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Abstract. A core goal of the NIST PQC competition is to produce PKE
schemes which, even if attacked with a large-scale quantum computer,
maintain the security guarantees needed by applications. The main se-
curity focus in the NIST PQC context has been IND-CCA security, but
other applications demand that PKE schemes provide anonymity (Bel-
lare et al., ASTACRYPT 2001), and robustness (Abdalla et al., TCC
2010). Examples of such applications include anonymous cryptocurren-
cies, searchable encryption, and auction protocols. However, almost noth-
ing is known about how to build post-quantum PKE schemes offering
these security properties. In particular, the status of the NIST PQC
candidates with respect to anonymity and robustness is unknown.

This paper initiates a systematic study of anonymity and robustness for
post-quantum PKE schemes. Firstly, we identify implicit rejection as a
crucial design choice shared by most post-quantum KEMs, show that
implicit rejection renders prior results on anonymity and robustness for
KEM-DEM PKEs inapplicable, and transfer prior results to the implicit-
rejection setting where possible. Secondly, since they are widely used to
build post-quantum PKEs, we examine how the Fujisaki-Okamoto (FO)
transforms (Fujisaki and Okamoto, Journal of Cryptology 2013) confer
robustness and enhance weak anonymity of a base PKE.

We then leverage our theoretical results to study the anonymity and
robustness of three NIST KEM finalists—Saber, Kyber, and Classic
McEliece—and one alternate, FrodoKEM. Overall, our findings for ro-
bustness are definitive: we provide positive robustness results for Saber,
Kyber, and FrodoKEM, and a negative result for Classic McEliece. Our
negative result stems from a striking property of KEM-DEM PKE schemes
built with the Classic McEliece KEM: for any message m, we can con-
struct a single hybrid ciphertext ¢ which decrypts to the chosen m under
any Classic McEliece private key.

Our findings for anonymity are more mixed: we identify barriers to prov-
ing anonymity for Saber, Kyber, and Classic McEliece. We also found
that in the case of Saber and Kyber, these barriers lead to issues with
their IND-CCA security claims. We have worked with the Saber and
Kyber teams to fix these issues, but they remain unresolved. On the
positive side, we were able to prove anonymity for FrodoKEM and a
variant of Saber introduced by D’Anvers et al. (AFRICACRYPT 2018).
Our analyses of these two schemes also identified technical gaps in their
IND-CCA security claims, but we were able to fix them.
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1 Introduction

The increasingly real threat of quantum computers breaking all widely-deployed
public-key cryptography has driven research in new paradigms for building core
public-key primitives like signatures, public-key encryption (PKE), and key
encapsulation mechanisms (KEMs) from problems that are computationally
intractable even for quantum computers. An umbrella term for this is Post-
Quantum Cryptography (PQC). The US National Institute of Standards and
Technology (NIST) is in the process of selecting new standards which will be
used for decades to come. The process has reached its third round with four fi-
nalist candidates and five alternate candidates in the KEM /PKE category. The
main security target of evaluation for these schemes until now has been IND-
CCA security. This was appropriate as a starting point because it suffices for
many important use cases. But we argue that the time has now come for a
broader study of the candidates’ fitness for emerging applications where security
properties other than IND-CCA are required.

Two important security properties that go beyond IND-CCA security are
anonymity (or key privacy) and robustness. Anonymity was first formalised in
the public key setting by [8]. Roughly, a PKE scheme is anonymous if a ci-
phertext does not leak anything about which public key was used to create it;
strong forms of anonymity equip the adversary with a decryption oracle. Anony-
mous PKE is a fundamental component of several deployed anonymity systems,
most notably anonymous cryptocurrencies like Zcash [10]. It is also important in
building anonymous broadcast encryption schemes [6, 29], anonymous credential
systems [12] and auction protocols [35]. Robustness for PKE, first formalised
in [2], goes hand-in-hand with anonymity. Suppose a party equipped with a pri-
vate key receives a ciphertext for an anonymous PKE scheme. In the absence of
other information, how does a party decide that it is the intended receiver of that
ciphertext? The standard approach is to perform trial decryption. Robustness
provides an assurance that this process does not go wrong — that the receiver
is not fooled into accepting a plaintext intended for someone else. Robustness
is also important for maintaining consistency in searchable encryption [1] and
ensuring auction bid correctness [35]. Various robustness notions for PKE were
studied in [2], while stronger notions were introduced in [16]; the symmetric
setting was treated in [17,21,15, 28].

To date, there is almost no work that shows how to build anonymous, ro-
bust post-quantum PKE schemes. Nor is it known whether the NIST candidates
meet these extended notions. The only directly relevant work is by Mohassel [32],
who showed a number of foundational results on anonymity and robustness of
hybrid PKEs built via the KEM-DEM paradigm (“DEM” being an abbrevia-
tion for “data encapsulation mechanism”). Our work is influenced by Mohassel’s
general approach; however, Mohassel only considers KEMs that are directly con-
structed from strongly-secure PKEs via sampling a random message from the
PKE scheme’s message space and then PKE-encrypting it. This makes the re-
sults of [32] inapplicable to NIST candidates, for a few reasons. First, the NIST
candidates are all KEMs, not PKEs, so there is a basic syntactic mismatch. Sec-
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ond, the base PKEs used within the candidate KEMs are only weakly (e.g. OW-
CPA) secure, but [32] relies on the starting PKE having (e.g.) IND-CCA security.
Finally, [32] only analyzes explicit-rejection KEMs, for which decapsulation can
fail, but all the NIST candidates except the alternate candidate HQC [31] are ac-
tually implicit-rejection KEMs that never output L. This means, e.g., the NIST
finalist KEMs cannot be even weakly robust, while the constructions of [32] all
start from robust KEMs.

One of the negative results of [32] is that even if a KEM enjoys a strong
anonymity property, the hybrid PKE scheme that results from applying the
standard KEM-DEM construction may not be anonymous. This is concerning,
since it indicates that if one only focuses on KEMs in the NIST competition,
rather than the PKE schemes that will inevitably be built from them using the
standard KEM-DEM approach, then there is no guarantee that desired security
properties will actually carry over. Thus, one must dig into a KEM’s internals if
the target is to achieve anonymous hybrid PKE.

In fact, all the NIST candidates in the KEM/PKE category are constructed
using variants of the Fujisaki-Okamato (FO) transform [18-20]. The FO trans-
form takes a weakly secure PKE scheme (e.g. one that is OW-CPA or IND-CPA
secure) and elevates it to a KEM that is IND-CCA secure. The FO transform
and variants of it have recently been heavily analysed, [24,34,26,37,25], in the
Random Oracle Model (ROM) and the Quantum ROM (QROM) [11], but inso-
far as we are aware, only with a view to establishing IND-CCA security of the
resulting KEMs. Only one prior work [23] studies the relationship between FO
transforms and anonymity; it shows that the original FO transform enhances
anonymity in the ROM. But this result does not tell us whether the modern FO
variants used by the NIST finalists also enhance (or even preserve) robustness
and anonymity properties; notably, the results of [23] are not in the QROM.

Anonymity and robustness for the KEM-DEM paradigm. Our first main contri-
bution is a modular theory of anonymity and robustness for PKE schemes built
via the KEM-DEM paradigm. This extends the work of [32] to general KEMs
(instead of those built only from PKEs). An interesting aspect that emerges is
a fundamental separation between our results for implicit- and explicit-rejection
KEMs. At a high level, KEMs that perform implicit rejection do not in gen-
eral transfer anonymity and robustness to PKEs obtained via the KEM-DEM
paradigm from the KEM component, whilst KEMs that offer explicit rejection,
and that also satisfy a mild robustness property, do. Our positive result for ex-
plicit rejection KEMs relies on a relatively weak anonymity notion for KEMs
which we introduce here, wANO-CCA security. Our negative results for the im-
plicit rejection case are proved through the construction of specific counterexam-
ples and are surprisingly strong. For example, an implicit rejection KEM cannot
be robust, but can achieve a strong form of collision freeness (SCFR-CCA, that
we define here). This is in some sense the next best thing to robustness. We
show that even this property is not sufficient, by exhibiting an implicit rejection
KEM that is ANO-CCA, IND-CCA and SCFR-CCA secure, and a DEM that is
AE (authenticated encryption) secure and satisfies a strong robustness property
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(XROB, from [17]), but where the PKE scheme resulting from composing this
KEM and DEM is not ANO-CCA secure.

Anonymity and robustness from FO transforms. Since all the NIST finalists are
KEMs of the implicit rejection type and we have a strong negative result there,
we must dig deeper if we wish to assure ourselves that anonymity and robustness
will be obtained for PKEs built from those KEMs. This introduces our second
main contribution, wherein we analyse how the FO transform (and its variants)
lift anonymity and robustness properties from a starting weakly-secure PKE
scheme, first to the strongly-secure KEM built by the FO transform, and then
to the hybrid PKE scheme constructed using the KEM-DEM paradigm.

For explicit-rejection KEMs, we show that for a slight variant of the HFO+
transform of [24], the base PKE’s weak anonymity and robustness are enhanced
to strong (ANO-CCA) anonymity and strong (SROB-CCA) robustness, as long
as an intermediate deterministic PKE used in the transform is collision-free.
For implicit-rejection KEMs, we show that the FO* transform of [24] similarly
enhances anonymity and collision-freeness. The culmination of this analysis is
showing that KEMs and PKEs built via FO-type transforms can bypass our
negative result for implicit rejection KEMs.

Application to NIST candidates. We then apply our above generic analysis for
implicit-rejection KEMs to specific schemes related to the NIST PQC com-
petition which employ a transform close to FO#. In particular, we focus on
the NIST finalist Classic McEliece [3], a simplified version of the NIST finalist
Saber [7] from [14] that we call “proto-Saber”, and the NIST alternate candidate
FrodoKEM [4]. The reason we consider proto-Saber instead of the actual Saber
scheme is that the IND-CCA security claims made for Saber in its NIST third
round specification [7] seem to have been taken from those of proto-Saber in [14]
without modification. However, the actual technical specification of Saber in [7,
Section 8] and the reference implementation of Saber differ from proto-Saber in
crucial ways that impact on its formal security analysis. We return to this issue
in more detail below and in Section 5.

For Classic McEliece, we show that the hybrid PKE resulting from applying
the standard KEM-DEM construction is not strongly robust (in the sense defined
in [2]). In fact, we can show that, for any plaintext m, it is possible to construct a
single ciphertext ¢ such that ¢ always decrypts to m under any Classic McEliece
private key. The construction of ¢ does not even need the public key! We stress
that this property does not indicate any problem with IND-CCA security of
Classic McEliece, but it does expose its limitations as a general-purpose KEM
for the broad set of applications that can be envisaged for NIST public key
algorithms. Since our FOZ-related results on anonymity of KEMs and PKEs
built from them depend on robustness properties, Classic McEliece’s limitations
in this regard present a barrier to establishing its anonymity using our techniques
(but do not preclude a direct proof).

For proto-Saber, the news is better. We provide positive results on anonymity
and robustness properties of its KEM and the hybrid PKE schemes derived from
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it. Towards these results, we have to adapt our analysis on FO to the actual
transform used by proto-Saber. In doing so, we were also able to obtain an
explicit proof of IND-CCA security for proto-Saber in the QROM that matches
the tightness claimed in [14]. This is relevant because despite claims to the
contrary in [14], we find that even the IND-CCA security of proto-Saber cannot
be directly proved using any of the known results concerning the FO# transform.
This is due to low-level details of how proto-Saber applies hash functions to
intermediate values in its internal computations. These details are crucial given
the delicate nature of QROM proofs and invalidate the direct application of
known results on “standard” FO transforms in the QROM.

FrodoKEM uses an FO-type transform that is identical to that of proto-
Saber. Hence, our positive results on tight IND-CCA security, anonymity and
robustness of proto-Saber also apply to FrodoKEM in a similar fashion.

Saber and Kyber [5] both implement the same transform, one which hashes
even more intermediate values than proto-Saber does. This creates barriers in
applying the proof strategies that we used for proto-Saber when trying to estab-
lish anonymity of Saber and Kyber. Interestingly, as we explain in detail, these
extra hashes also act as barriers in proving even the IND-CCA security of these
two finalists in the QROM with the bounds as claimed in their respective specifi-
cations. We consider this an important finding given the centrality of IND-CCA
security as the design target in the NIST competition. On a positive note, we
show that our robustness analysis of proto-Saber can be extended to Saber and
Kyber, which implies that these two NIST finalists lead to strongly robust hybrid
PKE schemes. Finally, we suggest small modifications to Saber and Kyber that
would bring their FO-type transforms closer to that of proto-Saber and allow us
to overcome the aforementioned problems.

Subsequent Work. The NIST finalist NTRU [13] uses altogether a different trans-
form, namely FOZ, [24], that differs from FO# in a way which makes it difficult
to extend our analysis of FO* to NTRU. However, in subsequent work to ours,
Xagawa [39] has established the anonymity and robustness properties of NTRU
by utilizing a stronger property of its base PKE scheme, namely the so-called

strong disjoint-simulatability.

Paper organisation. Section 2 contains preliminary definitions. Section 3 con-
tains our anonymity and robustness definitions for KEMs, and analysis of generic
KEM-DEM composition. Section 4 contains our study of anonymity and robust-
ness enhancement for FO-type transforms, and the security of hybrid PKE built
from FO-type KEMs. Section 5 contains our study of the NIST candidate KEMs.

2 Preliminaries

In this section, we briefly define the preliminaries necessary for the main body.
We begin with defining the syntax of primitives of interest.
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Primitives. A key encapsulation mechanism (KEM) KEM = (KGen, Encap, Decap)
is a tuple of algorithms. The randomized key generation algorithm KGen takes no
input and outputs a pair (pk,sk) of a public encapsulation key pk and a private
decapsulation key sk. The randomized encapsulation algorithm Encap takes as
input the encapsulation key pk, and outputs a pair (C, k) where C is a ciphertext
and k is a bit string. The determinstic decapsulation algorithm Decap takes as
input the encapsulation key pk, the decapsulation key sk, and the ciphertext C'.
If decapsulation can output either a key k or an error symbol 1, we call the
KEM an explicit-rejection KEM. If decapsulation can only output a key k, we
call the KEM an implicit-rejection KEM.

A public-key encryption (PKE) scheme PKE = (KGen, Enc, Dec) is a tuple of
algorithms. The algorithm KGen is the same as above for KEMs. (It is conven-
tional to call KGen’s outputs the encryption/public and decryption/private key,
respectively, instead of “encapsulation” /“decapsulation” keys.) The randomized
encryption algorithm Enc takes as input the public key pk, and message m, and
outputs a ciphertext C. Below, we will sometimes use a modified syntax for
encryption, where instead of sampling internal randomness, the algorithm is de-
terministic and takes random coins as an additional input. Letting r be a string
of random bits, we will write Enc(pk, m;r) to denote the output of Enc when run
with randomness r. Finally, the deterministic decryption algorithm Dec takes as
input the public key pk, the secret key sk, and a ciphertext C', and outputs a
message m or an error symbol L.

We assume the reader is familiar with the syntax for authenticated encryption
with associated data (AEAD or AE) schemes and message authentication codes
(MACs), along with the correctness and v-spreadness properties of PKE schemes
and KEMs. We provide the corresponding formal definitions in the full version
of this paper [22].

Associated to each algorithm that comprises a primitive above is one or more
input spaces (e.g. sets of possible keys K and messages M) and an output space
(e.g. the set of possible ciphertexts C). We assume each algorithm checks that
each of inputs is in this set, and aborts if not. To reduce notational clutter, we
will not make these input/output spaces explicit below, except where necessary.

The KEM-DEM framework. Composing a KEM and a data encapsulation mech-
anism (DEM) is a standard way to build PKE. Schemes built this way are often
called “hybrid” PKE. For completeness, we describe the hybrid PKE built via
KEM-DEM composition. Let KEM be a KEM, and DEM be an authenticated
encryption scheme. (Below, we will use “DEM” and “AEAD” synonymously.)
The hybrid PKE PKE™ = (KGen, Enc, Dec) is built as follows. The algorithm
PKE"™ KGen is the same as KEM.KGen. The algorithm PKE™ .Enc takes as input
the encapsulation key pk and a message m. It first runs (Cp, k) +—s KEM.Encap(pk),
the computes Cy s AEAD.Enc(k, m) and outputs ciphertext (Cp,C1). The al-
gorithm PKE™ .Dec first uses sk to decapsulate Cy and get k or possibly an er-
ror symbol 1. Unless decapsulation failed, the algorithm completes by running
AEAD.Dec(k, C1), outputting either m or an error symbol L.
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The Fujisaki-Okamoto transform. Classical results of Fujisaki and Okamoto [18-
20] show how to amplify (in the random oracle model, or ROM) the secu-
rity of public-key encryption, from one-wayness (OW) or indistinguishability
(IND) under chosen-plaintext attack (CPA) to indistinguishability under chosen-
ciphertext attack (IND-CCA). In this work we will mostly be interested in mod-
ern variants of this so-called “FO transform” studied first by Hofheinz et al. [24]
in the classical ROM and QROM; extensions in the QROM were then given
by [26, 37, 34]. Details of these transforms can be found in Section 4.

2.1 Security Definitions

Next we state several standard security notions which we will use below. In this
work we use the “concrete” security paradigm, which explicitly measures the
success probability and resource usage of specific adversaries, which we specify
using the code-based game-playing framework of Bellare and Rogaway [9]. We
will not relate quantities of interest, such as runtime or oracle queries, to a
security parameter. We define relevant security notions for PKE (upper box),
AEAD and MAC (lower box) in Figure 1.

PKE security notions are given for chosen-ciphertext attacks. All adversaries
have access to a decryption oracle D that takes a ciphertext and (where relevant,
i.e., in games with two key-pairs) a bit that selects which secret key to use. In
ANO-CCA and IND-CCA games, the decryption oracle Dy disallows queries
for the challenge ciphertext. For each PKE notion, the corresponding definition
for chosen-plaintext attacks can be obtained by simply removing the decryption
oracle. In INT-CTXT, the adversary has an encryption (resp., decryption) oracle
that takes associated data and a message (resp., ciphertext); flag win is set to
true if the adversary submits a query to its decryption oracle that returns non- 1,
but was not returned from an encryption query. In SUF-CMA, the oracle TagO’s
inputs and outputs are stored in the table T after each query. In otROR-CCA,
the oracles F1,$; are one-time encryption and random-bits oracles, respectively.
The many-time security definition ROR-CCA is identical to otROR-CCA, but
without this restriction. As for PKE above, CPA variants can be obtained by
removing decryption oracles.

For any game G in Figure 1, we define an associated advantage measure for an
adversary A and primitive P, denoted Adv%(A), to be either Pr [G£ = true]
or the absolute difference between that quantity and 1/2, if the game G is a
bit-guessing game like IND-CCA.

3 Anonymity and Robustness of KEMs

In [32], Mohassel studied the anonymity and robustness of KEMs. However, all
of his definitions and results apply only to the special case of KEMs that are
constructed from PKE schemes in a restricted way, namely KEMs in which the
encapsulation algorithm selects a random message for the PKE scheme and en-
crypts it using the PKE scheme’s encryption algorithm. With this limitation,
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SROB-CCApke WROB-CCA# e ANO-CCAfke

(pkg, sky) «—s KGen
(pky, sky) <—s KGen
C s A" (pko, pk;)
mg < Dec(pkg, sky, C)

(pkg, sky) <3 KGen
(pky, sky) <—s KGen

(m, b) s A" (pky, pk;)
C' <+sEnc(pk,, m)

b +1-b

my < Dec(pk,, sk, ,C)

(pkg, skg) <—s KGen

(pky, sky) <—s KGen
b<«s{0,1}

(m, st) <s.A” (pko, pk,)
C <+sEnc(pk,, m)

v s AP? (C, st)

return b = b

m1 < Dec(pky,sk,,C)
return mo # L Amq # L

return m; # L

SCFR-CCApke

WCFR-CCA#

IND-CCApke

(pkg,sky) <—s KGen
(pky, sky) <—s KGen

(pkg, sky) <—s KGen
(pky, sky) <—s KGen

(pk, sk) <—s KGen
b<«s{0,1}

(mo, m1, st) s A" (pk)
C' <—sEnc(pk,my)
b s AP? (C, st)

return b=

(m, b) s A" (pkq, pk;)
C <sEnc(pk,,m)

b +—1-b

m' < Dec(pky/, sk, , C)

C s A” (pky, pk;)
mg < Dec(pkg, sk, C)
ma <+ Dec(pk,,sk;,C)

return mo =mq # L

return m’ =m # L

FROB4gAD XROBAEAD INT-CTXT45AD
(C,AD, kg, k) s A (S0, 51) s A k < KGen

mo < Dec(ky, AD,C)  Parse So = (mo, kg, Ro, ADg)  win <« false

my < Dec(k;,AD,C)  Parse S; = (k;, AD1,Ch) AECDE)

b mo#LAmi#L Co+ Enclky, mo; Ro) return win
return (b A (kg # k;))  m1 < Dec(k;, ADy,Ch)

_ A
bmo#LAmi # 1 SUF-CMAfiac

otROR-CCA%EAD

by + ko # kg k +—s KGen
k +s KGen be+ Co=C1 # L T « (]
b+s{0,1} be + ADg = ADy # L (m, T) + ATC0)
if b =0 then return (b A bg A be A bg) b« Vf(k,m,T)

v <;$AE1(‘,-),D(',')
else b’ «s A% ) L0

return b = b

bz — (m,T) QT

return b A b

Fig. 1. Security games used in this paper w.r.t. PKE PKE = (KGen, Enc, Dec) (upper
box), and AEAD AEAD = (KGen, Enc, Dec) and MAC = (KGen, Tag, Vf) (lower box).
In all games associated with PKE above except IND-CCA, the decryption oracle D
(and D¢ in ANO-CCA) also takes as input a bit that denotes which secret key (sk, or
sky) to use to decrypt the queried ciphertext. Also, see Section 2.1 for more details.
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Mohassel provided a number of interesting results (positive and negative) con-
cerning the anonymity and robustness of KEMs and of PKEs constructed from
them via the KEM-DEM framework.

In this section, we bridge the definitional gap left by Mohassel’s work by first
considering fully general definitions for KEM anonymity and robustness, and
then revisiting his results on these properties in the context of the KEM-DEM
framework. As we shall see, how much can be recovered depends in a critical
way on the KEM’s behaviour with respect to rejection of invalid encapsulations.

We first define ANO-CCA security of a KEM KEM = (KGen, Encap, Decap)
via the security game between an adversary and a challenger, as described in
Figure 2. Note that the security game differs from the AI-ATK game defined for
so-called general encryption schemes in [2], where in the latter, an adversary can
have access to multiple public-keys (and some corresponding secret keys which
will not result in a trivial win for the adversary). Since we are only considering
PKE schemes and KEMs in this paper, it is not hard to show that the two
security notions are equivalent up to a factor depending on the number of secret
key queries an adversary could make (as already discussed in [2]).

An analogous ANO-CPA definition can be obtained simply by removing de-
capsulation queries in the above game. An adversary A’s advantage in the ANO-
{CPA,CCA} game is then defined to be:

Advpp O tOPACOAT 4y — |Pr[GA = 1] — 1/2)

where G refers to A playing in the appropriate version of the anonymity game,

In the context of KEM-DEM framework for constructing PKE schemes, we
will find it sufficient to work with an even weaker notion of anonymity for KEMs,
that we refer to as weak anonymity. Here, the security game above is modified
by giving the adversary only C* in response to its challenge query, instead of
(C*, k*); see Figure 2. We then refer to wANO-{CPA,CCA} security and define
adversarial advantages as above.

We also define weak robustness (WROB) and strong robustness (SROB)
security notions for general KEMs. The security games described in Figure 2
define both notions via two different finalisation steps. Note that the security
game for WROB has a subtle difference from the corresponding WROB-ATK
game defined for general encryption schemes in [2] (in addition to the fact that,
in the latter game, an adversary can have access to multiple public-keys). The
difference is that in our notion, an adversary outputs a bit b that determines
which of the two public-keys (pkg, pk;) will be used for encapsulation. This is
required because the weak robustness notion is inherently asymmetric w.r.t. the
two challenge public-keys, since one key is used for encapsulation (resp. encryp-
tion in case of PKE schemes) and the other for decapsulation (resp. decryption
in case of PKE schemes).

Again, analogous WROB-CPA and SROB-CPA definitions can be obtained
simply by removing decapsulation queries in the above games. The advantage of
an adversary A in the {WROB,SROB}-{CPA,CCA} game is then defined as:

Adv{K\éVI\I;OB,SROB}f{CPA,CCA}(A) — PI‘[GA — 1]
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ANO-CCA{em wANO-CCA{Em

(pkg, sky) <3 KGen (pkg, sky) <—s KGen

(pky, sky) <—s KGen (pky, sky) <—s KGen
b+s{0,1} b+s{0,1}

(C*, k™) +s Encap(pk,) (C*, k™) < Encap(pk,)

b s APC) (pky, pky, (CF ")) b s AP0 (pky, pky, CF)
return b = b’ return b = b’
SROB-CCAim WROB-CCA{em

(pkg, sky) <3 KGen (pkg, sky) <3 KGen

(pky, sky) <—s KGen (pky, sky) <—s KGen

C s A0 (pky, pk,y ) b s A0 (pko, pky)

ko < Decap(pkg, sky, C') (C, kp) <—s Encap(pk,)

k1 < Decap(pky, sk, C) ki—p < Decap(pky_p,Sky_p, C)
return ko # L AND k1 # 1L return k1 # L
SCFR-CCAm WCFR-CCAem

(pkg, sky) <3 KGen (pkg, skq) <—s KGen

(pky, sky) <—s KGen (pky, sky) <—s KGen

C s AP (pky, pky) b s AP (pky, pky )

ko < Decap(pky, skq, C) (C, ks) s Encap(pk,)

k1 < Decap(pkl7 Skl, C) kl*b — Decap(pklflﬂ sk17b7 C)
return ko = k1 # L return ky = k1_p # L

Fig. 2. KEM security notions for chosen-ciphertext attacks. All adversaries have access
to a decryption oracle D that takes a ciphertext and (where relevant) a bit that selects
which secret key to use. In ANO-CCA and wANO-CCA games, the decryption oracle
disallows queries for the challenge ciphertext. For each notion, the corresponding defi-
nition for chosen-plaintext attacks can be obtained by simply removing the decryption
oracle.
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where G4 refers to A playing in the appropriate version of the robustness game.

Note that these robustness definitions apply mainly for KEMs that have
explicit rejection on decapsulation errors. KEMs that offer only implicit rejection
can never satisfy even the WROB-CPA notion.

With these anonymity and robustness notions in hand, it is straightforward
to extend the result of [32, Claim 3.3] concerning anonymity preservation from
the specific case of KEMs constructed directly from PKEs to fully general KEMs
(with a non-zero decapsulation error probability); in fact, we can also show the
robustness of hybrid PKE schemes constructed from robust KEMs via the KEM-
DEM framework. Namely, we have the following:

Theorem 1. Let PKE" = (KGen, Enc"?, Dec™) be a hybrid encryption scheme
obtained by composing a KEM KEM = (KGen, Encap, Decap) with a one-time se-
cure authenticated encryption scheme DEM = (Enc, Dec). If KEM is §-correct, then:

1. For any ANO-CCA adversary A against PKE"Y | there exist wANO-CCA
adversary B, IND-CCA adversary C and WROB-CPA adversary D against
KEM, and INT-CTXT adversary £ against DEM such that

Advien M (A) <Advigy @ N (B) + 2Advigy O (C)
+ AdviIECPOPA (D) + AdvELOTXT(€) 4 4.

The running times of B, C and £ are the same as that of A. The running
time of D is independent (and less than that) of the running time of A.

2. For any WROB-ATK (resp. SROB-ATK ) adversary A against PKE"Y, there
exists WROB-ATK (resp. SROB-ATK) adversary B against KEM such that

AdvIEOBATE(4) < AdvIEOBATH (5)
AGVIRZE T () < AdVER )
where ATK € {CPA, CCA} and the running time of B is that of A.

Proof (sketch). The proof of Theorem 1.1 closely follows that of [32, Claim 3.3]
in terms of the sequence of game-hops. Also for certain game-hops, we rely on
security notions that are weaker than the corresponding notions considered in
the proof of [32, Claim 3.3] (e.g., WROB-CPA, instead of WROB-CCA, security
of the underlying KEM). The complete details of the proof can be found in the
full version [22].

To sketch a proof for Theorem 1.2, note that an adversary A wins the WROB-
ATK game w.r.t. PKE™ if it returns a pair (m, b) such that Dec™ (sky_, C) # L
where C(Z (CKEM; CDEM)) s Enchy(pk:b7 m) Let (CKEM7 kb) s Encap(pkb) and
Decap(sk, ,, Ckem) = k1_p. It is easy to see that ky_p # L, since Dec™ (sk;_,, C') #
L. This implies that we can return bit b to win the WROB-ATK game w.r.t. KEM.
We can use a similar argument for the SROB-ATK case as well. The complete
details can again be found in the full version [22].

Note that Theorem 1 is only meaningful for KEMs with explicit rejection, since
for implicit rejection KEMs, the term AdeVEI},,OB‘ATK(-) in the above security
bounds can be large.
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3.1 Generic Composition for Implicit Rejection KEMs

Robustness: We first consider what can be said about robustness for PKE
schemes built from KEMs offering implicit rejection. We begin with a relaxed
notion of robustness, namely collision freeness (as introduced for the specific
case of KEMs obtained from PKEs in [32]). Informally, a scheme is said to be
collision-free if a ciphertext always decrypts to two different messages under
two different secret keys. We consider two variants, weak (WCFR) and strong
collision freeness (SCFR). The security games defined in Figure 2 define both
notions via two different finalisation steps.

As usual, analogous WCFR-CPA and SCFR-CPA definitions can be obtained
by removing decapsulation queries in the above games. Adversary A’s advantage
in the {WCFR,SCFR}-{CPA,CCA} game is defined to be:

Advi\évMCFR,SCFR}—{CPA,CCA}(A) — Pr[GA = 1]
where G refers to A playing in the appropriate version of the CFR game.

Now suppose we have a KEM that is SCFR-CCA (resp. WCFR-CCA) secure
and a DEM that is FROB (resp. XROB) secure. (Recall that FROB and XROB
are robustness notions for symmetric encryption schemes introduced in [17] and
defined in Figure 1.) Then we can show that the hybrid PKE scheme obtained by
composing these KEM and DEM schemes is SROB-CCA (resp. WROB-CCA)
secure. More formally,

Theorem 2. Let PKE" = (KGen, Enc", Dec™) be a hybrid encryption scheme
obtained by composing a KEM KEM = (KGen, Encap, Decap) with a DEM DEM =
(Enc, Dec). Then for any SROB-CCA (resp. WROB-CCA ) adversary A against
PKE™, there exist SCFR-CCA (resp. WCFR-CCA) adversary B againt KEM
and FROB (resp. XROB) adversary C against DEM such that

AdvERZE M (A) < AdVEELTOON(B) + AdVEER" ()

Advi &R OOM (A) < Advitgy 99N (B) + AdviEn P (C)
where the running times of B and C are the same as that of A.

Proof (sketch). Note that an adversary A wins the SROB-CCA game w.r.t. PKE™
if it returns a ciphertext C' (= (Ckem, Cbem)) such that Dec™(sko, C') # L and
Dec(sk;,C) # L. Let Decap(sky, Ckem) = ko and Decap(sk;, Ckem) = k1. It is
easy to see that kg # L and k; # L. Now if kg = k1, we can return Ckgm to win
the SCFR-CCA game w.r.t. KEM. If kg # ki, we can return (Cpgm, ko, k1) to
win the FROB game w.r.t. DEM. We can do a similar case-distinction to argue
about WROB-CCA security as well. The complete details of the proof can be
found in the full version [22].

Note that Farshim et al. [17] provide efficient constructions of FROB- and
XROB-secure AE schemes, meaning that the requirements for the above theo-
rem can be easily met. At the same time, they showed that a symmetric AE
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scheme that achieves the standard ROR-CCA notion of security is also inher-
ently robust, albeit w.r.t. some weaker notions compared to FROB. Namely,
such ROR-CCA secure AE schemes were shown to satisfy the so-called semi-
full robustness (SFROB) notion in [17]. The SFROB notion of robustness for
symmetric AE schemes is a (potentially) weaker variant of FROB where, in the
corresponding security game, the adversary does not get to choose any keys. In-
stead, two keys are honestly generated and the adversary is given oracle access
to encryption and decryption algorithms under both keys. The adversary is also
given access to one of the keys, and the game is won (similar to that of FROB) if
the adversary returns a ciphertext that decrypts correctly under both honestly
generated keys.

The following theorem shows that a DEM that is only ROR-CCA secure
— and that lacks the stronger robustness properties from [17] — is incapable
of generically transforming strongly collision-free implicit rejection KEMs to
strongly robust hybrid PKEs.

Theorem 3. Suppose there exists a KEM that is simultaneously SCFR-CCA,
IND-CCA and ANO-CCA secure. Suppose that there exists a SUF-CMA-secure
MAC scheme and an ROR-CPA secure symmetric encryption scheme (such
schemes can be built assuming only the existence of one-way functions). Suppose
also that collision-resistant hash functions exist. Then there exists an implicit-
rejection KEM that is SCFR-CCA, IND-CCA and ANO-CCA secure and a
DEM that is ROR-CCA secure, such that the hybrid PKE scheme obtained from
their composition is not SROB-CCA secure.

Proof (sketch). Let MAC = (Tag, Vf) be an SUF-CMA secure MAC. We con-
struct MAC = (Tag, Vf) where the only difference from MAC is that we fix
a “faulty” key k chosen uniformly at random from the original MAC key-
space such that Vf(k,-) = 1. Note that MAC is also SUF-CMA secure. So
by composing MAC with an ROR-CPA secure symmetric encryption scheme
SE that never rejects invalid ciphertexts via the “Encrypt-then-MAC” con-
struction, we get an AE-secure DEM. Now let KEM = (KGen, Encap, Decap)
be a KEM that is SCFR-CCA, IND-CCA and ANO-CCA secure, and H be a
collision-resistant hash function with its range being the key-space of SE. We
construct KEM = (KGen, Encap, Decap) where the only difference from KEM
is that the ciphertext space is augmented by a “special” bitstring ¢ such that
Decap(sk,¢) = H(pk)||k, for any KEM key-pair (pk,sk). It is not hard to see
that KEM is also IND-CCA, ANO-CCA secure, and SCFR-CCA secure (relying
on the collision-resistance of H). Now the composition of KEM and DEM will
not result in an SROB-CCA secure hybrid PKE. Specifically, an adversary can
return the ciphertext (¢,c’||o’), where ¢’||o’ is an arbitrary DEM ciphertext, to
win the corresponding SROB-CCA game with probability 1. Complete details
of the proof can be found in the full version [22].

Anonymity: Now we turn to the question of what can be said about anonymity
for PKE schemes built from KEMs offering implicit rejection. We prove a nega-
tive result that strengthens an analogous result of [32]. That result showed that
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there exist KEMs that are ANO-CCA (and IND-CCA) secure and XROB-secure
authenticated encryption schemes, such that the hybrid PKE scheme resulting
from their composition is not ANO-CCA secure. Thus anonymity is not pre-
served in the hybrid construction. However the KEM construction that was used
to show this negative result in [32] is not SCFR-CCA secure, which might lead
one to think that the strong collision freeness of implicit rejection KEMs might
be sufficient to preserve anonymity. Here, we show this not to be true.

Theorem 4. Suppose there exists a KEM that is simultaneously SROB-CCA,
IND-CCA and ANO-CCA secure, a claw-free pair of permutations with domain
and range being the encapsulated key-space of the KEM, and a collision-resistant
hash function. Suppose also that there exists a DEM that is ROR-CCA and
XROB-secure. Then there exists an implicit-rejection KEM that is SCFR-CCA,
IND-CCA and ANO-CCA secure and a DEM that is ROR-CCA and XROB-
secure, such that the resulting hybrid PKE is not ANO-CCA secure.

Proof (sketch). Let KEM = (KGen, Encap, Decap) be a KEM that is IND-CCA,
ANO-CCA and SROB-CCA secure. Let H be a collision-resistant hash function
that maps the space of public-keys of KEM to its encapsulated key-space. We
now construct KEM = (KGen, Encap, Decap) as follows. For the public parameters
of KEM, we first generate a pair of claw-free permutations with corresponding
fixed public-key PK (see [11, Section 4.2] for a more formal definition) f; (PK,-)
and f2(PK,+) with domain and range being the encapsulated key-space of KEM.
Now Encap(pk) returns (C,k) where (C,k) +sEncap(pk) and k := f;(PK,k).
Decap(sk, C) returns k where, for k' + Decap(sk,C), k := fi(PK, k') if k' # L
and k= f2(PK, H(pk)) if ¥ = L. Using straightforward reductions, it is not
hard to show that KEM is also IND-CCA and ANO-CCA secure. In addition, we
can show that KEM is SCFR-CCA secure by relying on the SROB-CCA security
of KEM, collision-resistance of H and claw-freeness assumption w.r.t. f1(PK;, )
and fo(PK,-).

Now let DEM = (Enc, Dec) be an ROR-CCA secure AEAD which is addi-
tionally XROB-secure. We now describe an adversary A against the ANO-CCA
security of the hybrid PKE scheme w.r.t. the composition of KEM and DEM.
Upon receiving two public-keys pk, and pk; (along with the public-parameters
f1(PK,-) and f2(PK,")), A selects an arbitrary message m and forwards m to
the ANO-CCA challenger. It then receives the ciphertext C' = (Ckem, Cpem)
where (Ckem, k) <—s Encap(pk,) and Cpem s Enc(k, m), for bit b <—s {0, 1}. Then,
A asks for the decryption of ciphertext C' = (Ckem, Chgy) W.r.t. sk, where
Clhey = Enc(k,m) with k = fo(PK, H(pk,)). If the response is L, then A out-
puts 0; else, it outputs 1. We use similar arguments as that of [32, Claim 3.1] to
show that A succeeds with a high probability. Complete details of the proof can
be found in the full version [22].

The consequence of the above theorem (and its counterexample) is that, for
implicit rejection KEMs, we cannot hope to transfer anonymity properties of
the KEM to those of the hybrid PKE scheme resulting from the standard KEM-
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Encap(pk) Decap(sk, ¢)

1: m+sM 1: Parse c = (c1,c2)

2:  c1 + Enc(pk,m;G(m)) 2: m' «+ Dec(sk,c1)

3: c2 4+ H'(m) 3: ¢ + Enc(pk,m’; G(m"))

4: o H'(m, c1) 4 ifci=c1 A H'(m') = ¢ then

5: c<+ (c1,c2) 5: |if ¢; =c1 AH'(m,c1) = co then
6: k=H(m,c) 6: return H(m’,c)

7: return (k) 7: else return L

Fig.3. The KEM HFO' [PKE,G,H, H']. Boxed code shows modifications to
HFO* [PKE, G, H, H'] required to obtain scheme HFOL' [PKE, G, H, H']. Both con-
structed schemes reuse algorithm KGen from PKE.

DEM construction in a fully generic manner. To make further progress in this
direction, then, we need to look more closely at specific KEM constructions.

4 Anonymity and Robustness of KEMs Obtained from
Fujisaki-Okamoto Transforms in the QROM

Fujisaki and Okamoto [18-20] introduced generic transformations that turn
weakly secure PKE schemes (e.g. OW-CPA or IND-CPA secure PKE schemes)
into IND-CCA secure KEMs and PKE schemes. Several distinct transforms have
emerged, each with slightly different flavours; we broadly follow the naming con-
ventions in [24]. One main distinction is whether the constructed KEM offers
implicit rejection (FO*) or explicit rejection (QFO;:). As we have already seen,
this distinction is important in considering robustness, and we divide our anal-
ysis of the FO transforms in the same way. Since all NIST PQC candidates in
the KEM/PKE category except one alternate candidate offer implicit rejection,
we mainly focus on the corresponding FO* transform. Also, since we are mainly
concerned with the post-quantum setting, our analysis that follows will be in
the QROM.

4.1 KEMs With Explicit Rejection

Before we focus on the FO* transform, we briefly discuss our results related
to explicit-rejection KEMs. The paper [27] presents a variant of the Fujisaki-
Okamato transform, namely HFO™, that results in IND-CCA secure KEMs in the
QROM. Given a PKE scheme PKE = (KGen, Enc, Dec) (with message space M)
and hash functions G, H and H’, the resulting KEM* = HFO+ [PKE,G,H,H'] =
(KGen, Encap, Decap) is described in Figure 3.
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return H(m',c)

KGen' Encap(pk) Decap(sk’, c)
1:  (pk,sk) < KGen 1: m<sM 1: Parse sk’ = (sk, s)

2: s<+sM 2: r+« G(m) 2:  m' + Dec(sk, c)

3: sk’ = (sk,s) 3: ¢+ Enc(pk,m;r) 3: 1+ G(m)

4: return (pk,sk’) 4: k< H(m,c) 4: ¢ < Enc(pk,m’;r")

5: return (ck) 5: if ¢ =cthen

6 :
7

else return H(s,c)

Fig. 4. The KEM FO*[PKE, G, H].

We introduce a slight variant of the above transform, namely HFOJ‘/, as
shown in Figure 3. The only change is that the ¢y component of the ciphertext—
used for so-called plaintext confirmation—is derived as ¢y < H'(m, c;) instead of
as cg < H'(m). However, this seemingly minor change not only allows the HFOY
transform to result in IND-CCA secure KEMs, but also strongly anonymous
(ANO-CCA secure) and robust (SROB-CCA secure) KEMs in the QROM. In
the full version [22], we formally state and prove the corresponding theorems.

4.2 KEMs With Implicit Rejection

Given a PKE scheme PKE = (KGen, Enc, Dec) with message space M and hash
functions G and H, the KEM KEM* = FO*[PKE, G, H] is shown in Figure 4. As
described in [24], the FO* transform “implicitly” uses a modular transformation
T that converts a OW-CPA/IND-CPA secure PKE scheme PKE into a deter-
ministic PKE scheme PKE; = T [PKE, G] = (KGen, Enc’, Dec’) that is secure in
the presence of so-called plaintext-checking attacks. The deterministic encryption
Enc’(pk,m) returns ¢ where ¢ < Enc(pk,m; G(m)). The decryption Dec’(sk, c)
first computes m’ < Dec(sk,c¢) and then returns m’ if the re-encryption check
“Enc(pk, m’; G(m')) = ¢” succeeds; otherwise, L is returned.

It was proved in [26] that the FO* transform lifts IND-CPA security of
PKE to IND-CCA security of KEM* in the QROM. We provide some further
enhancement results for FO*. They demonstrate that, provided the starting
PKE scheme PKE and the derived deterministic scheme PKE; satisfy some
mild security assumptions on anonymity (wWANO-CPA?) and collision-freeness
(SCFR-CPA) respectively, then FO* confers strong anonymity (ANO-CCA) and
collision-freeness (SCFR-CCA) to the final KEM* in the QROM.

3 The wANO-CPA security notion for PKE is a weaker variant of ANO-CPA where, in
the corresponding security game, the challenger encrypts a uniformly random secret
message under either of the two honestly generated public-keys and only provides
the resulting ciphertext to the adversary, along with the generated public-keys.
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Theorem 5. Suppose PKE = (KGen, Enc,Dec) is d-correct and has message

space M. Then for any ANO-CCA adversary A against KEM# = FO’K[PKE, G, H|
isswing at most qq (resp. qu) queries* to the quantum random oracle G (resp.

H) and at most qp queries to the (classical) decapsulation oracles, there exist

wANO-CPA adversary B and OW-CPA adversary C against PKE, and SCFR-

CPA adversary D against PKE; = T[PKE, G] issuing at most g queries to G,

such that:

Advieyi”“H(A) < Advie ™ P B) + 2(g0 + gm)\ Advig A (C)

4
+gp - Advpie,""A(D) + ff/” +2gc(qp +2)V26 .

Moreover, the running times of B, C and D are the same as that of A.

Proof (sketch). In a reduction from ANO-CCA security of KEM* to wANO-CPA
security of PKE, note that we need to simulate two different decapsulation oracles
consistently without possessing the corresponding secret keys. Our approach is
to generalize the simulation trick of [26,34] in the QROM from a single-key
setting (in the context of IND-CCA security) to a two-key setting (ANO-CCA).
Namely, given two public-keys pkg, pk;, note that the encapsulation algorithm for
both of them uses a common key-derivation function (KDF) “k = H(m,c)” (see
Fig. 4). So we associate this KDF with two secret random functions Hy and H;
as follows: given an input (m,c), if ¢ = Enc(pk;, m; G(m)) (i.e., ¢ results likely
from Encap(pk;)), then replace the KDF with “k = H;(c)”. Note that in this
case, we can simply simulate the decapsulation oracles as Decap(sk;, ¢) = H;(c)
without requiring the secret keys. Now to argue that this replacement of KDF is
indistinguishable w.r.t. an adversary, we require the functions Enc(pk,,- ; G(-))
to be injective. Thus, following [26], we first replace oracle G with G’ where G’
only returns “good” encryption randomness w.r.t. (pky,sky) and (pkq,sk,) —i.e.,
Vm, Dec(sk;, Enc(pk;,m; G'(m))) = m, for i € {0,1}. We again generalize the
argument of [26] from a single-key setting to a two-key setting to show that this
replacement of G is indistinguishable, relying on the é-correctness of PKE.
However, note that we additionally have to account for pairs (m,c) which
satisfy Enc(pkgy, m; G'(m)) = Enc(pky,m; G'(m)) = ¢; in this case, the reduction
does not know which public-key was used to generate ¢ during key-encapsulation.
So we rely on SCFR-CPA security to argue that it is computationally hard for an
adversary to ask for the (classical) decapsulation of such “peculiar” ciphertexts c.
Such a ¢ results in Dec(skg,c) = Dec(sky,c) = m, thereby breaking the SCFR-
CPA security of T[PKE,G'], and hence, that of PKE; = T[PKE,G] (up to an
additive loss). Complete details of the proof can be found in the full version [22].
Note that it is similar in structure to that of [26, Theorem 1] in terms of the

4 Following [24, 26], we make the convention that the number go of queries made by
an adversary A to a random oracle O counts the total number of times O is executed
in the corresponding security experiment; i.e., the number of A’s explicit queries to
O plus the number of implicit queries to O made by the experiment.
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sequence of game-hops. But for the sake of completeness, we provide a self-
contained proof.

To establish strong collision-freeness of the implicit-rejection KEMs con-
structed using FO*, we require the following claw-freeness property of quantum
random oracles.

Lemma 1 ([39, Lemma 2.3]). There is a universal constant o (< 648) such
that the following holds: Let Xy, X1 and ) be finite sets. Let Ny = |AXp| and
Ny = |Xy|, with No < Ny. Let Hy : Xy — Y and Hy : X1 — Y be two random
oracles.

If an unbounded time quantum adversary A makes a query to Hy and Hy at
most q times, then we have

alg+1)3

PI‘[H(](iE()) = Hl(xl) . (.’E07£C1) <— AHO’HI] S |y| s

where all oracle accesses of A can be quantum.

For the following result, we in-fact need a weaker property than the one
described in the above lemma; namely, it’s hard for an adversary to return a
value x € Xy N Ay such that Ho(z) = Hy(z). We leave the derivation of the
corresponding upper-bound as an open problem.

Theorem 6. Suppose PKE = (KGen, Enc, Dec) is §-correct. Then for any SCFR-
CCA adversary A against KEM* = FO’[[PKE7 G, H] issuing at most qp queries
to the (classical) decapsulation oracles, at most qc (resp. qu) queries to the
quantum random oracle G (resp. H), there exists an SCFR-CPA adversary B
against PKE; = T[PKE, G| issuing at most qg queries to G such that

1 3
AVEERE O () < ap - AdvERE O () + AL
4qm
+ i + 2g¢(qp +2)V25.

Here K denotes the encapsulated key-space of KEM* and o (< 648) is the con-
stant from Lemma 1. The running time of B is the same as that of A.

Proof (sketch). Here we reduce the SCFR-CCA security of KEM* to the hard-
ness of claw-finding w.r.t. QROs. The proof is similar in structure to that of
Theorem 5. Namely, we start with an SCFR-CCA adversary A and do a simi-
lar sequence of game-hops until the point where the decapsulation oracles don’t
require the corresponding secret keys — namely, Decap(sk;,c) = H;(c) for (se-
cret) random functions Hy, Hy : C — K, where C denotes the ciphertext space
of PKE/KEM#. Now A wins this modified SCFR-CCA game if it returns ¢ such
that Decap(sky,c) = Decap(sky,c), or equivalently, Ho(c) = Hi(c). Note that
(¢, c) is then a claw w.r.t. the pair of QROs (Hy, H1). Hence, we can bound A’s
winning probability using Lemma 1. A complete proof can be found in the full
version [22].
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From Theorems 5 and 6, we see that by applying the FO* transformation
to weakly secure (i.e., OW-CPA) and weakly anonymous (i.e., wANO-CPA)
PKE schemes, with an additional assumption of strong collision-freeness (against
chosen plaintext attacks) of the deterministic version of the underlying PKE
scheme (PKE; = T[PKE, G]), not only do we obtain strongly secure KEMs (i.e.,
IND-CCA security) but also KEMs that are strongly anonymous (i.e., ANO-
CCA) and are strongly collision-free against chosen ciphertext attacks (SCFR-
CCA) in the QROM.

At the same time, we showed a negative result in Theorem 4. It essentially
shows that starting from a KEM that is IND-CCA, ANO-CCA and SCFR-CCA
secure does not generically result in a strongly anonymous (ANO-CCA) hybrid
PKE scheme via the KEM-DEM composition. Nonetheless, we are able to show
the following positive result for KEMs obtained via the FO* transform. We only
need a weak additional property of the underlying PKE scheme, namely that it
be ~y-spread.

Theorem 7. Let PKEWY = (KGen', Encv, Dechy) be a hybrid encryption scheme
obtained by composing KEM* = FOL[PKE, G, H] with a one-time authenticated
encryption scheme DEM = (Enc®™™ Dec®™™). Suppose PKE is §-correct and -
spread (with message space M). Then for any ANO-CCA adversary A against
PKEM issuing at most qg (resp. qm) queries to the quantum random oracle
G (resp. H), there exist ANO-CCA adversary B and IND-CCA adversary C
against KEM#, WCFR-CPA adversary D against PKE; = T[PKE, G], and INT-
CTXT adversary £ against DEM such that:

AQVARGCOM(A) < AdvidiOOA (B) + 28dviXDEA (€) + AdvELTOPA (D)

4
+2AdvBOTXT(E) + ff/” +dgeVE+ 277

Moreover, the running times of B, C and £ are the same as that of A. The
running time of D is independent (and less than that) of the running time of A.

Proof (sketch). We use the proof of Theorem 1. Let (pkg,skg) and (pk;,sk})
be two key-pairs generated in the ANO- CCA security game w.r.t. PKE" and
b+s{0,1} be the challenge bit. Let ¢* = 72 ) be the challenge ciphertext
given to an adversary A; i.e., (¢}, k*) < KEM Encap pk,) and ¢ < Enc®¥™(m)
where m is chosen by A upon first receiving pko, pk1. In the proof of Theorem 1,
we make some initial game-hops to modify the Dechy(sk’lfb, -) oracle such that
if the query is of the form (cj,ca), the oracle returns L. There we rely on the
WROB-CPA security of the underlying KEM to justify this modification. How-
ever, KEM? is trivially not WROB-CPA secure. Nevertheless, we show that by
relying on ~-spreadness of PKE, WCFR-CPA security of PKE; and INT-CTXT
security of DEM, we can still make the above modification of the Dec™ (ski_p,-)
oracle. From that point on, we essentially use the same game-hops as in the
proof of Theorem 1 in our reduction to ANO-CCA security of KEM*. Complete
details can be found in the full version [22].
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5 Anonymity and Robustness of NIST PQC Candidates

After analyzing the anonymity and robustness enhancing properties of the “stan-
dard” FO transforms in Section 4, we extend our analysis to the specific instanti-
ations of these transforms used by Classic McEliece, proto-Saber (the simplified
version of Saber in [14]) and FrodoKEM. We conclude this section by discussing
some limitations of our techniques w.r.t. analyzing Saber and Kyber.

5.1 Classic McEliece

KGen’ Encap(pk) Decap(sk’, (c, h))
1:  (pk,sk) « KGen 1: m+sM 1: Parse sk’ = (sk, pk, s)
2: s+sM 2: ¢+ Enc(pk,m) m’ < Dec(sk, c)
3: sk’ « (sk,pk,s) 3: h+ Hz(m) ¢’ < Enc(pk, m")
4: return (pk,sk’) 4: k<« Hy(
5:

return ((c, h), k) return H;(m/, (c, h))

2
3
m,(c,h)) 4: if ¢ =cA Ha(m') =h then
5
6: else return Hy(s, (¢, h))

Fig. 5. Classic McEliece uses a slight variant of the FO* transform that starts with
deterministic PKE schemes. Here Hy and H; are two different hash functions. The so-
called “Dent hash” H> is used as an additional component in the KEM ciphertext [3].

Classic McEliece (CM) as defined in its third round NIST specification [3]
applies a slight variant of the FO* transform to its starting deterministic PKE
scheme (see Fig. 5). It can easily be shown that our generic transformation results
on FO*, namely Theorems 5 and 6, apply to the FO*-like transformation used
by CM, while accounting for the additional “Dent hash”. Hence, the only thing
that would remain to be analyzed is whether the base PKE scheme used by
CM satisfies the pre-requisite security properties of Theorems 5 and 6, namely
wANO-CPA and SCFR-CPA. As we show next, the base PKE scheme used by
CM fails to be collision-free in a striking way that rules out the application of
these results. This failure also propagates to PKE schemes built from the CM
KEM via the standard KEM-DEM construction.

The base CM scheme: The base CM scheme is deterministic. To encrypt a
message m, first encode m as a binary column vector e of some fixed length n
and fixed Hamming weight ¢. Then compute ciphertext ¢ = He € Fy where H
is an (n — k) x n matrix of the form H = (I,,_x |T), where T is some (n — k) X k
matrix whose value is unimportant below. Matrix H is the parity check matrix of
an error correcting code whose error correcting capacity is at least t. Decryption
is done by using the private key to rewrite matrix H in such a way that efficient
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decoding can be performed to recover e with perfect correctness. The base CM
scheme is closely related to the Niederreiter variant of the McEliece PKE scheme.

Collision-freeness of the base CM scheme: Recall that we would require
the base CM scheme to satisfy the SCFR-CPA property in order to make use
of our generic results concerning the FOZ transform. This property is crucial in
the CPA — CCA security proofs where we have to simulate the decapsulation
oracles under two different secret keys without access to the keys. As we will
show now, the base CM scheme is not SCFR-CPA secure, nor even WCFR-CPA
secure. In fact, we can go further and exhibit a strong robustness failure of the
base CM scheme, and explain how it leads to robustness failures in the CM KEM
and hybrid PKE schemes built from it.

Consider any weight t error vector e in which the ¢ 1’s in e are concentrated
in the first n — k bit positions of e (in all the parameter sets used in Classic
McEliece, n — k = mt > t, for a positive integer m, so this is always possible).
We call such an e concentrated. Note that any concentrated e can be written
e = (675;'“) with e, _x of length n — k and 0O; being the vector of k zeros. Since
encryption is done by computing ¢ = He, and H is of the form (I,,_x|T), it
is easy to see that c is a fixed vector independent of the T part of H: namely,
He = e,,_j; which depends only on the first n — k bit positions of e.

Note that this property holds independent of the public key of the base CM
scheme (which is effectively the matrix H). Thus there is a class of base CM
messages (of size (";k)) for which the resulting ciphertext ¢ can be predicted as
a function of the message without even knowing the public key. By correctness
of the base CM scheme, such ciphertexts must decrypt to the selected message
under any base CM scheme private key.

It is immediate that this property can be used to violate SCFR-CPA and
WCFR-CPA security of the base CM scheme. This presents a significant bar-
rier to the application of our general theorems for establishing robustness and
anonymity of the full CM KEM.

Robustness of the CM KEM and Hybrid PKEs derived from it: The
base CM scheme is used to construct the CM KEM according to procedure de-
scribed in Figure 5. This means that the CM KEM encapsulations are also of
the form ¢ = (He, Ha(e)) where Hs(-) is a hash function; meanwhile the encap-
sulated keys are set as Hi(e,c) where Hy(-) is another hash function. The CM
KEM performs implicit rejection, so one cannot hope for robustness. However,
one might hope for some form of collision-freeness. Our analysis above shows
that the CM KEM does not provide even this, since when e is concentrated,
¢ = (He, Hy(e)) decapsulates to Hj (e, ¢) under any CM private key.

Finally, one might ask about the robustness of PKE scheme built by combin-
ing the CM KEM with a DEM in the standard way. Again, such a PKE cannot
be strongly collision free (and therefore not strongly robust either), since it is
trivial using our observations to construct a hybrid PKE ciphertext that decrypts
correctly under any CM private key to any fixed choice of message m (without
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even knowing the public key). To see this, simply consider hybrid ciphertexts of
the form (He, Ha(e), AEAD.Enc(K, m;r)) where e is concentrated, K = Hj (e, c)
is the symmetric key encapsulated by the KEM part ¢ = (He, Ha(e)) of the hy-
brid ciphertext, and r is some fixed randomness for the AEAD scheme. Such
ciphertexts decrypt to the freely chosen message m under any CM private key.

Robustness could plausibly be conferred on this hybrid PKE scheme by in-
cluding a hash of the public key in the key derivation step. However CM keys
are large, so this would have a negative effect on performance. Robustness is not
conferred in general by replacing the DEM with an AEAD scheme and including
the hash of the public key in the associated data to create a “labelled DEM”.
This is easy to see by adapting the counter-example construction used in the
proof of Theorem 3.

Further remarks on CM: The analysis above shows that we cannot hope
to establish anonymity or robustness of the CM KEM or PKEs built from it
via the standard KEM-DEM construction using the sequence of results in this
paper. But this does not rule out more direct approaches to proving anonymity.
For example, Persichetti [33] has analysed the anonymity of a scheme called HN
(for “hybrid Niederreiter”) that is rather close to the natural hybrid scheme one
would obtain from CM. However, the analysis is in the ROM rather than the
QROM. We are not aware of any further analysis of the anonymity properties
of schemes that are close to CM and that might be easily adapted to CM.

In the context of the NIST PQC process, it remains an important open
problem to establish anonymity of the CM scheme.

5.2 proto-Saber

KGen’ Encap(pk) Decap(sk’, c)
1: (pk,sk) < KGen 1: m<+sM 1: Parse sk’ = (sk, pk, F(pk), s)
2: s4¢sM 2:  h <+ F(pk) 2:  m' ¢+ Dec(sk, c)
3: pk = (pk,F(pk)) 3: (k,r) < G(h,m) 5. (1) « G(F(pk),m’)
4t sk’ < (sk,pk’;s) 4: < Enc(pk,m;T) 4. ¢ < Enc(pk,m’;r’)
5: return (pk,sk’) 5: k<« H(k,c) 5: if ¢ =c then
6: return (c,k) 6: return H(k' c)

7: else return H(s,c)

Fig. 6. pSaber uses a variant of the FO* transform. Here G, F and H are hash functions.

The scheme “proto-Saber” (pSaber for short) is a KEM that was introduced
in [14] and which is included in the NIST third round specification document for
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Saber [7]. Saber and pSaber use the same base PKE scheme but apply different
FO-type transforms to obtain their respective KEMs. The QROM IND-CCA
security claims for Saber [7, Theorem 6.5] seem to have been taken directly from
those for pSaber [14, Theorem 6] without any modification. However, as we will
explain below, there are issues with pSaber’s IND-CCA security claims, and yet
further issues for Saber’s.

Now pSaber uses a transform that differs significantly from the standard FO*
one (see Fig. 6). These significant deviations act as an obstacle to applying our
generic results on anonymity and SCFR enhancement of FO* to pSaber. The
nature of these deviations also led us to ask whether they also act as a barrier
in applying the results of [26] to establish the IND-CCA security of pSaber, as
claimed in [14]. We believe this to be the case, as we explain next.

IND-CCA security of pSaber in the QROM: We claim that the spe-
cific proof techniques used by [26], to obtain relatively tight IND-CCA security
bounds for the standard FO* transform in the QROM, do not directly apply to
pSaber’s variant of the FO transform. An important trick used by [26] in their se-
curity proofs of FO* is to replace the computation of the key “k « H(m, c)” with
“k «+ H'(g(m))(= H'(c))” for function g(-) = Enc(pk,-;G(-)) and a secret ran-
dom function H’(-); note that in this case, we simply have Decap(sk, c¢) = H'(c)
leading to an “efficient” simulation of the decapsulation oracle without using the
secret key sk. To justify this replacement, the authors of [26] then argue about
the injectivity of g(-), relying on the correctness of the underlying PKE scheme
to establish this.

But in pSaber, the keys are computed as “k < H (lAc7 ¢)” where the “pre-key”
k is derived as a hash of the message m (to be specific, (k,r) < G(F(pk),m)).
So there is an extra layer of hashing between m and the computation of k.
Hence, to use a similar trick as [26], we would require some additional injectivity
arguments. Thus, strictly speaking, the proof techniques of [26] do not directly
apply to pSaber.

Nevertheless, we are able to overcome the above barrier by adapting the
analysis of FO* in [26] to obtain an explicit IND-CCA security proof for pSaber
in the QROM, with the same tightness as claimed in [14]. The formal proof can
be found in the full version [22]. We give a high-level overview of our approach
below.

First, note that we can replace the step “(k,r) < G(F(pk),m)” in pSaber’s
encapsulation by “k « G i(m)” and “r <= G(m)” for two fresh random oracles
Gy, G : {0,1}?%¢ — {0,1}?%. Now our key observation is that the extra layer
of hashing “G}(-)” between m and k is actually length-preserving, i.e., the hash
function has the same domain and range. So following [24, 37], we can replace
the random oracle G (-) with a random polynomial of degree 2q¢ —1 over a finite
field representation of {0,1}2°¢ (i.e., a 2gg-wise independent function). Here qg
is the number of queries made to oracle G in the IND-CCA security reduction
for pSaber. Thanks to a result in [40], this change is perfectly indistinguishable
to an adversary making at most qg queries to G,. This will allow us to recover
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m from a corresponding pre-key value k by computing roots of the polynomial
Gi(x) — k. Hence we can invert this “nested” hashing of m in order to apply
the trick of [26]. Namely, we can now replace the key derivation “k < H (]Af, c)’
with “k « H'(g(m))(= H'(c))” for function g(-) = Enc(pk,-;G,(-)), where in

addition, m is a root of the polynomial G} (z) — k.

Anonymity and Robustness of pSaber in the QROM: Our approach to
repairing pSaber’s IND-CCA proof also allows us to derive proofs of anonymity
and SCFR enhancement for pSaber with similar tightness.

Now pSaber, and Saber, is a KEM whose claimed security relies on the
hardness of the module learning-with-rounding problem, or mod-LWR for short
(see [7,14] for a precise description of the assumption). In the following, we
prove the ANO-CPA security of the base PKE scheme Saber.PKE that is used
by pSaber, and also currently used by Saber (as per [7]). The result relies on the
hardness of mod-LWR. The proof can be found in the full version [22]. The proof
adapts the proof of [14, Theorem 3] showing IND-CPA security of Saber.PKE.

Theorem 8. For any ANO-CPA adversary A against Saber.PKE, there exists
a distinguisher By (resp., Bs) between I (resp. l + 1) samples from a mod-LWR
distribution from that of a uniform distribution, with corresponding parameters
I, 1, q and p, such that

Advgﬁgffé(fl) < 2- AdvPIM(B)) + AdvEYE (By).

Llop,q,p I+1,l,p,q,p

Moreover, the running times of By and By are the same as that of A.

Now we establish anonymity and strong collision-freeness of pSaber KEM,
which we will denote as “pSaber.KEM” in the following to contrast the scheme
with Saber.PKE. We use similar proof strategies that were used to show the same
properties for FO* in Section 4 (Theorems 5 and 6). A major difference is that
instead of relying on the SCFR-CPA security property of Saber.PKE (specifically,
its deterministic version), we again rely on hardness of the claw-finding problem
in a quantum setting (see Lemma 1).

In our next results, we show that the stronger properties of ANO-CCA and
SCFR-CCA hold for pSaber.KEM. Below we define CollZ,, ., pxg as the probabil-
ity of the event “F(pk,) = F(pk,)” where pk, and pk; are two honestly-generated
Saber.PKE public-keys. Given the space of Saber’s public-keys is sufficiently large
(of size greater than 2259), if the hash function F is sufficiently collision-resistant,
then Colld,,., pke can be considered to be negligible. The proofs of Theorems 9
and 10 can be found in the full version [22].

Theorem 9. Given Saber.PKE = (KGen, Enc, Dec) is §-correct, for any ANO-
CCA adversary A against pSaber. KEM = (KGen’, Encap, Decap) issuing at most
qp classical queries to the decapsulation oracles, at most qg (resp. qu ) quantum
queries to the random oracle G (resp. H ), there exist ANO-CPA adversary B,
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OW-CPA adversary C against Saber.PKE and a distinguisher By between | sam-
ples from a mod-LWR distribution and a uniform distribution with corresponding
parameters I, i, q and p, such that

ANO-CCA ANO-CPA OW-CPA
Adv sper kem(A) < Advgape pre (B) +2(q6 + qu)\/ AdvVgper pre(C)

alge +1)3 » 9 4
ol 1 | advppti(B) + 2o+ M8 4 g0

F
+ COllSaber.PKE + QQW 9128

Here o (< 648) is the constant from Lemma 1. The running times of B and C
are the same as that of A. The running time of By is independent (and less than
that) of the running time of A.

Theorem 10. Given Saber.PKE = (KGen, Enc, Dec) is §-correct, for any SCFR-
CCA adversary A against pSaber.KEM = (KGen’, Encap, Decap) issuing at most
qp queries to the (classical) decapsulation oracles, at most qc (resp. qu ) queries
to the quantum random oracle G (resp. H), we have

alge+1)% | alqgg +1)% | 4qy
9256 9256 9128

SCFR-CCA F
Adv saper kEm (A) < Collg,pe, pre +

Here a (< 648) is the constant from Lemma 1.

Regarding hybrid PKE schemes obtained from pSaber.KEM via the KEM-
DEM composition, we additionally show that such PKE schemes satisfy the
stronger ANO-CCA notion of anonymity, in a similar vein to Theorem 7 w.r.t.
FO*-based KEMs. The proof can be found in the full version [22].

Theorem 11. Let pSaber.PKE" = (KGen', Enc, Dechy) be a hybrid encryp-
tion scheme obtained by composing pSaber.KEM = (KGen’, Encap, Decap) with
a one-time authenticated encryption scheme DEM = (Enc®¥™, Dec™™). Given
Saber.PKE = (KGen, Enc, Dec) is d-correct, then for any ANO-CCA adversary
A against pSaber.PKE™ issuing at most q¢ (resp. qu) queries to the quantum
random oracle G (resp. H), there exist ANO-CCA adversary B, IND-CCA ad-
versary C against pSaber. KEM, INT-CTXT adversary £ against DEM and dis-
tinguisher By between | samples from a mod-LWR distribution and a uniform
distribution, with corresponding parameters l, i, q and p, such that

ANO-CCA ANO-CCA -CCA
Advpsliber.PKEhy (A) < Advpsljber.KEM(B) + 2AdV£§£er.KEM(C) + Coll, e, pke
1

4
+2AdvINT-CTXT (o) | Aqymed-ur gy 4 ST g, /5 B

L,lp,q,p 92128
and the running times of B, C and & are the same as that of A. The running
time of By is independent (and less than that) of the running time of A.

At the same time, from Theorems 2 and 10, we note that if the DEM com-
ponent is also FROB secure, then the corresponding hybrid PKE scheme will
be strongly robust (i.e., SROB-CCA secure). Hence, our above results give a
complete picture of anonymity and robustness properties of pSaber as well as
the hybrid PKE schemes derived from it.
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5.3 FrodoKEM

FrodoKEM uses an identical FO-type transform, described as “FO*"” in the
specification document [4], as pSaber does (see Fig. 6) on its base PKE scheme
“FrodoPKE”. Hence, our positive results on tight IND-CCA security, anonymity
and robustness of pSaber should also apply to FrodoKEM in a similar fashion;
instead of relying on hardness of mod-LWR problem, we have to rely on hardness
of the learning-with-errors (LWE) problem.

For example, when it comes to establishing anonymity of FrodoKEM, we only
need to prove the ANO-CPA security of FrodoPKE and then rely on the “ANO-
CPA — ANO-CCA” enhancement property of FO*' (LWE variant of Theo-
rem 9). The ANO-CPA security of FrodoPKE can be shown in a similar manner
as that of Saber.PKE (Theorem 8): namely, by adapting the IND-CPA security
proof of FrodoPKE. To be more precise, it is shown in [4,30] w.r.t. FrodoPKE
= (KGen, Enc, Dec) that given (pk,sk) <—sKGen and any valid message m, the
distribution (pk, Enc(pk,m)) is computationally indistinguishable from (pk, c*)
where ¢* is a uniformly random ciphertext, relying on the LWE hardness as-
sumption. Hence, in the ANO-CPA security game w.r.t. FrodoPKE, given two
honestly-generated public-keys pk,, pk; and a message m chosen by an adversary,
it cannot distinguish the encryption of m under pk, from a uniformly random
ciphertext that is independent of pk,. Similarly, the adversary also cannot dis-
tinguish the uniformly random ciphertext from the encryption of m under pk;.
It follows that the adversary cannot distinguish between the encryptions of m
under pk, and pk;, thereby establishing the ANO-CPA security of FrodoPKE.

5.4 Saber and Kyber

It turns out that Saber and Kyber implement a transform that deviates even
further from the FO* transform than pSaber does (see Fig. 7). Specifically, the
keys in Saber are computed as “k < F (IAc, F(c))” where the “pre-key” k is derived
as a hash of the message m (to be specific, (k,r) + G(F(pk),m)). Again there
is an extra hashing step between m and the computation of k, as we have seen
for pSaber. But at the same time, there is also a “nested” hashing of ciphertext
in the key-derivation (i.e., Saber uses “F(¢)” in place of just “c”) as opposed to
the standard “single” hashing in FO* and pSaber.

This “extra” hash of the ciphertext is a significant barrier to applying the
techniques we used to prove anonymity of pSaber. It also acts as a barrier when
trying to apply the generic proof techniques of [26] towards establishing the IND-
CCA security of Saber in the QROM, with the same bounds as was claimed in
its NIST third round specification [7]. At least for pSaber, as discussed above,
we were able to account for the “nested” hashing of message because it was
length-preserving. However, this is not the case for “F(c)” in Saber. We believe
that an IND-CCA security reduction for Saber, along the lines of [26], in the
QROM would need to rely on the collision-resistance of F'(-) when modelled as
a quantum random oracle. But a corresponding additive term is missing in the
IND-CCA security bounds claimed in the Saber specification. We have shared



Anonymous, Robust Post-Quantum Public Key Encryption 27

KGen’ Encap(pk) Decap(sk’, c)

=

1:  (pk,sk) < KGen
5 s M

pk’ < (pk, F(pk))
sk’ < (sk, pk’, s)
return (pk,sk’)

m s M 1: Parse sk’ = (sk, pk, F(pk), s)
m <« F(m) m’ < Dec(sk, c)

h < F(pk) 3. (K,r') < G(F(pk),m’)
(AT) < G(h,m) ¢’ < Enc(pk,m’;r")

c < Enc(pk,m;7T) 5. if ¢ =c then

ke F(kFc)) 6.  return F(¥,F(c))
return (c, k)

no

[NV V)
W~

N O Ot W N

7: else return F(s, F(c))

Fig. 7. Saber uses a variant of the FO* transform. Here G and F' are hash functions [7].

these observations with the Saber team. A representative of the team [38] ac-
cepted our findings on the IND-CCA security of pSaber. Regarding Saber, they
maintain that the nested hash of ciphertext F'(c¢) should not pose a security prob-
lem for Saber as ¢ is “deterministically derived from limited entropy”. However,
they do not know if this allows a security proof to go through in the QROM ([38].

When it comes to robustness however, the news is better. Namely, we can
apply similar proof strategies used to establish strong collision-freeness of FO*-
based KEMs (Theorem 6) and pSaber (Theorem 10) to show SCFR-CCA security
of Saber in the QROM. The corresponding proof, presented in detail in the
full version [22], on a high-level uses the fact that the hash of public-keys are
included in Saber’s key-derivation step (in contrast to Classic McEliece). This
allows us to establish the SCFR-CCA security of Saber KEM by mainly relying
on properties of quantum random oracles G and F', namely collision-resistance
and claw-freeness.

Theorem 12. For any SCFR-CCA adversary A against the scheme Saber. KEM =
(KGen’, Encap, Decap) issuing at most qc (resp. qr) queries to the quantum ran-
dom oracle G (resp. F), we have

alge+1)° | 4algr+1)° | 4qp
9256 9256 9128

SCFR-CCA F
Adveperkem (A) < Collg,pe, pre +

Here a (< 648) is the constant from Lemma 1.

Kyber uses an FO-type transform which is essentially the same as that of
Saber (see Fig. 7). Hence, the issues we identified with Saber above w.r.t. IND-
CCA security claims in the QROM as described in the specification document,
as well as establishing anonymity of the scheme, apply to Kyber too. We have
shared these observations with the Kyber team. At the 3rd NIST PQC Stan-
dardization Conference, a representative of the Kyber team [36] acknowledged
that the nested hash of ciphertext F'(¢) could make it “tricky” to prove the se-
curity of Kyber in the QROM, while removing this nested hash would overcome
this issue.
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But on the positive side, our result on strong collision-freeness (SCFR-CCA
security) of Saber-namely, Theorem 12 above-also applies to Kyber in the same
fashion, because of the similarity in their respective FO-type transforms. In other
words, the current versions of Kyber and Saber also lead to strongly robust
hybrid PKE schemes in the QROM.

In conclusion, we consider the concrete IND-CCA security—as claimed in [7,
5]-and anonymity (ANO-CCA security) of Saber and Kyber to remain open.
We also suggest a modification to Saber and Kyber: namely, to apply the same
FO-type transform as pSaber uses (as in Figure 6) to the relevant base PKE
scheme, thus replacing the “nested” hashing of ciphertext in key-derivation with
single hashing. In doing so, not only would the two NIST finalists then enjoy the
same provable IND-CCA security guarantees of FO*-based KEMs in the QROM
as established in the literature [26, 34], but this would also allow our techniques
establishing anonymity of pSaber to be extended to Saber and Kyber.?

6 Conclusions and Future Work

In this work, we initiated the study of anonymous and robust KEMs and PKE
schemes in the post-quantum setting. We resolved several core technical ques-
tions, and showed that proto-Saber, a simplified version of Saber, and FrodoKEM
can be used to build anonymous, robust hybrid PKE schemes. We also pointed
out gaps in the current IND-CCA security analyses of Saber and Kyber. Both
NIST finalists do lead to robust hybrid PKE from our analysis. Finally, we high-
lighted a surprising property of Classic McEliece (CM) showing that it does not
lead to robust PKE schemes via the standard KEM-DEM construction.

Important questions remain about the anonymity and robustness of the
NIST finalists and alternate candidates. For example, it is plausible that the
anonymity of CM could be proven by a direct approach; the same applies for
Saber and Kyber. Notable among the alternate schemes is SIKE, which uses
radically different algebraic problems to build a KEM; extending our work to
SIKE would be interesting. One broader question about post-quantum PKE
which has not been widely studied is multi-receiver hybrid PKE (with or without
anonymity /robustness). Such schemes would have applications in group-oriented
end-to-end secure messaging.
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5 For Kyber’s anonymity, we would rely on the hardness of module learning-with-errors
(mod-LWE) problem instead of mod-LWR, akin to our discussion on FrodoKEM;
see Subsection 5.3.
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