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Abstract. Messaging platforms like Signal are widely deployed and pro-
vide strong security in an asynchronous setting. It is a challenging prob-
lem to construct a protocol with similar security guarantees that can
efficiently scale to large groups. A major bottleneck are the frequent
key rotations users need to perform to achieve post compromise forward
security.

In current proposals – most notably in TreeKEM (which is part of the
IETF’s Messaging Layer Security (MLS) protocol draft) – for users in a
group of size n to rotate their keys, they must each craft a message of
size log(n) to be broadcast to the group using an (untrusted) delivery
server.

In larger groups, having users sequentially rotate their keys requires too
much bandwidth (or takes too long), so variants allowing any T ≤ n users
to simultaneously rotate their keys in just 2 communication rounds have
been suggested (e.g. “Propose and Commit” by MLS). Unfortunately,
2-round concurrent updates are either damaging or expensive (or both);
i.e. they either result in future operations being more costly (e.g. via
“blanking” or “tainting”) or are costly themselves requiring Ω(T ) com-
munication for each user [Bienstock et al., TCC’20].
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In this paper we propose CoCoA; a new scheme that allows for T concur-
rent updates that are neither damaging nor costly. That is, they add no
cost to future operations yet they only require Ω(log2(n)) communica-
tion per user. To circumvent the [Bienstock et al.] lower bound, CoCoA
increases the number of rounds needed to complete all updates from 2
up to (at most) log(n); though typically fewer rounds are needed.

The key insight of our protocol is the following: in the (non-concurrent
version of) TreeKEM, a delivery server which gets T concurrent update
requests will approve one and reject the remaining T − 1. In contrast,
our server attempts to apply all of them. If more than one user requests
to rotate the same key during a round, the server arbitrarily picks a
winner. Surprisingly, we prove that regardless of how the server chooses
the winners, all previously compromised users will recover after at most
log(n) such update rounds.

To keep the communication complexity low, CoCoA is a server-aided
CGKA. That is, the delivery server no longer blindly forwards packets,
but instead actively computes individualized packets tailored to each
user. As the server is untrusted, this change requires us to develop new
mechanisms ensuring robustness of the protocol.

1 Introduction

End-to-end (E2E) secure cryptographic protocols are rapidly becoming ubiqui-
tous tools in the daily life of billions of people. The most prominent examples
are secure messaging protocols (such as those based on the Double Ratchet)
and E2E encrypted VoIP conference calling protocols. The demands of practical
E2E security are non-trivial; all the more so when the goal is to allow groups
to communicate in a single session. Almost all current (aka. “1st generation”)
E2E protocols for groups are built on top of some underlying black-box 1-on-1
E2E secure protocol [28]. However, this approach seems to unavoidably result in
the complexity of (at least some critical) operations scaling linearly in the group
size n.5 This has resulted in practical limits in the groups sizes for deployed E2E
protocols (to date, often in 10s or low 100s and never more than 1000).

Motivated by this, Cohn-Gordon et al. [16] initiated the study of E2E pro-
tocols whose complexity scales logarithmically in n. Starting with this work,
research in the area has focused on a fundamental class of primitives called
Continuous Group Key Agreement (CGKA).6 Intuitively, CGKA is to, say, E2E
secure messaging what Key Agreement is to Public Key Encryption. That is,
CGKA protocols capture many of the challenges involved in building practical
higher-level E2E secure applications (like messaging) while still providing enough
functionality to make building such applications comparatively easy using known
techniques [4]. Thus they present a very useful subject for research in the area.

5 In fact, this holds true even for the few 1st generation E2E protocols designed from
the ground up with groups in mind [22].

6 Also referred to as Group Ratcheting [11] or Continuous Group Key Distribution [13].
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In a bit more detail, a CGKA protocol allows an evolving set of group mem-
bers to continuously agree on a fresh symmetric key. Every time a new party
joins, or an existing one leaves or refreshes (a.k.a. “updates”) their cryptographic
state, a new epoch begins in the session. Each epoch E is equipped with its own
group key kE which can be derived by all parties that are members of the group
during E. CGKA protocol sessions are expected to last for very long periods of
time (e.g. years). Thus, they must provide a property sometimes referred to as
post compromise forward security (PCFS) [5]. That means that the group key of
a target epoch should look random to an adversary despite having compromised
any number of group members in both earlier and later epochs as long as the
compromised parties either left the group or performed an update between their
compromise and the target epoch. 7 In the spirit of distributed E2E security (and
unlike, say, Broadcast Encryption or Dynamic Group Key Agreement) CGKA
protocols must achieve this without the help of trusted group managers or other
specially designated trusted parties.

With a few exceptions discussed below, most CGKA protocols today [16, 9,
3, 25, 5, 7] were designed with an asynchronous communication setting in mind
(likely motivated by the application of secure asynchronous messaging). That is,
parties may remain offline for extended periods of time, not ever actually being
online at the same time as each other. Once they do come online, though, they
should be able to immediately “catch up” and even initiate a new epoch (e.g.
by unilaterally adding a new member to the group). To facilitate this, protocols
are designed to communicate via an untrusted network which buffers protocol
packets for parties until they come online again.

The Problem Of Coordination. One property the first generation of CGKA pro-
tocols [25, 3, 9, 16] share is that they require all protocol packets to be processed
in exactly the same order by every group member. However, ensuring this level
of coordination can present real challenges in a variety of settings; especially for
large groups (e.g. with 50, 000 members as is targeted by the IETF’s upcoming
E2E secure messaging standard MLS [8]). In particular, it might lead to the
problem sometimes called “starvation” where a client’s packets are constantly
rejected by the group (e.g. when the client is on a slow network connection and
so can never distribute its own packets fast enough).

There do not seem to be any practical solutions to convincingly provide this
level of coordination without significant drawbacks. Implementing the buffering
mechanism via a single server does not automatically address the issue of star-

7 We note that PCFS is strictly stronger than providing the two more commonly
discussed properties of Forward Security (FS) and Post Compromise Security (PCS).
Indeed, a successful attack on an epoch E may require compromises both before and
after E. Such an attack is neither an FS attack nor a PCS attack. Moreover, literature
usually speaks informally of FS and PCS as separate notions asking that they both
hold. Yet the notions do not necessarily compose. For example, the MLS messaging
standard has both strong FS and PCS properties but significantly worse PCFS [3].
Fortunately, all formal security definitions for CGKA we are aware of do in fact
capture (some variation of) PCFS instead of treating FS and PCS separately.
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vation of clients with a slow connection. Nor is a round-robin “speaking slot”
approach a satisfactory solution (even assuming universal time), as it would
severely impact responsiveness; especially for larger groups. It’s also not just re-
sponsiveness that suffers from a reduction of the rate at which parties can send
new packets to the group. The quality of the security of a session (e.g. the speed
with which privacy is recovered after a group member’s local state is leaked)
is also tightly dependent on the rate at which participants can send out pack-
ets. After all, if a compromised party has not even been able to send anything
new to the group since a compromise, they have no way to update the leaked
cryptographic material to something the adversary cannot simply derive itself.

Concurrency At A High Price. To mitigate this problem the MLS messaging pro-
tocol introduced a new syntax referred to as the “propose-and-commit” (P&C)
paradigm. Since then it was adopted by most second generation CGKA proto-
cols [5, 7] as it allows for some degree of concurrency. In particular, group mem-
bers (and even designated external parties) may concurrently propose changes
to the group state e.g. “Alice proposes adding Bob”, “Charlie proposes updating
his keys”, etc. At any point a group member can collect such proposal into a
commit message which is broadcast to the group and actually affects all changes
in the referenced proposals. Note, however, that the commit messages still must
be processed in a globally unique order. Moreover, in each of these protocols
there is a high price being paid for large amounts of concurrency. Namely, the
greater the number of proposals in a single commit message, the less efficient
(e.g. greater packet size) certain future commits will be. In fact, efficiency can
degenerate to the point where (starting from an arbitrary group state) a commit
to Θ(n) proposals can produce a state where the next commit packet is forced
to have size Ω(n); a far cry from the desired O(log(n)).

Lower-Bounds on Communication Complexity. Bienstock et al. [11] showed that
there are limits to what we could hope for in terms of reducing communication
complexity. Specifically, they show that T group members updating concurrently
incurs a communication cost per user in the following round that is linear in T in
any “reasonable” protocol.8 In fact, if all n parties wish to update concurrently
within 2 rounds then this has complexity at least Ω(n2).

1.1 Our Contributions

In this paper (full version in [2]) we propose a new CGKA protocol called CoCoA
(for COncurrent COntinuous group key Agreement) which is designed specifically
to allow for efficient concurrent group operations. In contrast to past CGKA

8 For the lower bound, [11] considered a symbolic model of execution, which only ap-
plies to protocols constructed by using “practical” primitives combined in a “stan-
dard” way. For definitions of what “practical” and “standard” mean in this context
we refer to [11], but we remark, that our protocol and the TreeKEM variants con-
sidered in this work fall into this category.

4



protocols, update operations may require more than 2 rounds (in the worst case
log(n) rounds). However, even when all n users update their keys concurrently
in log(n) rounds, the total communication complexity of any user is only roughly
(log(n))2 (constant size) ciphertexts. This circumvents [11] as their lower-bound
only holds for updates that complete in at most 2 rounds. So, for the price of
more interaction CoCoA can greatly decrease the actual bandwidth consumed.

To emphasize this even more, consider the cost of transitioning from a fully
blanked tree to a fully unblanked one. We believe this to be a particularly in-
teresting case as it captures the transition from any freshly created group into
a bandwidth-optimal one. The faster/cheaper this transition can be completed,
the faster an execution can begin optimal complexity behaviour. TreeKEM [9],
the CGKA scheme used in the MLS messaging protocol, needs n/2 rounds with
receiver complexity, i.e. number of ciphertexts downloaded per user, Ω(n log(n)).
The protocol in [11], in turn, would be able to unblank the whole tree in 2 rounds
with linear sender and recipient communication per user. In contrast, in CoCoA
the tree could be unblanked in 1 round with linear sender cost, but only loga-
rithmic recipient cost. For big groups this difference is very significant.

With such low communication, a user cannot learn all the 2n−1 fresh public-
keys in the distributed group state (usually called “ratchet-tree” or “key-tree”).
Fortunately, for CoCoA, users only need to know the log(n) secret keys and
another 2 log(n) public keys. So in our protocol, users will not have a complete
view of the public state as in previous protocols, but only know the partial state
that is relevant to them. As a consequence, the server no longer acts as a relay but
instead computes packets tailored to the individual receiving user. This comes
with a new challenge that we address in this work: ensuring consistency across
all users is not as straightforward anymore. This is crucial for security, since
users disagreeing e.g. on the set of group members can lead to severe attacks.

Once we take into account operations like adding and removing group mem-
bers, efficiency might degrade (though not to anything worse than past proto-
cols). Nevertheless, in a typical execution we can expect to see far more updates
than adds/removes. In particular, the more updates parties perform the faster
the protocol heals from past compromises so it is generally in users’ interest to
perform updates as regularly as they can. By (greatly) reducing the cost of up-
dates compared to past CGKA protocols, we allow groups to have quantitatively
better security for the same amount of communication complexity spent.

In terms of security, we prove CoCoA secure in an “partially active setting”.
A bit more precisely, the adaptive adversary can (repeatedly) leak parties local
states including any random coins they use and query users to generate protocol
messages. As the sever is untrusted, the adversary is allowed to send arbitrary
(potentially malformed) server messages and deviate from the server specifica-
tion. However, as users sign their protocol messages and the adversary does not
get access to signing keys, it is not able to generate such messages by itself.
While the latter is a strong assumption, it is common for such protocols. We
discuss this in more detail in Section 5. Note that [25] uses the term partially
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active to refer to security against weaker adversaries that have control of the
delivery server, but are not allowed to send arbitrary messages.

Signature Keys. One caveat to the above discussion are signature keys. Apart
from the aforementioned public and secret keys, each group member must know
the signature verification key of each other group member (as these are used to
authenticate packets, amongst other things). In principle, this means that just
distributing n new signature key pairs (as part of n parties updating) already
imposes Ω(n) communication complexity for each group member (regardless of
how many rounds are used or even of concurrency).

However, in practice, there are several mitigating aspects to this problem. As
was observed already during the design of MLS, in some real-world deployments
of CGKAs fresh signature keys may be much harder to come by than simply
locally generating new ephemeral key material. That is because each new signa-
ture key is typically bound to some external identity (like an account name) via
some generic “authenticator” and this binding may be an expensive and slow
process. E.g. a certificate that must be obtained manually from a CA. For this
reason CoCoA (like MLS) explicitly permits lite updates; that is, updates which
refresh all secret key material of the sender except for their signature keys. While
lite updates are clearly not ideal from a security perspective, they do allow for
frequently refreshing the remaining key material without being bogged down by
the cost of certifying fresh signature keys. Moreover, CoCoA (like MLS) derives
authenticity of packets not just from signatures but also by requiring senders to,
effectively, prove knowledge of the previous epoch’s group key. Thus, leaking a
group members’ signing keys does not automatically confer the ability to forge
on their behalf. Indeed, if the victims all perform a lite update, a fresh epoch is
initiated with a secure group key.

1.2 Related Work

The study of CGKA based protocols was initiated by the ART protocol [16],
based on which the first version of MLS [8] was built shortly before transitioning
to TreeKEM [9]. TreeKEM has since been the subject of several security analy-
sis including [3, 4, 13, 10, 17]. More generally, the study of CGKAs has, roughly
speaking, focused on several topics: stronger security definitions, more efficient
constructions, better support for concurrency and new security properties.

Several works have studied CGKA’s supporting varying degrees of concur-
rent operations. Weidner’s Causal TreeKEM [26] explores the idea of updates
re-randomizing key material instead of overwriting it (though it lacks forward
secrecy and a complete security proof). Recently, [30] proposed a decentralized
CGKA protocol; albeit with linear communication complexity. Finally, a paper
by Bienstock et al. [11] studies the trade-off between PCS, concurrency and com-
munication complexity, showing a lower bound for the latter and proposing a
close to optimal protocol in their synchronous model for a fixed group in a weak
security model.
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A similar security model to the one in our paper can be found in [25]. That
work was the first to require security against an adaptive adversary. The se-
curity model of [3] is weak but incomparable to our model. Their adversaries
must deliver all packets in the same order to all parties (though not at the same
time or even at all) and they do not learn the coins of corrupt parties. On the
other hand, the adversary may modify and even inject new packets; albeit only
if honest parties would reject the resulting adversarial packet. A different ap-
proach to security notions was initiated in [4] where the history graph technique
was introduced to describe the semantics of any given CGKA executions. They
also provided the first black-box construction of secure group messaging from
CGKA (and other primitives). [5] presented the first ideal/real CGKA security
notion. Their notion captures security against powerful adaptive and fully ac-
tive adversaries that can corrupt parties at will and even set their random coins.
Finally, building on that work, [7] extend their adversaries to also account for
how corrupt insiders might interact with a (very weak) PKI. The formal notion
was later adapted in [21, 6] to capture essentially the same intuition but for the
server-aided CGKA setting. A third approach to defining adaptive and active
security is taken in [10] who use an “event driven” language to define adaptive
security a CGKA. The notion of server-aided CGKA was first formalized in [6].
However, the earlier work of [18] and the concurrent work of [21] both include
(implicit) server-aided CGKAs as well.

The work of [24] initiated the study of post-quantum primitives for CGKA by
building primitives designed for use in TreeKEM (and similar CGKAs). However,
it turned out that their security notion was lacking (e.g. it seems to not allow
for adaptive security of the resulting CGKA) so in a follow up paper [21] a new
(more secure) PQ primitive is proposed along with a novel server-aided CGKA
(proven secure in the classic model) designed to reduce receiver communication
cost. Cremers et al. compared the PCS properties in the multi-group setting of
MLS to the Signal group protocol [17]. In [1] more efficient CGKA constructions
in the multi-group setting are given. In [5] zero-knowledge proofs are used to
improve the robustness of CGKA protocols. The approach was made a bit more
practical in [18] by, amongst other things, introducing tailor-made ZK proofs.
Very recently, [20] initiated the study of membership privacy for CGKAs.

A closely related family of protocols to CGKA are the older Group Key
Exchange (GKE) protocols which allow a fixed group of users to derive a com-
mon key. These can be traced to early publications like [23, 14]. In contrast to
CGKA, GKE protocols do not target PCS and are designed for the synchronous
setting. Initial GKE results were followed by a long list of works exploring ad-
ditional features; notably, supporting changes to group membership mid-session
(aka. Dynamic GKE) [12, 19]. Another notion very related to CGKA are Logical
Key Hierarchies [29, 31, 15], introduced as a solution to very related primitive of
Multicast Encryption [27]. They allow a changing group of users to maintain a
common key with the help of a trusted group manager.
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2 Preliminaries

2.1 Continuous Group-key Agreement

To begin with, we define the notion of continuous group-key agreement (CGKA).
Parties participating in the execution of a CGKA protocol will maintain a local
state γ, allowing them to keep track of a common ratchet tree, to derive a
shared secret. Parties will be able to add and remove users to the execution, and
to rotate the keys along sections of the tree, thus achieving FS and PCS. Our
definition is similar to that of [25], with the main difference that operations do
not need to be confirmed individually by the server. Instead, the stateful server
works in rounds, collects operations into batches and sends them out at the end
of each round (note that setting the batch size equal to 1 would just return the
definition from [25]). Accordingly, a party issuing an operation will no longer be
able to pre-compute its new state should the operation be confirmed.

Definition 1 (Asynchronous Continuous Group-key Agreement). An
asynchronous continuous group-key agreement (CGKA) scheme is an 8-tuple of
algorithms CGKA = (CGKA.Gen,CGKA.Init,CGKA.Add,CGKA.Rem,CGKA.Upd,
CGKA.Dlv,CGKA.Proc,CGKA.Key) with the following syntax and semantics:

Key Generation: Fresh InitKey pairs ((pk, sk), (ssk, svk)) ← CGKA.Gen(1λ)
consist of a pair of public key encryption keys and a pair of digital signing
keys. They are generated by users prior to joining a group, where λ denotes
the security parameter. Public keys are used to invite parties to join a group.

Initialize a Group: Let G = (ID1, . . . , IDn). For i ∈ [2, n] let pki be an InitKey
PK of party IDi. Party ID1 creates a new group with membership G by run-
ning:

(γ, [W2, . . . ,Wn])← CGKA.Init (G, [pk1, . . . , pkn] , [svk1, . . . , svkn] , sk1)

and sending welcome message Wi for party IDi to the server. Finally, ID1

stores its local state γ for later use.
Adding a Member: A group member with local state γ can add party ID to

the group by running (γ,W, T )← CGKA.Add(γ, ID, pk, svk) and sending wel-
come message W for party ID and the add message T for all group members
(including ID) to the server.

Removing a Member: A group member with local state γ can remove group
member ID by running (γ, T ) ← CGKA.Rem(γ, ID) and sending the remove
message T for all group members (ID) to the server.

Update: A group member with local state γ can perform an update by running
(γ, T )← CGKA.Upd(γ) and sending the update message T to the server.

Collect and Deliver: The delivery server, upon receiving a set of CGKA
protocol messages T = (T1, . . . , Tk) (including welcome messages) gener-
ated by a set of parties, sends out a round message (γser, (M1, . . . ,Mn)) =
CGKA.Dlv(γser, T ), where Mi is the message for user i and γser is the server’s
internal state. Each Mi contains a counter ci indicating whether Mi includes
an update message generated by user i, and which one of the potentially sev-
eral they might have generated.

8



Process: Upon receiving an incoming CGKA message Mi, a party immediately
processes it by running γ ← CGKA.Proc(γ,Mi).

Get Group Key: At any point a party can extract the current group key K
from its local state γ by running K ← CGKA.Key(γ).

2.2 Ratchet Trees

Our protocol builds on TreeKEM, and thus uses the same underlying structure
of a ratchet tree for deriving shared secrets among the group members. A ratchet
tree is a directed binary tree T = (VT, ET), with edges pointing towards the root
node vroot

9 and each user in the group associated to a leaf. We will use the
notation Ti = (V i

T, E
i
T) to refer to the ratchet tree associated to round i.

Tree structure. Given a node v, we will denote its child by child(v), its left and
right parents respectively as lparent(v), rparent(v), and will write parents(v) =
(lparent(v), rparent(v)). Given a leaf node, we denote its path to the root as
path(v) = (v0 = v, v1, . . . , vk = vroot), where vi = child(vi−1). Similarly, we
denote its co-path as co-path(v) = (v′1, . . . , v

′
k), where v′i is the parent of vi not

in path(v). We will often just refer to such a (co-)path as v’s (co-)path. For a user
ID we will denote its associated leaf node by leaf(ID), and accordingly sometimes
refer to leaf(ID)’s (co-)path as just ID’s (co-)path or (co-path(ID)) path(ID).
Given two leaves l, l′, let Int(l, l′) be their least common descendant, i.e. the
first node where their paths intersect. For a node v ∈ T, we set v.isLeaf := true
if v is a leaf of T, and v.isLeaf := false otherwise.

Node states. Each node v has an associated node state γ(v). Sometimes during
the protocol execution, nodes can be marked as blank, meaning that their state
is empty. Blank nodes become unblanked if their state is repopulated at a later
point in time.

The non-blank node state contains: a PKE key-pair (γ(v).sk, γ(v).pk), some-
times written as (skv, pkv) for simplicity; a vector of public keys PKpr called
the predecessor keys which correspond to the public keys of the nodes in the
resolution of v (defined below) in the round right before the current key pkv
was first introduced, see Section 3.4; a pair of hash values hv called the parent
hash of v; an identifier corresponding to the party IDv generating the node’s key
pair; a signature σv under the private signing key of IDv; a transcript hash value,
Htrans, committing to the state of IDv at the time of sampling that node’s key
pair (defined below in Section 3.3); a confirmation tag value confTag (defined
below in Section 3.4); an optional pair of hash values ov = (ov,1, ov,2) corre-
sponding to partial openings of a Merkle commitment sent by the server and
encoding the state of the parent nodes of v; and a set of of so called unmerged
leaves γ(v).Unmerged, or simply Unmerged(v), corresponding to the leaves (and

9 The non standard direction of the edges here captures that knowledge of (the secret
key associated to) the source node implies knowledge of (the secret key associated
to) the sink node. Note that nodes therefore have one child and two parents.
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their associated public keys) of the subtree rooted at v whose users have no
knowledge of skv (this will be the case, temporarily, for newly added users). In
a slight abuse of notation, given a set of nodes S, we define its set of unmerged
nodes to be Unmerged(S) = ∪v∈SUnmerged(v). Finally, the state of leaves l ad-
ditionally contains a signing and verification key-pair (sskl, svkl) corresponding
to the user IDl associated to that leaf. For an internal node v, we will write sskv
to refer to the secret signing key of party IDv.

The secret part of γ(v) consists of skv, and sskv in case v is a leaf. In turn,
the public part, pγ(v), of γ(v) consists of γ(v) minus the secret part. While the
public part of nodes’ states can be accessed by all users, users should only have
partial knowledge of the secret parts. Indeed, the protocol ensures that the secret
part of γ(v) is known only by users whose leaf is in the sub-tree rooted at v; this
is known as the tree invariant.

Looking ahead, parties might end up (through a misbehaving delivery server)
having different views on the state of a given node, and so we will refer to the
view of party IDi of v at round n as γn

i (v).

Resolution and effective parents. The set of blank and non-blank nodes in a
ratchet tree gives rise to the resolution of a node v. Intuitively, it is the minimal
set S of non-blank nodes such that for each ancestor v′ of v the set S contains
at least one node on the path from v′ to v. Formally, it is defined as follows.

Definition 2. Let T be a tree with vertex set VT. The resolution Res(v) ⊂ VT

of v ∈ VT is defined as follows:

– If v is not blank, then Res(v) = {v}.
– If v is a blank leaf, then Res(v) = ∅.
– Otherwise, Res(v) = ∪v′∈parents(v)Res(v

′)

In a slight abuse of notation, given a set of nodes V , we define the resolution of
V to be Res(V ) =

⋃
v∈V Res(v).

Re-keying. Users will often need to sample new keys along their leaves’ paths.
This is done following the MLS specification, through the hierarchical derivation
captured in the algorithm Re-key(v) (Algorithm 1). Given a leaf v, it outputs
a list of seeds and key-pairs for nodes along v’s path. We use ∆root or the
expression root seed to refer to the seed associated to vroot. The algorithm will
use two independent hash functions H1 and H2. These can be easily defined
by taking a hash function H, fixing two different tags x1 and x2 and defining
Hi(·) = H(·, xi).

3 The CoCoA Protocol

We start with a high level description of the CoCoA protocol in Section 3.1, but
refer the reader to the full version [2] for a more in detail introductory discussion.
Section 3.2 covers users’ states and the key schedule, Section 3.3 robustness and
the round hash, Section 3.4 the parent hash mechanism (again, more complete
in [2]), and Section 3.5 formally defines the protocol procedures.
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Algorithm 1: Re-key computes new seeds and keys along a path.

Input: A leaf node v in a tree T of depth d.
Output: A vector of hierarchically derived seeds, and another vector of

corresponding keys for all nodes in v’s path to the root.

1 ∆1
$← S(λ) // λ security parameter; S(λ) seed space

2 (sk1, pk1)← PKE.Gen(H2(∆1))
3 for i← 2 to d do
4 ∆i = H1(∆i−1)
5 (ski, pki)← PKE.Gen(H2(∆i))

6 ∆← (∆1, . . . ,∆d)
7 K← ((sk1, pk1), . . . , (skd, pkd))
8 return (∆,K)

3.1 Overview

Concurrent updates in CGKA. To recover from compromise, CGKA protocols
allow users to refresh the secret key material known to them. Broadly, a user
does this by re-sampling all keys they know (those on the user’s path in the case
of a ratchet tree), encoding them in an update message, and sending this to the
server, which broadcasts it to the other group members. However, it is unclear
how to handle concurrent update attempts by several users.

As a first approach, it seems natural to simply reject all but one update.
Using a fixed rule to determine whose update to implement, however, might lead
to starvation, with users blocked from updating and thus not recovering from
compromise (compare Fig. 1, column (a)). Even if parties that did not update for
the longest time are prioritized, it may take a linear number of update attempts
to fully recover security of the ratchet tree (compare Fig. 1, column (b)).

To amend this issue the MLS protocol introduced the “propose and commit”
paradigm. Roughly, update proposals refresh a user’s leaf key and signal the
intent to perform an update. A commit then allows a user to implement several
concurrent update proposals. While this allows the ratchet tree to fully recover
within two rounds, this comes at the cost of destroying the binary structure of
the tree, as, in order to preserve the tree invariant, nodes not on the path of the
committing party are blanked. In the worst case, this can lead to future updates
having a size linear in the number of parties (compare Fig. 1, column (c)).

The approach we take with the CoCoA protocol is to implement all up-
dates simultaneously, albeit some of them only partially. Intuitively, while the
ratchet tree might not fully recover immediately, every updating party still makes
progress towards recovery; and after logarithmically many updates of every com-
promised user, security is restored (compare Fig. 1, column (d)).

Updates in the CoCoA protocol. The main idea in the CoCoA protocol is, given
several concurrent update messages, to apply all of them simultaneously, while
resolving conflicts by means of an ordering of the operations. As a consequence,
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(a) ND TreeKEM v7

Update 1

Update 2

Update 3

Update 4

...

Update 7

Update 8

(b) ID TreeKEM v7

Update 1

Update 2

Update 3

Update 4

...

Update 7

Update 8

(c) TreeKEM v11 (P&C)

Propose

Commit

(d) CoCoA

Update 1

Update 2

Update 3

Update 4

Fig. 1. Comparison of number of rounds required to recover from corruption for differ-
ent TreeKEM variants, ND stands for ”Näıve Delivery”, ID for ”Ideal Delivery”. Red
nodes indicate key material known to the adversary. In each round all parties (try to)
update. In columns (a) and (d) update requests are prioritized from left to right. In
column (b) update requests are prioritized from left to right among all parties that did
not update yet. In column (c) all parties propose an update, then the leftmost party
commits.

some updates might only be applied partially. More precisely, the protocol pa-
rameters contain an ordering ≺. This could be, e.g. the lexicographic ordering,
however, the particular choice does not affect our security results. Then, given
a set of update messages {U1, . . . , Uk}, if a node in the ratchet tree would be
affected by several Ui, the one that is minimal with respect to ≺ takes prece-
dence and replaces its key pair. Consider the example of Fig. 2, in which the
users A,C,G in a group of size 8 concurrently update, with C’s update taking
precedence over the other two. Note that since the updates are concurrent, new
keys get encrypted to keys of the previous round. Assume, e.g., that C and G
were compromised. Then, after the updates, all compromised keys are replaced.
However, only the first three keys in C’s and G’s update paths are secure, while
the new ∆root was encrypted to an old, compromised key and hence is known to
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A B C D E F G H

Fig. 2. Example; concurrent updates in the CoCoA protocol. The former state of the
ratchet tree (black) is changed by concurrent updates of A (blue), C (green), and
G (red). The ordering is UC ≺ UA ≺ UG. In the updates solid edges correspond to
seeds obtained by hashing, dashed edges to encryptions.

γ.ID An identifier for the party.
γ.G The set of current members of the group.
γ.ssk The party’s signing key
γ(v) Node state for every v ∈ P(γ.ID), only public part for v ∈ Res(co-path(γ.ID)).
γ.Htrans Current value of the transcript hash.
γ.appSecret Current round’s application secret.
γ.confKey Current round’s confirmation key.
γ.initSec Current round’s initialization secret.
γ′ Pending state encoding operations not yet confirmed.

Table 1. User’s local state γ.

the adversary. So, while the ratchet tree did not fully recover, it made progress
towards it. In Section 5 we discuss the security of CoCoA in more detail.

3.2 Users’ states and the Key Schedule

Each user keeps track solely of the state of nodes on either their path or the
resolution of their co-path; we define P(ID) = path(ID) ∪ Res(co-path(ID)) to be
the set comprising exactly those nodes. More in detail, each user stores a local
state γ, described in Table 1, which gets updated after every round message. We
will write γn to refer to a state corresponding to round n.

Key schedule. CoCoA’s key schedule for round n is defined via hash function H5

as follows:

γ.epochSecret(n) = H5(γ.initSec(n− 1) ||∆root(n) || Htrans(n))

γ.appSecret(n) = H5(γ.epochSecret(n) || ’appsecret’ )
γ.confKey(n) = H5(γ.epochSecret(n) || ’confirm’ )

γ.initSec(n) = H5(γ.epochSecret(n) || ’init’ )

The epoch secret γ.epochSecret(n) is used to derive all other keys from it; the
application secret γ.appSecret(n) serves as the group key in epoch n and is to
be used in higher level protocols, e.g. secure group messaging; the confirmation
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key γ.confKey(n) will be used to authenticate next epoch’s protocol messages
through a MAC termed the confirmation tag;10 and the initialization secret
γ.initSec(n) seeds next round’s key schedule, tying it to the current one. Finally,
the transcript hash Htrans(n) encodes the transcript of the execution up until
round n - it is defined in the following section.

3.3 Robustness, Round Hash, and Transcript Hash

In this section we discuss CoCoA’s robustness. We show that two parties accept-
ing messages containing the same round hash value, will transition into consistent
states. We start by defining the concept of a round hash and consistent states.

In the following we assume a fixed rule, that can be locally computed by
the users on input a ratchet tree T and a set of operations that determines a
total ordering of said operations. This ordering ensures all users will compute
the same round hash and also, when applied to adds Ai, determines the free leaf
that the user added by Ai is assigned to.

Definition 3. Let H3 be a hash function, and n a round with associated protocol
messages T = (U,R,A) = ((U1, . . . , Uk), (R1, . . . , Rl), (A1, . . . , Am)), where the
Ui correspond to Update messages; and the Ri and Ai correspond to the packets,
as sent by their issuers, of any remove and add operation, respectively; and let
each vector U,R,A be ordered with respect to the ordering ≺. Let Tn be the
ratchet tree resulting from applying the operations in T with respect to ≺ to
Tn−1, and pγ(v) the public state of v in Tn (note that pγ(v) = blank if the node
is to be blanked as a result of some removal in R). We define the map ℓ taking
nodes in Tn to labels as follows:

ℓ(v) =

{
H3(

pγ(v)), if v is a leaf.

H3(ℓ(lparent(v)), ℓ(rparent(v)),
pγ(v)), if v is an internal node.

The round hash Hround(n) of n is defined to be Hround(n) = H3 (ℓ(vroot), R,A).

In short, the round hash is essentially a Merkle commitment to the ratchet tree’s
public keys and the round’s dynamic operations. The benefit of this approach
is that every user can verify that the round hash sent by the server faithfully
encodes the operations affecting their local state, by just receiving at most a
logarithmic number of values irrespective of the number of updates (note that a
user will necessarily need to hear about all dynamic operations). In particular,
a user ID receiving the appropriate group operations should have access to the
inputs corresponding to dynamic operations, and to the new keys of nodes in
P(ID). The server does this by sending the user Hround(n), as well as the output
of openRH, which, on input a user ID, returns a vector of hash values, corre-
sponding to the labels of nodes not in P(ID), but that are parents of a node in

10 This MAC, also present in TreeKEM, is there to mitigate active attacks. The latter
are not reflected in our security model, but we chose to keep it, as it is the main
security mechanism in response to a leaking of signature keys.
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P(ID). Given these values, the user is able to verify the received round message
by running verifyRH, which recomputes Hround(n) with respect to their updated
ratchet tree and compares it to the round hash provided by the server. For a
formal description of both algorithms we refer to the full version of this work [2].

The transcript hash is defined as Htrans(0) = 0, and, for subsequent rounds,
given a verified round hash:

Htrans(n) = H3(Htrans(n− 1)||Hround(n)) .

With this we can define what it means for parties to have consistent states,
which informally requires them to have consistent views of the tree (i.e. agree on
the states of nodes on the intersection of their states), and agree on the group
key, group members, and group history, i.e. on the transcript hash.

Definition 4. Let ID and ID∗ be two group members with states γ and γ∗. They
have consistent states if pγ(v) = pγ∗(v) for all v ∈ P(ID)∩P(ID∗), γ.appSecret =
γ∗.appSecret, and (γ.G, γ.Htrans) = (γ∗.G, γ∗.Htrans).

Note that we only define consistency of states for users who have joined the
group. More in detail, we say that a user ID has (in their view) joined the group
if there exists a query CGKA.Proc(ID, ·) in the execution, where ID accepts the
corresponding round message, i.e. where the state for ID changes (is initialized)
as a result of said query.

3.4 Parent Hash

Ratchet trees in TreeKEM contain so-called parent hashes, which were intro-
duced to the standard in TreeKEM v9, and analyzed and improved by Alwen
et al. [7]. These ensure, on the one hand, that for every node v ∈ T, whoever
sampled skv had knowledge of the secret signing key for some leaf l of the subtree
rooted at v; and on the other, that at the moment this secret was generated it
was not communicated to any user whose leaf is not in this subtree. This pro-
tects against active attacks where a user is added to a malformed group where
the tree invariant is violated, potentially causing him to communicate to a set
of users different to the one he believes to be communicating to.

To adapt parent hash to CoCoA we have to overcome the two issues that (a),
since parties update concurrently, parent hash values can be defined with respect
to keys on the copath that were overwritten by a concurrent update, and (b),
since the resolution of a user’s copath and in turn the corresponding public keys
that are known to the user may change from round to round, the user needs to
be able to verify the authenticity of such keys without having access to the state
of leaves below it. We address the first issue by having users store the public
keys of one previous round: each node state γ(v) now contains an associated list
of predecessor keys, PKpr, containing the public keys corresponding to nodes
in the resolution of v in the epoch when the current key was sampled, and
excluding those that where unmerged at child(v);11 i.e. if the Update sampling

11 The exclusion of these unmerged leaves responds to the fact that these could corre-
spond to parties added after the state for child(v) was last updated.
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pkv unblanked v, the predecessor keys will be a list, else it will just contain the
previous public key. The second issue we solve by not only signing the parent
hash value of users’ leaves but by introducing a signature at every node in their
update path (that which is sent with the packet containing the new public key
when it is first announced). Last, to ensure consistency between users’ views,
we add two further values to the parent hash and node state: a commitment
to the subtree under the node’s sibling and a commitment to the whole ratchet
tree. We now define more formally the slightly modified parent-hash algorithm,
compatible with our construction, with respect to signature scheme Sig.

As in TreeKEM, parent hash values of a node are updated whenever the
key corresponding to the node is updated. More in detail, let ID compute an
Update U containing new keys for nodes along their path (see full definition
in Section 3.5), which get stored in pending state γ′. Parent hashing algo-
rithm PHash.Sig on input (ID, γ′) first fetches ID’s update path path(vID) =
(v0 = vID, v1, . . . , vk = vroot). For i ∈ {0, . . . , k − 1} let v′i denote the parent of
vi+1 that is not part of path(vID), and let R = Res(v′i) \ Unmerged(vi+1). Then,
we define h1,k = h2,k = 0 , and using hash function H4, compute:

h1,i ← ℓ(v′i) for i ∈ (k − 1, . . . , 0)

h2,i ← H4(pkvi+1
,PKpr

vi+1
, h2,i+1, {pkv}v∈R) for i ∈ (k − 1, . . . , 0)

σi ← Sig.Sig (γ(ID).ssk,m) for i ∈ (0, . . . , k)

where ℓ(v) is the label of v as in Def. 3 above, PKpr
v ← 0 if v did not have a

key before U , hi = (h1,i, h2,i), and m = (pkvi ,PK
pr
vi , (h1,i, h2,i),Htrans, confTag)

Algorithm PHash.Sig then adds the values (H,Σ) = (h0, . . . , hk, σ0, . . . , σk)
to U , substitutes the parent hash values hi and signatures σi in γ′ by the newly
computed ones, and returns U .

Verification. A user receiving a tree T from the server can verify its authenticity
by running the algorithm PHash.Ver(T ). This will be run by users in two different
scenarios: on the one hand, when joining the group, they will verify the whole
ratchet tree (in this case T = T); on the other, when processing a round message
containing one or more Removes, they will verify the received keys for nodes in
the new resolution of their co-path (in this case T is the union of P(IDi) for all
removed IDi). The algorithm runs as follows:

The algorithm first checks that all non-blank nodes in the tree have a com-
plete public state, and that for any internal node v, the associated identifier IDv

is associated to one of the leaves of the sub-tree rooted at v.12 If any of these
checks does not pass, the algorithm aborts. Next, it checks that h2,vroot , and
then, verifies the following conditions hold:

1. For any non-blank non-leaf node v in T the following equalities hold with ei-
ther p and p′ being the left and right parents of v or, if not, with p′ being the

12 A user who is already part of the group will have knowledge of the leaf index of each
group member, and can check this without necessarily having a full view of the tree.
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left parent of v and p the right parent, setting p← lparent(p) if p is blank, un-
til p is either non-blank or an empty leaf, in which case 0← PHash.Ver(T ).13

(a) h2,p = H4(pkv,PK
pr
v , h2,v, {pkw}w∈R) and h1,p = ℓ(p′) or

(b) h2,p = H4(pkv,PK
pr
v , h2,v,PK

pr
p′ ) and Htrans,p = Htrans,p′ .

where R = Res(p′) \ Unmerged(v).
2. Sig.Versvkw((pkw,PK

pr
w , hw,Htrans,w, confTagw), σw) = 1 for all w ∈ T .

3.5 The Protocol: CoCoA and Partial Updates

In the description below, we use γ for the state of the party issuing the appro-
priate operation. The ordering used to resolve conflicts caused by concurrent
updates is denoted by ≺.

Initialization. To initialize a group with parties G = {ID1, . . . , IDn}, ID1 cre-
ates a ratchet tree as follows. First, ID1 retrieves the public initialization keys
(pk, svk) = ({pkID1

, . . . , pkIDn
}, {svkID1

, . . . , svkIDn
}) of all group members (in-

cluding themselves), redefines G ← (G, pk, svk) to include these, and initial-
izes a left-balanced binary tree with n leaves, assigning each pair of keys in
(pk,svk) to a leaf. Let v be ID1’s leaf. They then sample new secrets for v’s
path (∆,K)← Re-key(v), store the new keypairs (skj , pkj) in the corresponding
nodes on the created tree and compute and store in γ′ the parent hashes and
signatures for the nodes in path(v): (H,Σ) ← PHash.Sig(ID1, γ

′), where recall
that each σj ∈ Σ is a signature of (pkj , 0, hj ,Htrans, 0) for some vj ∈ path(v)
with hj ∈ H its corresponding new parent hash pair (here PKpr

v and confTag are
set to 0 initially). For every vj ∈ path(v) \ v, let wj be the parent of vj not in
path(v). Then, for each yj,l ∈ Res(wj), ID1 computes ej,l = PKE.Enc(pkyj,l

, ∆j),
together with the signature σs

j,l = Sig.Sigsski(ej,l). Next, they send out the initial-
ization message I = (′init′, ID1, G,pk, P, S); where P is the vector with entries
pj = (pkj , hj ,Htrans, σj), one per node in path(ID1); and S is the vector with
entries sj,l = (ej,l, σ

s
j,l), containing all the necessary encryptions and values to

be authenticated, for each vj ∈ path(v). Finally, ID1 erases the seeds ∆i, and
sets all internal nodes outside their path in their local tree copy to be blank.

Update. To issue an update, user IDi with state γ and at leaf v, first computes
new secrets along their path (∆,K)← Re-key(v), stores the new keys in γ′ and
computes and stores the parent hashes and signatures for the nodes in path(v):
(H,Σ) ← PHash.Sig(IDi, γ

′). Second, they set confTag = MAC.Tag(γ.confKey,
γ.Htrans). For every vj ∈ path(v)\v, let wj be the parent of vj not in path(v) and
let Lj = Res(wj)∪Unmerged(Res(wj)) be the set of nodes that are either in the
resolution of wj or are leaves that are unmerged at some node in said resolution.
Then, for each yj,l ∈ Lj , IDi computes ej,l = PKE.Enc(pkyj,l

, ∆j), together with

13 The recursion in the second case is needed to account for the possible blank nodes
introduced between p and v as a result of adding to new leaves to accomodate new
parties, so that p and p′ correspond to the parents of v at the time the state of v
was created.
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the signature σs
j,l = Sig.Sigsski(ej,l, confTag). Next, they send out the update

message U = (IDi, P, S, ci); where P is a vector of entries pj = (pkj , hj ,Htrans,
confTag, σj , ) containing the new public states and necessary authentication val-
ues for each vj ∈ path(v);14 S is the vector with entries sj,l = (ej,l, confTag, σ

s
j,l),

containing all the necessary encryptions and values to be authenticated, for each
vj ∈ path(v); and a counter ci, the number of updates (including this one) sent
by IDi since they last processed a round message. Last, they erase the seeds ∆.

Remove. To remove party IDj , IDi sends out a remove(IDj) plaintext request
together with confTag = MAC.Tag(γ.confKey, γ.Htrans), and a signature σ under
their signing key of the remove message and the confirmation tag. This will have
the effect of blanking the nodes in IDj ’s path. Following a removal, an Update
operation must be issued immediately so that a new group key is created.

Add. Additions of parties work in two rounds. To add party IDj , IDi first sends
a plaintext add request add(IDj , pk, svk) containing IDj ’s public init key pair
(pk, svk), confTag = MAC.Tag(γ.confKey, γ.Htrans) and a signature under IDi’s
signing key of the add request and the confirmation tag. This will allow all group
members to learn the identity of the new party and therefore to encrypt future
protocol messages to them. In the following round, IDi

15 must send IDj a signed
welcome message W = (Hround, γ.Htrans, γ.G, γ.confKey, γ.initSec), encrypted
under pk, allowing them to initialize their state and key schedule, as well as
checking the correctness of the tree sent by the server. Moreover, some user
must send an Update during that round, thus creating a new application secret.

Collect and Deliver. Whenever the server receives an initialization message I, it
just forwards it to all the new group members, initializing its local state γser with
the members of the new group and the public information of the ratchet tree
included in I. For all other messages, it does as follows: given concurrent group
messages T = (U,R,A,W ) = (Ua, Rb, Ac,Wd : a ∈ [p], b ∈ [q], c ∈ [r], d ∈ [s])
sent during a round, corresponding to Updates, Removes, Adds, and Welcome
messages, respectively, the delivery server will first check if any two or more up-
dates come from the same user, deleting all of them except for the one received
last. The server first updates its local copy of the public state of T, stored in
γser, by updating the public keys of nodes refreshed by any Ua, blanking any
nodes affected by any Rb, and adding a public key and identifier to any leaf
newly populated as a result of an Ac; here if two or more operations affect a
given node, the operation that is minimal with respect to ≺ will be the one
determining the state of the node. A few considerations must be observed here,
which we discuss further below: first, all Removes must precede any Updates,

14 note that, as in an initialization message, the signature included in each of the pj
does not exactly cover the rest of the elements of pj , but also includes the predecesor
key PKpr at that node. This is not a problem for verification, as this is set to 0 for
new groups, and in any other cases, parties will have access to the key at that node
before they processed said update.

15 an alternative specification could allow any group member online to do this instead
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so that a node is blanked whenever a leaf under it is removed, irrespective of
which Updates take place; second, conflicting Removes take effect simultane-
ously, blanking nodes in both paths; third, new users are added on the left-most
free leaves in the tree according to some fixed rule that the receiving parties can
reproduce locally. Once the server’s view T is updated, it computes the labels
for it, defining Tℓ, and the round hash Hround, as prescribed in Definition 3; and
computes opening vectors Oi ← openRH(IDi,Tℓ) for all group members IDi ∈ G
(note that these will be computed with respect to the set P(IDi) resulting from
(un)blanking nodes as implied by T ). Then, it crafts round messages Mi for
each user, containing the following information: first, the vectors R and A or
Removes and Adds; second the vector Oi and the round hash Hround; third, the
public states γ(v) = (pkv,PK

pr
v , hv, IDv, σv,Htrans,v, confTagv, ov,Unmerged(v))

at the beginning of the round of the nodes v ∈ Ni = (∪j∈Rid
P(IDj)) \ P(IDi)

where Rid is the set of indices of parties removed by R, i.e., the new nodes on
the resolution of IDi’s and the extra states needed to verify the validity of the
received keys16; and fourth, for each node v ∈ P(IDi) (after the (un)blanking
implied by T ) whose keys get rotated as a result of some (winning w.r.t. ≺)
update Ua = (ID, P, S), the server adds uv = (ID, pj) to Mi, where pj ∈ P is the
public state of corresponding to v; if, besides, v ∈ path(IDi) and is the lowest
node in path(IDi) updated by Ua, the server also includes the tuple sj,l ∈ S into
uv, corresponding to the encryption of v’s seed to the node in path(IDi) which
is in the resolution of the co-path of Ua’s author. Last, the server also includes
a counter ci, equal to that of IDi’s update included in Mi if there is one, and 0
otherwise. Finally, for each newly-added IDi, the round message Mi additionally
contains the corresponding W, as well as a copy of the public state of T.

Process. Upon receipt of a round message M containing associated Updates
U = (U1, . . . , Up), Removes R = (R1, . . . , Rq), Adds A = (A1, . . . , Ar), openings
vector O, public states for nodes in N , round hash Hround, and counter c, user
ID processes it as follows. First, if c ̸= 0, they check if, from the time they last
processed a round message, they issued an update with counter c, aborting if
not. Next, they check that MAC.Ver(γ.confKey, confTag) = 1 for every update,
remove and add; that for the all update packets Ua the transcript hash value
included with the new public values for a node is the same as γ.Htrans; and that
the associated signature verifies under the public key of the sender (using the
current node key in place of PKpr to verify signatures of updates); and similarly
abort if any of these verifications does not pass. 17 If these checks pass, they copy

16 note that the leaves of the sub-tree of T with vertex set Ni correspond to the new
nodes in the resolution of ID that were not part of their state

17 Observe that this could allow an active adversary to continuously send inconsistent
messages, preventing users from updating. Since this falls outside of our model,
we do not consider it here for simplicity, but note that it could be prevented by
having users process all operations that do verify and compute an updated round
hash, hashing together the received value and the operations that failed verification,
inputting this into the transcript hash instead. This would ensure that parties agree
on the transcript hash if and only if they processed exactly the same operations.
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their local state γ corresponding to the current round to γ′, incorporating into it
any node states previously stored there as part of the generation of said update
with counter c (this update is empty if c = 0). Then, they update the public
state of nodes needed to verify the round hash, as prescribed by the received
operations: first, for every v ∈ P(ID), they blank v if it is in the path affected
by some Ri and update P(ID) to include its new resolution as follows: they
check that the set of nodes N consists of the nodes outside P(ID) that are in
the paths and resolutions of co-paths of removed users. If more than one user
is removed, it could be that N consists of several disconnected subtrees of T.
For each such subtree T , ID checks that its leaves are all non-blank; that all the
leaves (w.r.t to T) of removed parties as described in R are included in it; and,
finally, that PHash.Ver(γ, T ) = 1. Moreover, for each blanked node w (as a result
of M), they will use the received openings for the leaves of T , together with the
received states, to reconstruct the Merkle hash openings ov associated to v and
check that the stored values match these. If all the checks pass, ID incorporates
in γ′ the public states of the nodes in N that belong to the new nodes in P(ID),
together with the received openings for each such node, and aborts otherwise.
Next, if any v in the new P(ID) set is affected by an update Ua, they overwrite
its public key, parent hash value, signature, identifier, transcript hash value, and
confirmation tag to the one set by Ua, and update the unmerged leaves and
predecessor keys appropriate; and else, if corresponding to a newly populated
leaf, determine the corresponding added party from (U,R,A) and add the new
public key and identifier ID∗ to the leaf. If several nodes in their state are affected
by updates, they also check that for every such node in their path, the update
setting a new state for it is the same setting a state for one of its parents. Once
the updating of the public state of T is done, they run verifyRH(γ′,M), aborting
if the output is 0. Once those verifications are passed, for all nodes affected by
some Ui, they decrypt the appropriate seed, derive the new key-pairs from it
as in algorithm Re-key, check that the received public key matches the derived
one, aborting if not, and otherwise, overwrite the public and secret keys with
them; set Unmerged(v)← ∅, and then Unmerged(v)← Unmerged(v)∪ li for each
leaf li that is an ancestor of v corresponding to an added party. After that, they
update γ.G to account for membership changes as per R and A. Finally, they
compute the key schedule for the current round, set γ ← γ′, deleting both the
old key schedule and the old key material from node states, and delete γ′ ← ∅.

If the user is not yet part of the group,M will also contain a welcome message
W = (Hround,Htrans, G, confKey, initSec) together with a copy of the public
state of the ratchet tree T, allowing the user to initialize their state prior to
executing the instructions above. The newly added user IDi will first check that
G matches the leaf identifiers in T, compute the round hash from T, R and
A as in Def. 3, and check that it matches the received value Hround (and skip
this step when later processing the rest of the round message). If any of these
checks fails, the user immediately aborts. Next, they will initialize their state γ
by setting γ.ID ← IDi, γ.Htrans ← Htrans, γ.G ← G, γ.confKey ← confKey,
and γ.initSec← initSec. Finally, they set the state γ(l) of the leaf l to contain
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Protocol type Rounds to heal Cumulative sender Per-user recipient Subsequent per-user
t corruptions communication communication update cost

no coordination coordination worst average

(a) corrupted parties unknown

Original TreeKEM & variants [3, 8, 25, 26] n n2 log(n) n log(n) n log(n) log(n) log(n)
Propose-commit TreeKEM [8] 2 n2 n n n n

Bienstock et al. [11] 2 n2 n n† log(n)† log(n)
Bidirectional channels [30] 2 n2 n2 n n n
This work ⌈log(n)⌉+ 1 n log2(n) n log2(n) log2(n) log(n) log(n)

(b) corrupted parties known

Original TreeKEM & variants [3, 8, 25, 26] t t2 log(n) t log(n) t log(n) log(n) log(n)

Propose-commit TreeKEM [8] 2 t2(1 + log(n/t)) t(1 + log(n/t)) t(1 + log(n/t)) t(1 + log(n/t)) t2+(n−t) log(n)
n

Bienstock et al. [11] 2 t2(1 + log(n/t)) t(1 + log(n/t)) t(1 + log(n/t))† log(n)† log(n)
Bidirectional channels [30] 2 tn tn t n n
This work ⌈log(n)⌉+ 1 t log2(n) t log2(n) log(n) ·min(t, log(n)) log(n) log(n)

Table 2. Comparison of the communication complexity of different CGKA protocols.
For a detailed discussion of the table see Section 4. The values x depicted in the last 5
columns are to be understood as O(x). We assume that the ratchet-tree based protocols
start with a fully unblanked tree. †: In the uncoordinated case, the protocol’s recipient
communication is n2 (case (a)) and t2(1 + log(n/t)) (case (b)), respectively. Regarding
the subsequent update cost, while the protocol formally has a worst case subsequent
update cost of log(n), it is only secure in a weak security model. Modifying it to obtain
PCS guarantees similar to the other protocols, e.g. by tainting [25], would lead to future
worst-case update cost of n (case (a)) and t(1 + log(n/t)) (case (b)), respectively.

the init key with which they were added - note that they will not have at this
point knowledge of the secret keys of any other node, but they will obtain some
as soon as they process any Ua. When doing so, note that for the verification
of the signature they will need to make use of the keys in T. Last, to process
an initialization message I = (′init′, ˜ID, G, P, S), ID verifies the parent hash for
the node public states in P , using PKpr

v = 0 for all nodes v ∈ pathĨD, derives the

keys for ˜ID’s path from S, and creates a ratchet tree with users in G as leaves
and the obtained keys. Last, they initialize the key schedule, with initial value
0 for γ.initSec and Htrans, storing all in the newly created state γ.

Get group key. A user with local state γ fetches K = γ.appSecret.

4 Efficiency

In this section we discuss the communication complexity of our protocol and
compare it with other CGKA schemes. We focus on the cost incurred by several
users updating concurrently to recover from compromise, as this is the main
setting we aim to tackle with this work. An overview is given in Table 2.

Considered setting. Not only does the sequence of operations preceding concur-
rent update operations (in the case of ratchet-tree based CGKA schemes) have
a crucial impact on the resulting communication cost, but also, whether the
participating parties know which of the other parties have been compromised
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and when they are planning to update. Among the different settings one could
compare, we restrict our view to the following, quite natural in our opinion.

We consider a group of n users, t of which have been compromised. For
ratchet-tree-based protocols we assume that the tree is fully unblanked / un-
tainted, as this should typically be the case, with Updates being the most com-
mon operation. Our analysis differentiates between the settings (a) where it is
only known that the group has been compromised, but not who the particular
t corrupted users are, and (b) where the set of compromised users is known to
everyone. Note that the former essentially forces every member of the group to
update, while in the latter scenario only the t compromised users have to act.

The first value we are interested in is the number of rounds of (potentially)
concurrent updates, after which the group key is guaranteed to be secure again.
The second is the cumulative sender complexity (measured over all rounds),
which essentially corresponds to the number of public keys and ciphertexts sent
to the server. Here, we again distinguish between two settings. Namely, whether
the parties act coordinated or not. In the latter case the participating parties are
not aware of whether other parties are concurrently preparing updates/commits,
which, depending on the scheme, potentially leads to the server having to reject
packages. In the former case, on the other hand, they have this knowledge. In
practice, this could be implemented by introducing an additional mechanism,
that requires parties to wait for a confirmation by the server before preparing and
sending update packages. We further track the per-user recipient communication
complexity, again measured as a total over all rounds required to recover from
compromise. The final considered value is the sender communication cost of a
single, non-concurrent, update/commit in a subsequent round. Here, we state
both the cost of the worst-case party as well as the average cost.

In Table 2 we mark schemes that perform substantially better or worse in
one of the categories in green and red, respectively.

The communication complexity of CoCoA. We first discuss the number of rounds
required to recover from compromise of t users. As we will show in Section 5, it
is sufficientthat all corrupted users concurrently update in ⌈log(n)⌉+ 1 rounds.

Regarding the sender communication complexity, the size of update packages
sent by a user ID to update in the CoCoA protocol is proportional to the size of
the resolution of ID’s co-path, which will be of order log(n) for a fully unblanked
tree18. However, this value could be up to linear in a tree with many blanks, as
is the case in TreeKEM and its variants, where blanks (or taints in the case of
TTKEM) degrade communication efficiency. In CoCoA concurrent updates are
merged and thus none are ever rejected by the server. Hence, in the considered
scenario CoCoA in both the coordinated and uncoordinated setting has the same
sender communication complexity of order n log(n)2 (corresponding to n users
sending an update of size log(n) in ⌈log(n)⌉ + 1 many rounds) and t log(n)2

18 an additional ciphertext would need to be sent for each unmerged leaf across ID’s
path, but this will not account for much in typical protocol executions.
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(corresponding to t users sending an update of size log(n) in ⌈log(n)⌉+ 1 many
rounds), for cases (a) and (b) respectively.

With regards to the recipient communication complexity, user ID in our pro-
tocol needs to only receive at most a single ciphertext per update (zero if said
update does not rotate the keys of any node in their state), and never more than
path(ID) = ⌈log(n)⌉ in total. They will also receive at most |P(ID)| public keys
per round.19 Thus in case (a) ID would incur a download cost of order log(n)
per round, and O(log(n)2) across the ⌈log(n)⌉ + 1 rounds. In case (b) only t
parties are updating per round, implying that the per round recipient cost is
of order min(t, log(n)) and the cost over all ⌈log(n)⌉ + 1 rounds is of order
log(n) · min(t, log(n)). Finally, as in CoCoA concurrent updates do not affect
the ratchet tree structure and in particular do not require blanks, the cost of
subsequent updates remains of order log(n).

The communication complexity of other CGKA schemes. In Table 2 we con-
trast CoCoA to other CGKA schemes. For a more detailed breakdown of theses
values we refer to the full version of this work [2]. The first class of considered
schemes are ratchet-tree based schemes that do not rely on the P&C framework,
as TreeKEM v7 and earlier versions [8], rTreeKEM [3], TTKEM [25], and Causal
TreeKEM [26]20. Further, with TreeKEM v8 [8] and later versions and the pro-
tocol by Bienstock et al. [11] we consider ratchet-tree based protocols following
the P&C paradigm. Finally, we give values for the protocol by Weidner et al. [30]
based on bidirectional channels. We point out that this work targets a different
network model and has thus a different focus than ours.

Summary and comparison. CoCoA diverges across two different axes from what
could be considered a common paradigm until now. On the one hand, users are
no longer required to keep track of the full state of the ratchet tree, reducing
the recipient communication cost and the storage costs for users, and making
this cost differ substantially from the total amount of upload communication.
Indeed, this is a big change, as this distinction is not really present in previous
works, where the majority of uploaded packets are downloaded by everyone. On
the other hand, we consider a more flexible PCS guarantee that only requires
users to heal after ⌈log(n)⌉ + 1 rounds. This is in contrast to previous works
requiring PCS to hold after a constant number of rounds or only after n rounds.
The effect of allowing concurrent updates to be merged is that, on one hand, the
protocol is agnostic to coordination, i.e., no additional mechanism is needed that
ensures that users do not send update/commit packages that will be rejected by
the server, and, on the other hand, it allows the protocol to handle concurrent
update operations without introducing blanks in the ratchet tree.

19 Note that the size of P(ID) grows at most by 1 per every blank node.
20 Causal TreeKEM proposes an interesting idea of re-randomizing node secrets

through a concrete homomorphic operation, instead of re-sampling them. Thus it
actually allows for concurrent updates. However, the presented security statement
still requires updates of every compromised party in different rounds, thus leading
to communication complexity as presented in the table.

23



The trade-off with TreeKEM versions that precede the P&C paradigm is
clear: we are paying a log(n) factor in sender communication in exchange for
faster PCS that is independent from the number of compromised users. The
comparison with P&C TreeKEM is not as straightforward, as the t compromised
users can heal in only 2 rounds. The main advantage CoCoA over has this
scheme is that it does not introduce blanks in the ratchet tree when handling
concurrent operations, which leads to an improved update cost in subsequent
rounds. However, this comes at the cost of slower healing and a factor of log2(n)
(or roughly log(n) in case (b)) in sender communication cost. We point out that
the P&C framework of TreeKEM allows for more flexibility, e.g. by performing
the required updates in several batches over multiple rounds. The exact trade-off
achieved by such an intermediate approach is hard to quantify, but, again, due to
blanking the cost of future updates will suffer. Finally, CoCoA has the advantage,
over all versions of TreeKEM, of reduced recipient communication complexity
and that users can prepare updates without the need of extra communication
with the server to prevent rejection of said updates.

As a final remark, CoCoA seems to have a slightly worse efficiency than
TreeKEM based protocols predating the P&C paradigm, since it requires slightly
larger sender communication overall. However, as we show in Section 5, this is
only the case if fast PCS is required for many users. In fact, a round with a single
update will immediately grant PCS to its sender, just as in TreeKEM. Thus,
CoCoA can be seen as an extension of pre-P&C TreeKEM, which incorporates
the possibility of trading bandwidth for faster collective healing.

5 Security

Given a set of parties whose state has leaked, TreeKEM and related variants
achieve PCS exactly after all of them perform an update. This is still true in our
protocol as long as the updates are applied sequentially. In the case of concur-
rent updates, on the other hand, we show that every corrupted party sending
logarithmically many updates is sufficient.

5.1 Security Model and Safe Predicate

To analyze the security of CoCoA, we essentially use the security model from
[25], which allows the adversary to act partially actively and fully adaptively:
in this model, the adversary can adaptively decide which users perform which
operations, and can actively control the delivery server; however it can not issue
messages on behalf of the users. In [25] this is enforced by assuming authen-
ticated channels. Since in CoCoA the signing of protocol messages is more in-
volved, parent hash plays an important role also for security against partially
active adversaries, and the server no longer just relays messages, we make the
use of signatures explicit in this work. As we restrict our analysis to partially
active adversaries, the adversary does not get access to signing keys via corrup-
tions. While this might look artificial, it has importance in practice as discussed
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in the introduction, and we still obtain meaningful results in the vein of [25].
Nevertheless, we consider the analysis of CoCoA’s security against fully active
adversaries an important question for future work.

Except for explicit signatures, the differences in the setting of concurrent
CGKA to the one of [25] are that 1) users process concurrent messages, 2) no
messages are ever rejected by the server, and 3) the server is allowed to send
arbitrary (potentially malformed) messages. Regarding 2), it is however possible
that messages get lost and even that a user does not process an update they
generated. Whether a user IDi’s update message (and which one) is contained
in a round message Mi, is represented by a counter ci. Finally, regarding 3),
while our security notion is strictly stronger than the one from [25] (where the
server could only forward existing messages), the security of protocols such as
TreeKEM and TTKEM can trivially be upgraded to our notion: This is true
since round messages in these protocols only consist of signed messages and the
adversary does not learn any party’s signing key. In our protocols, in contrast,
the server is assumed to perform some computation on users’ messages, hence it
makes sense to consider a stronger model where this computation is not trusted.

Definition 5 (Asynchronous CGKA Security). The security for CGKA is
modeled using a game between a challenger C and an adversary A. At the begin-
ning of the game, the adversary queries create-group(G) and the challenger
initializes the group G with identities (ID1, . . . , IDℓ). The adversary A can then
make a sequence of queries, enumerated below, in any arbitrary order. On a
high level, add-user and remove-user allow the adversary to control the struc-
ture of the group, whereas process allows it to control the scheduling of the
messages. The query update simulates the refreshing of a local state. Finally,
start-corrupt and end-corrupt enable the adversary to corrupt the users for
a time period. The entire state and random coins of a corrupted user are leaked
to the adversary during this period, except for the user’s signing key.

1. add-user(ID, ID′): a user ID requests to add another user ID′ to the group.
2. remove-user(ID, ID′): a user ID requests to remove another user ID′ from

the group.
3. update(ID): the user ID requests to refresh its current local state γ.
4. process(M, ID): for some message M and party ID, this action sends M to

ID which immediately processes it.
5. start-corrupt(ID): from now on the entire internal state and randomness

of ID except for the signing key sskID is leaked to the adversary.
6. end-corrupt(ID): ends the leakage of user ID’s internal state and random-

ness to the adversary.
7. challenge(q∗): A picks a query q∗ corresponding to action a∗ = update(ID)

or the initialization (if q∗ = 0). Let K0 denote the group key that is sampled
during this operation and K1 be a fresh random key. The challenger tosses
a coin b and – if the safe predicate below is satisfied – the key Kb is given to
the adversary (if the predicate is not satisfied the adversary gets nothing).

At the end of the game, the adversary outputs a bit b′ and wins if b′ = b. We call
a CGKA scheme (Q, ϵ, t)-CGKA-secure if for any adversary A making at most Q
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queries of the form add-user(·, ·), remove-user(·, ·), or update(·) and running
in time t it holds

AdvCGKA(A) := |Pr[1← A|b = 0]− Pr[1← A|b = 1]| < ϵ.

In contrast to the security definition of [25], process queries do not point to
specific queries here. Thus, in order to define our safe predicate, we first need to
define what we mean by saying that a party processed another party’s update.

Definition 6. Let ID and ID∗ be two (not necessarily different) users and (γq, T )
← CGKA.Upd(γq−1) an update with associated counter c, generated by ID in
query q. Let R(ID, γq) be the set of round messages M that

(a) are efficiently computable from the public transcript and private states of all
parties,

(b) have counter c for party ID, and
(c) will be accepted by ID in state γq, i.e., CGKA.Proc(γq,M) outputs a new state

γq+1 such that CGKA.Key(γq+1) ̸= CGKA.Key(γq).

Then we say that ID∗ processes the update T (or equivalently q) at time q∗ > q
if ID∗ processes some round message M∗ at time q∗ resulting in state γq∗ , and
CGKA.Key(γq∗) ∈ {CGKA.Key(CGKA.Proc(γq,M)) |M ∈ R(ID, γq)}.

As a special case we say that ID∗ processes the single update T (or equivalently
q), if in item (c) additionally the only changes to P(ID) resulting from updates
are due to T .

With this notion in place, we will now define the safe predicate similar to the one
in [25]. In particular, it rules out all trivial winning strategies, while preserving
simplicity by ignoring protocol-specific details such as the relative position of
users within the tree.

Definition 7 (Critical window, safe user). Let ID and ID∗ be two (not nec-
essarily different) users and q∗ ∈ [Q]0 be some update(·) or create-group(·)
query. Let q− < q∗ be maximal such that one of the following holds:

– There exist L := ⌈log(n)⌉+1 update queries aiID := update(ID) (i ∈ [L]) that
were generated for ID and processed by ID∗ within the time interval [q−, q∗].
If ID∗ does not process L such queries then we set q− = 1, the first query.
We denote the last such update query as qL.

– There exists an update query a−ID := update(ID) that was generated by ID
and processed by ID∗ as a single update within the time interval [q−, q∗]. In
this case, we set qL := q−.

Furthermore, let q+ > qL be the first query that invalidates ID’s current key
(in the view of ID∗), i.e., in query q+, ID processes a (partial) update a+ID :=
update(ID) /∈ {aiID}i∈[L]. If ID does not process any such query then we set
q+ = Q, the last query.
We say that the window [q−, q+] is critical for ID at time q∗ in the view of
ID∗. Moreover, if the user ID is not corrupted at any time point in the critical
window, we say that ID is safe at time q∗ in the view of ID∗.
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Similar to [25], we define a group key as safe if all the users that ID∗ consid-
ers to be in the group are individually safe, i.e., not corrupted in their critical
windows, in the view of ID∗.

Definition 8 (Safe predicate). Let K∗ be a group key generated in an action
a∗ ∈ {update(ID∗), create-group(ID∗, ·)} at time point q∗ ∈ [Q]0 and let G∗

be the set of users which would end up in the group if query q∗ was processed, as
viewed by the generating user ID∗. Then the key K∗ is considered safe if for all
users ID ∈ G∗ (including ID∗) we have that ID is safe at time q∗ in the view of
ID∗ (as per Definition 7).

Note that the second case in Definition 7 exactly captures the case where
only single updates are accepted in each round. Thus, the security of CoCoA
is strictly stronger than sequential variants of TreeKEM. Further, the bound of
⌈log(n)⌉+1 updates as required in Definition 7 is indeed tight, as we show with
an example given in the full version of this work [2].

5.2 Security of CoCoA

Regarding the security of CoCoA we obtain the following.

Theorem 1. If the encryption scheme used in CoCoA is (ϵEnc, t)-IND-CPA-
secure, the signature scheme is (ϵSig, t, (n+2 log(n))Q)-UF-CMA-secure, and the
used hash functions are modeled as random oracles, then CoCoA is (Q,O(ϵEnc ·
(nQ)2 + ϵSig · n), t)-CGKA-secure.

Due to space limitations we only give a high level overview on the proof, and
refer to the full version of this work [2] for the formal proof. To prove security
of CoCoA, we follow the approach of [25] and consider the graph structure
that is generated throughout the security experiment. A node i in the so-called
CGKA graph is associated with seeds ∆i and si := H2(∆i), and a key-pair
(pki, ski) := Gen(si). The edges of the graph, on the other hand, are induced by
dependencies via the hash function H1 or (public-key) encryptions. To be more
precise, an edge (i, j) corresponds to either:

(a) a ciphertext of the form Encpki(∆j); or
(b) an application of H1 of the form ∆j = H1(∆i) used in hierarchical derivation.

Naturally, the structure of the CGKA graph depends on the update, add-user
or remove-user queries made by the adversary, and is therefore generated adap-
tively. To argue security of a challenge group key, we consider the subgraph of
the CGKA graph that consists of all ancestors of the node associated to the chal-
lenge group key – the so-called challenge graph. By functionality of the CGKA
protocol, the challenge group key can be derived from any secret key/seed as-
sociated to a node in the challenge graph. To argue security, none of the secret
keys in the challenge graph must be leaked to the adversary by corruption. We
prove that this is indeed the case for CoCoA if the safe predicate is satisfied. Our
proof follows the ideas from [25], but involves a new combinatorial argument to
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establish the upper bound of ⌈log(n)⌉+ 1 updates for healing the state of every
user. Further, the fact that in CoCoA users only keep track of a part of the
ratchet tree substantially complicates the proof of this statement.

In more detail, the proof for the protocol in [25] relies on the property that
every key in the challenge graph must stem from an update that the party ID∗,
who generated the challenge key, processed. This can easily be ensured for proto-
cols keeping track of the full ratchet tree, by forcing parties, who do not agree for
every point in time in the protocol execution on every key associated to a node
in the ratchet tree, into inconsistent states, thus making future communication
between them impossible. Note that this implies the desired property. In this
case, if a user ID, while generating an update, encrypts the seed of a key pk to
some pk′, and later ID∗ encrypts to pk, then ID∗ must have had pk′ in their state
at some point in time, and, in particular, processed the update establishing it.

Unfortunately, while in an execution where the server behaves honestly, this
property would also be true with respect to the relatively simple definition of
processing an update of Definition 6, it is no longer true if we allow an untrusted
server. Since in CoCoA the server might send malformed round messages, this
property turns out to not hold anymore. We overcome this issue by giving a
more involved definition (which is equivalent to Definition 6 in the honest server
setting) of weakly processing an update and then essentially show, in the ROM,
that every key in a user’s state must stem from a weakly processed update.
Further, we show that users that do not agree on the same history of weakly
processed updates transition to inconsistent states. For this we have to show, for
example, that all keys introduced into a user’s state after a change to the resolu-
tion of their copath must have been weakly processed in an earlier round (even
in the case that at this point in time this update did not affect the user’s limited
view of the ratchet tree). To prove these properties we rely on the consistency
mechanisms of transcript hash and parent hash.

With these statements in place we are finally able to show that no key in
the challenge graph is leaked to the adversary, where we use the observation
that this property holding with respect to processing an update as defined in
Definition 6 is implied by it holding with respect to the relaxed definition.
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