
On the Multi-User Security of Short Schnorr
Signatures with Preprocessing

Jeremiah Blocki[0000−0002−5542−4674] and Seunghoon Lee[0000−0003−4475−5686]

Purdue University, West Lafayette, IN, 47906, USA
{jblocki,lee2856}@purdue.edu

Abstract. The Schnorr signature scheme is an efficient digital signature
scheme with short signature lengths, i.e., 4k-bit signatures for k bits of
security. A Schnorr signature σ over a group of size p ≈ 22k consists of
a tuple (s, e), where e ∈ {0, 1}2k is a hash output and s ∈ Zp must be
computed using the secret key. While the hash output e requires 2k bits
to encode, Schnorr proposed that it might be possible to truncate the
hash value without adversely impacting security.

In this paper, we prove that short Schnorr signatures of length 3k
bits provide k bits of multi-user security in the (Shoup’s) generic group
model and the programmable random oracle model. We further analyze
the multi-user security of key-prefixed short Schnorr signatures against
preprocessing attacks, showing that it is possible to obtain secure sig-
natures of length 3k + logS + logN bits. Here, N denotes the number
of users and S denotes the size of the hint generated by our preprocess-
ing attacker, e.g., if S = 2k/2, then we would obtain secure 3.75k-bit
signatures for groups of up to N ≤ 2k/4 users.

Our techniques easily generalize to several other Fiat-Shamir-based
signature schemes, allowing us to establish analogous results for Chaum-
Pedersen signatures and Katz-Wang signatures. As a building block, we
also analyze the 1-out-of-N discrete-log problem in the generic group
model, with and without preprocessing.

1 Introduction

The Schnorr signature scheme [Sch90] has been widely used due to its simplicity,
efficiency and short signature size. In the Schnorr signature scheme, we start with
a cyclic group G = 〈g〉 of prime order p and pick a random secret key sk ∈ Zp.
To sign a message m, we pick r ∈ Zp uniformly at random, compute I = gr,
e = H(I‖m), and s = r + sk · e mod p. Then, the final signature is σ = (s, e).

We recall that a signature scheme Π yields k bits of (multi-user) security if
any attacker running in time at most t can forge a signature with probability
at most εt = t/2k in the (multi-user) signature forgery game, and this should
hold for all time bounds t ≤ 2k. To achieve k bits of security, we select a hash
function H with 2k-bit outputs, and we select p to be a random 2k-bit prime so
that the length of a signature is 4k bits.

2 J. Blocki and S. Lee

In Schnorr’s original paper [Sch90], the author proposed the possibility of
achieving even shorter Schnorr signatures by selecting a hash function H with k-
bit outputs (or truncating to only use the first k bits) so that the final signature
σ = (s, e) can be encoded with 3k bits. We refer to this signature scheme as
the short Schnorr signature scheme. In this paper, we investigate the following
questions:

Does the short Schnorr signature scheme achieve k bits of (multi-user)
security? If so, is the short Schnorr signature scheme also secure against
preprocessing attacks?

Proving security for the Schnorr signatures has been a challenging task against
the interactive attacks. Pointcheval and Stern [PS96] provided a reduction from
the discrete-log problem in the random oracle model (ROM) [BR93]. However,
their reduction is not tight, i.e., they show that Advsig ≤ Advdlog × qH for any
attacker making at most qH queries to the random oracle. The loss of the factor
qH, which prevents us from concluding that the scheme provides k bits of security,
seems to be unavoidable, e.g., see [Seu12,FJS14].

Neven et al. [NSW09] analyzed Schnorr signatures in the generic group model
(GGM) [Sho97], showing that the scheme provides k bits of security as long as
the hash function satisfies two key properties: random-prefix preimage (rpp) and
random-prefix second-preimage (rpsp) security. Interestingly, Neven et al. do not
need to assume that H is a random oracle, though a random oracle H would
satisfy both rpp and rpsp security. Neven et al. considered the short Schnorr
signature scheme, but their upper bounds do not allow us to conclude that the
short Schnorr signature scheme provides k bits of security. See the full version
[BL19] for further discussion.

An earlier paper of Schnorr and Jakobsson [SJ00] analyzed the security of
the short Schnorr signature scheme in the ROM plus the GGM. While they show
that the scheme provides k bits of security, they also consider another version of
the GGM which is different from the definition proposed by Shoup [Sho97]. The
reason is that the version they consider is not expressive enough to capture all
known attacks, e.g., any attack that requires the ability to hash group elements
including preprocessing attacks of Corrigan-Gibbs and Kogan [CK18] cannot be
captured in their GGM. See the full version [BL19] for further discussion.

Galbraith et al. [GMLS02] claimed to have a tight reduction showing that
single-user security implies multi-user security of the regular Schnorr signature
scheme. However, Bernstein [Ber15] identified an error in the security proof
in [GMLS02], proposed a modified “key-prefixed” version of the original Schnorr
signature scheme (including the public key as a hash input), and proved that
the “key-prefixed” version does provide multi-user security. Derler and Sla-
manig [DS19] later showed a tight reduction from single-user security to “key-
prefixed” multi-user security for a class of key-homomorphic signature schemes
including Schnorr signatures. The Internet Engineering Task Force (IETF) adopted
the key-prefixed modification of Schnorr signatures to ensure multi-user security
[Hao17]. Kiltz et al. [KMP16] later gave a tight security reduction establishing

On the Multi-User Security of Short Schnorr Signatures with Preprocessing 3

multi-user security of regular Schnorr signatures in the programmable random
oracle model plus (another version of) the generic group model without key-
prefixing. Our results imply that key-prefixing is not even necessary to estab-
lish tight multi-user security of short Schnorr signatures1. On the other hand
key-prefixing is both necessary and sufficient to establish multi-user security of
(short) Schnorr signatures against preprocessing attackers.

1.1 Our Contributions

We show that the short Schnorr Signature scheme provides k bits of security
against an attacker in both the single and multi-user versions of the signature
forgery game. Our results assume the programmable ROM and the (Shoup’s)
GGM. We further analyze the multi-user security of key-prefixed short Schnorr
signatures against preprocessing attacks. The preprocessing attacker outputs a
hint of size S after making as many as 23k queries to the random oracle and
examining the entire generic group oracle. Later on, the online attacker can use
the hint to help win the multi-user signature forgery game by forging a signature
for any one of the N users. By tuning the parameters of the key-prefixed short
Schnorr signature scheme appropriately, we can obtain (3k + logS + logN)-bit
signatures with k bits of security against a preprocessing attacker.

Single-User Security of Short Schnorr Signatures. As a warm-up, we first con-
sider the single-user security of the short Schnorr Signature scheme without
preprocessing, showing that short Schnorr signatures provide k bits of security
in the (Shoup’s) generic group model and the random oracle model.

Theorem 1 (informal). Any attacker making at most q queries wins the sig-
nature forgery game (chosen message attack) against the short Schnorr signature
scheme with probability at most O

(
q/2k

)
in the generic group model (of order

p ≈ 22k) plus programmable random oracle model (See Definition 1 and Theo-
rem 4).

Theorem 1 tells us that the short Schnorr signature obtained by truncating
the hash output by half would yield the same k bits of security level with the
signature length 3k, instead of 4k. A 25% reduction in signature length is par-
ticularly significant in contexts where space/bandwidth is limited, e.g., on the
blockchain.

Multi-User Security of Short Schnorr Signatures. We show that our proofs can
be extended to the multi-user case even in the so-called “1-out-of-N” setting,
i.e., if the attacker is given N public keys pk1, . . . , pkN , s/he can forge a signature
σ which is valid under any one of these public keys (it does not matter which).

1 The authors of [KMP16] pointed out that their analysis can be adapted to demon-
strate multi-user security of short Schnorr signatures (private communication)
though the paper itself never discusses short Schnorr signatures. Furthermore, their
proof is in a different version of the generic group model which is not suitable for
analyzing preprocessing attacks. See discussion in the full version [BL19].

4 J. Blocki and S. Lee

Theorem 2 (informal). Let N denote the number of distinct users/public
keys. Then any attacker making at most q queries wins the multi-user signa-
ture forgery game (chosen message attack) against the short Schnorr signature
scheme with probability at most O

(
(q +N)/2k

)
in the generic group model (of

order p ≈ 22k) plus programmable random oracle model (See Definition 2 and
Theorem 6).

Theorem 2 guarantees that breaking multi-user security of short Schnorr
signatures in the 1-out-of-N setting is not easier than breaking a single instance,
as the winning probability is still in the same order as long as N ≤ q, which
is the typical case. A näıve reduction loses a factor of N , i.e., any attacker
winning the multi-user forgery game with probability εMU can be used to win
the single-user forgery game with probability ε ≥ εMU/N . For example, suppose
that p ≈ 2224 (i.e., k = 112), and there are N = 232 instances of short Schnorr
signatures, which is more than the half of the entire world population. In the
original single-user security game, an attacker wins with probability at most ε ≤
O
(
t/2k

)
, so an attacker running in time t = 280 would succeed with probability

at most ε ≈ 2−32. This only allows us to conclude that an attacker succeeds with
probability at most εMU ≤ Nε ≈ 1 in the multi-user security game! Our security
proof implies that the attacker will succeed with probability εMU ≈ ε ≈ 2−32

in the above example. In particular, we don’t lose a factor of N in the security
reduction.

Security of Key-Prefixed Short Schnorr Signatures against Preprocessing At-
tacks. We further show that key-prefixed short Schnorr signatures are also secure
against preprocessing attacks. Here, we consider a key-prefixed version of Schnorr
signatures, because regular Schnorr signatures are trivially vulnerable to prepro-
cessing attacks, e.g., if a preprocessing attacker finds some message m and an
integer r such that e = H(gr‖m) = 0, then σ = (r, 0) is always a valid signature
for any public key pk = gsk since gr−sk·0 = gr. We note that several standardized
implementations of Schnorr signatures (i.e., BSI [fIS18] or ISO/IEC [fSC18])
slightly deviate from Schnorr’s original construction and explicitly disallowing
e = 0 signatures which defends against our particular preprocessing attack – see
the full version [BL19] for further discussion if interested.

We consider a preprocessing attacker who may query the random oracle at
up to 23k points and may also examine the entire generic group oracles before
outputting an S-bit hint for the online attacker. We leave it as an interesting open
question whether or not the restriction on the number of random oracle queries is
necessary. However, from a practical standpoint, we argue that a preprocessing
adversary will never be able to make 22k queries, e.g., if k ≥ 128, then 22k

operations is already far too expensive for even a nation-state attacker.

Theorem 3 (informal). Let N denote the number of distinct users/public
keys. Then any preprocessing attacker making at most qpre queries and outputs
an S-bit hint during the preprocessing phase and making at most qon queries
during the online phase wins the multi-user signature forgery game (chosen mes-
sage attack) against the short Schnorr signature scheme with probability at most

On the Multi-User Security of Short Schnorr Signatures with Preprocessing 5

Õ
(
SN(qon +N)2/p+ qon/2

k +Nqpreqon/p
2
)

in the generic group model of order
p > 22k plus programmable random oracle model (see Theorem 8).

Theorem 3 tells us that with suitable parameter setting, key-prefixed short
Schnorr signatures also achieve k bits of multi-user security even against pre-
processing attacks. In particular, by setting p ≈ 22kSN and maintaining k-bit
hash outputs, the short Schnorr signature scheme still maintains k bits of multi-
user security against our preprocessing attacker. For example, if S = 2k/2 and
N = 2k/4, then setting p ≈ 22.75k yields signatures of length k+log p = 3.75k. Up
to a factor N , the results from Theorem 3 are tight as a preprocessing attacker
can succeed with probability at least Sq2on/p.

Other Fiat-Shamir Signatures. Using similar reductions, we establish similar se-
curity bounds for the full-domain hash variant of (key-prefixed) Chaum-Pedersen
signatures [CP93] and for Katz-Wang signatures [KW03] with truncated hash
outputs. In particular, a preprocessing attacker wins the multi-user signature
forgery game with probability at most O

(
SNq2/p+ q/2k

)
– see Theorem 10

and Theorem 12 in Section 6. Short Katz-Wang signatures [KW03] have the
same length as short Schnorr signatures with equivalent security guarantees,
while Chaum-Pedersen signatures are a bit longer.

1.2 Our Techniques

The Multi-User Bridge-Finding Game. We introduce an intermediate problem
called the 1-out-of-N bridge-finding game. Oversimplifying a bit, in a cyclic group
G = 〈g〉, the attacker is given N inputs gx1 , . . . , gxN , and the goal of the attacker
is to produce a non-trivial linear dependence, i.e., a1, . . . , aN and b such that
a1x1 + . . . + aNxN = b, and ai 6= 0 for at least one i ≤ N . We then show that
in the generic group model, an attacker making at most q generic group queries
can succeed with probability at most O

(
q2/p+ qN/p

)
, where p ≈ 22k is the size

of the group.
We also show that a preprocessing attacker wins the 1-out-of-N bridge-

finding game with probability at most O
(
SNq2 log p/p

)
when given an arbi-

trary S-bit hint fixed a priori before x1, . . . , xN are chosen. Our proof adapts
a compression argument of [CK18] which was used to analyze the security of
the regular discrete logarithm problem. In particular, if the probability that our
preprocessing attacker wins is ω

(
SNq2 log p/p

)
, then we could derive a contra-

diction by compressing our random injective map τ , mapping group elements to
binary strings.

An interesting corollary of these results is that the 1-out-of-N discrete-log
problem is hard even for a preprocessing attacker. Intuitively, if a discrete-log
attacker can successfully compute xi for any i ≤ N , then s/he can also win the
1-out-of-N bridge-finding game.

Restricted Discrete-Log Oracle. In fact, we consider a stronger attacker A who
may query the usual generic group oracle, and is additionally given access to

6 J. Blocki and S. Lee

a restricted discrete-log oracle DLog. The oracle DLog will solve the discrete-
log problem but only for “fresh” inputs, i.e., given N inputs gx1 , . . . , gxN , if
h = ga1x1+...+aNxN for known values of a1, . . . , aN , then this input would not be
considered fresh.

We remark that by restricting the discrete-log oracle to fresh queries, we
can rule out the trivial attack where the attacker simply queries DLog(gxi) for
any 1 ≤ i ≤ N . The restriction also rules out other trivial attacks, where the
attacker simply queries DLog(gxi+r) after computing gxi+r for some i ≤ N and
some known value r.

Security Reduction. We then give a reduction showing that any attacker Asig

that breaks multi-user security of short Schnorr signatures can be used to win
the 1-out-of-N bridge-finding game. In the reduction, we interpret the bridge
inputs gx1 , . . . , gxN as public signing keys, and we simulate the attacker Asig. The
reduction uses the restricted discrete log oracle to ensure that any group element
that is submitted as an input to the random oracle has the form gb+a1x1+...aNxN

for values a1, . . . , aN , and b that are known to the bridge attacker. The reduction
also makes use of a programmable random oracle to forge signatures whenever
Asig queries the signing oracle for a particular user i ≤ N .

One challenge with carrying out this reduction in the preprocessing setting is
that we need to ensure that the hint does not allow the attacker to detect when
the random oracle has been programmed. We rely on the observation that the
reduction programs the random oracle at random inputs which are unknown to
the preprocessing a priori.

A similar reduction allows us to establish multi-user security of other Fiat-
Shamir-based signatures such as Chaum-Pedersen signatures [CP93] and Katz-
Wang signatures [KW03], with and without preprocessing.

1.3 Related Work

Security Proofs in the Generic Group Model. The generic group model goes
back to Nechaev [Nec94] and Shoup [Sho97]. One motivation for analyzing cryp-
tographic protocols in the generic group model is that for certain elliptic curve
groups, the best known attacks are all generic [JMV01,FST10,WZ11,BL12,GWZ15].
It is well known that in Shoup’s generic group model [Sho97], an attacker re-
quires Ω(

√
p) queries to solve the discrete-log problem in a group of prime order

p and the same lower bound holds for other classical problems like Computa-
tional Diffie-Hellman (CDH) and Decisional Diffie-Hellman (DDH). This bound
is tight as discrete-log algorithms such as the Baby-Step Giant-Step algorithm by
Shanks [Sha71], Pollard’s Rho and Kangaroo algorithms [Pol78], and the Pohlig-
Hellman algorithm [PH06] can all be described generically in Shoup’s model.
However, there are some exceptions for other elliptic curves and subgroups of
Z∗p, where the best discrete-log algorithms are not generic and are much more effi-
cient than any generic discrete log algorithms, e.g., see [GHS02,MVO91,Sma99].

Dent [Den02] showed that there are protocols which are provably secure
in the generic group model but which are trivially insecure when the generic

On the Multi-User Security of Short Schnorr Signatures with Preprocessing 7

group is replaced with any (efficiently computable) real one. However, these
results were artificially crafted to provide a counterexample. Similar to the
random oracle model, experience suggests that protocols with security proofs
in the generic group model do not have inherent structural weaknesses, and
will be secure as long as we instantiate with a reasonable elliptic curve group.
See [KM07,Fis00,JS08] for additional discussion of the strengths/weaknesses of
proofs in the generic group model.

Corrigan-Gibbs and Kogan [CK18] analyzed the security of several key cryp-
tographic problems (e.g., discrete-log, computational/decisional Diffie-Hellman,
etc.) against preprocessing attacks in the generic group model. We extend their
analysis to analyze the multi-user security of key-prefixed short Schnorr signa-
tures against preprocessing attacks. See Section 5 for the further details.

Schnorr Signatures and Multi-Signatures. Bellare and Dai [BD20] recently showed
that the (single-user) security of Schnorr signatures could be based on the Multi-
Base Discrete Logarithm problem which in turn is similar in flavor to the One
More Discrete Log Problem [BNPS03]. There has also been an active line of work
on adapting the Schnorr signature scheme to design compact multi-signature
schemes, e.g., see [BN06,BCJ08,DEF+19,MPSW19]. The goal is for multiple
parties to collaborate to generate a single Schnorr signature which is signed us-
ing an aggregate public key that can be (publicly) derived from the individually
public keys of each signing party. A very recent line of work has reduced the
interaction to generate a Schnorr multi-signature to two-rounds without pair-
ings [NRSW20,NRS20,AB20].

Other Short Signatures. Boneh et al. [BLS04] proposed even shorter signatures
called BLS signatures, which is as short as 2k bits to yield k bits of security
in the random oracle model, assuming that the Computational Diffie-Hellman
(CDH) problem is hard on certain elliptic curves over a finite field. While BLS
signatures yield even shorter signature length than Schnorr signatures, the com-
putation costs for the BLS verification algorithm is several orders of magnitude
higher, due to the reliance on bilinear pairings. If we allow for “heavy” crypto-
graphic solutions such as indistinguishability obfuscation [GGH+13] (practically
infeasible at the moment), then it becomes possible to achieve k-bit signatures
with k bits of security [SW14,RW14,LM17].

2 Preliminaries

Let N be the set of positive integers, and we define [N] := {1, . . . , N} for N ∈ N.
Throughout the paper, we denote the security parameter by k. We say that
~x = (x1, . . . , xN) ∈ ZNp is an N -dimensional vector over ZNp , and for each i ∈ [N],
we define ûi to be the ith N -dimensional unit vector, i.e., the ith element of ûi is
1, and all other elements are 0 elsewhere. For simplicity, we let log(·) be a log
with base 2, i.e., log x := log2 x. The notation ←$ denotes a uniformly random
sampling, e.g., we say x←$Zp when x is sampled uniformly at random from Zp.

8 J. Blocki and S. Lee

2.1 The Generic Group Model

The generic group model is an idealized cryptographic model proposed by Shoup
[Sho97]. Let G = 〈g〉 be a multiplicative cyclic group of prime order p. In the
generic group model, since G is isomorphic to Zp, we select a random injective
map τ : Zp → G, where G is the set of bit strings of length ` (with 2` ≥ p) and
we encode the discrete log of a group element instead of the group element itself.

The key idea in the generic group model is that the map τ does not need
to be a group homomorphism, because any adversary against a cryptographic
scheme is only available to see a randomly chosen encoding of the discrete log of
each group element, not the group element itself. Hence, the generic group model
assumes that an adversary has no access to the concrete representation of the
group elements. Instead, the adversary is given access to an oracle parametrized
by τ , which computes the group operation indirectly in G as well as the encoding
of the discrete log of the generator g given as g = τ(1). More precisely, for an
input (a, b) ∈ G×G, the oracles Mult(a, b), and Inv(a) act as following:

Mult(a, b) = τ(τ−1(a) + τ−1(b)), and

Inv(a) = τ(−τ−1(a)),

if τ−1(a), τ−1(b) ∈ G. We remark that the adversary has no access to the map
τ itself and does not know what is going on in a group G. Hence, the adversary
has no sense that which element in G maps to Mult(a, b) in G even if s/he sees
the oracle output.

For convenience, we will use the notation Pow(a, n) = τ(nτ−1(a)). Without
loss of generality, we do not allow the attacker to directly query Pow as an oracle,
since the attacker can efficiently evaluate this subroutine using the Mult oracle.
In particular, one can evaluate Pow(a, n) using just O (log n) calls to Mult using
the standard modular exponentiation algorithm.

2.2 The Schnorr Signature Scheme

The Schnorr signature scheme is a digital signature scheme, which consists of
a tuple of probabilistic polynomial-time algorithms Π = (Kg,Sign,Vfy), where
Kg(1k) is a key-generation algorithm to generate a secret key sk ∈ Zp and a public
key pk = Pow(g = τ(1), sk) = τ(sk). The size of the prime number p will be tied
to the security parameter k, e.g., p ≈ 22k. Sign(sk,m) is a signing algorithm
which generates a signature σ on a message m ∈ {0, 1}∗, and Vfy(pk,m, σ) is a
verification algorithm which outputs 1 if the signature is valid, and 0 otherwise.

Throughout the paper, we will consider the notion of the generic group model
in the Schnorr signature scheme as described in Figure 1. We remark that ver-
ification works for a correct signature σ = (s, e), because R = Mult(τ(s), Pow(
Inv(pk), e)) = τ(s− sk · e) = τ(r) = I if the signature is valid.

Short Schnorr Signatures. Typically, it is assumed that the random oracle H(I‖m)
outputs a uniformly random element e ∈ Zp, where p is a random 2k-bit prime.

On the Multi-User Security of Short Schnorr Signatures with Preprocessing 9

Kg(1k):

1 : sk←$Zp
2 : pk← Pow(g, sk)

3 : return (pk, sk)

Sign(sk,m):

1 : r←$Zp
2 : I ← Pow(g, r)

3 : e← H(I‖m)

4 : s← r + sk · e mod p

5 : return σ = (s, e)

Vfy(pk,m, σ):

1 : Parse σ = (s, e)

2 : R← Mult(Pow(g, s), Pow(Inv(pk), e))

3 : if H(R‖m) = e then

4 : return 1

5 : else return 0

Figure 1. The Schnorr signature scheme in the generic group model. Note that instead
of the direct group operation in G, we use the encoding by the map τ and the generic
group oracle queries.

Thus, we would need 2k bits to encode e. To produce a shorter signature, we
can assume that H(I‖m) outputs a uniformly random integer e ∈ Z2k with just
k bits. In practice, the shorter random oracle is easier to implement, since we do
not need to worry about rounding issues when converting a binary string to Z2k ,
i.e., we can simply take the first k bits of our random binary string. The result
is a signature σ = (s, e), which can be encoded in 3k bits – 2k bits to encode
s ∈ Zp plus k bits to encode e. This natural modification is straightforward and
is not new to our paper. The key question we investigate is whether or not short
Schnorr signatures can provide k bits of security.

3 Single-User Security of Short Schnorr Signatures

As a warm-up to our main result, we first prove that short Schnorr Signatures
(of length 3k) achieve k bits of security. We first describe the standard signature
forgery experiment SigForgeτA,Π(k) in the generic group model and the random
oracle model. Here, an attacker is given the public key pk = τ(sk) along with
g = τ(1) (the encoding of the group generator 1 of Zp). The attacker is given
oracle access to the signing oracle Sign(·), as well as the generic group oracles
GO = (Mult(·, ·), Inv(·)), and the random oracle H(·). The attacker’s goal is to
eventually output a forgery (m,σ = (s, e)) for a fresh message m that has not
previously been submitted to the signing oracle.

Generic Signature Forgery Game. Fixing an encoding map τ : Zp → G, g = τ(1)
and the random oracle H, and an adversary A, consider the following experiment
defined for a signature scheme Π = (Kg,Sign,Vfy):

The Generic Signature Forgery Game SigForgeτ,HA,Π(k):

(1) Kg(1k) is run to obtain the public and the secret keys (pk, sk). Here, sk
is chosen randomly from the group Zp where p is a 2k-bit prime, and
pk = Pow(g, sk) = τ(sk).

(2) Adversary A is given (g = τ(1), pk, p) and access to the generic group
oracles GO = (Mult(·, ·), Inv(·)), the random oracle H(·), and the sign-

10 J. Blocki and S. Lee

ing oracle Sign(·). After multiple access to these oracles, the adversary
outputs (m,σ = (s, e)).

(3) We define SigForgeτ,HA,Π(k) = Vfy(pk,m, σ), i.e., the output is 1 when A
succeeds, and 0 otherwise.

Definition 1 formalizes this argument in the sense that an attacker forges a
signature if and only if SigForgeτ,HA,Π(k) = 1.

Definition 1. Consider the generic group model with an encoding map τ : Zp →
G. A signature scheme Π = (Kg,Sign,Vfy) is said to be (qH, qG, qS, ε)-UF-CMA
secure (unforgeable against chosen message attack) if for every adversary A
making at most qH (resp. qG, qS) queries to the random oracle (resp. generic
group, signing oracles), the following bound holds:

Pr
[
SigForgeτ,HA,Π(k) = 1

]
≤ ε,

where the randomness is taken over the selection of τ , the random coins of A,
the random coins of Kg, and the selection of random oracle H.

3.1 Discrete Log Problem with Restricted Discrete Log Oracle

Restricted Discrete-Log Oracle in the Generic Group Model. In the discrete log
problem we pick a random x ∈ Zp and the attacker is challenged to recover
x given g = τ(1) and h = Pow(g, x) after making queries to the generic group
oracles Mult and Inv. As we mentioned in Section 1.2, we analyze the discrete
log problem in a stronger setting where the attacker is additionally given access
to a restricted discrete-log oracle DLog. Given the map τ : Zp → G and y ∈
Zp, DLog(τ(y)) will output y as long as τ(y) is a “fresh” group element. More
specifically, we say τ(y) is “fresh” if (1) τ(y) is not equal to h, and (2) τ(y) has
not been the output of a previous generic group query.

The requirement that τ(y) is fresh rules out trivial attacks where the attacker
picks a, b ∈ Zp, computes τ(ax + b) = Mult(Pow(h, a), Pow(g, b)) and queries
DLog(τ(ax+ b)) and solves for x = a−1(DLog(τ(ax+ b))− b) mod p.

The Generic Discrete-Log Game. The formal definition of the discrete log ex-
periment DLogChalτA(k) is given below:

The Generic Discrete-Log Game DLogChalτA(k):

(1) The adversary A is given (g = τ(1), τ(x)) for a random value of x ∈ Zp.
Here, τ : Zp → G is a map from Zp to a generic group G with a 2k-bit
prime p.

(2) A is allowed to query the usual generic group oracles (Mult, Inv) and
is additionally allowed to query DLog(τ(y)), but only if τ(y) is “fresh”,
i.e., τ(y) is not τ(x), and τ(y) has not been the output of a previous
random generic group query.

(3) After multiple queries, A outputs x′.

On the Multi-User Security of Short Schnorr Signatures with Preprocessing 11

(4) The output of the game is defined to be DLogChalτA(k) = 1 if x′ = x,
and 0 otherwise.

Lemma 1 upper bounds the probability that an attacker wins the generic discrete-
log game DLogChalτA(k). Intuitively, the proof works by maintaining a list L of
tuples (τ(y), a, b) such that y = ax+ b for every oracle output τ(y).

Initially, the list L contains two items (τ(x), 1, 0) and (τ(1), 0, 1), and the list
is updated after every query to the generic group oracles, e.g., if (τ(y1), a1, b1) ∈
L and (τ(y2), a2, b2) ∈ L, then querying Mult(τ(y1), τ(y2)) will result in the
addition of (τ(y1 + y2), a1 + a2, b1 + b2) into L. If L already contained a tuple of
the form (τ(y1 + y2), a′, b′) with a′ 6= a1 + a2 or b′ 6= b1 + b2, then we say that
the event BRIDGE occurs.

We can use the restricted discrete log oracle to maintain the invariant that
every output of our generic group oracles Mult and Inv can be added to L. In
particular, if we every encounter an input y = τ(b) that does not already appear
in L, then y is fresh and we can simply query the restricted discrete log oracle
to extract b = DLog(y), ensuring that the tuple (y, 0, b) is added to L before the
generic group query is processed.

The key component of the proof is to upper bound the probability of the
event BRIDGE. This is sufficient as any attacker that can recover x will also be
able to ensure that (τ(x), 0, x) is added to L, which would immediately cause
the event BRIDGE to occur, since we already have (τ(x), 1, 0) ∈ L. We defer the
full proof of Lemma 1 to the full version [BL19] for readers who are interested.

Lemma 1. The probability the attacker making at most qG generic group oracle
queries wins the generic discrete-log game DLogChalτA(k) (even with access to
the restricted DLog oracle) is at most

Pr [DLogChalτA(k) = 1] ≤ 6qG(qG + 1) + 12

4p− (3qG + 2)2
,

in the generic group model of prime order p, where the randomness is taken over
the selection of τ , the challenge x, as well as any random coins of A.

3.2 Security Reduction

Given Lemma 1, we are now ready to describe our security reduction for short
Schnorr signatures of length 3k. As in our security proof for the discrete-log
problem, we will ensure that for every output τ(y) of a generic group query, we
can express y = ax + b for known constants a and b – here x is the secret key
that is selected in the security game, i.e., any time Asig makes a query involving
a fresh element τ(y), we will simply query DLog(τ(y)) so that we can add τ(y)
to the list L.

Theorem 4 provides the first rigorous proof of the folklore claim that short
(3k-bit) Schnorr signatures can provide k bits of security. The formal security
proof uses both the generic group model and the random oracle model.

12 J. Blocki and S. Lee

Theorem 4. The short Schnorr signature scheme Πshort = (Kg,Sign,Vfy) of
length 3k is (qH, qG, qS, ε)-UF-CMA secure with

ε =
6qG(qG + 1) + 12

4p− (3qG + 2)2
+
qS(qH + qS)

p
+

qH + qS
p− (3qG + 2)

+
qH + 1

2k
= O

(q
2k

)
,

in the generic group model of prime order p ≈ 22k and the programmable random
oracle model, where q denotes the total number of queries made by an adversary.

Proof Sketch of Theorem 4: Here, we only give the intuition of how the proof
works. The full proof of Theorem 4 is similar to that of Theorem 6 and we defer
it to the full version [BL19].

We give the proof by reduction, i.e., given an adversary Asig attacking short
Schnorr signature scheme, we construct an efficient algorithm Adlog which solves
the discrete-log problem. During the reduction, we simulate the signature signing
process without secret key x by programming the random oracle, i.e., to sign a
message m we can pick s and e randomly, compute I = τ(s − xe) by querying
adequate generic group oracles2, and see if the random oracle has been previously
queried at H(I‖m). If not, then we can program the random oracle as H(I‖m) :=
e and output the signature (s, e). Otherwise, the reduction simply outputs ⊥ for
failure. Since s and e are selected randomly, we can argue that the probability
that we output ⊥ because H(I‖m) is already defined is small, i.e., ≈ qH/p.

We can use the oracle DLog to maintain the invariant that before processing
any random oracle query of the form H(y‖·) that we know a, b such that τ(ax+
b) = y. In particular, if y is a fresh string that has not previously been observed,
then we can simply set a = 0 and query the restricted discrete log oracle to
find b such that τ(b) = y. We say that the random oracle query is lucky if
H(y‖m) = −a, or H(y‖m) = 0. Assuming that the event BRIDGE does not
occur, it is straightforward to upper bound the probability of a lucky query as
O(qH/2

k). Similarly, it is straightforward to show that the probability that Asig

gets lucky and guesses a valid signature (s, e) for a message m without first
querying H(τ(s−xe)‖m) is O(2−k). Assuming that there are no lucky queries or
guesses but the attacker still outputs a successful signature forgery (s, e). In this
case we have I = τ(s− xe) = τ(ax+ b), which allows for us to solve for x using
the equation (a + e)x = (s − b). Thus, we can argue that the probability Adlog

solves the discrete-log challenge correctly is lower bounded by the probability
that Asig forges a signature minus O(q/2k). Finally, by applying Lemma 1 we
can upper bound the probability Asig wins the generic signature forgery game

SigForgeτ,HA,Π(k) to be O(q/2k).

4 Multi-User Security of Short Schnorr Signatures

In this section, we prove that short Schnorr signatures also provide k bits of se-
curity in the multi-user setting. The reduction uses similar ideas, but requires us

2 We can compute I without knowledge of x because τ(x) is given as public key.

On the Multi-User Security of Short Schnorr Signatures with Preprocessing 13

to introduce and analyze a game called the 1-out-of-N generic BRIDGEN -finding
game. We first define the 1-out-of-N generic signature forgery game, where an
adversary is givenN independent public keys (pk1, . . . , pkN) = (τ(sk1), . . . , τ(skN))
along with oracle access to the signing oracles Sign(sk1, ·), . . . ,Sign(skN , ·), the
random oracle H, and the generic group oracles. The attacker can succeed if
s/he can output a forgery (σ,m) which is valid under any one public key, e.g.,
for some public key pkj we have Vfy(pkj ,m, σ) = 1, while the query m was never
submitted to the jth signing oracle Sign(skj , ·). In our reduction, we show that
any attacker that wins the 1-out-of-N generic signature forgery game can be
used to win the 1-out-of-N generic BRIDGEN -finding game. We separately up-
per bound the probability that a generic attacker can win the 1-out-of-N generic
BRIDGEN -finding game.

1-out-of-N Generic Signature Forgery Game. Fixing the injective mapping τ :
Zp → G, a random oracle H, and an adversary A, consider the following experi-
ment defined for a signature scheme Π = (Kg,Sign,Vfy):

The 1-out-of-N Generic Signature Forgery Game SigForgeτ,H,NA,Π (k):

(1) Kg(1k) is run N times to obtain the public and the secret keys (pki, ski)
for each i ∈ [N]. Here, for each i ∈ [N], ski is chosen randomly from the
group Zp, where p is a 2k-bit prime, and pki = τ(ski).

(2) Adversary A is given (g = τ(1), pk1, · · · , pkN , p), and access to the
generic group oracles GO = (Mult(·, ·), Inv(·)), the random oracle H(·),
and the signing oracles Sign(sk1, ·), . . . , Sign(skN , ·). The experiment
ends when the adversary outputs (m,σ = (s, e)).

(3) A succeeds to forge a signature if and only if there exists some j ∈ [N]
such that Vfy(pkj ,m, σ) = 1 and the querym was never submitted to the

oracle Sign(skj , ·). The output of the experiment is SigForgeτ,H,NA,Π (k) = 1

when A succeeds; otherwise SigForgeτ,H,NA,Π (k) = 0.

Definition 2. Consider the generic group model with an encoding map τ : Zp →
G. A signature scheme Π = (Kg,Sign,Vfy) is (N, qH, qG, qS, ε)-MU-UF-CMA se-
cure (multi-user unforgeable against chosen message attack) if for every adver-
sary A making at most qH (resp. qG, qS) queries to the random oracle (resp.
generic group, signing oracles), the following bound holds:

Pr
[
SigForgeτ,H,NA,Π (k) = 1

]
≤ ε,

where the randomness is taken over the selection of τ , the random coins of A,
the random coins of Kg, and the selection of random oracle H.

The Discrete-Log Solution List L in a Multi-User Setting. As before, we will
maintain the invariant that for every output y of a generic group query that we
have recorded a tuple (y,~a, b) in a list L where DLog(y) = ~a · ~x + b (here, ~a =

14 J. Blocki and S. Lee

(a1, . . . , aN), ~x = (x1, . . . , xN) ∈ ZNp). Note that the restricted oracle DLog(·) will
solve DLog(y) for any fresh group element y such that y 6∈ {τ(1), τ(x1), . . . , τ(xN)},
and y has not been the output of a prior generic group query.

– Initially, L contains (τ(1),~0, 1) and (τ(xi), ûi, 0) for 1 ≤ i ≤ N .
– If the attacker ever submits a fresh group element y which was not previously

an output of a generic group oracle query, then we can query b = DLog(y),
and add (y,~0, b) to our list. Thus, without loss of generality, we can assume
that all query inputs to Mult, Inv were first added to L.

– If (y1,~a1, b1), (y2,~a2, b2) ∈ L, and the attacker queries Mult(y1, y2), then add
(Mult(y1, y2),~a1 + ~a2, b1 + b2) to L.

– If (y,~a, b) ∈ L, and Inv(y) is queried, then add (Inv(y),−~a,−b) to L.

4.1 The Multi-User Bridge-Finding Game

We establish the multi-user security of short Schnorr signatures via reduction
from a new game we introduce called the 1-out-of-N generic BRIDGEN -finding
game. As in the 1-out-of-N discrete-log game, the attacker is given τ(1), as well
as τ(x1), . . . , τ(xN) for N randomly selected values ~x = (x1, . . . , xN) ∈ ZNp . The
key difference between this game and the 1-out-of-N discrete-log game is that
the attacker’s goal is simply to ensure that the “bridge event” BRIDGEN occurs,
whether or not the attacker is able to solve any of the discrete-log challenges. As
in Section 3, we will assume that we have access to DLog(·), and we will maintain
the invariant that for every output τ(y) of some generic group query, we have
y = ~a ·~x+b for known values ~a = (a1, . . . , aN) ∈ ZNp and b ∈ Zp, i.e., by querying
the restricted oracle DLog(τ(y)) whenever we encounter a fresh input.

The 1-out-of-N Generic BRIDGEN -Finding Game BridgeChalτ,NA (k, ~x):

(1) The challenger initializes the list L = {(τ(1),~0, 1), (τ(x1), û1, 0), . . . ,
(τ(xN), ûN , 0)}, and ~x = (x1, · · · , xN).

(2) The adversary A is given g = τ(1) and τ(xi) for each i ∈ [N].
(3) A is allowed to query the usual generic group oracles (Mult, Inv).

(a) If the challenger ever submits any fresh element y which does not
appear in L as input to a generic group oracle, then the challenger
immediately queries by = DLog(y), and adds the tuple (y,~0, by) to
the list L.

(b) Whenever A submits a query y1, y2 to Mult(·, ·), we are ensured that
there exist tuples (y1,~a1, b1), (y2,~a2, b2) ∈ L. The challenger adds
the tuple (Mult(y1, y2),~a1 + ~a2, b1 + b2) to the list L.

(c) Whenever A submits a query y to Inv(·), we are ensured that some
tuple (y,~ay, by) ∈ L. The challenger adds the tuple (Inv(y),−~ay,−by)
to the list L.

(4) If at any point in time we have a collision, i.e., two distinct tuples
(y,~a1, b1), (y,~a2, b2) ∈ L with (~a1, b1) 6= (~a2, b2), then the event BRIDGEN

On the Multi-User Security of Short Schnorr Signatures with Preprocessing 15

occurs, and the output of the game is 1. If BRIDGEN never occurs, then
the output of the game is 0.

We further define the game BridgeChalτ,NA (k) in which ~x = (x1, . . . , xN) are

first sampled uniformly at random, and then we run BridgeChalτ,NA (k, ~x). Thus,

Pr
A,τ

[BridgeChalτ,NA (k) = 1] := Pr
A,τ,~x

[BridgeChalτ,NA (k, ~x) = 1] .

As long as the event BRIDGEN has not occurred, we can (essentially) view
x1, . . . , xN as uniformly random values that are yet to be selected. More pre-
cisely, the values x1, . . . , xN are selected subject to a few constraints, e.g., if we
know f1 = τ(~a1 · ~x + b1) 6= f2 = τ(~a2 · ~x + b2) then we have the constraint that
~a1 · ~x+ b1 6= ~a2 · ~x+ b2.

Theorem 5. For any attackers A making at most qG := qG(k) queries to the
generic group oracles,

Pr
[
BridgeChalτ,NA (k) = 1

]
≤ qGN + 3qG(qG + 1)/2

p− (N + 3qG + 1)2 −N
,

in the generic group model of prime order p where the randomness is taken over
the selection of x1, . . . , xN , τ as well as any random coins of A.

Proof. Consider the output yi of the ith generic group query. We first analyze the
probability that this query results in the event BRIDGEN conditioning on the

event BRIDGE
N

<i that the event has not yet occurred, i.e., the event BRIDGEN

has not been occurred until the (i−1)th query. Before we even receive the output
yi, we already know the values ~ai, bi such that the tuple (yi,~ai, bi) will be added
to L. If L does already contain this exact tuple, then outputting yi will not
produce the event BRIDGEN . If L does not already contain this tuple (yi,~ai, bi),
then we are interested in the event Bi that some other tuple (yi,~a

′
i, b
′
i) has been

recorded with (~a′i, b
′
i) 6= (~ai, bi). Observe that Bi occurs if and only if there

exists a tuple of the form (·,~a, b) with (~a − ~ai) · ~x = bi − b and (~a, b) 6= (~ai, bi).
If we pick ~x randomly, the probability that (~a − ~ai) · ~x = bi − b would be 1/p.
However, we cannot quite view ~x as random due to the restrictions, i.e., because

we condition of the event BRIDGE
N

<i we know that for any distinct pair (yi,~ai, bi)
and (yi,~aj , bj) we know that ~ai · ~x+ bi 6= ~aj · ~x+ bj .

Consider sampling ~x uniformly at random subject to this restriction. Let
r ≤ N be an index such that ~a[r]− ~ai[r] 6= 0 and suppose that xr = ~x[r] is the
last value sampled. At this point, we can view xr as being drawn uniformly at
random from a set of at least p − |L|2 − (N − 1) remaining values, subject to
all of the restrictions. We also observe that |L| ≤ N + 3qG + 1 since each generic
group oracle query adds at most three new tuples to L — exactly three in the
case that we query Mult(y1, y2) on two fresh elements. Thus, the probability
that (~a − ~ai) · ~x = bi − b is at most 1

p−(N+3qG+1)2−(N−1) . Union bounding over

all tuples (·,~a, b) ∈ L, we have

Pr
[
Bi : BRIDGE

N

<i

]
≤ N + 3i

p− (N + 3qG + 1)2 −N
.

16 J. Blocki and S. Lee

To complete the proof, we observe that

Pr
[
BridgeChalGO,NA (k) = 1

]
=
∑
i≤qG

Pr
[
Bi : BRIDGE

N

<i

]
≤
∑
i≤qG

N + 3i

p− (N + 3qG + 1)2 −N
=

qGN + 3qG(qG + 1)/2

p− (N + 3qG + 1)2 −N
.

As an immediate corollary of Theorem 5, we can show that an attacker wins
the 1-out-of-N discrete log game with (approximately) the same probability
as in the multi-user bridge-finding game. In particular, given any attacker A′
in the 1-out-of-N discrete-log game 1ofNDLogτ,NA (k), where the attacker’s goal
is to output any x ∈ {x1, . . . , xN} given input τ(1), τ(x1), . . . , τ(xN), we can

construct an attacker A in the game BridgeChalτ,NA (k). A simply runs A′ to
obtain an output x, and then computes τ(x) using at most 2 log p queries to the
Mult(·, ·) oracle. If x ∈ {x1, . . . , xN}, then the bridge event BRIDGEN must have
occurred at some point, since we have (τ(x),~0, x) ∈ L and (τ(x), ûi, 0) ∈ L for
some i ∈ [N].

Corollary 1. For any attacker A making at most qG + 2 log p queries,

Pr
[
1ofNDLogτ,NA (k) = 1

]
≤ qGN + 3qG(qG + 1)/2

p− (N + 3qG + 1)2 −N
,

in the generic group model of prime order p, where the randomness is taken over
the selection of τ , the challenges x1, . . . , xN , and any random coins of A.

4.2 Security Reduction

Theorem 6. The short Schnorr signature scheme Πshort = (Kg,Sign,Vfy) of

length 3k is
(
N, qH, qG, qS, ε = O

(
q+N
2k

))
-MU-UF-CMA secure with

ε =
qGN + 3qG(qG + 1)/2

p− (N + 3qG + 1)2 −N
+
qS(qH + qS)

p
+

qH + qS
p− (N + 3qG + 1)

+
qH + 1

2k
,

in the generic group model of prime order p ≈ 22k and the programmable random
oracle model, where q denotes the total number of queries made by an adversary.

Proof. Given an adversary Asig attacking short Schnorr signature scheme, we
construct the following efficient algorithm Abridge which tries to succeed in the

1-out-of-N generic BRIDGEN -finding game BridgeChalτ,NAbridge
(k):

Algorithm Abridge:
The algorithm is given p, g = τ(1), τ(xi), 1 ≤ i ≤ N as input.

1. Initialize the list L = {(τ(1),~0, 1), (τ(xi), ûi, 0) for each i ∈ [N]}, and Hresp =
{}, where Hresp stores the random oracle queries.

On the Multi-User Security of Short Schnorr Signatures with Preprocessing 17

Given: g = τ(1), pki = τ(xi), i ∈ [N], p

/* begin simulation */

Asig

Mult(·)

Inv(·)

DLogg(·)

H(·)

σi∗ = (si∗, ei∗),mi∗

Signj(·)
{mi}Ni=1

{σi}Ni=1

1 : Pick si, ei randomly

2 : Compute Ii = Mult(Pow(g, si), Pow(pkj ,−ei)) = τ(si − xjei)
3 : if H(Ii||mi) previously queried then

4 : return ⊥
5 : else

6 : Program H(Ii||mi) := ei

7 : return σi = (si, ei)

Signj(mi) without secret key xj (j ∈ [N])

/* end simulation */

Compute: Ii∗ = Mult(Pow(g, si∗), Pow(pki∗,−ei∗)) = τ(si∗ − xi∗ei∗)

Extract: a ∈ G,~a ∈ ZNp , b, c ∈ Zp

Reduction Abridge

Figure 2. A reduction to the BridgeChalτ,NAbridge
(k) attacker Abridge from the short Schnorr

signature attacker Asig.

2. Run Asig with a number of access to the generic oracles GO = (Mult(·, ·),
Inv(·)), DLogg(·), Signi(·) for 1 ≤ i ≤ N , and H(·). The signing oracle without
a secret key is described in Figure 2. Now we consider the following cases:
(a) Whenever Asig submits a query w to the random oracle H:

– If there is a pair (w,R) ∈ Hresp for some string R, then return R.
– Otherwise, select R←$Z2k , and add (w,R) to the set Hresp.
– If w has the form w = (a‖mi), where the value a has not been observed

previously (i.e., is not in the list L), then we query b = DLog(a), and
add (a,~0, b) to L.

(b) Whenever Asig submits a query a to the generic group oracle Inv(a):
– If a is not in L then we immediately query b = DLog(a) and add (a,~0, b)

to L.
– Otherwise, (a,~a, b) ∈ L. Then we query Inv(a) = τ(−~a ·~x− b), output

the result and add the result (τ(−~a · ~x− b),−~a,−b) ∈ L.
(c) WheneverAsig submits a query a, b to the generic group oracle Mult(a, b):

– If the element a (resp. b) is not in L, then query b0 = DLog(a) (resp.
b1 = DLog(b)), and add the element (a,~0, b0) (resp. (b,~0, b1)) to L.

– Otherwise, both elements (a,~a0, b0), (b,~a1, b1) ∈ L. Then we return
Mult(a, b) = τ((~a0 +~a1) · ~x+ b0 + b1), and add (τ((~a0 +~a1) · ~x+ b0 +
b1),~a0 + ~a1, b0 + b1) ∈ L.

(d) Whenever Asig submits a query mi to the signing oracle Sign(xj , ·):
– We use the procedure Signj described in Figure 2 to forge a signa-

ture without knowledge of the secret key xi. Intuitively, the forgery
procedure relies on our ability to program the random oracle.

18 J. Blocki and S. Lee

– We remark that a side effect of querying the Signj oracle is the addition

of the tuples (τ(si),~0, si), (τ(xjei), eiûi, 0) and (τ(si−xjei),−eiûi, si)
to L, since these values are computed using the generic group oracles
Inv and Mult.

(e) If at any point we find some string y such that (y,~a, b) ∈ L and (y,~c, d) ∈
L for (~a, b) 6= (~c, d), then we can immediately have a BRIDGEN instance
(τ((~a−~c) ·~x),~a−~c, 0) ∈ L and (τ(d−b),~0, d−b) ∈ L since τ((~a−~c) ·~x) =
τ(d−b).3 Thus, without loss of generality, we can assume that each string
y occurs at most once in the list L.

3. After Asig outputs σi∗ = (si∗, ei∗) and mi∗, identify the index i∗ ∈ [N] such
that Vfy(pki∗,mi∗, σi∗) = 1.

4. Compute τ(−ei∗xi∗) = Inv(Pow(τ(xi∗), ei∗)) and si∗ = Pow(g, si∗). This will
ensure that the elements (τ(−ei∗xi∗),−ei∗ûi∗, 0) and (τ(ei∗xi∗), ei∗ûi∗, 0),
and (si∗,~0, si∗) are all added to L.

5. Compute Ii∗ = Mult(si∗, τ(−ei∗xi∗)) = τ(si∗ − xi∗ei∗) which ensures that
(Ii∗,−ei∗ûi∗, si∗) ∈ L. Finally, we can check to see if we previously had any
tuple of the form (Ii∗,~a, b) ∈ L.

Analysis. We first remark that if the signature is valid then we must have
ei∗ = H(Ii∗‖mi∗) and DLog(Ii∗) = si∗ − xi∗ei∗ = ~a · ~x+ b.

We now define failure events FailtoFind(Ii∗) and BadQuery. FailtoFind(Ii∗)
denotes the event that we find that the signature is valid, but Ii∗ was not pre-
viously recorded in our list L before we computed Mult(si∗, τ(−ei∗xi∗)) in the
last step. Similarly, let BadQuery denote the event that the signature is valid but
for the only prior tuple (Ii∗,~a, b) ∈ L recorded in L we have that ~a = −ei∗ûi∗.
If the signature is valid and neither of the events FailtoFind(Ii∗) and BadQuery
occur, then the bridge event BRIDGEN must have occurred and we immediately
win the game since (Ii∗,~a, b) ∈ L, (Ii∗,−ei∗ûi∗, si∗) ∈ L and ~a 6= −ei∗ûi∗.

We additionally consider then the event FailtoSign where our reduction out-
puts ⊥ in Step 2.(d) due signing oracle failure i.e., because H(Ii‖mi) has been
queried previously. Intuitively, the attacker will output a valid signature forgery
with probability at least Pr[SigForgeτ,NAsig,Πshort

(k) = 1] − Pr[FailtoSign] after we
replace the signing oracle with the procedure Signj described in Figure 2.

Claim 1, Claim 2, and Claim 3 upper bound the probability of our events
FailtoSign, FailtoFind and BadQuery respectively. We defer the proofs to the full
version [BL19].

Claim 1. Pr[FailtoSign] ≤ qS(qH + qS)

p
.

Claim 2. Pr[FailtoFind(Ii∗)] ≤
qH + qS
p− |L|

+
1

2k
.

Claim 3. Pr[BadQuery] ≤ qH
2k
.

3 Note that (~a, b) 6= (~c, d) implies ~a 6= ~c since if ~a = ~c then ~a · ~x+ b = ~a · ~x+ d implies
b = d as b, d ∈ Zp.

On the Multi-User Security of Short Schnorr Signatures with Preprocessing 19

Since we have |L| ≤ N + 3qG + 1, we can apply Theorem 5 to conclude that

Pr[SigForgeτ,NAsig,Πshort
(k) = 1]

≤ Pr[BridgeChalτ,NAbridge
(k) = 1] + Pr[FailtoSign] + Pr[FailtoFind(Ii∗)] + Pr[BadQuery]

≤ qGN + 3qG(qG + 1)/2

p− (N + 3qG + 1)2 −N +
qS(qH + qS)

p
+

qH + qS
p− (N + 3qG + 1)

+
qH + 1

2k

= O
(
q +N

2k

)
.

5 Multi-User Security of Short Schnorr Signatures with
Key-Prefixing against Preprocessing Attacks

In this section, we analyze the security of short Schnorr signatures against a
preprocessing attacker who first outputs an S-bit hint after making (a very large
number of) preprocessing queries to the generic group oracles Mult and Inv,
as well as the random oracle H. After the public/secret keys are chosen, the
signature forgery attacker will try use the hint to help win the signature forgery
game. The hint must be fixed before the public/secret keys for our signature
scheme are selected, otherwise the preprocessing attacker can generate forged
signatures and embed them in the hint.

We first observe that Schnorr signatures are trivially broken against a pre-
processsing attack, e.g., if the preprocessing attacker finds some message m
and an integer r such that e = H(τ(r)‖m) = 0, then the attacker can sim-
ply include the tuple (m, r) as part of the S-bit hint. Observe that the hint
is completely independent of the public key pk. In fact, for any public key pk,
we have that σ′ = (s = r, e = 0) is a valid signature for the message m! To
see this, note that R = τ(s − sk · 0) = τ(r) = 0 and that, by assumption,
H(R‖m) = H(τ(r)‖m) = 0 = e.

The above attack can easily be addressed with key-prefixing, i.e., to sign a
message m, we pick an integer r, compute e = H(pk‖τ(r)‖m), and output the
signature σ = (s = r+ sk ·e, e). Intuitively, since the preprocessing attacker does
not know the public key pk in advance, s/he is unlikely to have stored a tuple of
the form (pk,m, r, τ(r)). The key question is whether or not short Schnorr sig-
natures with key-prefixing are secure against any preprocessing attack. To prove
that short Schnorr signatures with key-prefixing are secure against preprocess-
ing attacks, we revisit the 1-out-of-N bridge-finding game in the preprocessing
setting.

5.1 Security of BRIDGEN -Finding Game with Preprocessing

We analyze the BRIDGEN -finding game in the setting with preprocessing attacks.
In particular, an attacker consists of a pair of algorithms (Apre,Aon). The basic
idea is that we split the attack into two phases, preprocessing and online phase,
so that the attacker has (exponential) time to make preprocessing queries before
playing the bridge game. Specifically,

20 J. Blocki and S. Lee

– Algorithm Apre runs a preprocessing phase, where it takes as input g = τ(1)
and outputs a hint strτ , which is a binary string after making queries to the
generic group oracles GO = (Mult(·, ·), Inv(·)). Without loss of generality, we
can assume that Apre is deterministic, and we simply use strτ to refer to the
hint when the random mapping τ is fixed.

– The online attacker Aon attempts to win the BRIDGEN -finding game. The
online attacker Aon is given the hint strτ (which was produced in the prepro-
cessing phase), as well as (τ(x1), . . . , τ(xN)). However, the challenger picks
(x1, . . . , xN) ∈ ZNp after the hint strτ is fixed. For convenience, we will write
Aon,strτ to denote the online attacker with the hint strτ hardcoded.

We are interested in the setting where the preprocessing algorithm Apre can
make qpreG ≥ 22k queries to the generic group oracles. In other words, the prepro-
cessing algorithm Apre can examine the entire input/output table of the mapping
τ . However, the length of the hint strτ given to the online attacker is bounded
by S, and the online attacker can make at most qonG < 2k queries to the generic
group oracles. Theorem 7 says that the probability of a successful preprocessing
attack is at most Õ(SN(qonG)2/p).

Theorem 7. Let p > 22k be a prime number and N ∈ N be a parameter. Let
(Apre,Aon) be a pair of generic algorithms with an encoding map τ : Zp → G
such that Apre outputs an S-bit hint and Aon makes at most qonG := qonG (k) queries
to the generic group oracles. Then

Pr
[
BridgeChalτ,NAon,strτ

(k) = 1
]
≤ Õ

(
SN(qonG +N)(qonG + 2N)

p

)
,

where the randomness is taken over the selection of τ , the random coins of Aon,
and the random coins used by the challenger in the bridge game (the hint strτ =
AGO

pre(g) is selected independently of the random coins used by the challenger). In
particular, if qonG ≥ 10N(1 + 2 log p) and S ≥ 10 log(8p), then

Pr
[
BridgeChalτ,NAon,strτ

(k) = 1
]
≤ 12SN(qonG)2 log p

p
.

Remark 1. The upper bound is essentially tight as a preprocessing attacker can
solve a random 1-out-of-N discrete-log challenge with probability Ω̃((qonG)2S/p)
which would trivially allow the attacker to win the bridge-finding game. In par-
ticular, even when N = 1, there is a preprocessing with success probability
Ω((qonG)2S/p), e.g., see [CK18, Section 7.1]. Thus, our upper bound is tight up
to a factor of N . /

The proof of Theorem 7 closely follows [CK18, Theorem 2] with a few minor
modifications, and the full proof can be found in the full version [BL19]. One
small difference is that we need to extend the proofs of [CK18] to handle queries
to the inverse oracle Inv(·), and the restricted discrete log oracle DLog. The
proof of Theorem 7 relies on Lemma 2, which is similar to [CK18, Lemma 4].
Intuitively, if the preprocessing attack is too successful, then one can derive a
contradiction by compressing the random mapping τ .

On the Multi-User Security of Short Schnorr Signatures with Preprocessing 21

Lemma 2. Let G be the set of binary strings of length ` such that 2` ≥ p
for a prime p. Let T = {τ1, τ2, . . .} be a subset of the labeling functions from
Zp to G. Let (Apre,Aon) be a pair of generic algorithms for Zp on G such
that for every τ ∈ T and every ~x = (x1, . . . , xN) ∈ ZNp , Apre outputs an S-
bit advice string, Aon makes at most qon oracle queries, and (Apre,Aon) satisfy

PrAon

[
BridgeChalτ,NAon,strτ

(k, ~x) = 1
]
≥ ε, where strτ = AGO

pre(τ(1)). Then, there ex-

ists a randomized encoding scheme that compresses elements of T to bitstrings
of length at most

log
|G|!

(|G| − p)!
+ S + 1− εp

6qon(qon +N)(N log p+ 1)
,

and succeeds with probability at least 1/2.

The full proof of Lemma 2 can be found in the full version [BL19]. Here, we
only give the brief idea as follows. To compress τ , our encoding algorithm first
runsApre to extract an S-bit hint strτ . We then executeAon(strτ , τ(x1), . . . , τ(xN))
multiple times with different challenges x1, . . . , xN . During each execution we
record the responses to the new generic group oracle queries, so that the decoder
can also execute Aon(strτ , τ(x1), . . . , τ(xN)). Intuitively, whenever the BRIDGEN

event occurs, the decoder can save a few bits by simply recording the index of
prior query involved in the collision. This requires just log qon bits to encode
instead of log p bits.

5.2 Multi-User Security of Key-Prefixed Short Schnorr Signatures
with Preprocessing

Theorem 7 upper bounds the probability that a preprocessing attacker wins
the multi-user bridge-finding game. In this setting, we observe that the hint
str := strτ,H that the preprocessing attacker outputs may depend both on the
random oracle H as well as the encoding map τ . We show how to adapt our
prior reduction to establish the multi-user security of key-prefixed short Schnorr
signatures against preprocessing attackers. Recall that in our reduction, we sim-
ulated a signature forgery attacker for (non key-prefixed) short Schnorr signa-
tures responding to queries to the signing oracle by programming the random
oracle. In the preprocessing setting without key-prefixing, the reduction breaks
down immediately. For example, the probability of a lucky random oracle query
H(τ(r)‖m) = 0 is no longer ≈ qonH /2

k, since the preprocessing attacker can sim-
ply hardcode the pair (r,m) as part of the hint str := strτ,H. Similarly, the
hint str := strτ,H may be correlated with particular input/output pairs from the
random oracle, making it infeasible to program those points.

We address this challenge by considering a model where a preprocessing
attacker is time-bounded, i.e., the preprocessing attacker can look at the entire
generic group oracles but only allowed to query the random oracle at up to
qpreH = 23k points during the preprocessing phase. We leave it as an interesting
theoretical challenge whether or not the bounds can be extended to unbounded

22 J. Blocki and S. Lee

preprocessing attacks. However, we would argue that in practice, 23k greatly
overestimates the running time of any preprocessing attacker, e.g., if k = 112,
then 23k = 2336. Intuitively, the signing oracle for key-prefixed short Schnorr
signatures involves two random points: a public key pk ∈ G and a random value
r←$Zp. The probability that a preprocessing attacker submitted a query of the
form H(pk, τ(r), ·) is at most qpreH p−2 ≤ 2−k, since the qpreH random oracle queries
are fixed before pk and r are sampled.

In our analysis, we consider the bad event that the signing oracle queries the
random oracle at a point H(pki‖τ(rj)‖m), which was previously queried by the
preprocessing attacker. Note that if this bad event never occurs, then we can
view H(pki‖τ(rj)‖m) as a uniformly random string that is uncorrelated with the
attacker’s state. The probability of this bad event occurring on any single query
to the signing oracle is at most NqpreH /p2. In particular, fixing an arbitrary set
of qpreH random oracle queries and then sampling pk1, . . . , pkN ∈ G and r ∈ Zp,
we can apply union bounds to argue that the probability that the preprocessing
attacker previously submitted some query of the form H(pki, τ(r), ·) for any i
is at most NqpreH /p2. Union bounding over the qonS online queries to the signing
oracle, the probability of the bad event ever occurring on any query to the signing
oracle is at most NqpreH qonS /p

2. Assuming that the bad event never occurs, we can
safely program the random oracle to simulate queries to the signing oracle when
we simulate our signature forgery attacker.

The other challenge that arises in the preprocessing setting is upper bound-
ing the probability of the bad event that the attacker forges a signature without
causing the bridge event to occur. Previously, our argument relied on the ob-
servation that for “fresh” group elements r ∈ Zp, we can effectively view τ(r)
as random bit string that is yet to be fixed. This intuition does not carry over
into the preprocessing setting, as the hint str might be correlated with τ(r). We
address these challenges by applying a random oracle compression argument.
In particular, if the attacker can generate forged signatures without causing the
bridge event to occur, we can use this attacker to predict random oracle outputs,
allowing us to derive a contraction by compressing the random oracle.

Theorem 8. Let Π = (Kg,Sign,Vfy) be a key-prefixed Schnorr signature scheme
and p > 22k be a prime number. Let N ∈ N be a parameter and (Apre

sig ,Aon
sig) be

a pair of generic algorithms with an encoding map τ : Zp → G such that Apre
sig

makes at most qpreH queries to the random oracle H : {0, 1}∗ → {0, 1}k1 and
outputs an S-bit hint strτ,H, and Aon

sig makes at most qonG := qonG (k) queries to
the generic group oracles and at most qonH queries to the random oracle. Then

Pr
[
SigForgeτ,NAon

sig,strτ,H
,Π(k) = 1

]
≤ ε, with

ε = Õ
(
SN(qonG +N)(qonG +2N)

p

)
+

NqpreH qonS
p2 +

qonS (qonS +qonH)
p +

4(qonH +1)

2k1
+ N2(S+k1)

p ,

where qonS denotes the number of queries to the signing oracle and the randomness
is taken over the selection of τ and the random coins of Aon

sig (the hint strτ,H =

Apre,GO
sig (g) is selected independently of the random coins used by the challenger).

On the Multi-User Security of Short Schnorr Signatures with Preprocessing 23

In particular, if qonG ≥ 10N(1 + 2 log p) and S ≥ 10 log(8p), then

ε =
12SN(qonG)2 log p

p
+
NqpreH qonS

p2
+
qonS (qonS + qonH)

p
+

4(qonH + 1)

2k1
+
N2(S + k1)

p
.

Remark 2. The upper bound in Theorem 8 is essentially tight (up to a factor of
N), because of the following observations:

– Making the reasonable assumption that NqpreH qonS < 23k and qonG >
√
N , the

dominating terms in ε are Õ(SN(qonG)2/p) and/or O
(
qonH /2

k1
)
.

– A preprocessing attacker can simply solve one of the discrete-log challenges
with probability at least Ω(S(qonG)2/p) which would recover a secret key and
make it trivial to forge a signature.

– Any attacker who makes qonH ≥ qonS queries to the random oracle can fix
an arbitrary message m and pick random numbers r1, . . . , rqonH hoping that
H(pk1‖τ(rj)‖m) = 0 for some j ≤ qonH . In this case, (rj , 0) is a valid forged
signature for m under public key pk1. Thus, the attacker can succeed with
probability ≈ qonH /2k1 . /

The full proof of Theorem 8 can be found in the full version [BL19]. The key
idea is that we can repeat the essentially same reduction from Section 4, i.e.,
we can build a bridge-finding game attacker (Apre

bridge,Aon
bridge) with preprocessing

from the signature forgery attacker (Apre
sig ,Aon

sig) with preprocessing, except that
when we program a random oracle, we define an additional bad event that we
program a random oracle at a point the attacker has already queried the point
during the preprocessing phase. We observe that such probability is negligibly
small. As long as the failure event does not occur we can program the random
oracle and the attacker will not notice the difference.

Instantiating Key-Prefixed Short Schnorr Signatures. We would like to have the
success probability in Theorem 8 bounded by O

(
q/2k

)
for any q ≤ 2k, where

q = qonG +qonH +qonS is the total number of online queries made by a preprocessing
attacker. To achieve k bits of multi-user security for key-prefixed short Schnorr
signatures with preprocessing, we can fix p such that p ≈ 22kSN log p, and set the
length of our hash output to be k1 = k. With these parameters, Theorem 8 tells
us that a preprocessing attacker wins the signature forgery game with probability
at most ε = O

(
(qonH + qonG)/2k

)
. The length of the signatures we obtain will be

k + log p = 3k + logN + logS + log log p.
As a concrete example, if N ≤ 2k/4 and S ≤ 2k/2, then we obtain signatures

of length ≈ 3.75k + log 2.75k. If we want k ≥ 128 bits of security, then the
assumption that N < 2k/4 seems quite reasonable, since 232(≈ 4.3 billion) is over
half of the current global population, and 264 bits exceeds the storage capacity
of Facebook’s data warehouse4. As a second example, if we take S ≤ 280 as an
upper bound on the storage capacity of any nation state and N ≈ 240, then we
obtain signatures of length ≈ 3k + 120 + log(2k + 120).

4 See the link: https://engineering.fb.com/2014/04/10/core-data/scaling-the-
facebook-data-warehouse-to-300-pb/ (Retrieved 2/20/2021)

https://engineering.fb.com/2014/04/10/core-data/scaling-the-facebook-data-warehouse-to-300-pb/
https://engineering.fb.com/2014/04/10/core-data/scaling-the-facebook-data-warehouse-to-300-pb/

24 J. Blocki and S. Lee

6 Multi-User Security of Other Fiat-Shamir Signatures

In this section, we show that our techniques from Section 4 and Section 5 apply
to other Fiat-Shamir-based signature schemes. We apply our reductions to ana-
lyze the multi-user security of the full-domain hash variant of Chaum-Pedersen
signatures [CP93], and (short) Katz-Wang signatures [KW03], with and with-
out preprocessing. In practice, the full-domain hash variant of Chaum-Pedersen
would be used to ensure that our signature scheme supports the message space
m ∈ {0, 1}∗ instead of requiring that m is a group element. We begin by introduc-
ing regular Chaum-Pedersen signatures in the next paragraph before describing
the full-domain hash variant (Chaum-Pedersen-FDH) that we analyze.

Security Analysis of Chaum-Pedersen-FDH Signatures. The Chaum-Pedersen
signature scheme [CP93] is obtained by applying the Fiat-Shamir transform
[FS87] to the Chaum-Pedersen identification scheme and works as follows.

– Given a cyclic group G = 〈g〉 of prime order p, the key generation algorithm
picks sk←$Zp and sets pk = gsk.

– To sign a message m ∈ G with the secret key sk, we sample r←$Zp and
compute y = msk, a = gr, b = mr, and e = H(m‖y‖a‖b). Finally, we output
a signature σ = (y, a, b, s), where s := r + sk · e mod p.

– The verification algorithm takes as inputs a signature σ′ = (y′, a′, b′, s′) and
computes e′ = H(m‖y′‖a′‖b′), A = gs

′
, B = a′gsk·e

′
, C = ms′ and D = b′y′e

′
.

Finally, we verify that (A = B) and (C = D) before accepting the signature.

The full-domain hash variant of Chaum-Pedersen signature, say Chaum-Pedersen-
FDH signature, is obtained by hashing a message m into a group element so
that we can perform generic group operations when signing the message. That
is, in the generic group model, we compute h = H′(pk‖m) := Pow(g,H(pk‖m))
and compute y = Pow(h, sk) and b = Pow(h, r) (which corresponds to y = hsk

and b = hr when instantiated with a cyclic group G = 〈g〉) during the sign-
ing procedure. Note that key-prefixing is necessary as otherwise an attacker can
always forge a signature for a message m, e.g., simply find m 6= m′ such that
H(m) = H(m′). The full description for each of these algorithms can be found in
the full version [BL19].

Our reduction in Section 4 naturally extends to Chaum-Pedersen-FDH sig-
nature scheme by using signing oracle in Figure 3. The signing oracle is able go
generate valid signatures without the secret key by programming the random
oracle. This allows us to prove Theorem 9. We remark that a Chaum-Pedersen-
FDH signature with k bits of security has length 8k — each group element
requires 2k bits to encode since p ≈ 22k. Note that reducing the length of the
hash output does not have any effect on Chaum-Pedersen-FDH signature length.
Thus, we assume that H is a random oracle with 2k-bit outputs. The proof of
Theorem 9 can be found in the full version [BL19].

Theorem 9. The Chaum-Pedersen-FDH signature scheme is
(
N, qH, qG, qS,O

(
q+N
2k

))
-

MU-UF-CMA secure under the generic group model of prime order p ≈ 22k and

On the Multi-User Security of Short Schnorr Signatures with Preprocessing 25

the programmable random oracle model, where q denotes the total number of
queries made by an adversary.

We can also show that the key-prefixed Chaum-Pedersen-FDH signature
scheme is secure against proprocessing attacks. That is, we apply key-prefixing
when computing e, i.e. e ← H(pk‖h‖y‖a‖b) during the signing procedure and
e′ ← H(pk‖h‖y′‖a′‖b′) during the verification (see the full version [BL19] for the
figure). During the online phase we can request a signature σ for m and output
σ′ = σ as our forgery for m′. We defer the full proof of Theorem 10 to the full
version [BL19].

Theorem 10. Let Π = (Kg,Sign,Vfy) be a key-prefixed Chaum-Pedersen-FDH
signature scheme and p > 22k be a prime number. Let N ∈ N be a parameter and
(Apre

sig ,Aon
sig) be a pair of generic algorithms with an encoding map τ : Zp → G such

that Apre
sig makes at most qpreH < 23k queries to the random oracle H : {0, 1}∗ →

{0, 1}2k and outputs an S-bit hint strτ,H, and Aon
sig makes at most qonG := qonG (k)

queries to the generic group oracles and at most qonH queries to the random oracle.

Then Pr
[
SigForgeτ,NAon

sig,strτ,H
,Π(k) = 1

]
≤ ε, with

ε = Õ
(
SN(qonG +N)(qonG +2N)

p

)
+

NqpreH qonS
p2 +

qonS (qonS +qonH)
p +

4(qonH +q̃2on+1)
22k

+ 3N2(S+2k)
2p ,

where qonS denotes the number of queries to the signing oracle, q̃on = qonH + 2qonS ,
and the randomness is taken over the selection of τ and the random coins of Aon

sig

(the hint strτ,H = Apre,GO
sig (g) is selected independently of the random coins used

by the challenger).

Applying Theorem 10, we can fix p such that p ≈ 22kSN log p to achieve k
bits of multi-user security. The final signature size would be ≈ 8k + 4 logS +
4 logN + 4 log(2k + logSN).

Security Analysis of Katz-Wang Signatures. The Katz-Wang signature scheme
[KW03] is a double generator version of Schnorr signature scheme. In the generic
group model on a cyclic group G of prime order p, we have two generators
p1, p2 ∈ Zp so that we can associate with gp1 and gp2 to the generators of the
group G. Here, the message space for m is arbitrary, i.e., m ∈ {0, 1}∗.

Given our encoding τ : Zp → G and g = τ(1), our key generation algorithm
picks sk←$Zp and sets pk = (p1, p2, h1, h2), where hi = Pow(τ(pi), sk) for i = 1, 2.
To sign a message m ∈ {0, 1}∗ with the secret key sk, we sample r←$Zp, and
compute ai = Pow(τ(pi), r) for i = 1, 2, e = H(pk‖a1‖a2‖m), and s = r + sk · e
mod p. Finally, we output σ = (s, e). The verification algorithm takes as inputs
a signature σ′ = (s′, e′), pk = (p1, p2, h1, h2) and the message m, and compute
a′i = Mult(Pow(τ(pi), s

′), Pow(Inv(hi), e
′)) for i = 1, 2. Finally, we verify that

e′ = H(pk‖a′1‖a′2‖m) before accepting the signature. The pseudocode for each of
these algorithms can be found in the full version [BL19].

We remark that the length of a regular Katz-Wang signature is 4k bits when
p ≈ 22k. Similar to short Schnorr signatures, one can shorten the length of the

26 J. Blocki and S. Lee

Signj(mi) without secret key xj , j ∈ [N] (Chaum-Pedersen-FDH)

1 : Pick si and ei ∈ Zp randomly

2 : Compute si = Pow(g, si) and hij = Pow(g,H(pkj‖mi))

3 : Compute yi = Pow(pkj ,H(pkj‖mi))

4 : Compute ai = Mult(si, Pow(Inv(pkj), ei))

5 : Compute bi = Mult(Pow(hij , si), Pow(Inv(yi, ei)))

6 : if H(hij‖yi‖ai‖bi) ∈ prior query then

7 : return ⊥
8 : else Program H(hij‖yi‖ai‖bi) := ei
9 : return σi = (yi, ai, bi, si)

Signj(mi) without secret key xj , j ∈ [N] (Katz-Wang)

1 : Pick si, ei ∈ Zp randomly

2 : Compute a1,i = Mult(Pow(τ(p1), si), Pow(Inv(Pow(τ(xj), p1)), ei))

3 : Compute a2,i = Mult(Pow(τ(p2), si), Pow(Inv(Pow(τ(xj), p2)), ei))

4 : if H(pkj‖a1,i‖a2,i‖mi) ∈ prior query then

5 : return ⊥
6 : else Program H(pkj‖a1,i‖a2,i‖mi) := ei

7 : return σi = (si, ei)

Figure 3. The signing oracle without secret key in the Chaum-Pedersen-FDH scheme
(top) and the Katz-Wang scheme (bottom). Note that pkj = τ(xj) is public in both
schemes while the signing oracle has no information about xj . We further remark that
in the key-prefixed Chaum-Pedersen-FDH scheme, the only difference is to do a key-
prefixing pkj = τ(xj) to the input of the random oracle (line 6 and 8).

hash output to k bits to obtain 3k bit signature. Essentially the same reduc-
tion can be used to demonstrate the multi-user security of (short) Katz-Wang
signatures, while we use the signing oracle in Figure 3 without the secret key.

We observe that Katz-Wang signature is already key-prefixed. The security
bounds in Theorem 11 and Theorem 12 are equivalent to our bounds for short
Schnorr signatures with and without pre-processing. Thus, we obtain 3k (resp.
3k+logN+logS+log(2k+logNS))-bit signatures with k bits of security in the
multi-user setting without preprocessing (resp. with preprocessing). As before in
the preprocessing setting we select our prime number p ≈ 22kNS log(2k+logNS)
and we fix the length of the hash output to be k1 = k. We defer the full proof
of Theorem 11 and Theorem 12 to the full version [BL19].

Theorem 11. The (short) Katz-Wang signature scheme is
(
N, qH, qG, qS,O

(
q+N
2k

))
-

MU-UF-CMA secure under the generic group model of prime order p ≈ 22k and
the programmable random oracle model, where q denotes the total number of
queries made by an adversary.

Kiltz et al. [KMP16] showed that if the decisional Diffie-Hellman problem
is (t, ε)-hard then an adversary who tries to forge one out of N (regular) Katz-

On the Multi-User Security of Short Schnorr Signatures with Preprocessing 27

Wang signatures running at most time t′ can succeed with the probability ε′ ≤
t′(4ε/t+ qS/p+ 1/2k). While their result is similar to Theorem 11, our bounds
apply to (short) Katz-Wang signatures, with and without preprocessing.

Theorem 12. Let Π = (Kg,Sign,Vfy) be a Katz-Wang signature scheme and
p > 22k be a prime number. Let N ∈ N be a parameter and (Apre

sig ,Aon
sig) be a pair

of generic algorithms with an encoding map τ : Zp → G such that Apre
sig makes at

most qpreH < 23k queries to the random oracle at most qpreH < 23k queries to the
random oracle H : {0, 1}∗ → {0, 1}k1 and outputs an S-bit hint strτ,H, and Aon

sig

makes at most qonG := qonG (k) queries to the generic group oracles and at most qonH

queries to the random oracle. Then Pr
[
SigForgeτ,NAon

sig,strτ,H
,Π(k) = 1

]
≤ ε, with

ε = Õ
(
SN(qonG +N)(qonG +2N)

p

)
+

NqpreH qonS
p2 +

qonS (qonS +qonH)
p +

4(qonH +1)

2k1
+ N2(S+k1)

p ,

where qonS denotes the number of queries to the signing oracle and the randomness
is taken over the selection of τ and the random coins of Aon

sig (the hint strτ,H =

Apre,GO
sig (g) is selected independently of the random coins used by the challenger).

Acknowledgements

Jeremiah Blocki was supported in part by the National Science Foundation under
NSF CAREER Award CNS-2047272 and NSF Awards CNS-1704587 and CNS-
1755708 and CCF-1910659. Seunghoon Lee was supported in part by NSF Award
CNS-1755708 and by the Center for Science of Information (NSF CCF-0939370).
The opinions in this paper are those of the authors and do not necessarily reflect
the position of the National Science Foundation.

References

AB20. Handan Kilinc Alper and Jeffrey Burdges. Two-round trip schnorr multi-
signatures via delinearized witnesses. Cryptology ePrint Archive, Report
2020/1245, 2020. https://eprint.iacr.org/2020/1245.

BCJ08. Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. Multisignatures
secure under the discrete logarithm assumption and a generalized forking
lemma. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM
CCS 2008, pages 449–458. ACM Press, October 2008.

BD20. Mihir Bellare and Wei Dai. The multi-base discrete logarithm problem:
Tight reductions and non-rewinding proofs for Schnorr identification and
signatures. In Karthikeyan Bhargavan, Elisabeth Oswald, and Manoj Prab-
hakaran, editors, INDOCRYPT 2020, volume 12578 of LNCS, pages 529–
552. Springer, Heidelberg, December 2020.

Ber15. Daniel J. Bernstein. Multi-user Schnorr security, revisited. Cryptology
ePrint Archive, Report 2015/996, 2015. http://eprint.iacr.org/2015/

996.

https://eprint.iacr.org/2020/1245
http://eprint.iacr.org/2015/996
http://eprint.iacr.org/2015/996

28 J. Blocki and S. Lee

BL12. Daniel J. Bernstein and Tanja Lange. Two grumpy giants and a baby.
Cryptology ePrint Archive, Report 2012/294, 2012. http://eprint.iacr.
org/2012/294.

BL19. Jeremiah Blocki and Seunghoon Lee. On the multi-user security of short
schnorr signatures with preprocessing. Cryptology ePrint Archive, Report
2019/1105, 2019. https://ia.cr/2019/1105.

BLS04. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
Weil pairing. Journal of Cryptology, 17(4):297–319, September 2004.

BN06. Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key
model and a general forking lemma. In Ari Juels, Rebecca N. Wright, and
Sabrina De Capitani di Vimercati, editors, ACM CCS 2006, pages 390–399.
ACM Press, October / November 2006.

BNPS03. Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Se-
manko. The one-more-RSA-inversion problems and the security of Chaum’s
blind signature scheme. Journal of Cryptology, 16(3):185–215, June 2003.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Dorothy E. Denning, Ray-
mond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors,
ACM CCS 93, pages 62–73. ACM Press, November 1993.

CK18. Henry Corrigan-Gibbs and Dmitry Kogan. The discrete-logarithm prob-
lem with preprocessing. In Jesper Buus Nielsen and Vincent Rijmen, edi-
tors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 415–447.
Springer, Heidelberg, April / May 2018.

CP93. David Chaum and Torben P. Pedersen. Wallet databases with observers. In
Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 89–105.
Springer, Heidelberg, August 1993.

DEF+19. Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss,
Gregory Neven, and Igors Stepanovs. On the security of two-round multi-
signatures. In 2019 IEEE Symposium on Security and Privacy, pages 1084–
1101. IEEE Computer Society Press, May 2019.

Den02. Alexander W. Dent. Adapting the weaknesses of the random oracle model
to the generic group model. In Yuliang Zheng, editor, ASIACRYPT 2002,
volume 2501 of LNCS, pages 100–109. Springer, Heidelberg, December 2002.

DS19. David Derler and Daniel Slamanig. Key-homomorphic signatures: defini-
tions and applications to multiparty signatures and non-interactive zero-
knowledge. Designs, Codes and Cryptography, 87(6):1373–1413, Jun 2019.

Fis00. Marc Fischlin. A note on security proofs in the generic model. In Tatsuaki
Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages 458–469.
Springer, Heidelberg, December 2000.

fIS18. Federal Office for Information Security. Elliptic curve cryptography, version
2.1. Technical Guideline BSI TR-03111, Jun 2018.

FJS14. Nils Fleischhacker, Tibor Jager, and Dominique Schröder. On tight security
proofs for Schnorr signatures. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 512–531. Springer,
Heidelberg, December 2014.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987.

http://eprint.iacr.org/2012/294
http://eprint.iacr.org/2012/294
https://ia.cr/2019/1105

On the Multi-User Security of Short Schnorr Signatures with Preprocessing 29

fSC18. International Organization for Standardization and International Elec-
trotechnical Commission. It security techniques – digital signatures with
appendix – part 3: Discrete logarithm based mechanisms. ISO/IEC 14888-
3, Nov 2018.

FST10. David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-
friendly elliptic curves. Journal of Cryptology, 23(2):224–280, April 2010.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In 54th FOCS, pages 40–49. IEEE Com-
puter Society Press, October 2013.

GHS02. Pierrick Gaudry, Florian Hess, and Nigel P. Smart. Constructive and de-
structive facets of Weil descent on elliptic curves. Journal of Cryptology,
15(1):19–46, January 2002.

GMLS02. S. Galbraith, J. Malone-Lee, and N. P. Smart. Public key signatures in the
multi-user setting. Inf. Process. Lett., 83(5):263–266, September 2002.

GWZ15. Steven D. Galbraith, Ping Wang, and Fangguo Zhang. Computing elliptic
curve discrete logarithms with improved baby-step giant-step algorithm.
Cryptology ePrint Archive, Report 2015/605, 2015. http://eprint.iacr.
org/2015/605.

Hao17. Feng Hao. Schnorr Non-interactive Zero-Knowledge Proof. RFC 8235,
September 2017.

JMV01. Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve dig-
ital signature algorithm (ecdsa). International Journal of Information Se-
curity, 1(1):36–63, Aug 2001.

JS08. Tibor Jager and Jörg Schwenk. On the equivalence of generic group mod-
els. In Joonsang Baek, Feng Bao, Kefei Chen, and Xuejia Lai, editors,
ProvSec 2008, volume 5324 of LNCS, pages 200–209. Springer, Heidelberg,
October / November 2008.

KM07. Neal Koblitz and Alfred Menezes. Another look at generic groups, 2007.

KMP16. Eike Kiltz, Daniel Masny, and Jiaxin Pan. Optimal security proofs for
signatures from identification schemes. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 33–61.
Springer, Heidelberg, August 2016.

KW03. Jonathan Katz and Nan Wang. Efficiency improvements for signature
schemes with tight security reductions. In Sushil Jajodia, Vijayalakshmi
Atluri, and Trent Jaeger, editors, ACM CCS 2003, pages 155–164. ACM
Press, October 2003.

LM17. Bei Liang and Aikaterini Mitrokotsa. Fast and adaptively secure signatures
in the random oracle model from indistinguishability obfuscation. Cryp-
tology ePrint Archive, Report 2017/969, 2017. http://eprint.iacr.org/

2017/969.

MPSW19. Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille.
Simple schnorr multi-signatures with applications to bitcoin. Designs,
Codes and Cryptography, 87(9):2139–2164, 2019.

MVO91. Alfred Menezes, Scott A. Vanstone, and Tatsuaki Okamoto. Reducing el-
liptic curve logarithms to logarithms in a finite field. In 23rd ACM STOC,
pages 80–89. ACM Press, May 1991.

Nec94. V. I. Nechaev. Complexity of a determinate algorithm for the discrete
logarithm. Math Notes, 55:165, 1994.

http://eprint.iacr.org/2015/605
http://eprint.iacr.org/2015/605
http://eprint.iacr.org/2017/969
http://eprint.iacr.org/2017/969

30 J. Blocki and S. Lee

NRS20. Jonas Nick, Tim Ruffing, and Yannick Seurin. MuSig2: Simple two-round
schnorr multi-signatures. Cryptology ePrint Archive, Report 2020/1261,
2020. https://eprint.iacr.org/2020/1261.

NRSW20. Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter Wuille. MuSig-DN:
Schnorr multi-signatures with verifiably deterministic nonces. Cryptology
ePrint Archive, Report 2020/1057, 2020. https://eprint.iacr.org/2020/
1057.

NSW09. Gregory Neven, Nigel Smart, and Bogdan Warinschi. Hash function re-
quirements for schnorr signatures. Journal of Mathematical Cryptology, 3,
05 2009.

PH06. S. Pohlig and M. Hellman. An improved algorithm for computing log-
arithms over GF (p) and its cryptographic significance (corresp.). IEEE
Trans. Inf. Theor., 24(1):106–110, September 2006.

Pol78. John M. Pollard. Monte Carlo methods for index computation mod p.
Mathematics of Computation, 32:918–924, 1978.

PS96. David Pointcheval and Jacques Stern. Security proofs for signature schemes.
In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages
387–398. Springer, Heidelberg, May 1996.

RW14. Kim Ramchen and Brent Waters. Fully secure and fast signing from obfus-
cation. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS
2014, pages 659–673. ACM Press, November 2014.

Sch90. Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–
252. Springer, Heidelberg, August 1990.

Seu12. Yannick Seurin. On the exact security of Schnorr-type signatures in the
random oracle model. In David Pointcheval and Thomas Johansson, edi-
tors, EUROCRYPT 2012, volume 7237 of LNCS, pages 554–571. Springer,
Heidelberg, April 2012.

Sha71. D. Shanks. Class number, a theory of factorization, and genera. In 1969
Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ.
New York, Stony Brook, N.Y., 1969), pages 415–440, 1971.

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages
256–266. Springer, Heidelberg, May 1997.

SJ00. Claus-Peter Schnorr and Markus Jakobsson. Security of signed ElGamal
encryption. In Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume 1976
of LNCS, pages 73–89. Springer, Heidelberg, December 2000.

Sma99. Nigel P. Smart. The discrete logarithm problem on elliptic curves of trace
one. Journal of Cryptology, 12(3):193–196, June 1999.

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, 46th ACM
STOC, pages 475–484. ACM Press, May / June 2014.

WZ11. Ping Wang and Fangguo Zhang. Computing elliptic curve discrete log-
arithms with the negation map. Cryptology ePrint Archive, Report
2011/008, 2011. http://eprint.iacr.org/2011/008.

https://eprint.iacr.org/2020/1261
https://eprint.iacr.org/2020/1057
https://eprint.iacr.org/2020/1057
http://eprint.iacr.org/2011/008

	On the Multi-User Security of Short Schnorr Signatures with Preprocessing

