo, and J. Katz. Fixing cracks in the concrete: Random
oracles with auxiliary input, revisited. In EUROCRYPT 2017, Part II,
LNCS 10211, pages 473–495. Springer, Heidelberg, April / May 2017.

DVV16. A. Degwekar, V. Vaikuntanathan, and P. N. Vasudevan. Fine-grained cryp-
tography. In CRYPTO 2016, Part III, LNCS 9816, pages 533–562. Springer,
Heidelberg, August 2016.

FF93. J. Feigenbaum and L. Fortnow. Random-self-reducibility of complete sets.
SIAM Journal on Computing, 22(5):994–1005, 1993.

GT00. R. Gennaro and L. Trevisan. Lower bounds on the efficiency of generic
cryptographic constructions. In 41st FOCS, pages 305–313. IEEE Com-
puter Society Press, November 2000.

Hel80. M. Hellman. A cryptanalytic time-memory trade-off. IEEE transactions
on Information Theory, 26(4):401–406, 1980.

HL18. J. Holmgren and A. Lombardi. Cryptographic hashing from strong one-way
functions (or: One-way product functions and their applications). In 59th
FOCS, pages 850–858. IEEE Computer Society Press, October 2018.

HR04. C.-Y. Hsiao and L. Reyzin. Finding collisions on a public road, or do
secure hash functions need secret coins? In CRYPTO 2004, LNCS 3152,
pages 92–105. Springer, Heidelberg, August 2004.

Imp95. R. Impagliazzo. A personal view of average-case complexity. In Proceedings
of Structure in Complexity Theory. Tenth Annual IEEE Conference, pages
134–147. IEEE, 1995.

IR89. R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-
way permutations. In 21st ACM STOC, pages 44–61. ACM Press, May
1989.

30 Chris Brzuska, Geoffroy Couteau

IR90. R. Impagliazzo and S. Rudich. Limits on the provable consequences of
one-way permutations. In CRYPTO’88, LNCS 403, pages 8–26. Springer,
Heidelberg, August 1990.

Lev86. L. A. Levin. Average case complete problems. SIAM Journal on Computing,
15(1):285–286, 1986.

Lev87. L. A. Levin. One way functions and pseudorandom generators. Combina-
torica, 7(4):357–363, 1987.

LLW19. R. LaVigne, A. Lincoln, and V. V. Williams. Public-key cryptography in
the fine-grained setting. In CRYPTO 2019, Part III, LNCS 11694, pages
605–635. Springer, Heidelberg, August 2019.

Mer78. R. C. Merkle. Secure communications over insecure channels. Communi-
cations of the ACM, 21(4):294–299, 1978.

PL20. R. Pass and Y. Liu. On one-way functions and kolmogorov complexity. In
FOCS’20, 2020.

PV20. R. Pass and M. Venkitasubramaniam. Is it easier to prove statements that
are guaranteed to be true? In FOCS’20, 2020.

RTV04. O. Reingold, L. Trevisan, and S. P. Vadhan. Notions of reducibility between
cryptographic primitives. In TCC 2004, LNCS 2951, pages 1–20. Springer,
Heidelberg, February 2004.

Sim98. D. R. Simon. Finding collisions on a one-way street: Can secure hash
functions be based on general assumptions? In EUROCRYPT’98, LNCS
1403, pages 334–345. Springer, Heidelberg, May / June 1998.

STV01. M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without
the xor lemma. Journal of Computer and System Sciences, 62(2):236–266,
2001.

Sud97. M. Sudan. Decoding of reed solomon codes beyond the error-correction
bound. Journal of complexity, 13(1):180–193, 1997.

Unr07. D. Unruh. Random oracles and auxiliary input. In CRYPTO 2007, LNCS
4622, pages 205–223. Springer, Heidelberg, August 2007.

VV85. L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solu-
tions. In 17th ACM STOC, pages 458–463. ACM Press, May 1985.

WB86. L. R. Welch and E. R. Berlekamp. Error correction for algebraic block
codes, 1986. US Patent 4,633,470.

Wee06. H. Wee. Finding pessiland. In TCC 2006, LNCS 3876, pages 429–442.
Springer, Heidelberg, March 2006.

Yao82. A. C.-C. Yao. Theory and applications of trapdoor functions (extended
abstract). In 23rd FOCS, pages 80–91. IEEE Computer Society Press,
November 1982.

	Introduction
	Our Contribution: Inbetween Heuristica and Pessiland
	A Core Abstract Lemma: the Hitting Lemma
	On the Significance of our Results
	Related Work

	Preliminaries
	Notation, Computational Models and Oracles
	Fine-Grained One-Way Functions
	Languages
	Pairwise independent hash-functions

	Technical Overview: FGOWFs from Block-Finding Hardness
	Block-Finding Hardness of L

	Overview: no FGOWFs from Average-Case Hardness
	Overview: no FG-OWF from Non-Amortizable Hardness
	Defining the Oracle Distribution T
	Proving Theorem 16
	Proving Theorem 17

	The Hitting Lemma
	Proof of the Hitting Lemma – Proof Structure

