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Abstract. Succinct non-interactive arguments of knowledge (SNARKs) are cryp-
tographic proofs with strong efficiency properties. Applications of SNARKs often
involve proving computations that include the SNARK verifier, a technique called
recursive composition. Unfortunately, SNARKs with desirable features such as
a transparent (public-coin) setup are known only in the random oracle model
(ROM). In applications this oracle must be heuristically instantiated and used in a
non-black-box way.
In this paper we identify a natural oracle model, the low-degree random oracle
model, in which there exist transparent SNARKs for all NP computations relative
to this oracle. Informally, letting O be a low-degree encoding of a random oracle,
and assuming the existence of (standard-model) collision-resistant hash functions,
there exist SNARKs relative to O for all languages in NPO . Such a SNARK can
directly prove a computation about its own verifier.
To analyze this model, we introduce a more general framework, the linear code
random oracle model (LCROM).
We show how to obtain SNARKs in the LCROM for computations that query the
oracle, given an accumulation scheme for oracle queries. Then we construct such
an accumulation scheme for the special case of a low degree random oracle.

Keywords: succinct non-interactive arguments; random oracle model; accumula-
tion schemes

1 Introduction

Succinct non-interactive arguments (SNARGs) are short cryptographic proofs of NP
computations. Many SNARG constructions also have the property of succinct verifica-
tion: a SNARG proof can be verified faster than the original NP witness. This property
leads to exciting applications, and one that has received much attention recently, and
motivates this paper, is recursive proof composition.

Recursive proof composition is a general technique for “bootstrapping” a SNARG
of knowledge (SNARK) into an incremental proof system for ongoing computations
[BCCT13]. This technique can be used to build incrementally-verifiable computation
(IVC) [Val08] and proof-carrying data (PCD) [CT10]. The basic idea is relatively simple:
to prove t steps of a computation, prove the NP statement “step t of the computation is
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correct, and there exists a proof of correctness for the previous t− 1 steps”. Clearly this
is an incremental proof: this statement depends only on a single step of the computation
and the previous proof.

This technique is “recursive” in that it uses the SNARK to prove a statement about
its own verifier. The succinct verification property ensures that the statement size can be
bounded independently of t. This “non-black-box” use of the SNARK verifier leads to
theoretical and practical issues, which we now discuss.

The first efficient approach to recursive composition [BCTV14] was based on a
class of pairing-based SNARKs (which includes [Gro10; GGPR13; BCI+13; Gro16;
GKM+18]) that are proven secure under knowledge assumptions or in the generic bilinear
group model. This family of constructions yields extremely small proofs and highly
efficient verification, but has two significant limitations.

First, all such constructions rely on a secret setup: sampling the structured reference
string involves secret trapdoor values (“toxic waste”) that can be used to attack the
scheme. Hence the security of the system depends on these values being discarded —
but this is difficult to ensure, even when accounting for the cryptographic ceremonies
that researchers have designed to mitigate this sampling problem [BCG+15; BGG17;
BGM17; ABL+19]. Second, efficient recursion for these SNARKs relies on pairing-
friendly cycles of elliptic curves. Only a single construction of such cycles is known, and
that cycle’s curves have undesirable algebraic properties that weaken their security.

A flurry of recent work has focused on developing new techniques that avoid both of
these drawbacks [BGH19; COS20; BCMS20; BCL+21; BDFG20; KST21]. However,
all of the proposed schemes share an unfortunate detail: they rely on proving statements
about computations that query random oracles.

To see how this arises, we consider as an example the construction of [COS20]
(the other schemes work in different ways but the issue is the same in each case). This
work presents a SNARK that is secure in the random oracle model, and then applies
the recursive composition technique to obtain IVC and PCD. This entails giving a
SNARK proof about a verifier that queries the random oracle. It is not known whether
there exist SNARKs for such computations in the random oracle model. To avoid this
issue, [COS20] performs a heuristic step: they assume that there exists a concrete hash
function which yields a secure SNARK when used in place of the random oracle. Under
this assumption they obtain a SNARK in the standard model, which can be (provably)
recursively composed. All of the cited constructions have similar heuristic steps.

This leads to a natural question: can we retain the benefits of these new constructions
without this heuristic step? One approach would be to attempt to design better schemes in
the standard or generic group models, but there has been little progress in this direction.
In this work we propose a new approach: to build a SNARK in an oracle model which
can prove statements about its own oracle. Such an oracle model admits a proof of
security for recursive composition “within the model”, without any heuristic step.

Of course, the resulting system is proven secure only in an idealized model. Nonethe-
less, we argue that a black-box security proof in an oracle model has several advantages.

– Flexibility. The heuristic step in prior constructions requires instantiating the oracle
via an efficient circuit. This rules out certain oracle instantiations, such as multi-party
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protocols or hardware tokens. In contrast, any instantiation of the oracle is possible if
the oracle is used as a black box by the construction.

– Efficiency. The random oracle is typically instantiated in practice via a concrete
“unpredictable” hash function such as SHA-3 or BLAKE. Unfortunately, producing
SNARKs about these functions is expensive. This has motivated a line of work on
hash functions designed to be more efficient for SNARKs [AD18; ACG+19; GKR+19;
AABS+19; AGP+19]. These new constructions have received far less scrutiny and
cryptanalysis than standard hash functions. Our approach offers a possible alternative:
if we can make only black-box use of the oracle, then we do not need to worry about
an instantiation’s “SNARK-friendliness”.

– Understanding security. What should be the standard-model analogue of a security
property in the ROM? Choosing the correct heuristic assumption is a balancing act
between the requirements of the standard model proof and what can be justified by
the idealized proof. There are typically many details here, and the precise choice of
assumption can affect the validity of the result. In the worst case, security flaws might
be hidden in the heuristic step! In contrast, security proofs in idealized models provide
clear “end-to-end” guarantees. Finally, heuristic assumptions make it difficult to assess
the concrete security of a scheme, while security proofs in idealized models often lead
to concrete security expressions (the random oracle model is an excellent example of
this).

1.1 Our results

Our main result is to identify a natural oracle model, the low-degree random oracle
model, in which there exist SNARKs for all NP computations relative to the same
oracle. That is, there is a distribution over oracles O such that, assuming the existence
of (standard-model) collision-resistant hash functions, there exist SNARKs relative to O
for all languages in NPO.

We first introduce a more general model we call the linear code random oracle
model, and investigate its structural and cryptographic properties. We then describe our
construction of SNARKs in the low-degree random oracle model. This construction
makes use of an accumulation scheme for queries to the oracle, which we consider to be
of independent interest. We now discuss these contributions in more detail.

(1) Linear code random oracles. We introduce the linear code random oracle
model (LCROM) and study its structural and security properties. In the LCROM, all
parties have oracle access to a codeword ρ̂ sampled uniformly at random from a linear
code C ⊆ (D → F). We require that C have an associated efficient injective mapping
f : {0, 1}m → D such that the restriction of ρ̂ to im(f) is distributed as a uniformly
random function im(f)→ F. This property ensures that we can query the random oracle
by querying ρ̂ ◦ f . We show that, while there exist exponential separations between the
two models, all linear code random oracles are collision-resistant within im(f).

A low-degree random oracle is a linear code random oracle where C is a Reed-
Muller code: the space of evaluation tables of multivariate polynomials of bounded
(individual) degree. The polynomial structure of this code is important in several ways.
First, these oracles can be efficiently simulated, which directly implies that standard
model computational assumptions continue to hold in this model. Second, it allows
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for possible concrete instantiations via structured PRFs (see Section 2.1). Finally, our
accumulation scheme (and hence also our SNARK) relies on polynomial interpolation
to perform query reduction.

(2) Transparent SNARKs in the low-degree random oracle model. We show that,
if collision-resistant hash functions exist, there exist SNARKs in the low-degree random
oracle model (LDROM) that can prove NP computations relative to the same oracle.

Theorem 1. There exists a transparent SNARK in the LDROM for computations in the
LDROM, assuming the existence of collision-resistant hash functions in the standard
model.

The result is obtained by combining a SNARK in the LDROM for NP computations
without oracles and an accumulation scheme for oracle queries in the LDROM. For
the former component we use Micali’s construction of a SNARK in the random oracle
model [Mic00], whose security proof we adapt to the LDROM. The latter component is
a new scheme and a key contribution of this work; we discuss this next.

(3) Accumulation scheme for low-degree random oracle queries. An accumula-
tion scheme for an oracle θ is a primitive that allows a verifier, with the help of an
untrusted prover, to “store” oracle queries in an accumulator that can be efficiently
checked later by a decider. For non-triviality, we require that the verifier cannot query
the oracle, and that the size of the accumulator and the query complexity of the decider
be independent of the number of accumulated queries. This is a variation on the notion
of accumulation schemes for predicates as introduced by [BCMS20].

In this work, we build an accumulation scheme for the low-degree random oracle.
To do so, we build on a prior interactive query reduction protocol [KR08; CFGS18],
which reduces any number of queries to a low-degree polynomial to a single query via
interpolation. To obtain an accumulation scheme, we use a variant of the Fiat-Shamir
transformation to make (a variant of) the query reduction protocol non-interactive; this
introduces an additional oracle query which must also be accumulated. Proving security
of the accumulation scheme is the most technically involved part of this paper, and
requires developing new tools that we deem of independent interest; see Section 2.2 for
more details.

1.2 Related work

Below we summarize prior works related to idealized oracle models and accumulation
schemes.

Generic group model. Shoup [Sho97] introduced the generic group model (GGM),
an model which represents a prime-order group via two oracles: a random injection
L : Zp → {0, 1}k and a mapping from (L(x), L(y)) to L(x+ y). The generic bilinear
group model (GBM), introduced by Boneh and Boyen [BB04], augments this with
an oracle implementing a bilinear map. [ZZ21] shows that a generic group or generic
bilinear group oracle can be used to construct a random oracle by taking ρ(x) to be
the first (say) k/2 bits of L(x).4 A natural question, that we leave open for future

4 This result is sensitive to the way that the generic group is modelled; in particular, it is not
known to hold for the [Mau05] formalization of the GGM.
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work, is whether there exist SNARKs in the GGM/GBM that can prove GGM/GBM
computations.

Probabilistic proofs in relativized worlds. Chiesa and Liu [CL20] give several
impossibility results for probabilistic proofs in relativized worlds. They show that
there do not exist nontrivial PCPs (or IOPs) for computations relative to a variety of
types of oracle, including random oracles, generic group oracles, and, most relevant
to us, random low-degree polynomial oracles. It is argued that these separations give
evidence that SNARKs relative to these oracles do not exist. We view this work as
a counterpoint: the LDROM does not admit efficient PCPs but does admit SNARKs
(under a cryptographic assumption). This suggests that the relationship between PCPs
and SNARKs in relativized worlds is more complex than previously thought.

Algebrization. The notion low-degree random oracles is reminiscent of the alge-
brization framework [AW09], introduced to understand the algebraic techniques used to
prove non-relativizing results like PSPACE ⊆ IP. An example of an “algebrizing” inclu-
sion is that for every oracle θ, PSPACEθ ⊆ IPθ̂, where θ̂ is any low-degree extension of
θ. Note that the left side of the containment is relative to the original oracle, whereas the
right side is relative to θ̂. This is incomparable to our setting: on the one hand, we want
the same low-degree oracle on “both sides”; on the other hand, our results hold only
for specific choices of (distributions over) oracles. Nonetheless, some of our techniques
for analyzing linear code random oracles are inspired by the study of algebraic query
complexity in [AW09].

2 Techniques

We overview the main ideas behind our results. In Section 2.1 we introduce linear code
random oracles, as well as the special case of low-degree random oracles. In Section 2.2
we describe an accumulation scheme for queries to a low-degree random oracle. Then we
discuss technical tools that we use to establish the security of the accumulation scheme:
in Section 2.3 a forking lemma for algorithms that query any linear code random oracle;
and in Section 2.4 the hardness of a certain zero-finding game for low-degree random
oracles. Finally, in Section 2.5 we describe our SNARK construction that relativizes in
the random oracle model.

2.1 Linear code random oracles

We informally introduce the model of linear code random oracles, in which the oracle is
a uniformly random codeword of a linear code. Then, we explain why collision resistance
holds for the linear code random oracle. Finally we discuss a notable special case for
this paper, low-degree random oracles.

Definition. The (standard) random oracle model considers the setting where every
party (honest or malicious) is granted oracle access to the same random function. In this
paper we consider the setting where every party is granted oracle access to the same
random codeword sampled from a given linear code C.

Recall that a linear code C is a subspace of the vector space of functions from a
domain D to a field F. A linear code random oracle is a codeword ρ̂ : D → F chosen
uniformly at random from the code C.
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For cryptographic applications, it will be helpful to impose an additional requirement
on the code C, which we call the “full-rank” condition. Intuitively, the full-rank condition
ensures that there is an efficient embedding of the standard random oracle ρ in ρ̂.
More precisely, we require that C have an associated efficiently-computable injection
f : {0, 1}m → D for some m ∈ N known as the arity of (C, f). We require that the
restriction of C to the image of f has dimension 2m (equivalently, C is systematic on
im(f)). This ensures that the function ρ̂ ◦ f : {0, 1}m → F is uniformly random when
ρ̂ : D → F is uniformly random in C. In fact, we can view ρ̂ as a (randomized) systematic
encoding of the random oracle using C.

Definition 1 (informal). A linear code random oracle ρ̂ is an oracle drawn uniformly
at random from a full-rank linear code C. A C-oracle algorithm is an algorithm with
oracle access to c ∈ C. A systematic oracle algorithm is an oracle algorithm making
queries in {0, 1}m.

A systematic oracle algorithm is a C-oracle algorithm for any full-rank C via the
associated injection. If C is the space of all functions {0, 1}m → F (and f is the identity)
then we recover the standard random oracle.5

Query complexity. We wish to understand what additional power is granted to the
adversary by giving it access to an encoding of the random oracle.

A key difference between general linear code random oracles ρ̂ and the standard
random oracle ρ is that querying ρ̂ outside of {0, 1}m can yield information about
evaluations inside {0, 1}m that would otherwise be hard to obtain with a small number
of queries. To illustrate this, consider the full-rank linear code C ⊆ {0, 1}m ∪ {Σ} → F
(for a special symbol Σ), consisting of all functions c such that c(Σ) =

∑
a∈{0,1}m c(a).

Clearly, with oracle access to c ∈ C, one can determine
∑
a∈{0,1}m c(a) with a single

query. On the other hand, it is not hard to show that no algorithm making fewer than 2m

queries to the standard random oracle can compute this quantity.
Hence in general there is an exponential gap in query complexity between a lin-

ear code random oracle model and the standard random oracle model. What about
for problems of cryptographic interest? We show that linear code random oracles are
collision-resistant; in fact, having access to an encoding of the random oracle using a
linear code provides no advantage in collision finding.

Lemma 1. Given oracle access to ρ̂ ← C, a t-query adversary finds x, y ∈ {0, 1}m
such that ρ̂(x) = ρ̂(y) with probability at most t2/|F|.

Note that for this lemma to hold it is crucial that C be full-rank and that x, y are
restricted to {0, 1}m. Otherwise finding collisions may be very easy: consider the
repetition code {(α, α) : α ∈ F}. We will make use of the collision-resistance property
to prove security of our SNARK construction.

Low-degree random oracles. Our protocols rely on a special class of linear code
random oracles that we call low-degree random oracles, obtained by choosing C to be the
space F≤d[X1, . . . , Xm] of m-variate polynomials over F of individual degree at most
d ∈ N, evaluated over the domain Fm. This code is full-rank via the natural bijection

5 Setting F to be the field of size 2λ yields the more familiar definition of a random oracle
mapping {0, 1}m → {0, 1}λ; for generality we prefer not to fix the field choice.
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between {0, 1}m and {0F, 1F}m ⊆ Fm, because the latter is an interpolating set for the
space of multilinear polynomials.

There is an efficient and perfect stateful simulation of all low-degree random oracles
(for polynomial m, d) [BCF+17]. This implies that low-degree random oracles do not
grant any additional computational power; in particular, it does not impact any “standard
model” cryptography. We will use this fact in Section 2.2, where our accumulation
scheme will require a standard model collision-resistant hash function.

We briefly discuss the possibility of instantiating this model. Given that the low-
degree random oracle can be simulated efficiently, it can at least be implemented by a
trusted party or hardware token. A candidate cryptographic instantiation is to obfuscate
the algebraic pseudorandom functions of Benabbas, Gennaro and Vahlis [BGV11]. They
construct a pseudorandom function F : [d]m → G (for group G of prime order p) that
additionally allows, given the secret key, the efficient computation of group elements

P (x1, . . . , xm) =
∑

~a∈[d]m
F (~a) · xa11 · · ·xamm

for x1, . . . , xm ∈ Fp. Note that if F is a random function then P is uniformly random in
F≤dp [X1, . . . , Xm].6 Hence if F is pseudorandom, P is indistinguishable from a random
polynomial.

Another natural instantiation strategy is to start with some “strong” hash function
that we believe suffices to replace the random oracle in existing constructions, then
arithmetize it to obtain a polynomial that extends the hash function. Of course, all of the
security properties of the original hash function are maintained under this transforma-
tion. Unfortunately, directly arithmetizing a hash function yields a polynomial of quite
high degree: approximately 2D, where D is the circuit depth. The latter ranges from
25 to about 3000 for widely-used “strong” hash functions [Sma]. Since our SNARK
construction involves proving a statement of size linear in the degree, this cost becomes
prohibitive. While there exist techniques to reduce the degree of an arithmetization, these
modify the function significantly so that it no longer behaves like a low-degree random
oracle. We leave the question of instantiation via arithmetization to future work.

2.2 Accumulation scheme for low-degree random oracles

We describe our construction of an accumulation scheme for accumulating queries to
the low-degree random oracle. First we review the notion of an accumulation scheme.
Then we describe an interactive protocol based on the query-reduction technique for
IPCPs in [KR08; CFGS18], and how this leads, via the Fiat–Shamir transformation, to
our accumulation scheme. We conclude by discussing the challenges of proving security,
which motivates developing the new tools that we introduce in subsequent sections.

Review: accumulation schemes. We review the notion of an accumulation scheme
[BCMS20], stated for an arbitrary oracle distribution (rather than specifically for the
random oracle model) and specialized to the accumulation of oracle queries rather than
general predicates.

6 We view P as a polynomial over Fp via some isomorphism G → Fp (which need not be
efficiently computable).
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Definition 1. An accumulation scheme for queries to an oracle θ (sampled according
to some distribution) is a triple of algorithms (Pθ,V,Dθ), known as the prover, verifier,
and decider, that satisfies the following.
– Completeness: For all accumulators acc and query-answer pairs (x, α), if Dθ(acc) =

1 and θ(x) = α, then for (acc′, πV)← Pθ(x, α, acc) it holds that V(x, α, acc, acc′, πV) =
1 and Dθ(acc′) = 1.

– Soundness: For efficiently generated accumulators acc, acc′, query-answer pairs
(x, α) and accumulation proofs πV, if Dθ(acc′) = 1 and V(x, α, acc, acc′, πV) = 1
then θ(x) = α and Dθ(acc) = 1 with all but negligible probability.

The definition extends in a natural way to accumulate n query-answer pairs [(xi, αi)]
n
i=1

and m old accumulators [accj ]
`
j=1, as in the formal in Section 3.3. For simplicity, below

we present our accumulation scheme below for the case of general n and m = 1. Note
that we do not grant the accumulation verifier V access to the oracle θ — this is a key
requirement achieved by our construction and used in our applications.

Review: an interactive query reduction protocol. [KR08] describe an interactive
query reduction protocol for interactive PCPs (IPCPs), a class of probabilistic proofs;
subsequently, [CFGS18] adapted and simplified this protocol in their “low-degree” IPCP
model. We recast this simplified protocol as an interactive query reduction protocol in
the low-degree random oracle model.

Let ρ̂ : Fm → F be a polynomial of individual degree at most d (for now, ρ̂ need
not be random) and let [qi]

n
i=1 = {(x1, α1), . . . , (xn, αn)} be a list of (alleged) query-

answer pairs. The prover P wishes to convince the verifier V that ρ̂(xi) = αi for every
i ∈ [n], in a setting where both parties have oracle access to ρ̂. While the verifier V can
straightforwardly check this claim with n queries to ρ̂ (and no help from the prover P),
the protocol below enables the verifier V to check this claim with a single query to ρ̂ (up
to some soundness error). Let b1, . . . , bn ∈ F be a list of n distinct field elements, fixed
in advance.

1. Both P and V compute the unique polynomial g of degree less than n such that
g(bi) = xi for all i ∈ [n].

2. The prover P computes the composed polynomial f := ρ̂ ◦ g, and sends f : F→ F
to the verifier.

3. The verifier V chooses a random β ∈ F and checks that f(β) = ρ̂(g(β)) (by querying
ρ̂ at g(β)). Finally, the verifier V checks that f(bi) = αi for every i ∈ [n].

Observe that ρ̂ ◦ g is a univariate polynomial of degree less than nmd, and so the
communication complexity of this protocol is O(nmd · log |F|) bits. If the prover is
honest, then ρ̂(xi) = ρ̂(g(bi)) = f(bi) = αi for every i ∈ [n]. On the other hand, if a
cheating prover sends some polynomial f̃ 6= ρ̂◦g, then f̃(β) 6= ρ̂(g(β)) with probability
1− nmd

|F| over the choice of β ∈ F, in which case the verifier rejects.
Our accumulation scheme. We construct an accumulation scheme for accumulating

queries to the low-degree random oracle, based on the above query reduction protocol.
At a high level, the accumulation prover and verifier engage in the above query reduction
protocol, except that rather than directly checking that f̃(β) = ρ̂(g(β)), the prover
outputs the new accumulator acc′ := (g(β), f̃(β)) containing the query g(β) and
claimed answer f̃(β). The decider can check that acc′ contains a valid query-answer
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pair with a single query to the oracle ρ̂. Notice that because an accumulator consists of a
query-answer pair, we can simply include the old accumulator in the input to the query
reduction protocol as an extra pair (xn+1, αn+1).

The challenge now is that an accumulation scheme is a non-interactive protocol
while the above query-reduction protocol is interactive. Superficially, achieving non-
interactivity appears to be a standard application of the Fiat–Shamir transform [FS86]
because the interactive query-reduction protocol is public-coin. That is, since a low-
degree random oracle ρ̂ embeds a (standard) random oracle, the accumulation prover
can use that random oracle to generate the verifier’s random challenge β from the
composed polynomial f as β := ρ̂(x1, . . . , xn+1, f) (the embedding from binary strings
into the domain of ρ̂ is implicit). Note that we include x1, . . . , xn+1 as input to ρ̂ to
achieve adaptive security. However, this setting is quite different from the familiar one
for Fiat–Shamir: (i) the original interactive protocol already involves the oracle; (ii) the
oracle is a random low-degree oracle rather than a standard random oracle; and (iii) the
accumulation verifier cannot query ρ̂! We discuss the latter point in more detail next,
since resolving it requires modifying the construction; the other two points will be
addressed later when we discuss the security proof.

Since the accumulation verifier is not allowed to query the oracle (this is the point of
designing an accumulation scheme for oracle queries), it cannot check the query-answer
pair ((x1, . . . , xn+1, f), β) for correctness. The natural approach is to store the pair
((x1, . . . , xn+1, f), β) in the accumulator, so that an accumulator contains an additional
query-answer pair (xn+2, αn+2). Unfortunately, this results in the length of the Fiat–
Shamir query, and hence the accumulator, increasing without bound (it will simply con-
tain all accumulated queries). To address this, we rely on a succinct commitment scheme
Commit, and derive the challenge as β := ρ̂(C) for C := Commit(x1, . . . , xn+2, f)
instead. This ensures that the query to derive the challenge β does not grow in size with
each accumulation.

These considerations lead us to design the following accumulation scheme.

– Accumulation prover: P receives as input an old accumulator acc and a list of query-
answer pairs [(xi, αi)]

n
i=1, and outputs a new accumulator acc′ and accumulation

proof πV computed as follows.
1. Query-answer list. The old accumulator acc consists of two query-answer pairs,

which we denote by (xn+1, αn+1) and (xn+2, αn+2). Set the query-answer list
Q := [(xi, αi)]

n+2
i=1 .

2. Interpolate queries. Compute the unique polynomial g : F→ Fm of degree less
than n+ 2 such that g(bi) = xi for all i ∈ [n+ 2].

3. Compose polynomials. Compute the polynomial f := ρ̂ ◦ g.
4. Commit to polynomials. Compute the commitmentC := Commit(x1, . . . , xn+2, f).
5. Fiat–Shamir challenge. Compute the challenge β := ρ̂(C) ∈ F.
6. Output. Output the new accumulator acc′ := {(g(β), f(β)), (C, β)} and accumu-

lation proof πV := f .
– Accumulation verifier: V receives as input ([qi]

n
i=1, acc, acc

′, πV), where acc′ =
{(x, α), (C ′, β)}, and works as follows. Compute the query-answer list Q as in Step 1
of the prover, the polynomial g as in Step 2 of the prover and the commitment C
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as in Step 4 of the prover. Then check that C ′ = C, f(bi) = αi for all i ∈ [n + 2],
x = g(β), and α = f(β).

– Decider: D checks that the input accumulator acc = {(x, α), (C, β)} satisfies α =
ρ̂(x) and β = ρ̂(C).

Intuitively, the accumulation scheme is secure against efficient attackers because the
binding property of the commitment scheme ensures that setting the challenge β to ρ̂(C)
is as good as ρ̂(x1, . . . , xn+2, f), and the latter gives a random challenge based on the
prover’s first message of the interactive query-reduction protocol.

We remark that the commitment scheme is the only part of the construction that uses
cryptography outside of the oracle (i.e., is not information theoretic).

Zero-knowledge. Zero-knowledge for an accumulation scheme means that there
exists a simulator that can sample a new accumulator acci = {(x, α), (C, β)}, with-
out access to inputs [qi]

n
i=1 or an old accumulator acci−1. The accumulation scheme

described above is not zero knowledge, because acci includes the value g(β), which
depends on [qi]

n
i=1 and acci−1. To remedy this, we modify the accumulation scheme so

that the prover P additionally accumulates a random query xn+3 ∈ Fm. This ensures that
g(β) is uniformly random in Fm.7 We also require Commit to be a hiding commitment,
and include the commitment randomness in πV.

Finally, we note that if zero-knowledge is not required, then the commitment scheme
used by the prover to obtainC does not need to be hiding; in this case a collision-resistant
hash function suffices.

How to prove security?. Proving the security of the above accumulation scheme
is not straightforward, despite the intuition that underlies its design. The main dif-
ficulty is that existing tools for establishing security work for standard random ora-
cles rather than low-degree random oracles (e.g., security analyses of the Fiat–Shamir
transform). We develop new tools to overcome the above problems. We formulate a
zero-finding game lemma for low-degree random oracles, which shows that it is com-
putationally hard for an adversary to find f 6≡ ρ̂ ◦ g such that f(z) = (ρ̂ ◦ g)(z) for
z := ρ̂(Commit(x1, . . . , xn+2, f)). In order to prove this lemma, we additionally prove
a forking lemma for algorithms that query any linear code random oracle. We discuss
these next: first our forking lemma in Section 2.3, and then our zero-finding game lemma
in Section 2.4.

2.3 A forking lemma for linear code random oracles

We review a forking lemma for the standard random oracle, and then describe a new
forking lemma for any linear code random oracle.

Review: a forking lemma for random oracles. In cryptography a forking lemma
relates the probability of an adversary winning some game in multiple related executions,
as a function of the adversary’s winning probability in a single execution. Below we

7 Both [KR08] and [CFGS18] also add a random point to the curve. In contrast to our construction,
in both cases this point is added by the verifier to ensure soundness: the query-reduction protocol
is composed with a low-degree test, whose proximity guarantee holds only with respect to a
uniform query. In our setting, the oracle is guaranteed to be low degree.
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describe a forking lemma (based on [BN06]) that considers the setting of non-interactive
protocols with forks of size 2 via algorithms that run in strict time.8

Let p be a predicate that captures the winning condition. Consider an adversaryA that
queries the random oracle t times and produces an output (q, o) such that p(q, o, tr) = 1
with probability δ, where tr = {(q1, α1), . . . , (qt, αt)} are the query-answer pairs of A.
We think of q as the adversary’s “chosen” query, and o as some additional input to the
predicate p.

Now suppose that we additionally run A in a forked execution. Let i := FP(q, tr) ∈
[t] be the location of the query q in its query-answer list tr (abort if q does not appear in
tr). Consider the forking algorithm Fork that, given access to A and input (tr, i), works
as follows: (i) run A answering the first i− 1 queries to the random oracle according to
tr; (ii) answer subsequent queries uniformly at random; (iii) output the output (q′, o′) of
A and the query transcript tr′ induced by this execution of A.

The forking lemma below gives a lower bound on the probability that: (1) p(q, o, tr) =
1 (A wins the original game); (2) p(q′, o′, tr′) = 1 (A wins the game in the forked exe-
cution); (3) q = q′ (the queries output by A in the two related executions are equal).9

Lemma 1. Suppose that A is a t-query random oracle algorithm such that

δ := Pr
ρ

[
p(q, o, tr) = 1

∣∣ (q, o; tr)← Aρ
]
.

Then

Pr
ρ

 q = q′

∧ p(q, o, tr) = 1
∧ p(q′, o′, tr′) = 1

∣∣∣∣∣∣
(q, o; tr)← Aρ
i← FP(q, tr)

(q′, o′, tr′)← ForkA(tr, i)

 ≥ δ2/t .
Extending the forking lemma to any linear code random oracle. When extending

Lemma 1 to the linear code random oracle setting, a key difficulty is choosing the fork
point i. The role of the fork point is to ensure that the answer to query q is resampled in
the fork, while all prior queries stay the same. For the standard random oracle case, this
point is easy to find: it is simply the index of the query q.

Contrastingly, for linear code random oracles, recall from Section 2.1 that A may
learn the evaluation of unqueried points due to the structure of the code (e.g., if the code
is locally decodable). This makes it unclear at which query A learns the value of ρ̂(q),
or even if a single such query exists at all! We show that the linear structure of the code
C implies that there does exist a query qi at which A first learns the value of ρ̂ at q (and
before that A knows nothing about it); we define FPC(q, tr) := i.

8 The cryptography literature contains several types of forking lemmas, depending on aspects
such as: (i) they apply to interactive protocols (without any oracles) or non-interactive protocols
(in the random oracle model); (ii) they have a fork of size 2, or any size; (iii) the forking
algorithm runs in strict time or expected time. The specific setting that we study is motivated by
the present application, though we expect that the ideas for linear code random oracles that we
introduce will extend to other settings as well.

9 The bound that appears in [BN06] is ≥ δ2

t
− negl(λ). The negligible term arises from the

additional condition that tr(q) 6= tr′(q). Our applications of the forking lemma refer directly to
the distribution of tr′(q) and so we do not need this explicit condition.
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Can FPC be efficiently computed? Note thatA may try to obfuscate the fork point by
trying to learn ρ̂(q) in some complicated way via the structure of the code. The problem
of finding the fork point can be solved via constraint detection [BCF+17]: the fork point is
the first query i at which there is a linear constraint over the set {ρ̂(q1), . . . , ρ̂(qi), ρ̂(q)}.
For low-degree random oracles, we can implement FPC efficiently using the efficient
constraint detection algorithm for Reed–Muller codes of [BCF+17]. For many interesting
linear codes, efficient constraint detection is an open problem.

To state the forking lemma requires one additional consideration. Strictly speaking,
Lemma 1 holds only for adversaries that do not repeat queries (otherwise the adversary
can distinguish a fork from the original execution), which is without loss of generality.
In the LCROM, this restriction is not enough: the structure of the code might allow an
adversary to learn a single query point in a variety of ways. Instead we must restrict our
adversary further, so that it does not make any query whose answer it can already infer.
Any adversary can be converted into a non-redundant adversary via constraint detection;
hence we assume non-redundancy for efficient adversaries if C has efficient constraint
detection. Due to this complication we prefer to state the non-redundancy condition
explicitly in our forking lemma below.

Lemma 2. Let ρ̂ ← C be a linear code random oracle. Suppose that A is a t-query
non-redundant C-oracle algorithm such that

δ := Pr
ρ̂

[
p(q, o, tr) = 1

∣∣ (q, o; tr)← Aρ̂
]
.

Then

Pr
ρ̂

 q = q′ ∈ {0, 1}m
∧ p(q, o, tr) = 1
∧ p(q′, o′, tr′) = 1

∣∣∣∣∣∣
(q, o; tr)← Aρ̂
i← FPC(tr, q)

(q′, o′, tr′)← Fork(tr, i)

 ≥ δ2/t .
Note that the Fork algorithm here is the same as in Lemma 1, except that we choose

the random answers from the alphabet F of C.

2.4 A zero-finding game for low-degree random oracles

We review the zero-finding game for standard random oracles in [BCMS20], and then
we describe our variant for low-degree random oracles.

Review: a zero-finding game for the standard random oracle. Bünz, Chiesa,
Mishra, and Spooner [BCMS20] consider a zero-finding game where an efficient adver-
sary A with query access to a random oracle ρ is challenged to output a commitment
C and a non-zero polynomial f ∈ F≤d[X1, . . . , Xm] such that C is a commitment to f
and f(ρ(C)) = 0. Intuitively, the binding property of the commitment scheme implies
that A is unlikely to win the game because the polynomial f is “fixed” before A learns
the value of ρ(C), and so the probability that this value is a zero of f is small by the
Schwartz–Zippel lemma. Indeed, [BCMS20] shows that every efficient adversary A
that makes at most t queries to ρ wins with probability at most negligibly more than√

(t+ 1)md/|F| (note that md is the total degree of f ).
Their proof is based on the forking lemma for the standard random oracle (Lemma 1),

as we now sketch. We define the forking lemma predicate p(q, f, tr) to be satisfied if
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and only if: (i) f 6≡ 0; (ii) f(tr(q)) 6= 0; and (iii) q is a commitment to f . By increasing
the query complexity of A to t+ 1 we can ensure that q is in the support of tr. It follows
that if A wins the zero-finding game with probability δ, then it satisfies the premise of
Lemma 1, and so the forking experiment succeeds with probability at least δ2/(t+ 1).

Suppose that the forking experiment succeeds: we obtain (q, f, f ′, tr, tr′) such that
f and f ′ are non-zero polynomials that are both valid openings of the same commitment
q, and it holds that f(tr(q)) 6= 0 and f ′(tr′(q)) 6= 0. In the forked execution, tr′(q) is
sampled uniformly at random independently of f , and so Pr[f(tr′(q)) = 0] ≤ md/|F|.
If f = f ′ then the probability that p(q, f ′, tr′) is satisfied in this case is at most md/|F|;
if instead f 6= f ′, then we break the commitment scheme, which can occur with at most
negligible probability. Hence δ2/(t+ 1) ≤ md/|F|+ negl(λ); rearranging yields the
bound.

A zero-finding game for low-degree random oracles. We require a variant of the
zero-finding game to prove security of our accumulation scheme from Section 2.2. In
more detail, we want to bound the probability that an efficient adversary with query
access to a low-degree random oracle ρ̂ outputs a commitment C and two polynomials
f, g such that: (1) C is a commitment to (f, g); (2) f 6≡ ρ̂ ◦ g; and (3) the oracle answer
z := ρ̂(C) satisfies f(z) = (ρ̂ ◦ g)(z). For this we prove the following lemma.

Lemma 3 (informal). Let Commit be a binding commitment scheme, and let ρ̂ be a
low-degree random oracle defined over a field F. Then for every efficient t-query oracle
algorithm A,

Pr
ρ̂

 C = Commit(f, g;ω)
∧ f(X) 6≡ ρ̂(g(X))

∧ f(ρ̂(C)) = ρ̂(g(ρ̂(C)))

∣∣∣∣∣∣ (C, f, g, ω)← Aρ̂
 = O

(√
t · m · deg(ρ̂) · deg(g)

|F|

)
+negl(λ) .

A key difference of our zero-finding game compared to the one in [BCMS20] (besides
the different oracle models) is in the polynomial equation: the polynomial equation not
only involves a random evaluation at a point ρ̂(C) determined by the oracle ρ̂ (analogous
to ρ(C) before) but it also involves the low-degree oracle ρ̂ itself as a polynomial. This
causes significant complications to the security proof, as we discuss next.

A natural approach to prove Lemma 3 would be to adapt the proof of the zero-
finding game in [BCMS20], using our forking lemma for linear code random oracles
(Lemma 2) rather than the standard forking lemma. Recall that the non-redundancy
requirement is satisfied without loss of generality because low-degree random oracles
have efficient constraint detection. To invoke the lemma we must choose a forking
predicate p(C, (f, g, ω), tr) that captures the three conditions on the left. Similarly to
before, one condition is “C = Commit(f, g;ω)”. However, translating the other two
conditions to be compatible with the forking lemma is much more involved, and requires
overcoming several challenges.

Since the predicate p cannot query the oracle ρ̂, these conditions must be converted
into a statement about the query transcript tr. In the [BCMS20] proof, the corresponding
condition becomes f(tr(C)) = 0. This is justified in their setting because adversaries
that do not query the oracle at C cannot win the game. This is not true for low-degree
oracles! An adversary can, for example, learn ρ̂(C) by querying points on a curve that
passes through C. To handle this issue, we use the structure of the linear code to define
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a partial function ρ̃tr which captures all of the information that the adversary knows
about ρ̂ given the points it has queried. We show that if ρ̃tr(x) = ⊥, no adversary can
determine ρ̂(x) from tr better than guessing.

We summarize the above discussion by describing the forking lemma predicate
explicitly. On input query point C, auxiliary input (f, g, ω), and query transcript tr, p
accepts if the following three conditions hold:

(1) C = Commit(f, g;ω),
(2) f 6≡ ρ̃tr ◦ g, and
(3) f(ρ̃tr(C)) = ρ̃tr(g(ρ̃tr(C))).

Note that since ρ̃tr is a partial function, so is ρ̃tr ◦ g, in general. If ρ̃tr ◦ g is not total then
condition (2) holds immediately, since f is total.

We now continue following the template of [BCMS20]. Let A be an adversary
winning the Lemma 3 game with probability δ. Invoking our forking lemma (Lemma 2),
we obtain, with probability δ2/t, (C, (f, g, ω), (f ′, g′, ω′), tr, tr′),where p holds for
(C, (f, g, ω), tr) and (C, (f ′, g′, ω′), tr′). Similarly to before, by the binding property
of Commit we can focus on the case where (f, g) = (f ′, g′). The analogous next step
would be to conclude by applying Schwartz–Zippel to the polynomial f − ρ̃tr ◦ g. Here,
however, we run into another issue: since this polynomial depends on tr, it may differ
between the two forks!

To resolve this, we use a slightly different polynomial. Denote by tr|i−1 the truncation
of tr to the first i− 1 entries, where i is the fork point. By construction, tr′|i−1 = tr|i−1.
Hence ρ̃tr|i−1

◦ g is the same function in both forks. Of course, it may be that ρ̃tr|i−1
◦ g

is not total (even if ρ̃tr ◦ g is). We show that in this case the adversary is very unlikely to
win: in particular, it can be shown that ρ̃tr|i−1

◦g is not total only if ρ̃tr|i−1
(g(α)) = ⊥ for

all but m · deg(ρ̂) · deg(g) choices of α ∈ F. But then since ρ̃tr′(C) is chosen uniformly
at random independently of tr|i−1, in this case condition (3) holds with probability at
most m · deg(ρ̂) · deg(g)/|F|.

In the case that ρ̃tr|i−1
◦ g is total, we can now apply Schwartz–Zippel to the polyno-

mial f − ρ̃tr|i−1
◦ g, which concludes the proof by rearranging to bound δ as before.

2.5 SNARKs for oracle computations

We outline the proof of Theorem 1, which provides a transparent SNARK in the LDROM
for computations in the LDROM, assuming the existence of collision-resistant hash
functions in the standard model.

The proof is in two steps: first we describe a generic SNARK construction in any
oracle model from a SNARK for non-oracle computations and an accumulation scheme
for queries to the oracle; then we explain how we instantiate the construction specifically
for the low-degree random oracle model.

Step 1: a generic construction. Let θ ← O be any oracle (for now not necessarily
low-degree). Informally, we can view a computation that has oracle access to θ as
made of two parts that share a common (untrusted) witness of query-answer pairs: (i) a
computation where oracle answers are read from the witness; and (ii) a computation that
checks all query-answer pairs for consistency with the oracle θ. We prove the former
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using a SNARK ARGin = (Pin,Vin) for non-oracle computations (whose security holds
in a model where parties have access to θ), and the latter via an accumulation scheme
AS = (Pθ,V,Dθ) for queries to θ. We then combine these two components to obtain a
SNARK in the oracle θ model for computations that query θ.

In more detail, our goal is to prove a relation Rθ := {(x,w) : Mθ(x,w) = 1} ∈
NPθ, where M is a polynomial-time oracle Turing machine. To build a SNARK forRθ
using our high-level template, we define the following non-oracle relation:

R′ := {((x, acc), (w, tr, πV)) : M ′(x,w, tr) = 1 ∧V(tr,⊥, acc, πV) = 1} ∈ NP ,

where M ′ works exactly like M except that its oracle queries are answered using tr,
V is the accumulation verifier, and ⊥ denotes an empty accumulator. Intuitively, if
(x, acc) ∈ L(R′) and acc is a valid accumulator, then for tr consistent with θ and some
witness w, M ′(x,w, tr) = 1. This implies that Mθ(x,w) = 1, and so x ∈ L(R).

Next, we describe our SNARK construction ARGout = (Pθout,Vθout) in terms ofR′.

1. Pθout simulates M and records M ’s oracle transcript tr. Then, Pθout accumulates the
queries in tr using the accumulation prover acc ← Pθ(⊥, tr). Next, Pθout runs the
SNARK prover Pin((x, acc), tr) to obtain a proof πin that (x, acc) ∈ R′. Pθout then
outputs πout = (πin, acc).

2. Vθout receives the input πout = (πin, acc), then runs the SNARK verifier Vin((x, acc), πin)
and the accumulation decider Dθ(acc). If both accept, Vθout accepts.

For (knowledge) soundness, consider a malicious prover P̃ that outputs an instance
x and a proof (πin, acc) that Vθout accepts, i.e. Vin((x, acc), πin) = 1 and Dθ(acc) = 1.
By the knowledge guarantee of the SNARK, we can extract a witness (w, tr, πV). If tr
is not consistent with θ, then the soundness of the accumulation scheme implies that
Dθ(acc) = 1 with at most negligible probability. Hence tr is consistent with θ, which
implies that (x,w) ∈ Rθ by definition ofR′.

For clarity we have omitted parameter generation from the above description. The
parameters of ARGout are simply the concatenation of the parameters for ARGin and
AS. If, as in our construction below, both of these have transparent setup, then so does
ARGout.

Step 2: instantiating the building blocks. We explain how to instantiate the above
generic construction in the case where θ is a low-degree random oracle. For the accumu-
lation scheme, we use our construction for low-degree oracle queries from Section 2.2.
Note that this construction requires a collision-resistant hash function, so our SNARK
inherits its public parameters.

Next, we obtain a SNARK for non-oracle computations relative to the low-degree
random oracle. It is well known that Micali’s SNARG [Mic00], when instantiated with a
PCP of knowledge, is a proof of knowledge in the random oracle model via a straightline
extractor [Val08]. Naturally, we can carry this construction over to the low-degree
random oracle model. However, it is unclear how to construct a straightline extractor.
Instead, we make use of a folklore observation: there is an alternative extractor which
uses a forking algorithm. This requires polynomially-many forked transcripts (rather
than 2); we observe that our forking lemma in the LCROM (Lemma 2) can easily be
extended to support this.
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We observe that our technique for proving knowledge is not specific to the low-
degree oracle. In fact, our forking lemma (Lemma 2) shows that efficient forking lemmas
exist for any linear code random oracle with an efficient constraint detection algorithm.
Similarly, all linear code random oracles are collision-resistant. Hence, to build SNARKs
for other linear code oracle computations, it suffices to design an accumulation scheme
for oracle queries and an efficient constraint detection algorithm for the code.

3 Preliminaries

3.1 Notations

We use [n] to denote the set of integers {1, . . . , n}. The notation F≤d[X1, . . . , Xm]
refers to the set of m-variate polynomials of individual degree at most d with coefficients
in F. In this paper, we write deg(·) to denote individual degree. For a distribution D, we
denote the support of D by supp(D). For a function f , we denote the image of f with
im(f). We denote by (X → Y ) the set of all functions {f : X → Y }. We denote by
f : X ⇀ Y a partial function from X to Y .

Indexed relations. An indexed relationR is a set of triples (i,x,w) where i is the
index, x is the instance, andw is the witness; the corresponding indexed language L(Rθ)
is the set of pairs (i,x) for which there exists a witness w such that (i,x,w) ∈ R. For
example, the indexed relation of satisfiable Boolean circuits consists of triples where i is
the description of a Boolean circuit, x is a partial assignment to its input wires, and w is
an assignment to the remaining wires that makes the circuit to output 0.

Security parameters. For simplicity of notation, we assume that all public parame-
ters have length at least λ, so that algorithms which receive such parameters can run in
time poly(λ).

Distributions. For finite set X , we write x← X to denote that x is drawn uniformly
at random from X .

Oracle algorithms. For a function θ : X → Y , we write Aθ for an algorithm with
oracle access to θ. We say that A is t-query if A makes at most t queries to θ. We say that
an oracle algorithm is systematic if it only makes queries in {0, 1}m for some m ∈ N.

Random oracles. Typically, a random oracle is a function ρ sampled uniformly at
random from ({0, 1}m → {0, 1}n) for some m,n ∈ N. It will be convenient for us to
consider a slightly broader definition, where ρ is sampled uniformly at random from
({0, 1}m → F) for some finite field F.

Oracle relations. For a distribution over oracles O, we write RO to denote the
set of indexed relations {Rθ : θ ∈ supp(O)}. We define RO ∈ NPO if and only if
there exists a polynomial-time oracle Turing machine M such that for all θ ∈ supp(O),
Rθ = {(i,x,w) : Mθ(i,x,w) = 1}.

3.2 Non-interactive arguments in oracle models

We follow [CHM+20] and define the tuple of algorithms ARG = (G, I,P,V) to be
a (preprocessing) non-interactive argument relative to an oracle distribution O for an
indexed oracle relationRO if the algorithms satisfy the following syntax and properties:
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1. Gθ(1λ)→ pp. On input a security parameter λ (in unary), G samples public parame-
ters pp for the argument system.

2. Iθ(pp, i)→ (ipk, ivk). On input public parameters pp and an index i for the relation
R, I deterministically specializes pp to index-specific proving and verification keys
(ipk, ivk).

3. Pθ(ipk,x,w) → π. On input an index-specific proving key ipk, an instance x,
and a corresponding witness w, P computes a proof π that attests to the claim that
(i,x,w) ∈ R.

4. Vθ(ivk,x, π)→ b ∈ {0, 1}. On input an index-specific proving key ivk, an instance
x, and a corresponding proof π, V checks that π is a valid proof.

– Completeness. For every adversary A,

Pr


(i,x,w) 6∈ Rθ

∨
Vθ(ivk,x, π) = 1

∣∣∣∣∣∣∣∣∣∣
θ ← O(λ)

pp← Gθ(1λ)
(i,x,w)← Aθ(pp)

(ipk, ivk)← Iθ(pp, i)
π ← Pθ(ipk,x,w)

 = 1 .

– Soundness. For every polynomial-size adversary P̃ ,

Pr

 (i,x) 6∈ L(Rθ)
∧

Vθ(ivk,x, π) = 1

∣∣∣∣∣∣∣∣
θ ← O(λ)

pp← Gθ(1λ)

(i,x, π)← P̃θ(pp)
(ipk, ivk)← Iθ(pp, i)

 ≤ negl(λ) .

The above formulation of completeness allows (i,x,w) to depend on the oracle θ and
public parameters pp, and the above formulation of soundness allows (i,x) to depend
on the oracle θ and public parameters pp.

Knowledge soundness. We say that ARG has knowledge soundness (with respect to
auxiliary input distribution D) if there exists an efficient extractor E such that for every
polynomial-size adversary P̃ ,

Pr


Vθ(ivk,x, π) = 1

⇓
(i,x,w) ∈ R

∣∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp← Gθ(1λ)
ai← D(pp)

(i,x, π; r)← P̃θ(pp, ai)
(ipk, ivk)← Iθ(pp, i)
w← E P̃,θ(pp, ai, r)

 ≥ 1− negl(λ) .

3.3 Accumulation schemes

We recall the definition of an accumulation scheme from [BCMS20]. Let Φ : O(∗) ×
({0, 1}∗)3 → {0, 1} be a predicate (for clarity we writeΦθ(ppΦ, iΦ, q) forΦ(θ, ppΦ, iΦ, q)).
LetH be a randomized algorithm with access to θ, which outputs predicate parameters
ppΦ.
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An accumulation scheme for (Φ,H) is a tuple of algorithms AS = (G, I,P,V,D)
all of which (except G) have access to the same oracle θ. These algorithms must satisfy
two properties, completeness and soundness, defined below.

Completeness. For all (unbounded) adversaries A,

Pr


∀ j ∈ [`], Dθ(dk, accj) = 1

∀ i ∈ [n], Φθ(ppΦ, iΦ, qi) = 1

⇓
Vθ(avk, [qi]

n
i=1, [accj ]

`
j=1, acc, πV) = 1

Dθ(dk, acc) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp← G(1λ)

ppΦ ← Hθ(1λ)
(iΦ, [qi]

n
i=1, [accj ]

`
j=1)← Aθ(pp, ppΦ)

(apk, avk, dk)← Iθ(pp, ppΦ, iΦ)
(acc, πV)← Pθ(apk, [qi]

n
i=1, [accj ]

`
j=1)

 = 1 .

Note that for ` = n = 0, the precondition on the left-hand side holds vacuously; this is
required for the completeness condition to be non-trivial.

Soundness. For every polynomial-size adversary A,

Pr


Vθ(avk, [qi]

n
i=1, [accj ]

`
j=1, acc, πV) = 1

Dθ(dk, acc) = 1

⇓
∀ j ∈ [`], Dθ(dk, accj) = 1

∀ i ∈ [n], Φθ(ppΦ, iΦ, qi) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp← Gθ(1λ)

ppΦ ← Hθ(1λ)(
iΦ [qi]

n
i=1 [accj ]

`
j=1

acc πV

)
← Aθ(pp, ppΦ)

(apk, avk, dk)← Iθ(pp, ppΦ, iΦ)

 ≥ 1−negl(λ) .

Zero knowledge. There exists a polynomial-time simulator S such that for every
polynomial-size “honest” adversary A (see below) the following distributions are (statis-
tically/computationally) indistinguishable:

(θ, pp, acc)

∣∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp← Gθ(1λ)

ppΦ ← Hθ(1λ)
(iΦ, [qi]

n
i=1, [accj ]

`
j=1)← Aθ(pp, ppΦ)

(apk, avk, dk)← Iθ(pp, ppΦ, iΦ)
acc, πV ← Pθ(apk, [qi]

n
i=1, [accj ]

`
j=1)


and (θ, pp, acc)

∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
(pp, τ)← Sθ(1λ)

ppΦ ← Hθ(1λ)
(iΦ, [qi]

n
i=1, [accj ]

`
j=1)← Aθ(pp, ppΦ)
acc← Sθ(ppΦ, τ, iΦ)

 .

Here A is honest if it outputs, with probability 1, a tuple (iΦ, [qi]
n
i=1, [accj ]

`
j=1) such

that Φθ(ppΦ, iΦ, qi) = 1 and Dθ(dk, accj) = 1 for all i ∈ [n] and j ∈ [`]. Note that the
simulator S is not required to simulate the accumulation verifier proof πV.

3.4 Commitment schemes

Definition 2. A commitment scheme for a family of message universesMck = {0, 1}L,
commitment universes Cck = {0, 1}poly(λ,L), and randomness domainsRck = {0, 1}poly(λ)
a is a tuple CM = (CM.Setup,CM.Commit) with the following syntax.
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– CM.Setup, on input a security parameter 1λ and a message format L, outputs a
commitment key ck.

– CM.Commit, on input a commitment key ck, a message m ∈ Mck and randomness
ω ∈ Rck, outputs a commitment C ∈ Cck.
The commitment scheme CM is hiding if ck ← CM.Setup(1λ, L), then for every

efficient adversary A that chooses m0 6= m1 ∈Mck, we have that

{CM.Commit(ck,m0;ω0) | ω0 ← Rck} ≈ {CM.Commit(ck,m1;ω1) | ω1 ← Rck} .

The commitment scheme CM is binding if for every message format L such that
|L| = poly(λ) and for every efficient adversary, the following holds.

Pr

 m0 6= m1

∧
CM.Commit(ck,m0;ω0) = CM.Commit(ck,m1;ω1)

∣∣∣∣∣∣ ck← CM.Setup(1λ, L)
((m0, ω0), (m1, ω1))← A(ck)

 ≤ negl(λ).

Finally, CM is s-compressing if for all ck← CM.Setup(1λ, L), Cck = {0, 1}s(λ).

4 Linear code random oracles

In this section we define our main object of study, linear code random oracles. We
first recall the definition of a linear code and its dual. For a set D and field F, we write
(D → F) or FD for the vector space of functions from D to F.

Definition 3. Let D be a set, and F a field. A linear code C is a subspace of FD. The
dual code of C is the set C⊥ := {z ∈ FD : ∀c ∈ C,

∑
x∈D z(x)c(x) = 0}; observe that

C⊥ is also a subspace of FD.

We are now ready to define a linear code random oracle.

Definition 4 (Linear code random oracle). Let C ⊆ (D → F) be a linear code,
and f : {0, 1}k → D. We say that (C, f) is full-rank if C|im(f) = Fim(f) ' F2k (in
particular, f is an injection).

Let C = {Cλ}λ∈N be a family of linear codes and F an efficient algorithm. We
say that (C , F ) is a linear code random oracle of arity m if for each λ ∈ N if
F (1λ) : {0, 1}m(λ) → Dλ is a circuit such that (Cλ, F (1λ)) is full-rank for all λ ∈ N.

For the remainder of this work, when it is unambiguous we will typically omit F
and write c(q) for c(F (1λ)(q)) when c ∈ Cλ and q ∈ {0, 1}m(λ). The standard random
oracle is the linear code random oracle

(
{({0, 1}m(λ) → Fλ)}λ, I

)
where I(1λ)(q) = q

for q ∈ {0, 1}m(λ). We will often refer to a function sampled uniformly from a linear
code random oracle simply as a “linear code random oracle”, and we use the symbol ρ̂.

An algorithm with oracle access to c ∈ C, written Ac, can query c at any point in D;
we refer to such an algorithm as a C-oracle algorithm. Any systematic oracle algorithm
B can be interpreted as a Cλ-oracle algorithm via the efficient injection F (1λ, ·); we
write Bρ̂, omitting F . The following statement follows immediately from the full-rank
condition.
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Claim. Let (C = {Cλ ⊆ (Dλ → Fλ)}λ, F ) be a linear code random oracle of arity m.
For any algorithm B with access to an oracle {0, 1}m(λ) → Fλ,

Pr
ρ←({0,1}m(λ)→F)

[Bρ → 1] = Pr
ρ̂←Cλ

[Bρ̂ → 1] .

4.1 Query transcripts and partial oracles

We define some notions used in security proofs involving linear code random oracles.
A C-query transcript is a list of query-answer pairs consistent with the execution of a
C-oracle algorithm. A partial oracle extends a query transcript to include evaluations that
are fixed by the structure of the code.

Definition 5. Let C ⊆ (D → F) be a linear code. A C-query transcript is a list
tr = [(qi, αi)]

t
i=1 ∈ (D×F)t for any t ∈ N such that there exists c ∈ C with c(qi) = αi

for all i ∈ [t]. A query transcript tr induces a partial function D ⇀ F in the natural way,
which we also denote by tr:

tr(q) =

{
αi if q = qi

⊥ if q /∈ {q1, . . . , qt}.

We then define the partial oracle ρ̃Ctr : D ⇀ F as follows:

ρ̃Ctr(q) =

{
β if ∀c ∈ C, ((∀i ∈ [t], c(qi) = αi)⇒ c(q) = β)

⊥ o.w.
.

When C is clear from context we will omit it from the notation.

4.2 Constraints

In this section we examine properties of the partial oracle arising from the linear structure
of C. We first introduce the notion of a constraint for elements in the domain of a linear
code. The results in this section hold for all linear codes, even those that are not full-rank.

Definition 6. Let C ⊆ (D → F) be a linear code. We say that a subset of the domain
Q ⊆ D is constrained if there exists a nonzero mapping z : Q → F such that for all
c ∈ C,

∑
x∈Q z(x)c(x) = 0. Equivalently, Q is constrained if there exists z 6= 0 ∈ C⊥

with supp(z) ⊆ Q. We refer to z as a constraint on Q. We say that Q is unconstrained
if it is not constrained.

We say that Q ⊆ D determines x ∈ D if either x ∈ Q or there exists a constraint z
on Q ∪ {x} such that z(x) 6= 0.

The following claim connects constraints and partial oracles.

Claim. Let C be a linear code, and tr be a C-query transcript. Then for all x ∈ D,
ρ̃Ctr(x) 6= ⊥ if and only if supp(tr) determines x.

In particular, ρ̃Ctr(x) = β ∈ F if and only if tr(x) = β, or tr(x) = ⊥ and there exists
z ∈ C⊥ such that supp(z) ⊆ supp(tr) ∪ {x} and z(x) 6= 0, and

β = −z(x)−1
( ∑
y∈supp(tr)

z(y)tr(y)
)
.
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Next we characterize the distribution of c(q) conditioned on a prior query transcript
tr in terms of the value of ρ̃Ctr(q).

Claim. Let C ⊆ (D → F) be a linear code. For all q ∈ D, Q ⊆ D, c′ ∈ C and β ∈ F,

Pr
c←C

[c(x) = β | c|Q = c′|Q] =


1
|F| if Q does not determine x,

1 if Q determines x and β = c′(x),
0 otherwise.

Equivalently, for all q ∈ D and all C-query transcripts tr = {(qi, αi)}ti=1 and β ∈ F,

Pr
c←C

[c(x) = β | ∀i ∈ [t], c(qi) = αi] =


1
|F| if ρ̃Ctr(q) = ⊥,

1 if ρ̃Ctr(q) = β,
0 otherwise.

Proof. The equivalence follows from Section 4.2 and the definition of a C-query tran-
script, so it suffices to prove the second statement. The cases when ρ̃tr(q) 6= ⊥ are
clear, and so we consider the case when ρ̃tr(q) = ⊥. In this case there exist codewords
c, c′ ∈ C such that c(qi) = c′(qi) for all i but c(q) 6= c′(q). It follows by linearity of C
that there exists c∗ = c− c′ ∈ C such that c∗(qi) = 0 for all i and c∗(q) 6= 0. We can
sample from the conditional distribution in the claim by choosing a random c′′ ∈ C such
that c(qi) = αi for all i and a random α ∈ F and returning c′′ + αc∗. The claim follows
since c′′(q) + αc∗(q) is uniformly random in F.

We recall the definition of a constraint detector from [BCF+17]. A constraint detector
is an algorithm which determines whether a set Q is constrained and, if so, outputs a
constraint.

Definition 7 (Constraint detector). Let C be a linear code. An algorithm CD is a
constraint detector for C if, given as input a set Q ⊆ D,
– if Q is constrained, CD outputs a constraint z;
– otherwise, CD outputs ⊥.
A code family {Cλ}λ has efficient constraint detection if there is a polynomial-time
algorithm CD such that CD(1λ, ·) is a constraint detector for Cλ.

A constraint detector directly yields an implementation of the partial oracle. It also
allows us to remove “redundant” queries from any C-oracle algorithm.

Definition 8. We say that a C-oracle algorithm A is non-redundant if it never makes
any query that is determined by its previous queries.

The following claim, which is straightforward to prove, shows that in many settings
we may restrict our attention to non-redundant algorithms without loss of generality.

Claim. Let A be a t-query C-oracle algorithm. Then there is a non-redundant t-query
C-oracle algorithm A′ whose input-output behaviour is identical to A. Moreover, if C
has efficient constraint detection, then if A is efficient, A′ is also.
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4.3 Query complexity

We study query complexity in the linear code random oracle model. We first give an
example showing an exponential gap between linear code random oracles and standard
random oracles.

Claim. For every algorithm A making fewer than 2m queries,

Pr
ρ←({0,1}m→F)

[
a =

∑
x∈{0,1}m

ρ(x)
∣∣∣ a← Aρ] =

1

|F|
.

On the other hand, there exists a linear code random oracle (C , F ) and a 1-query
algorithm B such that for all λ ∈ N,

Pr
ρ̂←Cλ

[
a =

∑
x∈{0,1}m

ρ̂(x)
∣∣∣ a← Bρ̂] = 1 .

We now show that linear code random oracles are collision-resistant. To prove this,
we will make use of a couple of linear-algebraic tools. First, we show a simple yet
important claim about the existence of codewords with some entries fixed to zero.

Claim. Suppose that (C ⊆ (D → F), f : {0, 1}m → D) is full-rank. Then for all
q1, . . . , qt ∈ D there exists c ∈ C such that
– c(q1) = · · · = c(qt) = 0, and
– there exists a set S ⊆ {0, 1}m, |S| ≥ 2m − t such that for all x ∈ S, c(f(x)) = 1.

Proof. For i ∈ [2m], let ei ∈ Fim(f) be the vector with zeroes everywhere except at
f (̄i), where ī is the binary expansion of i. Since C is full-rank, there is a basis of C
where the first 2m elements c1, . . . , c2m have ci|im(f) = ei for all i. The claim follows
by elementary linear algebra.

We use this to establish an upper bound on the number of points in {0, 1}m deter-
mined by a set of size t.

Lemma 2. Let C ⊆ (D → F) be a full-rank linear code of arity m, Q ⊆ D. Define
T := {x ∈ {0, 1}m : Q determines x}. Then |T | ≤ |Q|.

Proof. By Section 4.3, there exists c ∈ C such that for all x ∈ Q, c(x) = 0, and a
set S ⊆ {0, 1}m of size 2m − |Q| such that for all x ∈ S, c(x) = 1. Suppose that
|T | > |Q|. By the pigeonhole principle, there exists y ∈ S ∩ T . By definition of T , there
exists z : D → F with z(y) 6= 0 such that

∑
x∈Q z(x)c(x) + z(y)c(y) = 0, which is a

contradiction.

Lemma 3. Let C ⊆ (D → F) be a full-rank linear code of arity m. For all t-query
C-oracle adversaries A,

Pr
ρ̂←C

[x, y ∈ {0, 1}m ∧ ρ̂(x) = ρ̂(y) | (x, y)← Aρ̂] ≤ t2/|F| .

Proof. Consider running A and recording its oracle queries in tr. By Lemma 2, the set
of points T = {x ∈ {0, 1}m : ρ̃tr(x) 6= ⊥} is of size at most t. Moreover for every
x ∈ T , ρ̂(x) is sampled uniformly at random. Hence the probability that there exist
x, y ∈ T such that ρ̂(x) = ρ̂(y) is less than t2/|F|. By Section 4.2, if x or y are not in
T , then Pr[ρ̂(x) = ρ̂(y) | tr] = 1/|F|. The lemma follows by a union bound.
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4.4 Low-degree random oracles

We denote by F≤d[X1, . . . , Xm] the vector space of m-variate polynomials over F of
individual degree at most d.

Definition 9. Let F = {Fλ}λ∈N be a family of fields, m, d : N → N. The (F ,m, d)-
low-degree random oracle is the linear code random oracle ({F≤d(λ)λ [X1, . . . , Xm(λ)]}λ, F ),
where

F (1λ)(b1, . . . , bm(λ)) := (iλ(b1), . . . , iλ(bm(λ)))

for the natural injection iλ : {0, 1} → Fλ mapping 0 to 0Fλ and 1 to 1Fλ .

5 A forking lemma for linear code random oracles

Let C ⊆ (D → F) be a full-rank linear code, and let A be a t-query C-oracle algorithm.
For x ∈ {0, 1}n, ~α ∈ Ft, σ ∈ {0, 1}∗, denote by (q, o; tr)← A~α(x;σ) the following

procedure: Run A on input x and random tape σ. For every i ∈ [t], answer A’s i-th
query qi ∈ {0, 1}n to the oracle with αi ∈ F. Parse A’s output as (q, o) for q ∈ D. Let
tr = ((q1, α1), . . . , (qt, αt)) be the transcript of A’s queries to the oracle. Denote by
(q, o; tr, σ)← Aρ̂(x) the same procedure, but where each αi is adaptively set to ρ̂(qi),
and where σ is the random tape used by A (sampled uniformly).

For a query transcript tr, we define FP(tr, q) to be the smallest i ∈ [t] such that
{q1, . . . , qi, q} is constrained, or ⊥ if there is no such i. Note that given an efficient
constraint detection algorithm CD, FP(tr, q) can be computed in polynomial time. We
now describe a general forking algorithm Fork.

ForkA(q, o, tr, σ):
1. Let ((q1, α1), . . . , (qt, αt)) := tr.
2. Set i := FP(tr, q). If i = ⊥, abort and output ⊥.
3. Otherwise, sample α′i, . . . , α

′
t ← F, and run (q′, o′; tr′)← Atri−1;α

′
i,...,α

′
t(σ).

4. Output (q′, o′, tr′, i).

Lemma 4 (Forking Lemma). For every predicate p and t-query non-redundant C-
oracle algorithm A, setting

δ := Pr

[
FP(tr, q) 6= ⊥ ∧ q ∈ {0, 1}m

∧ p(q, o, tr) = 1

∣∣∣∣ ρ̂← Cλ
(q, o; tr, σ)← Aρ̂

]
we have that

Pr


FP(tr, q) 6= ⊥ ∧ q ∈ {0, 1}m

∧ q = q′

∧ p(q, o, tr) = 1
∧ p(q′, o′, tr′) = 1

∣∣∣∣∣∣∣∣
ρ̂← Cλ

(q, o; tr, σ)← Aρ̂

(q′, o′, tr′, i)← ForkA(q, o, tr, σ)

 ≥ δ2/t .
(1)
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Proof. For all i ∈ [t], q ∈ {0, 1}m, we define the set

Si,q := {(~α, σ) : (q, o; tr)← A~α(pp;σ) ∧ FP(tr, q) = i ∧ p(pp, o, tr) = 1} .

Next, define

δi,q(α1, . . . , αi−1;σ) := Pr
α′i,...,α

′
t∈F

[((α1, . . . , αi−1, α
′
i, . . . , α

′
t), σ) ∈ Si,q].

Denote by E the event in Eq. (1). Observe that because A is non-redundant, Pr[Fork |
(~α, σ) ∈ Si,q] is exactly δi,q(α1, . . . , αi−1;σ).

We now analyze Pr[E].

Pr[E] =
∑

i∈[t],q∈{0,1}m
Pr[E | (~α, σ) ∈ Si,q] · Pr[(~α, σ) ∈ Si,q]

=
∑
i,q

E~α,σ[1Si,q (~α, σ) · δi,q(α1, . . . , αi−1;σ)]

=
∑
i,q

Eα1,...,αi−1,σ

[
δi,q(α1, . . . , αi−1;σ)Eαi,...,αt [1Si,q (~α, σ)]

]
=
∑
i,q

Eα1,...,αi−1,σ

[
δi,q(α1, . . . , αi−1;σ)2

]
where the last equality holds by definition of δi,q . LetQi,~α,σ := {q : δi,q(α1, . . . , αi−1;σ) 6=
0}. We prove the following claim.

Claim. For all ~α, σ,
∑
i |Qi,~α,σ| ≤ t.

Proof. For any t-query transcript tr = ((q1, α1), . . . , (qt, αt)), letQi,tr := {q : FP(tr, q) =
i}. By Lemma 2, for all tr it holds that

∑
i |Qi,tr| ≤ t. Note that Qi,tr is a function of

(q1, . . . , qi) only.
Now let (q, o; tr) :=A~α(pp;σ). For each i, (q1, . . . , qi) is a function ofα1, . . . , αi−1, σ

only; hence so is Qi,tr. It follows that Qi,~α,σ ⊆ Qi,tr for all i, which proves the
claim.

It follows that

Pr[E] = E~α,σ

[∑
i

∑
q∈Qi,~α,σ

δi,q(α1, . . . , αi−1;σ)2

]

≥ 1

t
· E~α,σ

[(∑
i

∑
q

δi,q(α1, . . . , αi−1;σ)
)2]
≥ δ2

t
,

where the first inequality holds because the number of terms in the sum is at most t, and
the second holds by the inequality E[X2] ≥ E[X]2. (The outer expectation is taken over
~α ∈ Ft so that all events are over the same probability space.)
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6 Oracle zero-finding games

Lemma 5 (Oracle zero-finding game). Let {Fλ}λ be a family of fields. Fix a num-
ber of variables m ∈ N and a maximum individual degree d ∈ N. Further, let CM
be a binding commitment scheme with message format L that is two polynomials
(f : Fλ → Fλ, g : Fλ → (Fλ)m). Then for every efficient t-query oracle algorithm A,
the following holds.

Pr


f(X) 6≡ ρ̂(g(X))

∧
f(z) = ρ̂(g(z))

∣∣∣∣∣∣∣∣∣∣
ρ̂← F≤dλ [X1, . . . , Xm]
ck← CM.Setup(1λ, L)

(f, g, ω)← Aρ̂(ck)
C ← CM.Commit(ck, f, g, ω)

z ∈ Fλ ← ρ̂(C)

 ≤
√
t ·
[

2md · deg(g) + 1

|Fλ|

]
+negl(λ).

Proof. Let A be an adversary that wins the above game with probability δ. By Sec-
tion 4.2, we may assume without loss of generality that A is non-redundant.

We will apply Lemma 4. The forking predicate p(pp, (q, α), o, tr) is the conjunction
of the following conditions, where (f, g) := o and ρ̃tr is as defined in Section 4.1.
– q = CM.Commit(f, g;ω).
– Either ρ̃tr ◦ g : F→ F is not total, or f(X) 6≡ ρ̃tr(g(X)).
– f(α) = ρ̃tr(g(α)), where α := ρ̃tr(q).

By assumption, from A we can obtain an adversary satisfying p with probability
> δ.

Lemma 4 guarantees that

p := Pr


FP(tr, q) 6= ⊥ ∧ q ∈ {0, 1}m

∧ q = q′

∧ p(pp, q, o, tr) = 1
∧ p(pp, q′, o′, tr′) = 1

∣∣∣∣∣∣∣∣
ρ̂← Cλ

(q, o; tr, σ)← Aρ̂(pp)

(q′, o′, tr′, i)← ForkA(q, o, tr, σ)

 ≥ δ2/t .
To conclude the proof, we will bound p. Denote by E the event on the left of the

above expression.
We first bound the probability that E occurs and o 6= o′. By definition of p, if B

succeeds then CM.Commit(o) = q = q′ = CM.Commit(o′). However, by the binding
property of the commitment scheme CM, the probability B succeeds and o 6= o′ occurs
with probability ≤ negl(λ). Then the probability that E occurs and o = o′ is at least
p− negl(λ); call this event E′.

Let i := FP(tr, q), and let tr|i−1 denote the truncation of tr to the first i− 1 queries.
We show that if E′ occurs then with high probability, tr|i−1 ◦ g is total.

Claim. The probability thatE′ occurs and ρ̃tr|i−1
◦g is not total is at most (md ·deg(g)+

1)/|F|.

Proof. Since for all c ∈ C, deg(c ◦ g) ≤ d · deg(g), if ρ̃tr|i−1
◦ g is not total then there

are at most d · deg(g) points x ∈ F such that ρ̃tr|i−1
(g(x)) 6= ⊥. Then since α′ is

chosen independently of g and tr, Pr[ρ̃tr|i−1
(g(α′)) 6= ⊥] ≤ md · deg(g)/|F|. Finally,

if ρ̃tr|i−1
(g(α′)) = ⊥, Pr[ρ̃tr′(g(α′)) = f(α′)] ≤ 1

|F| , since f and tr′ are independent
conditioned on tr|i−1.
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It follows that the probability that E′ occurs and ρ̃tr|i−1
◦ g is total is at least

p − (md · deg(g) + 1)/|F| − negl(λ). In this case it holds that ρ̃tr|i−1
◦ g 6≡ f , but

ρ̃tr|i−1
(g(α′)) = f(α′). Since α′ is drawn independently of tr|i−1, g and f , this holds

with probability at most md · deg(g)/|F|.
Rearranging, it follows that

p ≤ 2md · deg(g) + 1

|F|
+ negl(λ) ;

the statement follows since p ≥ δ2/t.

7 Accumulation scheme for low-degree random oracles

We construct an accumulation scheme AS = (G, I,P,V,D) for any low-degree random
oracle over a sufficiently large field.

Note that AS is typically defined with respect to a predicate Φ and a randomized
algorithmH, which accesses the oracle and outputs predicate parameters ppΦ. For this
construction,H = ⊥.

Theorem 1. Let C be a (Fλ,m, d)-low-degree random oracle.. Let CM = (CM.Setup,CM.Commit)
be a commitment scheme that is hiding, binding, and has compression to size m. Then,
the scheme AS from Construction 1 is an accumulation scheme for (Φ,⊥), where
Φ([qi]

n
i=1) = 1 if for all i ∈ [n], the query qi = (xi, αi) satisfies ρ̂(xi) = αi.

We give the construction below. We assume a global ordering of the field Fλ, so that
Fλ = {b1, . . . , b|Fλ|}.

Construction 1. AS = (G, I,P,V,D) is defined as follows:

– Accumulator: The scheme’s accumulators are of the form acc ∈ ((Fλ)n,Fλ)2.
– G(1λ): Output a commitment scheme’s commitment key and public parameters

(ck, ppCM) ← CM.Setup(L), such that the message format L is two polynomials
(f : Fλ → Fλ, g : Fλ → (Fλ)m).

– Iρ̂(pp = ck): Output (apk = ck, avk = ck, dk = 1λ).
– Pρ̂(apk = ck, [qi]

n
i=1, [accj ]

`
j=1):

1. Let Q = [(xk, αk)]n+2`
k=1 be the concatentation of [qi]

n
i=1 and [accj ]

`
j=1.

2. Sample a random point xn+2`+1 ∈ (Fλ)`, and set αn+2`+1 := ρ̂(xn+2`+1).
3. Compute the polynomial g : Fλ → (Fλ)` of degree at most n + 2` such that for

each k ∈ [n+ 2`+ 1], g(bk) = xk.
4. Compute the polynomial f : Fλ → Fλ as f(X) ≡ ρ̂(g(X)). Note that the degree

of f is at most m · d · (n+ 2`+ 1).
5. Sample randomness ω for the commitment scheme, then computeC :=CM.Commit(ck, (f, g);ω) ∈
{0, 1}m and β := ρ̂(C).

6. Output the new accumulator acc = {(g(β), f(β)), (C, β)} and proof πV =
(f, ω, (xn+2`+1, αn+2`+1)).

– V(avk = ck, [qi]
n
i=1, [accj ]

`
j=1, acc = {(x, α), (C, β)}, πV = (f, ω, (xn+2`+1, αn+2`+1))):
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1. Compute the list Q = [(xk, αk)]n+2`
k=1 and the polynomial g from [qi]

n
i=1 and

[accj ]
`
j=1 as P does. However, rather than sampling (xn+2`+1, αn+2`+1), use the

value received in πV.
2. Check that x = g(β), α = f(β) and C = CM.Commit(ck, (f, g);ω).
3. For each k ∈ [n+ 2`+ 1], check that f(bk) = αk.
4. Accept if and only if both checks pass.

– Dρ̂(dk = 1λ, acc = {(x1, α1), (x2, α2)}): Accept if and only if ρ̂(x1) = α1 and
ρ̂(x2) = α2.

Remark 1. CM can be replaced by a hash function (sampled from an appropriate hash
family) if AS isn’t required to be zero knowledge.
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