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Abstract. In a recent breakthrough, Mahadev constructed a classical
verification of quantum computation (CVQC) protocol for a classical
client to delegate decision problems in BQP to an untrusted quantum
prover under computational assumptions. In this work, we explore fur-
ther the feasibility of CVQC with the more general sampling problems
in BQP and with the desirable blindness property. We contribute affir-
mative solutions to both as follows.
– Motivated by the sampling nature of many quantum applications

(e.g., quantum algorithms for machine learning and quantum supremacy
tasks), we initiate the study of CVQC for quantum sampling prob-
lems (denoted by SampBQP). More precisely, in a CVQC protocol
for a SampBQP problem, the prover and the verifier are given an
input x ∈ {0, 1}n and a quantum circuit C, and the goal of the
classical client is to learn a sample from the output z ← C(x) up
to a small error, from its interaction with an untrusted prover. We
demonstrate its feasibility by constructing a four-message CVQC
protocol for SampBQP based on the quantum Learning With Errors
assumption.

– The blindness of CVQC protocols refers to a property of the pro-
tocol where the prover learns nothing, and hence is blind, about
the client’s input. It is a highly desirable property that has been
intensively studied for the delegation of quantum computation. We
provide a simple yet powerful generic compiler that transforms any
CVQC protocol to a blind one while preserving its completeness and
soundness errors as well as the number of rounds.

Applying our compiler to (a parallel repetition of) Mahadev’s CVQC
protocol for BQP and our CVQC protocol for SampBQP yields the first
constant-round blind CVQC protocol for BQP and SampBQP respec-
tively, with negligible and inverse polynomial soundness errors respec-
tively, and negligible completeness errors.

Keywords: classical delegation of quantum computation· blind quan-
tum computation· quantum sampling problems
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1 Introduction

Can quantum computation, with potential computational advantages that are
intractable for classical computers, be efficiently verified by classical means? This
problem has been a major open problems in quantum complexity theory and del-
egation of quantum computation [1]. A complexity-theoretic formulation of this
problem by Gottesman in 2004 [1] asks about the possibility for an efficient clas-
sical verifier (a BPP machine) to verify the output of an efficient quantum prover
(a BQP machine). In the absence of techniques for directly tackling this ques-
tion, earlier feasibility results on this problem have been focusing on two weaker
formulations. The first type of feasibility results (e.g., [4, 13, 21, 22]) considers
the case where the verifier is equipped with limited quantum power. The second
type of feasibility results (e.g, [18,23,25,35]) considers a BPP verifier interacting
with at least two entangled, non-communicating quantum provers.

Recently, the problem is resolved by a breakthrough result of Mahadev [30],
who constructed the first Classical Verification of Quantum Computation (CVQC)
protocol for BQP, where an efficient classical (BPP) verifier can interact with
an efficient quantum (BQP) prover to verify any BQP language. Soundness of
Mahadev’s protocol is based on a widely recognized computational assumption
that the learning with errors (LWE) problem [34] is hard for BQP machines.
The technique invented therein has inspired many subsequent developments of
CVQC protocols with improved parameters and functionality. For example, Ma-
hadev’s protocol has a large constant soundness error. The works of [7, 15] use
parallel repetition to achieve a negligible soundness error. As another example,
the work of [24] extends Mahadev’s techniques in an involved way to obtain a
CVQC protocol with an additional blindness property.

In this work, we make two more contributions to this exciting line of re-
search. First, we observe that the literature has mostly restricted the attention
to delegation of decision problems (i.e., BQP). Motivated by the intrinsic ran-
domness of quantum computation and the sampling nature of many quantum
applications, we initiate the study of CVQC for quantum sampling problems.
Second, we further investigate the desirable blindness property and construct the
first constant-round blind CVQC protocols. We elaborate on our contributions
in Section 1.1 and 1.2, respectively.

1.1 CVQC for Quantum Sampling Problems

We initiate the study of CVQC for quantum sampling problem, which we believe
is highly desirable and natural for delegation of quantum computation. Due to
the intrinsic randomness of quantum mechanics, the output from a quantum
computation is randomized and described by a distribution. Thus, if a classical
verifier want to utilize the full power of a quantum machine, the ability to get
a verifiable sample from the quantum circuit’s output distribution is desirable.
On a more concrete level, quantum algorithms like Shor’s algorithm [37] has a
significant quantum sampling component, and the recent quantum supremacy
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proposals (e.g., [3,8,36]) are built around sampling tasks, suggesting the impor-
tance of sampling in quantum computation.

It is worth noting that the difficulty of extending the delegation of decision
problem to the delegation of sampling problems is quantum-specific. This is
because there is a simple reduction from the delegation of classical sampling
problems to decision ones: the verifier can sample and fix the random seed of
the computation, which makes the computation deterministic. Then, the verifier
can delegate the output of the computation bit-by-bit as decision problems.
However, this derandomization trick does not work in the quantum setting due
to its intrinsic randomness.

Our Contribution. As the first step to formalize CVQC for quantum sampling
problems, we consider the complexity class SampBQP introduced by Aaronson [2]
as a natural class to capture efficiently computable quantum sampling problems.
SampBQP consists of sampling problems (Dx)x∈{0,1}∗ that can be approximately
sampled by a BQP machine with a desired inverse polynomial error (See Sec-
tion 2 for the formal definition). We consider CVQC for a SampBQP problem
(Dx)x∈{0,1}∗ where a classical BPP verifier delegates the computation of a sample
z ← Dx for some input x to a quantum BQP prover. Completeness requires that
when the prover is honest, the verifier should accept with high probability and
learn a correct sample z ← Dx. For soundness, intuitively, the verifier should not
accept and output a sample with incorrect distribution when interacting with a
malicious prover. We formalize the soundness by a strong simulation-based def-
inition, (Definition 3), where we require that the joint distribution (d, z) of the
decision bit d ∈ {Acc,Rej } and the output z (which is ⊥ when d = Rej) is ε-close
(in either statistical or computational sense) to an “ideal distribution” (d, zideal),
where zideal is sampled from the desired distribution Dx when d = Acc and set
to ⊥ when d = Rej.5

As our main result, we construct a constant-round CVQC protocol for SampBQP,
based on the quantum LWE (QLWE) assumption that the learning-with-errors
problem is hard for BQP machines.

Theorem 1 (informal). Assuming the QLWE assumption, there exists a four-
message CVQC protocol for all sampling problems in SampBQP with computa-
tional soundness and negligible completeness error.

We note that since the definition of SampBQP allows an inverse polyno-
mial error, our CVQC protocol also implicitly allows an arbitrary small inverse
polynomial error in soundness (see Section 2 for the formal definition). Achiev-
ing negligible soundness error for delegating sampling problems is an intriguing
open question; see Section 1.3 for further discussions.

The construction of our CVQC protocol follows the blueprint of Mahadev’s
construction [30]. However, there are several obstacles we need to overcome along
the way. To explains the obstacles and our ideas, we first present a high-level
overview of Mahadev’s protocol.

5 This simulation-based formulation is analogous to the standard composable security
definition for QKD.
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Overview of Mahadev’s Protocol. Following [30], we define QPIPτ as classes of
interactive proof systems between an (almost) classical verifier and a quantum
prover, where the classical verifier has limited quantum computational capability,
formalized as possessing τ -qubit quantum memory. A formal definition is given
in our full version [17].

At a high-level, the heart of Mahadev’s protocol is a measurement protocol
ΠMeasure that can compile an one-round QPIP1 protocol (with special properties)
to a QPIP0 protocol. Note that in a QPIP1 protocol, the verifier with one-qubit
memory can only measure the prover’s quantum message qubit by qubit. Infor-
mally, the measurement protocol ΠMeasure allows a BQP prover to “commit to” a
quantum state ρ and a classical verifier to choose an X or Z measurement to ap-
ply to each qubit of ρ such that the verifier can learn the resulting measurement
outcome.

Thus, if an (one-round) QPIP1 verifier only applies X or Z measurement to
the prover’s quantum message, we can use the measurement protocol ΠMeasure

to turn the QPIP1 protocol into a QPIP0 protocol in a natural way. One ad-
ditional requirement here is that the verifier’s measurement choices need to be
determined at the beginning (i.e., cannot depend adaptively on the intermediate
measurement outcome).

Furthermore, in ΠMeasure, the verifier chooses to run a “testing” round or
a “Hadamard” round with 1/2 probability, respectively. Informally, the testing
round is used to “test” the commitment of ρ, and the Hadamard round is used
to learn the measurement outcome. (See Protocol 1 for further details about the
measurement protocol ΠMeasure.) Another limitation here is that in the testing
round, the verifier only “test” the commitment without learning any measure-
ment result.

In [30], Mahadev’s CVQC protocol for BQP is constructed by applying her
measurement protocol to the one-round QPIP1 protocol of [21, 32], which has
the desired properties that the verifier only performs non-adaptive X/Z mea-
surement to the prover’s quantum message. The fact that the verifier does not
learn the measurement outcome in the testing round is not an issue here since
the verifier can simply accept when the test is passed (at the cost of a constant
soundness error).

Overview of Our Construction. Following the blueprint of Mahadev’s construc-
tion, our construction proceeds in the following two steps: 1. construct a QPIP1

protocol for SampBQP with required special property, and 2. compile the QPIP1

protocol using ΠMeasure to get the desired QPIP0 protocol. The first step can
be done by combining existing techniques from different contexts, whereas the
second step is the main technical challenge. At a high-level, the reason is the
above-mentioned issue that the verifier does not learn the measurement outcome
in the testing round. While this is not a problem for decision problems, for sam-
pling problems, the verifier needs to produce an output sample when accepts,
but there seems to be no way to produce the output for the verifier without
learning the measurement outcome. We discuss both steps in turn as follows.
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� Construct a QPIP1 protocol for SampBQP with required special property :
Interestingly, while the notion of delegation for quantum sampling problem is
not explicitly formalized in their work, Hayashi and Morimae [26] constructed
an one-round QPIP1 protocol that can delegate quantum sampling problem and
achieve our notion of completeness and soundness6. Furthermore, their protocol
has information-theoretic security and additionally achieve the blindness prop-
erty. However, in their protocol, the computation is performed by the verifier
using measurement-based quantum computation (MBQC)7, and hence the ver-
ifier needs to perform adaptive measurement choices. Therefore, we cannot rely
on their QPIP1 protocol for SampBQP.

Instead, we construct the desired QPIP1 protocol for SampBQP by gener-
alizing the approach of local Hamiltonian reduction used in [21, 32] to verify
SampBQP. Doing so requires the combination of several existing techniques from
different context with some new ideas. For example, to handle SampBQP, we
need to prove lower bound on the spectral gap of the reduced local Hamiltonian
instance, which is reminiscent to the simulation of quantum circuits by adiabatic
quantum computation [5]. To achieve soundness, we use cut-and-choose and an-
alyze it using de Finetti theorem in a way similar to [26, 38]. See Section ?? for
detailed discussions.

� Compile the QPIP1 protocol using ΠMeasure: We now discuss how to use Ma-
hadev’s measurement protocol to compile the above QPIP1 protocol for SampBQP
to a QPIP0 protocol. As mentioned, a major issue we need to address in Ma-
hadev’s original construction is that when the verifier V chooses to run a testing
round, V does not learn an output sample when it accepts.

Specifically, let Πint be an “intermediate” QPIP0 protocol obtained by apply-
ing Mahadev’s compilation to the above QPIP1 protocol. In such a protocol, when
the verifier V chooses to run the Hadamard round, it could learn a measurement
outcome from the measurement protocol and be able to run the QPIP1 verifier
to generate a decision and an output sample when accepts. However, when V
chooses to run the testing round, it only decides to accept/reject without being
able to output a sample.

A natural idea to fix the issue is to execute multiple copies of Πint in paral-
lel8, and to choose a random copy to run the Hadamard round to generate an
output sample and use all the remaining copies to run the testing round. The
verifier accepts only when all executions accept and outputs the sample from
the Hadamard round. We call this protocol ΠFinal.

Clearly from the construction, the verifier now can output a sample when it
decides to accept, and output a correct sample when interacting with an honest

6 They did not prove our notion of soundness for their construction, but it is not hard
to prove its soundness based on their analysis.

7 In more detail, the prover of their protocol is required to send multiple copies of the
graph states to the verifier (qubit by qubit). The verifier tests the received supposedly
graph states using cut-and-choose and perform the computation using MBQC.

8 It is also reasonable to consider sequential repetition, but we consider parallel repe-
tition for its advantage of preserving the round complexity.
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prover (completeness). The challenge is to show that ΠFinal is computationally
sound. Since we are now in the computational setting, we cannot use the quan-
tum de Finetti theorem as above which only holds in the information-theoretical
setting. Furthermore, parallel repetition for computationally sound protocols are
typically difficult to analyze, and known to not always work for protocols with
four or more messages even in the classical setting [10,33].

Parallel repetition of Mahadev’s protocol for BQP has been analyzed before
in [7, 15]. However, the situation here is different. For BQP, the verifier simply
chooses to run the Hadamard and testing rounds independently for each repeti-
tion. In contrast, our ΠFinal runs the Hadamard round in one repetition and runs
the testing rounds in the rest. The reason is that in SampBQP, as well as gener-
ically in sampling problems, there is no known approach to combine multiple
samples to generate one sample with reduced error, i.e., there is no generic error
reduction method for the sampling problem. In contrast, the error reduction for
decision problems can be done with the majority vote. As a result, while the
soundness error decreases exponentially for BQP, as we see below (and also in
the above QPIP1 protocols), for SampBQP, m-fold repetition only decreases the
error to poly(1/m).

To analyze the soundness of ΠFinal, we use the partition lemma developed
in [15] to analyze the prover’s behavior while executing copies of ΠMeasure.

9 Intu-
itively, the partition lemma says that for any cheating prover and for each copy
i ∈ [m], there exist two efficient “projectors” 10 G0,i and G1,i in the prover’s
internal space with G0,i + G1,i ≈ Id. G0,i and G1,i splits up the prover’s resid-
ual internal state after sending back his first message. G0,i intuitively repre-
sents the subspace where the prover does not knows the answer to the testing
round on the i-th copy, while G1,i represents the subspace where the prover
does. Note that the prover is using a single internal space for all copies, and
every G0,i and every G1,i is acting on this single internal space. By using this
partition lemma iteratively, we can decompose the prover’s internal state |ψ〉
into sum of subnormalized states. First we apply it to the first copy, writing
|ψ〉 = G0,1 |ψ〉 + G1,1 |ψ〉 ≡ |ψ0〉 + |ψ1〉. The component |ψ0〉 would then get
rejected as long as the first copy is chosen as a testing round, which occurs with
pretty high probability. More precisely, the output corresponding to |ψ0〉 is 1/m-
close to the ideal distribution that just rejects all the time. On the other hand,
|ψ1〉 is now binding on the first copy; we now similarly apply the partition lemma
of the second copy to |ψ1〉. We write |ψ1〉 = G0,2 |ψ1〉+G1,2 |ψ1〉 ≡ |ψ10〉+ |ψ11〉,
and apply the same argument about |ψ10〉 and |ψ11〉. We then continue to de-
compose |ψ11〉 = |ψ110〉 + |ψ111〉 and so on, until we reach the last copy and
obtain |ψ1m〉. Intuitively, all the |ψ1...10〉 terms will be rejected with high proba-
bility, while the |ψ1m〉 term represents the “good” component where the prover
knows the answer to every testing round and therefore has high accept probabil-

9 The analysis of [7] is more tailored to the decision problems setting, and it is unclear
how to extend it to sampling problems where there are multiple bits of output.

10 Actually they are not projectors, but for the simplicity of this discussion let’s assume
they are.
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ity. Therefore, |ψ1m〉 also satisfies some binding property, so the verifier should
obtain a measurement result of some state on the Hadamard round copy, and
the soundness of the QPIP1 protocol ΠSamp follows.

However, the intuition that |ψ1m〉 is binding to every Hadamard round is
incorrect. As G1,i does not commute with G1,j , |ψ1m〉 is unfortunately only
binding for the m-th copy. To solve this problem, we start with a pointwise
argument and fix the Hadamard round on the i-th copy where |ψ1i〉 is binding,
and show that the corresponding output is O(‖|ψ1i−10〉‖)-close to ideal. We can
later average out this error over the different choices of i, since not all ‖|ψ1i−10〉‖
can be large at the same time. Another way to see this issue is to notice that
we are partitioning a quantum state, not probability events, so there are some
inconsistencies between our intuition and calculation. Indeed, the error we get
in the end is O(

√
1/m) instead of the O(1/m) we expected.

The intuitive analysis outlined above glosses over many technical details, and
we substantiate this outline with full details in Section 4.

1.2 Blind CVQC Protocols

Another desirable property of CVQC protocols is blindness, which means that
the prover does not learn any information about the private input for the dele-
gated computation.11 In the relaxed setting where the verifier has a limited quan-
tum capability, Hayashi and Morimae [26] constructed a blind QPIP1 protocol
for delegating quantum computation with information-theoretic security that
also handles sampling problems. However, for purely classical verifiers, blind
CVQC protocols seem much more difficult to construct. This goal is recently
achieved by the seminal work of Gheorghiu and Vidick [24], who constructed
the first blind CVQC protocol for BQP by constructing a composable remote
state preparation protocol and combining it with the verifiable blind quantum
computation protocol of Fitzsimons and Kashefi [22]. However, their protocol
has polynomially many rounds and requires a rather involved analysis. Before
our work, it is an open question whether constant-round blind CVQC protocol
for BQP is achievable.

Our Contribution. Somewhat surprisingly, we provide a simple yet powerful
generic compiler that transforms any CVQC protocol to a blind one while pre-
serving completeness, soundness, as well as its round complexity. Our compiler
relies on quantum fully homomorphic encryption (QFHE) schemes with certain
“classical-friendly” properties, which is satisfied by both constructions of Ma-
hadev [29] and Brakerski [12].

Theorem 2 (informal). Assuming the QLWE assumption12, there exists a
protocol compiler that transforms any CVQC protocol Π to a CVQC protocol

11 In literature, the definition of blindness may also require to additionally hide the
computation. We note the two notions are equivalent from a feasibility point of view
by a standard transformation (see our full version [17]).

12 By using Brakerski’s QFHE, we only need to rely on the QLWE assumption with
polynomial modulus in this theorem.
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Πblind that achieves blindness while preserves its round complexity, completeness,
and soundness.

Applying our blindness compiler to the parallel repetition of Mahadev’s pro-
tocol from [7, 15], we obtain the first constant-round blind CVQC protocol for
BQP with negligible completeness and soundness error, resolving the aforemen-
tioned open question.

Theorem 3 (informal). Under the QLWE assumption, there exists a blind,
four-message CVQC protocol for all languages in BQP with negligible complete-
ness and soundness errors.

We can also apply our compier to our CVQC protocol for SampBQP to
additionally achieve blindness.

Theorem 4 (informal). Under the QLWE assumption, there exists a blind,
four-message CVQC protocol for all sampling problems in SampBQP with com-
putational soundness and negligible completeness error.

Techniques. At a high-level, the idea is simple: we run the original protocol
under a QFHE with the QFHE key generated by the verifier. Intuitively, this
allows the prover to compute his next message under encryption without learning
verifier’s message, and hence achieves blindness while preserving the properties
of the original protocol. One subtlety with this approach is the fact that the
verifier is classical while the QFHE cipher text could contain quantum data. In
order to make the classical verifier work in this construction, the ciphertext and
the encryption/decryption algorithm need to be classical when the underlying
message is classical. Fortunately, such “classical-friendly” property is satisfied
by the construction of [12,29].

A more subtle issue is to preserve the soundness. In particular, compiled
protocols with a single application of QFHE might (1) leak information about
the circuit evaluated by the verifier through its outputted QFHE ciphertexts
(i.e., no circuit privacy); or (2) fail to simulate original protocols upon receiving
invalid ciphertexts from the prover. We address these issues by letting the verifier
switch to a fresh new key for each round of the protocol. Details are given in
Section 5.

1.3 Related and Followup Works and Discussions

As mentioned, while we are the first to explicitly investigate delegation of quan-
tum sampling problems, Hayashi and Morimae [26] constructed an one-round
blind QPIP1 protocol that can be used to delegate SampBQP and achieve our
notion of information-theoretical security. Like our SampBQP protocol, their
protocol has an arbitrarily small inverse polynomial soundness error instead of
negligible soundness error. Also as mentioned, Gheorghiu and Vidick [24] con-
structed the first blind CVQC protocol for BQP by constructing a composable
remote state preparation protocol and combining it with the verifiable blind
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quantum computation protocol of Fitzsimons and Kashefi [22]. However, their
protocol has polynomially many rounds and requires a rather involved analysis.

It is also worth noting that several existing constructions in the relaxed
models (e.g., verifiable blind computation [22]) can be generalized to delegate
SampBQP in a natural way, but it seems challenging to analyze the soundness
of the generalized protocol. Furthermore, it is unlikely that these generalized
protocols can achieve negligible soundness error for SampBQP. The reason is
that in all these constructions, some form of cut and choose are used to achieve
soundness. For sampling problems, as mentioned, there seems to be no generic
way to combine multiple samples for error reduction, so the verifier needs to
choose one sample to output in the cut and choose. In this case, an adversarial
prover may choose to cheat on a random copy in the cut and choose and succeed
in cheating with an inverse polynomial probability.

On the other hand, while the definition of SampBQP in [2,3] allows an inverse
polynomial error, there seems to be no fundamental barriers to achieve negligible
error. It is conceivable that negligible error can be achieved using quantum error
correction. Negligible security error is also achievable in the related settings of se-
cure multi-party quantum computation [19,20] and verifiable quantum FHE [6]
based on verifiable quantum secret sharing or quantum authentication codes13.
However, both primitives require computing and communicating quantum en-
codings and are not applicable in the context of CVQC and QPIP1. An intriguing
open problem is whether it is possible to achieve negligible soundness error with
classical communication while delegating a quantum sampling problem.

In a recent work, Bartusek [9] used the technique we developed for delegation
of SampBQP to construct secure quantum computation protocols with classical
communication for pseudo-deterministic quantum functionalities.

Organization For preliminary technical background, see our full version [17]. Our
simulation-based definition of CVQC for SampBQP is discussed in Section 2.
Our main technical contributions are explained in Section 3 (a construction of
QPIP1 protocol for SampBQP), Section 4 (the construction of QPIP0 protocol
for SampBQP based on the above QPIP1 protocol), and Section 5 (a generic
compiler to upgrade QPIP0 protocols with blindness).

2 Delegation of Quantum Sampling Problems

In this section, we formally introduce the task of delegation for quantum sam-
pling problems. We start by recalling the complexity class SampBQP defined by
Aaronson [2,3], which captures the class of sampling problems that are approx-
imately solvable by polynomial-time quantum algorithms.

Definition 1 (Sampling Problem). A sampling problem is a collection of
probability distributions (Dx)x∈{ 0,1 }∗ , one for each input string x ∈ { 0, 1 }n,

where Dx is a distribution over { 0, 1 }m(n)
for some fixed polynomial m.

13 The security definitions are not comparable, but it seems plausible that the tech-
niques can be used to achieve negligible soundness error for sampling problems.
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Definition 2 (SampBQP). SampBQP is the class of sampling problems (Dx)x∈{ 0,1 }∗

that can be (approximately) sampled by polynomial-size uniform quantum cir-
cuits. Namely, there exists a Turing machine M such that for every n ∈ N and
ε ∈ (0, 1), M(1n, 11/ε) outputs a quantum circuit C in poly(n, 1/ε) time such
that for every x ∈ {0, 1}n, the output of C(x) (measured in standard basis) is
ε-close to Dx in the total variation distance.

Note that in the above definition, there is an accuracy parameter ε and the
quantum sampling algorithm only requires to output a sample that is ε-close to
the correct distribution in time poly(n, 1/ε). [2,3] discussed multiple reasons for
allowing the inverse polynomial error, such as to take into account the inherent
noise in conceivable physical realizations of quantum computer. On the other
hand, it is also meaningful to require negligible error. As discussed, it is an
intriguing open question to delegate quantum sampling problem with negligible
error.

We next define what it means for a QPIPτ protocol14 to solve a SampBQP
problem (Dx)x∈{ 0,1 }∗ . Since sampling problems come with an accuracy param-

eter ε, we let the prover P and the verifier V receive the input x and 11/ε as
common inputs. Completeness is straightforward to define, which requires that
when the prover P is honest, the verifier V should accept with high probability
and output a sample z distributed close to Dx on input x. Defining sound-
ness is more subtle. Intuitively, it requires that the verifier V should never be
“cheated” to accept and output an incorrect sample even when interacting with
a malicious prover. We formalize this by a strong simulation-based definition,
where we require that the joint distribution of the decision bit d ∈ {Acc,Rej }
and the output z (which is ⊥ when d = Rej) is ε-close (in either statistical or
computational sense) to an “ideal distribution” (d, zideal), where zideal is sam-
pled from Dx when d = Acc and set to ⊥ when d = Rej. Since the protocol
receives the accuracy parameter 11/ε as input to specify the allowed error, we do
not need to introduce an additional soundness error parameter in the definition.

Definition 3. Let Π = (P, V ) be a QPIPτ protocol. We say it is a protocol for
the SampBQP instance (Dx)x∈{0,1}∗ with completeness error c(·) and statistical
(resp., computational) soundness if the following holds:

– On public inputs 1λ, 11/ε, and x ∈ {0, 1}poly(λ), V outputs (d, z) where d ∈
{Acc,Rej }. If d = Acc then z ∈ {0, 1}m(|x|) where m is given in Definition 1,
otherwise z = ⊥.

– (Completeness): For all accuracy parameters ε(λ) = 1
poly(λ) , security pa-

rameters λ ∈ N, and x ∈ {0, 1}poly(λ), let (d, z) ← (P, V )(1λ, 11/ε, x), then
d = Rej with probability at most c(λ).

– (Statistical soundness): For all cheating provers P ∗, accuracy parameters
ε(λ) = 1

poly(λ) , sufficiently large λ ∈ N, and x ∈ {0, 1}poly(λ), consider the

following experiment:

14 See our full version [17] for a formal definition of QPIPτ .
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• Let (d, z)← (P ∗, V )(1λ, 11/ε, x).
• Define zideal by {

zideal = ⊥ if d = Rej

zideal ← Dx if d = Acc

.
It holds that ‖(d, z)− (d, zideal)‖TV ≤ ε.

– (Computational soundness): For all cheating BQP provers P ∗, BQP distin-
guishers D, accuracy parameters ε(λ) = 1

poly(λ) , sufficiently large λ ∈ N, and

all x ∈ {0, 1}poly(λ), let us define d, z, zideal by the same experiment as above.
It holds that (d, z) is ε-computationally indistinguishable to (d, zideal) over
λ.

As in the case of BQP, we are particularly interested in the case that τ = 0,
i.e., when the verifier V is classical. In this case, we say that Π is a CVQC
protocol for the SampBQP problem (Dx)x∈{0,1}∗ .

3 Construction of the QPIP1 Protocol for SampBQP

As we mentioned in this introduction, we will employ the circuit history state
in the original construction of the Local Hamiltonian problem [28] to encode
the circuit information for SampBQP. However, there are distinct requirements
between certifying the computation for BQP and SampBQP based on the history
state. For any quantum circuit C on input x, the original construction for cer-
tifying BQP15 consists of local Hamiltonian Hin, Hclock, Hprop, Hout where Hin

is used to certify the initial input x, Hclock to certify the validness of the clock
register, Hprop to certify the gate-by-gate evolution according to the circuit de-
scription, and Hout to certify the final output. In particular, the corresponding
history state is in the ground space of Hin, Hclock, and Hprop. Note that BQP is
a decision problem and its outcome (0/1) can be easily encoded into the energy
Hout on the single output qubit. As a result, the outcome of BQP can simply be
encoded by the ground energy of Hin +Hclock +Hprop +Hout.

To deal with SampBQP, we will still employ Hin, Hclock, and Hprop to cer-
tify the circuit’s input, the clock register, and gate-by-gate evolution. However,
in SampBQP, we care about the entire final state of the circuit, rather than
the energy on the output qubit. Our approach to certify the entire final state
(which is encoded inside the history state) is to make sure that the history
state is the unique ground state of Hin + Hclock + Hprop and all other orthog-
onal states will have much higher energies. Namely, we need to construct some
H ′in +H ′clock +H ′prop with the history state as the unique ground state and with
a large spectral gap between the ground energy and excited energies. It is hence
guaranteed that any state with close-to-ground energy must also be close to the
history state. We remark that this is a different requirement from most local

15 The original construction is for the purpose of certifying problems in QMA. We
consider its simple restriction to problems inside BQP.
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Hamiltonian constructions that focus on the ground energy. We achieve so by
using the perturbation technique developed in [27] for reducing the locality of
Hamiltonian. Another example of local Hamiltonian construction with a focus on
the spectral gap can be found in [5], where the purpose is to simulate quantum
circuits by adiabatic quantum computation.

We need two more twists for our purpose. First, as we will eventually mea-
sure the final state in order to obtain classical samples, we need that the final
state occupies a large fraction of the history state. We can simply add dummy
identity gates. Second, as we are only able to perform X or Z measurement by
techniques from [30], we need to construct X-Z only local Hamiltonians. Indeed,
this has been shown possible in, e.g., [11], which serves as the starting point of
our construction.

We present the formal construction of our QPIP1 protocolΠSamp for SampBQP
in our full version [17]. The soundness and completeness of ?? is stated in the
following theorem, whose proof is also deferred to [17].

Theorem 5. ΠSamp is a QPIP1 protocol for the SampBQP problem (Dx)x∈{ 0,1 }∗

with negligible completeness error and is statistically sound16 where the verifier
only needs to do non-adaptive X/Z measurements.

4 SampBQP Delegation Protocol for Fully Classical Client

In this section, we create a delegation protocol for SampBQP with fully classical
clients by adapting the approach taken in [30]. In [30], Mahadev designed a
protocol ΠMeasure (Protocol 1) that allows a BQP prover to “commit a state” for
a classical verifier to choose a X or Z measurement and obtain corresponding
measurement results. Composing it with the QPIP1 protocol for BQP from [21]
results in a QPIP0 protocol for BQP. In this work, we will compose ΠMeasure

with our QPIP1 protocol ΠSamp (??) for SampBQP in order to obtain a QPIP0

protocol for SampBQP.
A direct composition of ΠSamp and ΠMeasure, however, results in Πint (Proto-

col 2) which does not provide reasonable completeness or accuracy guarantees.
As we will see, this is due to ΠMeasure itself having peculiar and weak guaran-
tees: the client doesn’t always obtain measurement outcomes even if the server
were honest. When that happens under the BQP context, the verifier can sim-
ply accept the prover at the cost of some soundness error; under our SampBQP
context, however, we must run many copies of Πint in parallel so the verifier can
generate its outputs from some copy. We will spend the majority of this section
analyzing the soundness of this parallel repetition.

4.1 Mahadev’s measurement protocol

ΠMeasure is a 4-round protocol between a verifier (which corresponds to our client)
and a prover (which corresponds to our server). The verifier (secretly) chooses

16 The soundness and completeness of a SampBQP protocol is defined in Definition 3.
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a string h specifying the measurements he wants to make, and generates keys
pk, sk from h. It sends pk to the prover. The prover “commits” to a state ρ of
its choice using pk and replies with its commitment y. The verifier must then
choose between two options: do a testing round or a Hadamard round. In a
testing round the verifier can catch cheating provers, and in a Hadamard round
the verifier receives some measurement outcome. He sends his choice to the
prover, and the prover replies accordingly. If the verifier chose testing round, he
checks the prover’s reply against the previous commitment, and rejects if he sees
an inconsistency. If the verifier chose Hadamard round, he calculates MXZ(ρ, h)
based on the reply. We now formally describe the interface of ΠMeasure while
omitting the implementation details.

Protocol 1 Mahadev’s measurement protocol ΠMeasure = (PMeasure, VMeasure)

Inputs:

– Common input: Security parameter 1λ where λ ∈ N.
– Prover’s input: a state ρ ∈ B⊗n for the verifier to measure.
– Verifier’s input: the measurement basis choice h ∈ {0, 1}n

Protocol:

1. The verifier generates a public and secret key pair (pk, sk) ← VMeasure,1(
1λ, h). It sends pk to the prover.

2. The prover generates (y, σ) ← PMeasure,2(pk, ρ). y is a classical “commit-
ment”, and σ is some internal state. He sends y to the verifier.

3. The verifier samples c
$←− {0, 1} uniformly at random and sends it to the

prover. c = 0 indicates a testing round, while c = 1 indicates a Hadamard
round.

4. The prover generates a classical string a ← PMeasure,4(pk, c, σ) and sends it
back to the verifier.

5. If it is a testing round (c = 0), then the verifier generates and outputs
o ← VMeasure,T (pk, y, a) where o ∈ {Acc,Rej }. If it is a Hadamard round
(c = 1), then the verifier generates and outputs v ← VMeasure,H( sk, h, y, a).

ΠMeasure has negligible completeness errors, i.e. if both the prover and verifier
are honest, the verifier accepts with overwhelming probability and his output on
Hadamard round is computationally indistinguishable from MXZ(ρ, h). As for
soundness, it gives the following binding property against cheating provers: if a
prover would always succeed on the testing round, then there exists some ρ so
that for any h the verifier obtains MXZ(ρ, h) if he had chosen the Hadamard
round.

Lemma 1 (binding property of ΠMeasure; special case of Claim 7.1 in
[30]). Let P ∗Measure be a BQP cheating prover for ΠMeasure and λ be the security
parameter. Let 1 − ph,T be the probability that the verifier accepts P ∗Measure in
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the testing round on basis choice h.17 Under the QLWE assumption, there exists
some ρ∗ so that for all verifier’s input h ∈ {0, 1}n, the verifier’s outputs on
the Hadamard round is

√
ph,T + negl(n)-computationally indistinguishable from

MXZ(ρ∗, h).

We now combine ΠMeasure with our QPIP1 Protocol for SampBQP, ΠSamp =
(PSamp, VSamp) (??), to get a corresponding QPIP0 protocol Πint. Recall that in
ΠSamp the verifier takes X and Z measurements on the prover’s message. In Πint

we let the verifier use ΠMeasure to learn those measurement outcomes instead.

Protocol 2 Intermediate QPIP0 protocolΠint for the SampBQP problem (Dx)x∈{ 0,1 }∗

Inputs:

– Security parameter 1λ where λ ∈ N
– Error parameter ε ∈ (0, 1)
– Classical input x ∈ {0, 1}n to the SampBQP instance

Protocol:

1. The verifier chooses a XZ-measurement h from the distribution specified in
Step ?? of ΠSamp.

2. The prover prepares ρ by running Step ?? of ΠSamp.
3. The verifier and prover run (PMeasure(ρ), VMeasure(h))(1λ).

(a) The verifier samples (pk, sk)← Vint,1(1λ, h) and sends pk to the prover,
where Vint,1 is the same as VMeasure,1 of Protocol 1.

(b) The prover runs (y, σ)← Pint,2(pk, ρ) and sends y to the verifier, where
Pint,2 is the same as PMeasure,2. Here we allow the prover to abort by
sending y = ⊥, which does not benefit cheating provers but simplifies
our analysis of parallel repetition later.

(c) The verifier samples c
$←− {0, 1} and sends it to the prover.

(d) The prover replies a← Pint,4(pk, c, σ).
(e) If it is a testing round, the verifier accepts or rejects based on the outcome

of ΠMeasure. If it is a Hadamard round, the verifier obtains v.
4. If it’s a Hadamard round, the verifier finishes the verification step of Proto-

col ?? by generating and outputting (d, z)

There are several problems with using Πint as a SampBQP protocol. First,
since the verifier doesn’t get a sample if he had chosen the testing round in
Step 3c, the protocol has completeness error at least 1/2. Moreover, sinceΠMeasure

does not check anything on the Hadamard round, a cheating prover can give up
passing the testing round and breaks the commitment on the Hadamard round,

17 Compared to Claim 7.1 of [30], we don’t have a ph,H term here. This is because on
rejecting a Hadamard round, the verifier can output a uniformly random string, and
that is same as the result of measuring h on the totally mixed state.
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with only a constant 1/2 probability of being caught. However, we can show that
Πint has a binding property similar to ΠMeasure: if a cheating prover P ∗int passes
the testing round with overwhelming probability whenever it doesn’t abort on
the second message, then the corresponding output (d, z) ← (P ∗int, Vint) is close
to (d, zideal). Recall the ideal output is{

zideal = ⊥ if d = Rej

zideal ← Dx if d = Acc.

This binding property is formalized in Theorem 6. Intuitively, the proof of The-
orem 6 combines the binding property of Protocol 2 (Lemma 1) and ΠSamp’s
soundness (Theorem 5). There is a technical issue that Protocol 2 allows the
prover to abort while Protocol 1 does not. This issue is solved by constructing
another BQP prover P ∗ for every cheating prover P ∗int. Specifically, P ∗ uses P ∗int’s
strategy when it doesn’t abort, otherwise honestly chooses the totally mixed
state for the verifier to measure.

Theorem 6 (binding property of Πint). Let P ∗int be a cheating BQP prover
for Πint and λ be the security parameter. Suppose that Pr [d = Acc | y 6= ⊥, c = 0]
is overwhelming, under the QLWE assumption, then the verifier’s output in the
Hadamard round is O(ε)-computationally indistinguishable from (d, zideal).

Proof (Theorem 6). We first introduce the dummy strategy for ΠMeasure, where
the prover chooses ρ as the maximally mixed state and executes the rest of
the protocol honestly. It is straightforward to verify that this prover would be
accepted in the testing round with probability 1 − negl(λ), but has negligible
probability passing the verification after the Hadamard round.

Now we construct a cheating BQP prover for Protocol 2, P ∗, that does the
same thing as P ∗int except at Step 3, where the prover and verifier runs Protocol 1.
P ∗ does the following in Step 3: for the second message, run (y, σ)← P∗int,2(pk, ρ).
If y 6= ⊥, then reply y; else, run the corresponding step of the dummy strategy
and reply with its results. For the fourth message, if y 6= ⊥, run and reply with
a← P∗int,4(pk, c, σ); else, continue the dummy strategy.

In the following we fix an x. Let the distribution on h specified in Step 1 of the
protocol be px(h). Define P ∗sub(x) as P ∗’s response in Step 3. Note that we can
view P ∗sub(x) as a prover strategy for Protocol 1. By construction P ∗sub(x) passes
testing round with overwhelming probability over px(h), i.e.

∑
h px(h)ph,T =

negl(λ), where ph,T is P ∗’s probability of getting accepted by the prover on the
testing round on basis choice h. By Lemma 1 and Cauchy’s inequality, there
exists some ρ such that

∑
h px(h) ‖vh −MXZ(ρ, h)‖c = negl(λ), where we use

‖A−B‖c = α to denote that A is α-computational indistinguishable to B.
Therefore v =

∑
h px(h)vh is computationally indistinguishable to

∑
h px(h)MXZ(ρ, h).

Combining it withΠSamp’s soundness (Theorem 5), we see that (d′, z′)← (P ∗, Vint)(1
λ, 11/ε, x)

is ε-computationally indistinguishable to (d′, z′ideal).
Now we relate (d′, z′) back to (d, z). First, conditioned on that P ∗int aborts,

since dummy strategy will be rejected with overwhelming probability in Hadamard
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round, we have (d′, z′) is computationally indistinguishable to (Rej,⊥) = (d, z).
On the other hand, conditioned on P ∗int not aborting, clearly (d, z) = (d′, z′).
So (d, z) is computationally indistinguishable to (d′, z′), which in turn is O(ε)-
computationally indistinguishable to (d′, z′ideal). Since ‖d− d′‖tr = O(ε), (d, zideal)
is O(ε)-computationally indistinguishable to (d′, z′ideal). Combining everything,
we conclude that (d, z) is O(ε)-computationally indistinguishable to (d, zideal).

4.2 QPIP0 protocol for SampBQP

We now introduce our QPIP0 protocol ΠFinal for SampBQP. It is essentially a
m-fold parallel repetition of Πint, from which we uniformly randomly pick one
copy to run Hadamard round to get our samples and run testing round on all
other m−1 copies. Intuitively, if the server wants to cheat by sending something
not binding on some copy, he will be caught when that copy is a testing round,
which is with probability 1−1/m. This over-simplified analysis does not take into
account that the server might create entanglement between the copies. Therefore,
a more technically involved analysis is required.

In the description of our protocol below, we describe Πint and ΠMeasure in
details in order to introduce notations that we need in our analysis.

Protocol 3 QPIP0 protocol ΠFinal for the SampBQP problem (Dx)x∈{ 0,1 }∗

Inputs:

– Security parameter 1λ for λ ∈ N.
– Accuracy parameter 11/ε for the SampBQP problem.
– Input x ∈ {0, 1}poly(λ) for the SampBQP instance.

Ingredient: Let m = O(1/ε2) be the number of parallel repetitions to run.

Protocol:

1. The verifier generatesm independent copies of basis choices ~h = (h1, . . . , hm),
where each copy is generated as in Step 1 of Πint.

2. The prover prepares ρ⊗m; each copy of ρ is prepared as in Step 2 of Πint.
3. The verifier generates m key pairs for ΠMeasure, ~pk = (pk1, . . . , pkm) and

~sk = (sk1, . . . , skm), as in Step 1 of ΠMeasure. It sends ~pk to the prover.
4. The prover generates ~y = (y1, . . . , ym) and σ as in Step 2 of ΠMeasure. It sends
~y to the verifier.

5. The verifier samples r
$←− [m] which is the copy to run Hadamard round

for. For 1 ≤ i ≤ m, if i 6= r then set ci ← 0, else set ci ← 1. It sends
~c = (c1, . . . , cm) to the prover.

6. The prover generates ~a as in Step 4 of ΠMeasure, and sends it back to the
verifier.
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7. The verifier computes the outcome for each round as in Step 4 of Πint. If any
of the testing round copies are rejected, the verifier outputs (Rej,⊥). Else,
it outputs the result from the Hadamard round copy.

By inspection, ΠFinal is a QPIP0 protocol for SampBQP with negligible complete-
ness error. To show that it is computationally sound, we first use the partition
lemma from [15].

Intuitively, the partition lemma says that for any cheating prover and for each
copy i ∈ [m], there exist two efficient “projectors” 18 G0,i and G1,i in the prover’s
internal space with G0,i+G1,i ≈ Id. G0,i and G1,i splits up the prover’s residual
internal state after sending back his first message. G0,i intuitively represents the
subspace where the prover does not knows the answer to the testing round on the
i-th copy, while G1,i represents the subspace where the prover does. Note that the
prover is using a single internal space for all copies, and every G0,i and every G1,i

is acting on this single internal space. By using this partition lemma iteratively,
we can decompose the prover’s internal state |ψ〉 into sum of subnormalized
states. First we apply it to the first copy, writing |ψ〉 = G0,1 |ψ〉 + G1,1 |ψ〉 ≡
|ψ0〉+ |ψ1〉. The component |ψ0〉 would then get rejected as long as the first copy
is chosen as a testing round, which occurs with pretty high probability. More
precisely, the output corresponding to |ψ0〉 is 1/m-close to the ideal distribution
that just rejects all the time. On the other hand, |ψ1〉 is now binding on the first
copy; we now similarly apply the partition lemma of the second copy to |ψ1〉. We
write |ψ1〉 = G0,2 |ψ1〉+G1,2 |ψ1〉 ≡ |ψ10〉+ |ψ11〉, and apply the same argument
about |ψ10〉 and |ψ11〉. We then continue to decompose |ψ11〉 = |ψ110〉 + |ψ111〉
and so on, until we reach the last copy and obtain |ψ1m〉. Intuitively, the |ψ1m〉
term represents the “good” component where the prover knows the answer to
every testing round and therefore has high accept probability. Therefore, |ψ1m〉
also satisfies some binding property, so the verifier should obtain a measurement
result of some state on the Hadamard round copy, and the analysis from the
QPIP1 protocol ΠSamp follows.

However, the intuition that |ψ1m〉 is binding to every Hadamard round is
incorrect. As G1,i does not commute with G1,j , |ψ1m〉 is unfortunately only
binding for the m-th copy. To solve this problem, we start with a pointwise
argument and fix the Hadamard round on the i-th copy where |ψ1i〉 is binding,
and show that the corresponding output is O(‖|ψ1i−10〉‖)-close to ideal. We can
later average out this error over the different choices of i, since not all ‖|ψ1i−10〉‖
can be large at the same time. Another way to see this issue is to notice that
we are partitioning a quantum state, not probability events, so there are some
inconsistencies between our intuition and calculation. Indeed, the error we get
in the end is O(

√
1/m) instead of the O(1/m) we expected.

Also a careful reader might have noticed that the prover’s space don’t al-
ways decompose cleanly into parts that the verifier either rejects or accepts with
high probability, as there might be some states that is accepted with mediocre

18 Actually they are not projectors, but for the simplicity of this discussion let’s assume
they are.
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probability. As in [15], we solve this by splitting the space into parts that are
accepted with probability higher or lower than a small threshold γ and applying
Marriott-Watrous [31] amplification to boost the accept probability if it is big-
ger than γ, getting a corresponding amplified prover action Ext. However, states
with accept probability really close to the threshold γ can not be classified, so
we average over randomly chosen γ to have G0,i + G1,i ≈ Id. Now we give a
formal description of the partition lemma.

Lemma 2 (partition lemma; revision of Lemma 3.5 of [15]19). Let λ
be the security parameter, and γ0 ∈ [0, 1] and T ∈ N be parameters that will be
related to the randomly-chosen threshold γ. Let (U0, U) be a prover’s strategy in a
m-fold parallel repetition of ΠMeasure

20, where U0 is how the prover generates ~y on
the second message, and U is how the prover generates ~a on the fourth message.
Let HX,Z be the Hilbert space of the prover’s internal calculation. Denote the
string 0i−110m−i ∈ {0, 1}m as ei, which corresponds to doing Hadamard round
on the i-th copy and testing round on all others.

For all i ∈ [m], γ ∈
{
γ0
T ,

2γ0
T , . . . , Tγ0T

}
, there exist two poly(1/γ0, T, λ)-

time quantum circuit with post selection21 G0,i,γ and G1,i,γ such that for all
(possibly sub-normalized) quantum states |ψ〉X,Z ∈ HX,Z, properties 1 2 3 4, to
be described later, are satisfied. Before we describe the properties, we introduce
the following notations:

|ψ0,i,γ〉X,Z :=G0,i,γ |ψ〉X,Z , (4.1)

|ψ1,i,γ〉X,Z :=G1,i,γ |ψ〉X,Z , (4.2)

|ψerr,i,γ〉X,Z := |ψ〉X,Z − |ψ0,i,γ〉X,Z − |ψ1,i,γ〉X,Z . (4.3)

Note that G0,i,γ and G1,i,γ has failure probabilities, and this is reflected by the
fact that |ψ0,i,γ〉X,Z and |ψ1,i,γ〉X,Z are sub-normalized. G0,i,γ and G1,i,γ depend

on (U0, U) and ~pk, ~y.
The following properties are satisfied for all i ∈ [m]:

19 G0 and G1 of this version are created from doing G of [15] and post-selecting on the
ph, th, in register being 0t01 or 0t11 then discard ph, th, in. Property 1 corresponds
to Property 1. Property 2 corresponds to Property 4, with 2m−1 changes to m − 1
because we only have m possible choices of ~c. Property 3 corresponds to Property 5.
Property 4 comes from the fact that G0 and G1 are post-selections of orthogonal
results of the same G.

20 A m-fold parallel repetition of ΠMeasure is running step 3 4 5 6 of Protocol 3 with
verifier input ~h and prover input ρ⊗n, followed by an output step where the verifier
rejects if any of the m − 1 testing round copies is rejected, otherwise outputs the
result of the Hadamard round copy.

21 A quantum circuit with post selection is composed of unitary gates followed by a
post selection on some measurement outcome on ancilla qubits, so it produces a sub-
normalized state, where the amplitude square of the output state is the probability
of post selection.
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1.

E
γ
‖ |ψerr,i,γ〉X,Z ‖

2 ≤ 6

T
+ negl(λ),

where the averaged is over uniformly sampled γ. This also implies

E
γ
‖ |ψerr,i,γ〉X,Z ‖ ≤

√
6

T
+ negl(λ) (4.4)

by Cauchy’s inequality.
2. For all ~pk, ~y, γ, and j 6= i, we have∥∥∥∥∥Pacc,i ◦ U |ej〉C |ψ0,i,γ〉X,Z

‖ |ψ0,i,γ〉X,Z ‖

∥∥∥∥∥
2

≤ (m− 1)γ0 + negl(λ), (4.5)

where Pacc,i are projector to the states that i-th testing round accepts with
pki, yi, including the last measurement the prover did before sending ~a. This
means that |ψ0,i,γ〉 is rejected by the i-th testing round with high probability.

3. For all ~pk, ~y, γ, and j 6= i, there exists an efficient quantum algorithm Exti
such that ∥∥∥∥∥Pacc,i ◦ Exti

(
|ej〉C |ψ1,i,γ〉X,Z
‖ |ψ1,i,γ〉X,Z ‖

)∥∥∥∥∥
2

= 1− negl(λ). (4.6)

This will imply that |ψ1,i,γ〉 is binding to the i-th Hadamard round.
4. For all γ, ∥∥∥|ψ0,i,γ〉X,Z

∥∥∥2 +
∥∥∥|ψ1,i,γ〉X,Z

∥∥∥2 ≤ ∥∥∥|ψ〉X,Z∥∥∥2 . (4.7)

Note that in property 3, we are using Exti instead of U because we use
amplitude amplification to boost the success probability.

We now decompose the prover’s internal state by using Lemma 2 iteratively.
Let |ψ〉 be the state the prover holds before he receives ~c; we denote the corre-
sponding Hilbert space as HX,Z. For all k ∈ [m], d ∈ {0, 1}k, γ = (γ1, . . . , γk)

where each γj ∈ { γ0T ,
2γ0
T , . . . , Tγ0T }, and |ψ〉 ∈ HX,Z, define

|ψd,γ〉 := Gdk,k,γk . . . Gd2,2,γ2Gd1,1,γ1 |ψ〉 .

For all i ∈ [m], we then decompose |ψ〉 into

|ψ〉 =

i−1∑
j=0

|ψ1j0,γ〉+ |ψ1i,γ〉+

i∑
j=1

|ψerr,j,γ〉 (4.8)

by using Equations (4.1) to (4.3) repeatedly, where |ψerr,i,γ〉 denotes the error
state from decomposing |ψ1i−1,γ〉.

We denote the projector in HX,Z corresponding to outputting string z when
doing Hadamard on i-th copy as Pacc,−i,z. Note that Pacc,−i,z also depends
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on ~pk, ~y, and (ski, hi) since it includes the measurement the prover did be-
fore sending ~a, verifier’s checking on (m − 1) copies of testing rounds, and the
verifier’s final computation from (ski, hi, yi, ai). Pacc,−i,z is a projector because
it only involves the standard basis measurements to get a and classical post-
processing of the verifiers. Also note that Pacc,−i,zPacc,−i,z′ = 0 for all z 6= z′,
and

∑
z Pacc,−i,z = Πj 6=iPacc,j ≤ Id.

We denote the string 0i−110m−i ∈ {0, 1}m as ei. The output string corre-
sponding to |ψ〉 ∈ HX,Z when c = ei is then

zi := E
pk,y

∑
z

‖Pacc,−i,zU |ei, ψ〉‖2 |z〉〈z|, (4.9)

where |ei, ψ〉 = |ei〉C |ψ〉X,Z and U is the unitary the prover applies on the last

round. Note that we have averaged over ~pk, ~y where as previously everything has
fixed ~pk and ~y.

By Property 2 of Lemma 2, it clearly follows that

Corollary 1 For all γ ∈ { γ0T ,
2γ0
T , . . . , Tγ0T }, and all i, j ∈ [m] such that j <

i− 1, we have∥∥∥∥∥∑
z

Pacc,−i,zU |ei, ψ1j0,γ〉

∥∥∥∥∥
2

≤ (m− 1)γ0 + negl(n).

Now we define

zgood,i = E
γ,pk,y

∑
z

∥∥Pacc,−i,zU |ei, ψ1i−11,γ〉
∥∥2 |z〉〈z| (4.10)

as the output corresponding to a component that would pass the i-th testing
rounds. We will show that it is O(‖|ψ1i−10〉‖)-close to zi. Before doing so, we
present a technical lemma.

Lemma 3. For any state |ψ〉, |φ〉 and projectors {Pz} such that PzPz′ = 0 for
all z 6= z′, we have

∑
z

|〈ψ|Pz|φ〉| ≤

√√√√∥∥∥∥∥∑
z

Pz |ψ〉

∥∥∥∥∥
2
√√√√∥∥∥∥∥∑

z

Pz |φ〉

∥∥∥∥∥
2

.

Proof. ∑
z

|〈ψ|Pz|φ〉| =
∑
z

|〈ψ|PzPz|φ〉| ≤
∑
z

‖〈ψ|Pz‖ ‖Pz |φ〉‖

≤
√∑

z

‖Pz |ψ〉‖2
√∑

z

‖Pz |φ〉‖2

≤

√√√√∥∥∥∥∥∑
z

Pz |ψ〉

∥∥∥∥∥
2
√√√√∥∥∥∥∥∑

z

Pz |φ〉

∥∥∥∥∥
2

,
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where we used Cauchy’s inequality on the first two inequalities and PzPz′ = 0
on the last one.

Corollary 2 For any state |ψ〉, |φ〉 and projectors {Pz} such that
∑
z Pz ≤ Id

and PzPz′ = 0 for all z 6= z′, we have∑
z

|〈ψ|Pz|φ〉| ≤ ‖ψ‖ ‖φ‖ .

Now we can estimate zi using zgood,i, with errors on the orders of ‖|ψ1i−10〉‖.
This error might not be small in general, but we can average it out later by con-
sidering uniformly random i ∈ [m]. The analysis is tedious but straightforward;
we simply expand zi and bound the terms that are not zgood,i.

Lemma 4.

tr|zi − zgood,i| ≤ E
pk,y,γ

[∥∥|ψ1i−10,γ〉
∥∥2 + 2

∥∥|ψ1i−10,γ〉
∥∥]

+O

(
m2

√
T

+m
√

(m− 1)γ0

)
.

Proof (Lemma 4). We take expectation of Equation (4.8) over γ

|ψ〉 = E
γ

i−1∑
j=0

|ψ1j0,γ〉+ |ψ1i,γ〉+

i∑
j=1

|ψerr,j,γ〉

 ,
and expand zi from Equation (4.9) as

zi = zgood,i + E
pk,y,γ

∑
z

i−1∑
k=0

〈ψ1k0,γ |U†Pacc,−i,zU
i−1∑
j=0

|ψ1j0,γ〉

+

i−1∑
k=0

〈ψ1k0,γ |U†Pacc,−i,zU |ψ1i,γ〉+

i−1∑
k=0

〈ψ1k0,γ |U†Pacc,−i,zU
i∑

j=1

|ψerr,j,γ〉

+ 〈ψ1i,γ |U†Pacc,−i,zU
i−1∑
j=0

|ψ1j0,γ〉+ 〈ψ1i,γ |U†Pacc,−i,zU
i∑

j=1

|ψerr,j,γ〉

+

i∑
k=1

〈ψerr,k,γ |U†Pacc,−i,zU
i−1∑
j=0

|ψ1j0,γ〉+

i∑
k=1

〈ψerr,k,γ |U†Pacc,−i,zU |ψ1i,γ〉

+

i∑
k=1

〈ψerr,k,γ |U†Pacc,−i,zU
i∑

j=1

|ψerr,j,γ〉

 |z〉〈z|,
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where we omitted writing out ei. Therefore we have

tr |zi − zgood,i| ≤ E
pk,y,γ

∑
z

i−1∑
k=0

i−1∑
j=0

∣∣〈ψ1k0,γ |U†Pacc,−i,zU |ψ1j0,γ〉
∣∣

+ 2

i−1∑
k=0

∣∣〈ψ1k0,γ |U†Pacc,−i,zU |ψ1i,γ〉
∣∣+ 2

i−1∑
k=0

i∑
j=1

∣∣〈ψ1k0,γ |U†Pacc,−i,zU |ψerr,j,γ〉
∣∣

+ 2

i∑
j=1

∣∣〈ψ1i,γ |U†Pacc,−i,zU |ψerr,j,γ〉
∣∣+

i∑
k=1

i∑
j=1

∣∣〈ψerr,k,γ |U†Pacc,−i,zU |ψerr,j,γ〉∣∣


by the triangle inequality. The last three error terms sum to O
(
m2
√
T

)
by Corol-

lary 2 and property 1 of Lemma 2. As for the first two terms, by Lemma 3 and
Corollary 1, we see that

∑
z

i−1∑
k=0

i−1∑
j=0

|〈ψ1k0,γ |U†Pacc,−i,zU |ψ1j0,γ〉|

≤
∑
z

|〈ψ1i−10,γ |U†Pacc,−i,zU |ψ1i−10,γ〉|+O
(
m2(m− 1)γ0

)
≤
∥∥|ψ1i−10,γ〉

∥∥2 +O
(
m2(m− 1)γ0

)
and similarly

∑
z

i−1∑
k=0

|〈ψ1k0,γ |U†Pacc,−i,zU |ψ1i,γ〉|

≤
∑
z

|〈ψ1i−10,γ |U†Pacc,−i,zU |ψ1i,γ〉|+O
(
m
√

(m− 1)γ0

)
≤
∥∥|ψ1i,γ〉

∥∥+O
(
m
√

(m− 1)γ0

)
.

Now let ztrue, as a mixed state, be the correct sample of the SampBQP
instance Dx, and let zideal,i = tr(zgood,i)ztrue. We show that zideal,i is close to
zgood,i.

Lemma 5. zgood,i is O(ε)-computationally indistinguishable to zideal,i, where
ε ∈ R is the accuracy parameter picked earlier in ΠFinal.

Proof (Lemma 5). For every i ∈ [m] and every prover strategy (U0, U) for ΠFinal,
consider the following composite strategy, Πcomp,i, as a prover for Πint. Note that
a prover only interacts with the verifier in Step 3 of Πint where ΠMeasure is run,
so we describe a prover’s action in terms of the four rounds of communication
in ΠMeasure.
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Πcomp,i tries to run U0 by taking the verifier’s input as the input to the
i-th copy of ΠMeasure in ΠFinal and simulating other m − 1 copies by himself.
The prover then picks a uniformly random γ and tries to generate |ψ1i−11,γ〉
by applying Gi,1,γGi−1,1,γ · · ·G2,1,γG1,1,γ . This can be efficiently done because
of Lemma 2 and our choice of γ0 and T in Theorem 7. If the prover fails to
generate |ψ1i−11,γ〉, he throws out everything and aborts by sending ⊥ back. On
the fourth round, If it’s a testing round the prover reply with the i-th register

of Exti
( |ej〉C|ψ1,i,γ〉X,Z

‖|ψ1〉X,Z‖

)
, where Exti is specified in property 3 of Lemma 2. If it’s

the Hadamard round the prover runs U and checks whether every copy except
the i-th copy would be accepted. If all m−1 copies are accepted, he replies with
the i-th copy, otherwise reply ⊥.

Denote the result we would get in the Hadamard round by zcomposite,i. By
construction, when Gi,1,γ . . . G1,1,γ succeeded, the corresponding output would
be zgood,i. Also note that this is the only case where the verifier won’t reject, so
zcomposite,i = zgood,i.

In the testing round, by property 3 of Lemma 2, the above strategy is
accepted with probability 1 − negl(n) when the prover didn’t abort. Since the
prover’s strategy is also efficient, by Theorem 6, zcomposite,i isO(ε)-computationally
indistinguishable to zideal,i.

Now we try to put together all i ∈ [m]. First let

z =
1

m

∑
i

zi =
1

m

∑
i

∑
z

|z〉〈z| · 〈ei, ψ|U†Pacc,−i,zU |ei, ψ〉,

which is the output distribution of ΠFinal. We also define the following accord-
ingly:

zgood :=
1

m

∑
i

zgood,i,

zideal :=
1

m

∑
i

zideal,i.

Notice that zideal is some ideal output distribution, which might not have the
same accept probability as z.

Theorem 7. Under the QLWE assumption, ΠFinal is a protocol for the SampBQP
problem (Dx)x∈{ 0,1 }∗ with negligible completeness error and is computationally
sound.22

Proof. Completeness is trivial. In the following we prove the soundness.
By Property 4 of Lemma 2, we have

‖|ψ〉‖2 ≥‖|ψ0,γ〉‖2 + ‖|ψ1,γ〉‖2

≥‖|ψ0,γ〉‖2 + ‖|ψ10,γ〉‖2 + ‖|ψ11,γ〉‖2

≥‖|ψ0,γ〉‖2 + ‖|ψ10,γ〉‖2 + · · ·+
∥∥|ψ1m−10,γ〉

∥∥2 + ‖|ψ1m,γ〉‖2 . (4.11)

22 The soundness and completeness of a SampBQP protocol is defined in Definition 3
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We have

tr |z − zgood| = tr

∣∣∣∣∣ 1

m

∑
i

(zi − zgood,i)

∣∣∣∣∣ ≤ 1

m

∑
i

tr |(zi − zgood,i)|

≤ 1

m

∑
i

[
E

pk,y,γ

[∥∥|ψ1i−10,γ〉
∥∥2 + 2

∥∥|ψ1i−10,γ〉
∥∥]

+ O

(
m2

√
T

+m
√

(m− 1)γ0

)]
≤ 1

m
+ 2

1√
m

+O

(
m2

√
T

+m
√

(m− 1)γ0

)
= O

(
1√
m

+
m2

√
T

+m
√

(m− 1)γ0

)
, (4.12)

where we used triangle inequality on the first inequality, Lemma 4 on the next
one, Equation 4.11 and Cauchy’s inequality on the last one. Setm = O(1/ε2), T =
O(1/ε2), γ0 = ε8. Combining Lemma 5 and Equation (4.12) by triangle inequal-
ity, we have z is O(ε)-computationally indistinguishable to zideal. Therefore,
(d, z) O(ε)-computationally indistinguishable to (d, zideal).

Theorem 1 follows as a corollary.

5 Generic Blindness Protocol Compiler for QPIP0

In this section, we present a generic protocol compiler that compiles any QPIP0

protocol Π = (P, V ) (with an arbitrary number of rounds) to a protocol Πblind =
(Pblind, Vblind) that achieve blindness while preserving the completeness, sound-
ness, and round complexity. At a high-level, the idea is simple: we simply run
the original protocol under a quantum homomorphic encryption QHE with the
verifier’s key. Intuitively, this allows the prover to compute his next message
under encryption without learning the underlying verifier’s message, and hence
achieves blindness while preserving the properties of the original protocol.

However, several issues need to be taking care to make the idea work. First,
since the verifier is classical, we need the quantum homomorphic encryption
scheme QHE to be classical friendly as defined in Definition ??. Namely, the
key generation algorithm and the encryption algorithm for classical messages
should be classical, and when the underlying message is classical, the ciphertext
(potentially from homomorphic evaluation) and the decryption algorithm should
be classical as well. Fortunately, the quantum homomorphic encryption scheme
of Mahadev [29] and Brakerski [12] are classical friendly. Moreover, Brakerski’s
scheme requires a weaker QLWE assumption, where the modulus is polynomial
instead of super-polynomial.

A more subtle issue is to preserve the soundness. Intuitively, the soundness
holds since the execution of Πblind simulates the execution of Π, and hence the
soundness of Π implies the soundness of Πblind. However, to see the subtle issue,
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let us consider the following naive compiler that uses a single key: In Πblind, the
verifier V initially generates a pair QHE key (pk, sk), sends pk and encrypted
input QHE.Enc(pk, x) to P . Then they run Π under encryption with this key,
where both of them use homomorphic evaluation to compute their next message.

There are two reasons that the compiled protocol Πblind may not be sound (or
even not blind). First, in general, the QHE scheme may not have circuit privacy ;
namely, the homomorphic evaluation may leak information about the circuit
being evaluated. Since the verifier computes his next message using homomor-
phic evaluation, a cheating prover P ∗blind seeing the homomorphically evaluated
ciphertext of the verifier’s message may learn information about the verifier’s
next message circuit, which may contain information about the secret input x
or help P ∗blind to break the soundness. Second, P ∗blind may send invalid ciphertexts
to V , so the execution of Πblind may not simulate a valid execution of Π.

To resolve the issue, we let the verifier switch to a fresh new key for each
round of the protocol.23 For example, when the prover Pblind returns the cipher-
text of his first message, the verifier Vblind decrypts the ciphertext, computes his
next message (in the clear), and then encrypt it using a fresh key pk′ and sends
it to Pblind. Note that a fresh key pair is necessary here to ensure blindness,
as decrypting uses information from the secret key. Since the verifier Vblind only
sends fresh ciphertexts to Pblind, this avoids the issue of circuit privacy. Addition-
ally, to allow Pblind to homomorphically evaluate its next message, Vblind needs
to encrypt the previous secret key sk under the new public key pk′ and send
it along with pk′ to Pblind. This allows the prover to homomorphically convert
ciphertexts under key pk to ciphertexts under key pk′. By doing so, we show that
for any cheating prover P ∗blind, the interaction (P ∗blind, Vblind) indeed simulates a
valid interaction of (P ∗, V ) for some cheating P ∗, and hence the soundness of
Π implies the soundness of the compiled protocol. Finally, for the issue of the
prover sending invalid ciphertexts, we note that this is not an issue if the decryp-
tion never fails, which can be achieved by simply let the decryption algorithm
output a default dummy message (e.g., 0) when it fails.

We note that the idea of running the protocol under homomorphic encryp-
tions is used in [16] in a classical setting, but for a different purpose of making
the protocol “computationally simulatable” in their context.

We proceed to present our compiler. We start by introducing the notation of
a QPIP0 protocol Π as follows.

Protocol 4 QPIP0 protocol Π = (P, V )(x) where only the verifier receives
outputs

23 An alternative strategy is to assume circuit privacy of QHE. This seems to require
many additional properties such as malicious circuit privacy with efficient simula-
tion and extraction when QHE.Keygen is honest and secret key is available, multi-hop
evaluation, and classical QHE.Eval on classical ciphertexts and circuits. While exist-
ing constructions such as [14] achieves some of these properties, we are unsure if any
construction satisfies all of these requirements.
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Common inputs24:

– Security parameter 1λ where λ ∈ N
– A classical input x ∈ {0, 1}poly(λ)

Protocol:

1. V generates (v1, stV,1)← V1(1λ, x) and sends v1 to the prover.

2. P generates (p1, stP,1)← P1(1λ, v1, x) and sends p1 to the verifier.

3. for t = 2, . . . , T :

(a) V generates (vt, stV,t)← Vt(pt−1, stV,t−1) and sends vt to the prover.

(b) P generates (pt, stP,t)← Pt(vt, stP,t−1) and sends pt to the verifier.

4. V computes its output o← Vout(pT , stV,T ).

We compile the above protocol to achieve blindness as follows. For notation,
when there are many sets of QHE keys in play at the same time, we use x̂(i) to
denote x encrypted under pki.

Protocol 5 Blind QPIP0 protocol Πblind = (Pblind, Vblind(x)) corresponding to Π0

Inputs:

– Common input: Security parameter 1λ where λ ∈ N
– Verifier’s input: x ∈ {0, 1}poly(λ)

Ingredients:

– Let L be the maximum circuit depth of Pt.

Protocol:

1. Vblind generates (v1, stV,1)← V1(1λ, x). Then it generates (pk1, sk1)← QHE.Keygen(1λ, 1L),

and encrypts x̂(1) ← QHE.Enc(pk1, x) and v̂
(1)
1 ← QHE.Enc(pk1, v1). It sends

pk1, x̂(1), and v̂
(1)
1 to the prover.

2. Pblind generates (p̂
(1)
1 , ŝt

(1)

P,1)← Pblind,1(1λ, v̂
(1)
1 , x̂(1)) by evaluating (p̂

(1)
1 , ŝt

(1)

P,1)←
QHE.Eval(pk,P1, QHE.Enc(pk1, 1

λ), v̂
(1)
1 , x̂(1)). It sends p̂

(1)
1 to the verifier.

3. for t = 2, . . . , T :

(a) Vblind decrypts the prover’s last message by pt−1 ← QHE.Dec(skt−1, p̂
(t−1)
t−1 ),

then generates (vt, stV,t)← Vt(pt−1, stV,t−1). Then it generates (pkt, skt)←
QHE.Keygen(1λ, 1L), and produces encryptions v̂

(t)
t ← QHE.Enc(pkt, vt)

and ŝk
(t)

t−1 ← QHE.Enc(pkt, skt−1). It sends pkt, v̂
(t)
t , and ŝk

(t)

t−1 to the
prover.

24 For the sake of simplicity, we omit accuracy parameter ε where it exists
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(b) Pblind generates (p̂
(t)
t , ŝt

(t)

P,t)← Pblind,t(v̂
(t)
t , ŝk

(t)

t−1, ŝt
(t−1)
P,t−1) by first switch-

ing its encryption key; that is, it encrypts its state under the new key by

ŝt
(t−1,t)
P,t−1 ← QHE.Enc(pkt, ŝt

(t−1)
P,t−1)), then homomorphically decrypts the

old encryption by ŝt
(t)

P,t−1 ← QHE.Eval(pkt,QHE.Dec, ŝk
(t)

t−1, ŝt
(t−1,t)
P,t−1 ).

Then it applies the next-message function homomorphically, generating

(p̂
(t)
t , ŝt

(t)

P,t) ← QHE.Eval(pkt,Pt, v̂(t)t , ŝt
(t)

P,t−1). It sends p̂
(t)
t back to the

verifier.
4. Vblind decrypts the prover’s final message by pT ← QHE.Dec(skT , p̂

(T )
T ). It

then computes its output o← Vout(pT , stV,T ).

By the correctness of QHE, the completeness error of Πblind is negligibly close
to that of Π. In particular, note that the level parameter L is sufficient for the
honest prover which has a bounded complexity. For the soundness property, we
show the following lemma, which implies that Πblind preserves the soundness of
Π0.

Theorem 8. For all cheating BQP provers P ∗blind, there exists a cheating BQP
prover P ∗ s.t. for all λ and inputs x ∈ {0, 1}poly(λ), the output distributions of
(P ∗blind, Vblind(x)) and (P ∗, V )(x) are identical.

Proof. We define P ∗ as follows.
For the first rounds, it generates (pk1, sk1)← QHE.Keygen(1λ, 1L), then pro-

duces the encryptions x̂(1) ← QHE.Enc(pk1, x) and v̂
(1)
1 ← QHE.Enc(pk1, v1).

It then runs (p̂
(1)
1 , ŝt

(1)

P,1) ← Pblind,1(1λ, v̂
(1)
1 , x̂(1)). Finally, it decrypts p1 ←

QHE.Dec(sk1, p̂
(1)
1 ) and sends it back to the verifier, and keeps ŝt

(1)

P,1 and sk1.

For the other rounds, it generates (pkt, skt)← QHE.Keygen(1λ, 1L), and pro-

duces ciphertexts v̂
(t)
t ← QHE.Enc(pkt, vt)) and ŝk

(t)

t−1 ← QHE.Enc(pkt, skt−1).

It then runs (p̂
(t)
t , ŝt

(t)

P,t) ← Pblind,t(v̂
(t)
t , ŝk

(t)

t−1, ŝt
(t−1)
P,t−1). Finally, it decrypts

pt ← QHE.Dec(skt, p̂
(1)
t ) and sends it back to the verifier, and keeps ŝt

(t)

P,t and
skt.

By construction, the experiments (P ∗blind, Vblind(x)) and (P ∗, V )(x) are iden-
tical.

Finally, we show the blindness of Πblind through a standard hybrid argument
where the ski’s are “erased” one by one, starting from skT . Once sk1 is eventually
erased, QHE.Enc(pk1, x) and QHE.Enc(pk1, 0) become indistinguishable due to
the IND-CPA security of QHE.Enc. We now fill in the details.

Theorem 9. Under the QLWE assumption with polynomial modulus, Πblind is
blind.

Proof. We show that for all cheating BQP provers P ∗, λ ∈ N, x ∈ {0, 1}n, P ∗

cannot distinguish (P ∗, Vblind(x))(1λ) from (P ∗, Vblind(0
n))(1λ) with noticeable

probability in λ. We use a hybrid argument; let HybxT+1 = (P ∗, Vblind(x))(1λ)
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and Hyb0
T+1 = (P ∗, Vblind(0

n))(1λ). For 2 ≤ t < T + 1, define Hybxt to be the

same as Hybxt+1, except when Vblind should send v̂
(t)
t and ŝk

(t)

t−1, it instead sends
encryptions of 0 under pkt. We define Hybx1 to be the same as Hybx2 except the

verifier sends encryptions of 0 under pk1 in place of x̂(1) and v̂
(1)
1 . We define

Hyb0
t similarly. Note that Hybx1 and Hyb0

1 are identical.
For all t, from the perspective of the prover, as it receives no information

on skt, Hybxt+1 is computationally indistinguishable from Hybxt due to the CPA
security of QHE under pkt. By a standard hybrid argument, we observe that Hybx1
is computationally indistinguishable with HybxT+1. We use the same argument for

the computational indistinguishability between Hyb0
1 and Hyb0

T+1. We conclude

that P ∗ cannot distinguish between HybxT+1 and Hyb0
T+1, therefore Πblind is

blind.

Applying our compiler to the parallel repetition of Mahadev’s protocol for
BQP from [7, 15] and our QPIP0 protocol ΠFinal from Protocol 3 for SampBQP
yields the first constant-round blind QPIP0 protocol for BQP and SampBQP,
respectively.

Theorem 10. Under the QLWE assumption, there exists a blind, four-message
QPIP0 protocol for all languages in BQP with negligible completeness and sound-
ness errors.

Theorem 11. Under the QLWE assumption, there exists a blind, four-message
QPIP0 protocol for all sampling problems in SampBQP with negligible complete-
ness error and computational soundness.
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