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Abstract. Typical approaches for minimizing the round complexity of
multiparty computation (MPC) come at the cost of increased communi-
cation complexity (CC) or the reliance on setup assumptions. A notable
exception is the recent work of Ananth et al. [TCC 2019], which used
Functional Encryption (FE) combiners to obtain a round optimal (two-
round) semi-honest MPC in the plain model with a CC proportional to
the depth and input-output length of the circuit being computed—we
refer to such protocols as circuit scalable. This leaves open the question
of obtaining communication efficient protocols that are secure against
malicious adversaries in the plain model, which we present in this work.
Concretely, our two main contributions are:
1) We provide a round-preserving black-box compiler that compiles a
wide class of MPC protocols into circuit-scalable maliciously secure MPC
protocols in the plain model, assuming (succinct) FE combiners.
2) We provide a round-preserving black-box compiler that compiles a
wide class of MPC protocols into circuit-independent— i.e., with a CC
that depends only on the input-output length of the circuit—maliciously
secure MPC protocols in the plain model, assuming Multi-Key Fully-
Homomorphic Encryption (MFHE). Our constructions are based on a new
compiler that turns a wide class of MPC protocols into k-delayed-input
function MPC protocols (a notion we introduce), where the function that
is being computed is specified only in the k-th round of the protocol.
As immediate corollaries of our two compilers, we derive (1) the first
round-optimal and circuit-scalable maliciously secure MPC, and (2) the
first round-optimal and circuit-independent maliciously secure MPC in
the plain model. The latter MPC achieves the best to-date CC for a
round-optimal malicious MPC protocol. In fact, it is even communication-
optimal when the output size of the function being evaluated is smaller
than its input size (e.g., for boolean functions). All of our results are
based on standard polynomial time assumptions.
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1 Introduction

Secure multiparty computation (MPC) [23,42] allows different parties to jointly
evaluate any circuit over private inputs in such a way that each party learns
the output of the computation and nothing else. Many improvements in this
area have led to better protocols in terms of complexity assumptions and round
complexity in the case of malicious adversaries4 [5, 12, 13, 23, 24, 27–30,37,38, 41].

Recently, the design of round-optimal MPC has attracted a lot of attention.
Concretely, for semi-honest adversaries, two rounds are necessary for secure MPC
in the plain model (as any one-round protocol is trivially broken). A lower bound
was matched by [6, 21], where the authors present a two-round MPC protocol in
the semi-honest model from standard assumptions. Note that the above lower
bound holds even when a correlated-randomness setup is assumed. The works [6,
9, 16,21,34] show that the same bound holds even for maliciously secure MPC,
assuming a trusted correlated-randomness setup. However, Garg et al. [18] proved
that in the plain model four rounds are necessary for maliciously secure MPC
with a black-box simulator. This four-round lower-bound was matched by several
constructions for a range of common (polynomial) complexity assumptions [4, 11,
25]. Notwithstanding, a common drawback in all the above constructions is that
their communication complexity is proportional to the size (of the description)
of the circuit being evaluated. For malicious adversaries, under the assumption
that parties have access to correlated randomness, Quach et al. [39] proved that
it is possible to design a two-round circuit-scalable MPC protocol that is secure
against malicious adversaries under the learning with errors assumption (LWE).
Also in the correlated randomness model, Morgan et al. [33] showed that it is
possible to construct a two-round circuit-independent5 two-party computation
protocol in which only one party gets the output, by relying only on LWE.6

In the case of semi-honest adversaries (without a setup) the works of Ananth et
al. [1] and Quach et al. [39] proposed a round-optimal (two-round) circuit-scalable
MPC protocol under standard assumptions. Interesting, and most related to our
results, Ananth et al. [1] obtained their result by leveraging a connection between
round-optimal semi-honest MPC and functional encryption combiners. However,
their construction does not achieve security against malicious adversaries. The
mentioned results raise the following important open question:
4 A malicious adversary attacks the protocol following an arbitrary probabilistic

polynomial-time strategy. Unless stated differently, when we talk about the security
of an MPC protocol against semi-honest or malicious adversaries we assume that up
to n− 1 parties can be corrupted, where n is the number of parties.

5 We stress that in our work the size of the circuit is always related to the security
parameter via a polynomial p. We use the term circuit-independent for MPC protocols
whose communication complexity depend on the security parameter, the size of the
input and output, and does not depend on p. The same argument holds for circuit-
scalable MPC protocols.

6 In the communication model used in [33] in each round only one party can speak.
Hence they obtain the best possible security guarantees in such a communication
model.
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Is there a round-optimal maliciously MPC protocol secure against dishon-
est majority7 in the plain model based on standard complexity assumptions
that achieves circuit-scalability, i.e. has a communication complexity that
depends only on the depth of the circuit being evaluated and its input and
output length?

As the first of our two main contributions, we answer the above question in the
affirmative by extending the investigation of the relation between FE combiners
and MPC to the malicious setting. This completes the landscape of circuit-scalable
and round-optimal maliciously secure MPC in the plain model. More concretely,
we provide a round-preserving black-box compiler that compiles a wide class of
MPC protocols into circuit-scalable protocols assuming any succinct FE combiner
(see below). Such FE combiners are known to exist based on the learning with
errors assumption. We next investigate whether our result can be strengthened
to achieve circuit-independent MPC:

Is there a round-optimal and circuit-independent maliciously secure MPC
protocol in the plain model from standard (polynomial) complexity as-
sumptions?

Although the connection between MPC and FE does not seem to help here, we
still answer the above question in the affirmative. Concretely, we propose a round-
preserving black-box compiler that compiles a wide class of MPC protocols8 into
a circuit-independent protocol assuming the existence of any compact Multi-Key
Fully-Homomorphic Encryption (MFHE) scheme that enjoys perfect correctness.
Informally, the compactness property, here, requires that the size of the ciphertexts
and the size of the description of the encryption and decryption algorithms depend
only on the input-output size of the function being computed.

For the special case of constant parties, the MFHE scheme required for
our compiler exists based on perfect correct FHE [32], which, in turn, can be
instantiated from the LWE assumption [10]. Hence our result yields the first
circuit-independent round-optimal malicious MPC in the plain model for a
constant number of parties—and therefore specifically to the first two-party-
computation protocol—based on standard polynomial-time assumptions. For the
case of arbitrary many parties, to our knowledge, compact MFHE is only known
to exist based on the Ring-LWE and the Decisional Small Polynomial Ratio
(DSPR) assumption [32]. Hence, under these assumptions, we obtain a circuit-
independent round-optimal MPC protocol for arbitrary many parties. Deriving
compact MFHE for arbitrary many parties—and hence also a circuit-independent
round-optimal MPC—from standard polynomial-time assumptions (e.g., LWE)
is an interesting open problem.

We highlight that all our constructions require the input protocol to achieve
a special notion called k-delayed-input function, which we introduce in this work.
7 Unless otherwise specified, all our results are proved secure in the dishonest majority

setting.
8 We require the first 2 rounds of the MPC protocol to be independent from the inputs.
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Informally, in a k-delayed-input function protocol each party has two inputs: 1) a
private input (known at the beginning of the protocol) and 2) the function to be
computed whose description is needed only to compute the rounds k, k + 1, . . . .
A k-delayed-input function protocol guarantees that the adversary does not learn
more than what it can infer from the evaluation of the function f on the honest
parties’ input, where f can be adversarially (and adaptively) chosen.

We further show how to turn any MPC protocol that does not require the
input to compute the first k − 1 rounds into a k-delayed-input function protocol.

1.1 Related Work

Functional encryption (FE) [8, 35, 40] is a primitive that enables fine-grained
access control over encrypted data. In more detail, a FE scheme is equipped
with a key generation algorithm that allows the owner of a master secret key to
generate a secret key skf associated with a circuit f . Using such a secret key skf

for the decryption of a ciphertext ct ← Enc(msk, x) yields only f(x). In other
terms, the security of a functional encryption scheme guarantees that no other
information except for f(x) is leaked.

A functional encryption combiner allows for the combination of many FE
candidates in such a way that the resulting FE protocol is secure as long as any
of the initial FE candidates is secure. Ananth et al. [1] show how to construct an
FE combiner, based on the learning with errors (LWE) assumption, that enjoys
the property of succinctness and decomposability (we elaborate more on the latter
property in the next section). The property of succinctness states that 1) the
length of each secret key is related to the depth and the length of the output of
the circuit being evaluated and 2) the encryption complexity is proportional to
the depth of the circuit being evaluated and to the length of the message being
encrypted.

Given such a succinct FE combiner and an ℓ-round semi-honest MPC (not
necessarily communication efficient), Ananth et al. show how to obtain an ℓ-round
circuit-scalable MPC protocol that is secure against semi-honest adversaries. Given
that such a combiner —as well as a round optimal semi-honest MPC—can be
constructed from LWE, this result can be instantiated from the LWE assumption.
In [2] the authors also explore the relation between MFHE and MPC and, among
other results, the authors also show how to obtain a circuit-independent MPC
protocol that is secure against semi-malicious adversary assuming Ring LWE,
DSPR and 2-round OT.9 Cohen et al. [15] proposed a round-optimal circuit-
scalable MPC protocol which tolerates adaptive corruption (i.e., the identities
of the corrupted parties can be decided during the protocol execution). The
security of this protocol is proven in the correlated-randomness model under the
adaptive LWE assumption and secure erasures (alternatively, sub-exponential
indistinguishability obfuscation).

9 We recall that a semi-malicious adversary behaves like a semi-honest adversary with
the exception that it decides the randomness and the input used to run the protocol.
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We recall that it is not possible to achieve security with adaptive corrup-
tion (with black-box simulation) in the plain model with a constant number of
rounds [19]. For this reason, our work focuses on static corruption only.

1.2 Overview of our Results

In this work we provide two main results which close the gap between communication-
efficient and round-optimal maliciously secure MPC. We present two compilers
that amplify existing protocols in terms of their communication complexity while
preserving their round complexity, which results in the first class of maliciously
secure MPC protocols that are communication-efficient and round-optimal.

From FE combiners to circuit-scalable MPC. The first is a round optimal
MPC protocol that 1) is secure against malicious adversaries, 2) tolerates arbitrary
many parties, 3) is secure under standard polynomial time assumptions and 4) is
circuit-scalable, i.e., has a communication complexity proportional to the depth of
the circuit and the length of the input and output of the circuit being evaluated.10

In summary, we prove the following theorem.
Theorem 1 (informal). If there exists a 3-delayed-input function ℓ-round

MPC protocol Π that is secure against malicious adversaries and a succinct FE
combiner, then there exists an ℓ-round MPC protocol Π ′ that is secure against
malicious adversaries whose communication complexity depends only on the
security parameter, the depth, the input length and the output length of the circuit
being evaluated, and that makes black-box use of Π.

We argue that the four-round protocols proposed in [4,11] can be turned into
3-delayed-input function protocols, which in turn implies that we can obtain a
circuit-scalable round optimal MPC protocol from the LWE assumption, since
the maliciously-secure four-round OT that the protocol of [11] relies on can also
be instantiated using LWE [17]. This allows us to prove the following corollary.

Corollary 1 (informal). If the LWE assumption holds, then there exists a
round optimal MPC protocol that is secure against malicious adversaries whose
communication complexity depends only on the security parameter, the depth, the
input length and the output length of the circuit being evaluated.

From MFHE to circuit-independent MPC. For the second contribution
we show how to combine an MPC protocol with a perfectly correct, compact
MFHE scheme to obtain a circuit-independent MPC protocol. The notion of
MFHE extends the notion of Fully-Homomorphic Encryption (FHE) to the
multi-party setting by allowing each party to generate a public-secret key pair.
All the ciphertexts generated using the public keys of the MFHE scheme can be
homomorphically combined to obtain a single ciphertext, which can be decrypted
only using all the secret keys. The output of our compiler is a circuit-independent
10 All our result are with respect to black-box simulation.
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round-optimal MPC protocol that supports min{n0, n1} parties where n0 and n1
is the number of parties supported by the input MPC protocol and the MFHE
scheme respectively. Our second contribution can be summarized as follows.

Theorem 2 (informal). If there exists a 2-delayed-input function ℓ-round
MPC protocol Π that is secure against malicious adversaries which supports n0
number of parties and a perfectly correct, compact MFHE scheme that supports
n1 number of parties, then there exists an ℓ-round MPC protocol Π ′ that is
secure against malicious adversaries whose communication complexity depends
(polynomially) only on the security parameter, the input length and the output
length of the circuit being evaluated, and that makes black-box use of Π and
supports min{n0, n1} number of parties.

Additionally, it is possible to improve the above result and to obtain a protocol
whose communication complexity is only linear in the length of the inputs (and
polynomially in the length of the output and the security parameter), by relying
on pseudorandom generators (PRGs). Hence, we obtain an MPC protocol that is
optimal in terms of round and communication complexity for all the functions
whose input-size is bigger than the output-size (e.g, boolean functions).

Given that a MFHE scheme for a constant number of parties can be instanti-
ated from LWE and that a scheme for arbitrary many parties can be instantiated
from Ring-LWE and DSPR [32] we obtain the following additional corollary.

Corollary 2 (informal). If the LWE assumption holds (resp. Ring LWE and
DSPR hold and any of the assumptions DDH, QR, Nth Residuosity, LWE hold, or
malicious-secure OT exists), then there exists a round optimal circuit-independent
MPC protocol for a constant (resp. arbitrarily) number of parties that is secure
against malicious adversaries.

For completeness we have included a comprehensive comparison of our results
with existing round-optimal MPC protocols proven secure in the plain model,
under standard polynomial-time complexity assumptions in Table 1.

2 Technical overview

Our treatment advances the state of the art in communication-efficient and round-
optimal MPC. Toward this goal, we combine and substantially extend several
recent techniques in the literature of FE and MFHE as well as delayed-input
MPC. In this section, to assist the reader better navigate through the many
technical challenges and details of our result and evaluate its novelty, we review
the main technical challenges and our approach to tackling them.

From FE combiners to circuit-scalable MPC. Towards our construction of
circuit-scalable MPC, we rely on the recent work of Ananth et al. [1]. In order to
build a better intuition for our final solution, we briefly recap their compiler here.

The main building blocks of that compiler are an ℓ-round semi-honest secure
MPC protocol and a succinct decomposable FE combiner. The property of
decomposability requires the functional key for f to be of the form (skf

1 , . . . , skf
n),
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Communication
Complexity Assumptions Adversarial

Model Rounds

[1, 39] poly(λ, n, d, Lin, Lout) LWE Semi-honest 2
[6, 21] poly(λ, n, |f |) Semi-honest OT Semi-honest 2

[16] poly(λ, n, d, Lin, Lout)
piO and
lossy encryption Semi-honest 2

[20] poly(λ, n, |f |) Bilinear Maps Semi-honest 2
[25] poly(λ, n, |f |) QR Malicious 4

[4] poly(λ, n, |f |) DDH/QR/
Nth Residuosity Malicious 4

[11] poly(λ, n, |f |) Malicious 4-round OT Malicious 4

[2] poly(λ, n, Lin, Lout)
Ring LWE and
DSPR and
2-round OT

Semi-malicious 2

This work poly(λ, n, d, Lin, Lout) LWE Malicious 4
This work⋆ poly(λ, n, Lin, Lout) LWE Malicious 4

This work poly(λ, n, Lin, Lout)
Ring LWE and
DSPR and
malicious 4-round OT

Malicious 4

Table 1: Communication complexity of two-round semi-honest secure and four-round
maliciously secure n-party protocols in the plain- and all-but-one corruption model,
with black-box simulation, based on polynomial-time assumptions. We denote by |f | and
d the size and depth of the circuit representing the MPC functionality f , respectively.
Lin and Lout denote, respectively, the input and output lengths of the circuit and piO
stands for probabilistic indistinguishability obfuscation. We recall that we can replace
4-round maliciously secure OT with either DDH, QR, Nth Residuosity, or LWE.
⋆Constant number of parties only.

and the master secret key needs to be (msk1, . . . , mskn), where ski and mski are
the secret key and master secret key produced by the i-th FE candidate.

Compiler of Ananth et al. [1]. The construction of Ananth et al. [1] is very
intuitive, and roughly works as follows. The MPC protocol computes the function
g which takes n inputs, one for each party Pi with i ∈ [n]. The input of each
party consists of a master secret key mski, a value xi and a randomness ri. The
function g uses the n master secret keys to compute an encryption of x1, . . . , xn

using the randomness r1, . . . , rn.
Let xi be the input of the party Pi with i ∈ [n]. Each party Pi samples a

master secret key mski for the FE combiner, a random string ri and runs the
MPC protocol Π using (mski, xi, ri) as an input. In parallel, Pi computes the
secret key skf

i and sends it to all the parties (we recall that skf
i can be computed

by party Pi due to the decomposability property of the FE combiner). Let ct
be the output of Π received by Pi, and let (skf

1 , . . . , skf
i−1, skf

i+1, . . . , skf
n) be the

keys received from all the other parties, then Pi runs the decryption algorithm
of the FE combiner on input (skf

1 , . . . , skf
n) and ct thus obtaining f(x1, . . . , xn).
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Given that the MPC protocol computes a function g whose complexity is
poly(λ, d, Lin) and the size of each one of the secret keys sent on the chan-
nel is poly(λ, d, Lout) the final protocol has a communication complexity of
poly(λ, n, d, Lin, Lout), where λ is the security parameter, d is the depth of f , Lin
is the length of the input of f and Lout is the output length of f (we recall that
this is due to the succinctness of the FE combiner).

Achieving malicious Security. Starting from the above approach, we now show
how to obtain a circuit-scalable MPC protocol in the case of malicious adversaries
(instead of semi-honest) in the plain model.

As a first approach one can try to simply replace the semi-honest MPC
protocol with a maliciously secure one. Unfortunately, this does not work as a
corrupted party P ⋆

j might create an ill formed master secret key mskj (i.e., mskj

is not generated accordingly to the setup procedure of the j-th FE candidate) and
sample rj according to an arbitrary strategy. However, we note that the second
problem is straightforward to solve as we can modify the function g, evaluated by
the MPC protocol Π, in such a way that it uses the randomness r1 ⊕ · · · ⊕ rn to
compute the encryption ct (we note that in this case each party needs to sample
a longer ri compared to the semi-honest protocol described earlier).

To solve the first problem, we follow a similar approach. Each party Pi inputs
an additional random value rSetup

i to the MPC protocol and the function g is
modified such that it generates the master secret keys using the randomness R =
rSetup

1 ⊕· · ·⊕rSetup
n and outputs to the party Pi the ciphertext ct.11 Unfortunately,

this approach is not round preserving, as the knowledge of the master secret key
mski, which becomes available only in the end of the execution of Π, is required
to generate the secret key skf

i . Hence, if Π requires ℓ-rounds, our final protocol
would consist of ℓ + 1 rounds as each party Pi needs to send its functional secret
key skf

i in the (ℓ + 1)-th round.
Besides this, the described protocol is also still not secure, since a corrupted

party P ⋆
j might generate an ill formed secret key skf

j , that could decrypt ct
incorrectly, yielding an incorrect output for the honest parties. However, we can
prove that this protocol protects the inputs of the honest parties. That is, it
achieves privacy with knowledge of outputs (PKO) [26,36]. This notion guarantees
that the input of the honest parties are protected as in the standard definition of
secure MPC, but the output of the honest parties might not be the correct one
(e.g., the adversary can force the honest party to output a string of its choice).

Round preserving construction: privacy with knowledge of outputs. The first step
towards our final construction is to adapt the above idea in such a way that the
round complexity of the resulting protocol is kept down to ℓ, while achieving
a somewhat reduced security, namely privacy with knowledge of outputs [26].
Looking ahead, in the following paragraph, we discuss how to elevate this to full
security. For simplicity, we describe our protocol considering only two parties P0

11 R is parsed as n strings and each of the strings is used to generate a different master
secret key.
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and P1 and consider as a building block an MPC protocol Π which consists of
(ℓ = 4)-rounds (which is optimal). The protocol then can be trivially extended to
the case of n-parties and an arbitrary ℓ ≥ 4 as we show in the technical part of
the paper.

For our construction we need the first two rounds of Π to be independent of
the inputs (i.e., the input is required only to compute the last two rounds in our
simplified example). Assuming that the parties have access to a simultaneous
broadcast channel where every party can simultaneously broadcast a message to
all other parties, our compiler works, at a high level, as follows (we refer to Fig. 1
for a pictorial representation).

In the first step, the parties run two instances of Blum’s coin tossing pro-
tocol [7]. In the first instance the party P0 acts as the sender and in the other
instance the party P1 acts as the sender. In more detail, each party Pi commits
to two random strings in the first round c0

i := com(r0
i ; ρ0

i ) and c1
i := com(r1

i ; ρ1
i )

and sends, in the second round, ri
1−i to P1−i.12 Then Pi uses the randomness

Ri := ri
0 ⊕ ri

1 to generate a master secret key mski, and uses it to compute the
secret key skf

i which it sends in the fourth round.
In parallel, P0 and P1 execute the MPC protocol Π that evaluates the function

g′. The function g′ takes the inputs of each party, where the input corresponding to
party Pi (for each i ∈ {0, 1}) is of the form

(
xi, (r0

i ; ρ0
i , r1

i ; ρ1
i , ri

1−i, ri, ), (c0
1, c1

1, c0
2,

c1
2)

)
. In more detail, the input of each party Pi corresponds to its actual input xi,

all the commitments generated (by P0 and P1) in the first round, the message ri
1−i

received in the second round from P1−i and the randomness used to generate the
commitments c0

i , c1
i . The function g′ checks that 1) the commitments (c0

1, c1
1, c0

2, c1
2)

(that are part of the inputs of the two parties) are the same, 2) the value r1−i
i sent

in the second round by the party Pi is committed in c1−i
i for each i ∈ {0, 1} and

3) the randomness used to generate the commitments is correct. If all these checks
are successful then g′ outputs a ciphertext ct = Enc((mski)i∈{0,1}, (x0, x1); r0⊕r1)
for the FE combiner computed using the randomness r0 ⊕ r1. We highlight that
the check that the commitments generated outside of the MPC protocol are
generated correctly is not possible in the standard security definition of MPC. To
perform these checks we require the underlying MPC to achieve our new notion
of k-delayed-input function, which we explain in the end of this section.

Upon receiving the output of g′ (evaluated by Π), Pi computes the output
running the decryption algorithm of the FE combiner. Using this approach we
guarantee that: 1) the ciphertext ct is honestly computed using honestly generated
master secret keys and randomnesses, 2) each party can compute its own master
secret key already in the third round so that a functional key can be generated
and output in the last round and 3) the value ri

1−i that Pi receives in the second
round corresponds to the value used in the commitment ci

1−i (hence, the master
secret key that Pi obtains as part of the output of Π is consistent with the master
secret key it has created outside of Π).

Unfortunately, we can only prove that the above protocol preserves the privacy
of the inputs of the honest parties, but the output computed by the honest parties
12 Note that only the committed message is sent, not the randomness ρ1−i

i .
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P0(x0)

x′
0 ={x0, (r0

0, ρ0
0, r1

0, ρ1
0, r0

1, r0),
(c0

0, c1
0, c0

1, c1
1)}

msk0 := FE0.Setup(r0
0 ⊕ r0

1)

skf
0 := FE0.KeyGen(msk0, f)

mpcout0 = ct
output Dec((skf

0 , skf
1 ), ct)

mpc1
0(1λ)

c1
0 := Com(r1

0; ρ1
0)

c0
0 := Com(r0

0; ρ0
0)

mpc2
0(1λ) r1

0

mpc3
0(x′

0)

mpc4
0(x′

0) skf
0

P1(x1)

x′
1 ={x1, (r0

1, ρ0
1, r1

1, ρ1
1, r1

0, r1),
(c0

0, c1
0, c0

1, c1
1)}

msk1 := FE1.Setup(r1
0 ⊕ r1

1)

skf
1 := FE1.KeyGen(msk1, f)

mpcout1 = ct
output Dec((skf

0 , skf
1 ), ct)

mpc1
1(1λ)

c1
1 := Com(r1

1; ρ1
1)

c0
1 := Com(r0

1; ρ0
1)

mpc2
1(1λ)r0

1

mpc3
1(x′

1)

mpc4
1(x′

1)skf
1

Fig. 1: FEi, with i ∈ {0, 1}, denotes a functional encryption candidate. The master
secret key for the combiner corresponds to the master secret keys of FE0 and FE1. A
secret key for the combiner required to evaluate the function f is generated by combining
a secret key for FE0 (skf

0 ) and a secret key for FE1 (skf
1 ). Dec denotes the decryption

algorithm of the combiner which takes as input a combined secret key for the function f
and a ciphertext ct generated accordingly to a combined master secret key represented
by (msk0, msk1). mpck

i , with i ∈ {0, 1} and k ∈ [4], represents the k-th message of the
MPC protocol Π computed by Pi. The protocol Π evaluates a function g′(x′

0, x′
1) where

x′
i = {xi, (r0

i , ρ0
i , r1

i , ρ1
i , ri

1−i, ri), (c0
0, c1

0, c0
1, c1

1)} with i ∈ {0, 1}. The function g checks if
the commitments that are part of the two inputs x′

0, x′
1 are the same and if cb

i has been
computed accordingly to the message rb

i and the randomness ρb
i for each i, b ∈ {0, 1}. If

the check is successful, then g computes two master secret keys msk0 and msk1 using
respectively the randomnesses r1

0 ⊕ r1
1 and r0

0 ⊕ r0
1, and computes an encryption ct of

x0||x1 for the FE combiner using those master secret keys and the randomness r0 ⊕ r1.
The output of Π for Pi consists of mpcouti

= ct.

might still be incorrect. This is due to the fact that a corrupted party can generate
an ill formed secret key skf

i and send it to the honest parties. We finally note that
it might look like our approach yields to malleability attacks (i.e., the adversary
might bias its commitments using honest-parties commitments). Intuitively, such
attacks are prevented since we require the adversary to provide the correct
opening as part of the input to the MPC protocol. Hence, we delegate to the
MPC the prevention of any such malleability attacks.

From PKO to Full security. The next step is to elevate PKO security to full
security. To achieve this, we utilize the PKO-secure to fully-secure compiler of
Ishai et al. [26] to turn the above described protocol into a protocol that achieves
standard security in a black-box way.

Besides achieving privacy with knowledge of outputs, our protocol also only
realizes single-output functionalities instead of multi-output functionalities. In
this case, we can also rely on existing compilers to make our protocol supporting
multi-output functionalities [3, 31].

We note that we can apply those compilers only if they are 1) round-preserving
and 2) do not increase the communication complexity by more than a factor of
poly(λ). For the sake of completeness we formally argue that this is indeed the
case and refer the interested reader to the full version [14].
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P0(x0)
(pk0, sk0) := Setup(r0)

ct0 := Enc(pk0, x0; r′
0)

ct′
0 := Eval(pk0, pk1, f, ct0, ct1))

x′
0 = {x0, (sk0, pk0, pk1, ct0, ct1,

ct′
0, r0, r′

0)}

output y = f(x0, x1)

mpc1
0(1λ) (pk0, ct0)

mpc2
0(x′

0)

mpc3
0(x′

0)

mpc4
0(x′

0)

P1(x1)
(pk1, sk1) := Setup(r1)

ct1 := Enc(pk1, x1; r′
1)

ct′
1 := Eval(pk0, pk1, f, ct0, ct1))

x′
1 = {x1, (sk1, pk0, pk1, ct0, ct1,

ct′
1, r1, r′

1)}

output y = f(x0, x1)

mpc1
1(1λ)(pk1, ct1)

mpc2
1(x′

1)

mpc3
1(x′

1)

mpc4
1(x′

1)

Fig. 2: (Setup, Enc, Dec, Eval) represents a MFHE scheme. The MPC protocol checks
that the cipthertexes ct0 and ct1 are in the domain of Enc and that both parties have
input the same list of cipthertexes ct0, ct1. Then the MPC protocol decrypts ct′

0 and ct′
1

and if the decrypted values corresponds to the same value y then the protocol outputs
y.

From MFHE to circuit-independent MPC. To obtain a circuit-independent
MPC protocol, we combine a multi-key fully-homomorphic encryption scheme
(MFHE) with a (non-necessarily communication-efficient) MPC protocol Π.

Let us first briefly recall MFHE: A MFHE scheme consists of four algorithms:
(1) a setup algorithm Setup that allows for the generation of public-secret key
pairs; (2) an encryption algorithm Enc that takes as input a public key and a
message and outputs a ciphertext; (3) an evaluation algorithm Eval that takes as
input a list of public keys PK, a set of ciphertexts CT (generated using the list of
public keys PK) and a function f , and outputs a ciphertexts ct that contains the
evaluation of f on input the messages encrypted in the list CT; (4) a decryption
algorithm Dec that on input all the secret keys, associated with the public keys
of PK, and the ciphertext ct outputs the decryption of ct. Additionally, we
require the MFHE scheme to be compact, i.e. we require the size of the keys, the
ciphertexts and the description of the algorithms Enc and Dec to dependent only
on the input-output size of f .

Once again, to keep the description simple and to focus on the core ideas,
we stick to the two-party case and refer to Section 6 for the description of the
protocol that supports arbitrary many parties. We provide a pictorial description
of our protocol in Fig. 2.

At a high level, our compiler works as follows. Let xi be the secret input of
the party Pi with i ∈ {0, 1}. Each party Pi runs the setup algorithm using the
randomness ri thus obtaining a private-secret key pair (pki, ski) and encrypts
its input using Enc with some randomness r′

i, obtaining cti. Then Pi sends the
public key together with its encrypted input and the first message of the MPC
protocol Π to party P1−i. Upon receiving pk1−i and ct1−i from Pi−1, Pi runs the
evaluation algorithm on input pk0, pk1, f, ct0, ct1, obtaining ct′

i. At this point Pi

keeps executing the protocol Π on input xi which consists of the randomness used
to generate the MFHE keys, the randomness used to generate cti, the list of all the
ciphertexts (received and generated) CT = (ct0, ct1) and the evaluated ciphertext
ct′

i. The function g computed by the MPC protocol Π does the following: 1)
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checks that both P0 and P1 have input the same list of ciphertexts CT, 2) for
each i ∈ {0, 1} it uses the randomness ri and r′

i to check that pki and cti are
in the domain of the setup and of the encryption algorithm. If these checks are
successful, then the function g decrypts ct′

0 and ct′
1 using the secret keys (sk0, sk1)

(which can be generated using the randomnesses r0, r1) thus obtaining y0 and y1.
If y0 = y1 then g outputs y, otherwise it outputs ⊥.

In a nutshell, we use Π to check that all ciphertexts and public keys have
been generated correctly and that all the parties have obtained an encryption
of the same value when running the MFHE evaluation algorithm. As in the
circuit-scalable compiler described before, the check that the public keys and
ciphertexts outside of the MPC protocol are generated correctly is not possible in
the standard security definition of MPC. To perform these checks we require the
underlying MPC protocol to achieve our new notion of k-delayed-input function.
The protocol that we have just described is circuit-independent since the size of
the public keys and the ciphertexts depends only on the input-output size of f
and the protocol Π evaluates a function g whose description size depends only
on the input-output size of f and the description of the circuits for Enc and Dec.

The communication complexity of this protocol is poly(λ, n, Lin, Lout), where
Lin is the input-size and Lout is the output size of the function being evaluated.

We can slightly modify the protocol above to achieve a communication com-
plexity of O(Lin) + poly(λ, n, Lout). To do that, we rely on a folklore technique
to reduce the size of the ciphertexts of the MFHE scheme using pseudorandom
generators (PRGs). In more detail, instead of providing an encryption of the
input xi under the MFHE scheme, each party Pi encrypts a short seed si of
a PRG PRG using the FHE scheme, i.e. Enc(pki, si; rs

i ), and sends this encryp-
tion along with the value wi = PRG(si) ⊕ xi to the other party. The size of
the resulting message is then O(Lin) + poly(λ). The party Pi, upon receiving
(Enc(pk1−i, s1−i; rs

1−i), w1−i) computes Enc(pk1−i, PRG(s1−i)), using homomor-
phic operations, Enc(pk1−i, wi−1) by encrypting w1−i using pk1−i, and then
homomorphically XORs the resulting ciphertexts to receive Enc(pk1−i, x1−i).
This ciphertext can now be used to run the evaluation algorithm and compute
Enc(pk0, pk1, f(x0, x1)). The parties now check that the ciphertexts (w0, w1) are
well formed by running the MPC protocol, exactly as in the previous protocol.

k-Delayed-Input Function MPC. As already mentioned in the description of
the compilers, we need to rely on an MPC protocol Π that needs the input of the
parties only to compute the last two rounds (three in the case of the construction
of Fig. 2). Indeed, for the protocol of Fig. 1 for example, the input of each party
consists of its actual input, the randomness used to generate its commitments,
and all the commitments that it has seen (even those generated by the adversary).
We note that many existing MPC protocols (e.g., [4, 6, 11]) indeed do not require
the input to compute the first two rounds. However, the fact that the input of
the honest parties might be adversarially influenced (e.g., in our protocol some
commitments are generated from the adversary) makes it impossible to rely on
the standard security notion achieved by such MPC protocols. This is because
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the standard security notion of MPC requires the inputs of the honest parties
to be specified before the real (ideal) world experiment starts. Therefore, the
honest parties cannot choose an input that depends on (for example) the first
two messages of the protocol, and is, therefore, adversarially influenced.

However, we observe that even if Pi needs to provide all the commitments
it has received as part of its input to Π, we do not care about protecting the
privacy of this part of Pi’s input, we just want to achieve a correct evaluation of
Π. That is, these commitments could be thought of as being hardwired in the
function evaluated by the MPC protocol Π.

To capture this aspect, we consider a more general notion called k-delayed-
input function, where the input of each party consists of two parts, a private
input x and a function f . The private part x is known at the beginning of the
protocol, whereas the function f does not need to be known before the protocol
starts and it is needed only to compute the rounds k, k + 1, . . . of the protocol.
We want to guarantee that in the real-world experiment the adversary does not
learn more than what it could infer from the output of f , even in the case where
it chooses the function f . Equipped with an MPC protocol that satisfies such
a definition, we can modify our constructions by letting the parties specify the
function that needs to be computed. For example, in the case of the protocol of
Fig. 1, the function will contain, in its description, the set of commitments sent
in the first round and the messages r1

0, r2
1 and uses these values to check that the

opening of the commitments are valid with respect to (r1
0, r2

1) and only in this
case returns a cipthertext for the FE protocol.

To construct a k-delayed-input function protocol, we use a standard 2n-party
ℓ-round MPC protocol Π, where the first k− 1 rounds can be computed without
requiring any input, and a one-time MAC. We refer to the technical part of the
paper for more details on how this construction works.

3 Preliminaries

We denote the security parameter with λ ∈ N. A randomized algorithm A is
running in probabilistic polynomial time (PPT) if there exists a polynomial p(·)
such that for every input x the running time of A(x) is bounded by p(|x|). We
use “=” to check equality of two different elements (i.e. a = b then...) and “:=”
as the assigning operator (e.g. to assign to a the value of b we write a := b).
A randomized assignment is denoted with a ← A, where A is a randomized
algorithm and the randomness used by A is not explicit. If the randomness is
explicit we write a := A(x; r) where x is the input and r is the randomness.
When it is clear from the context, to not overburden the notation, we do not
specify the randomness used in the algorithms unless needed for other purposes.

3.1 Functional Encryption

Definition 3.1 (Functional Encryption [8, 35, 40]). Let C = {Cλ}λ∈N be a
collection of circuit families (indexed by λ), where every C ∈ Cλ is a polynomial
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time circuit C : Xλ → Yλ. A (secret-key) functional encryption scheme (FE) for
the circuit family Cλ is a tuple of four algorithms FE = (Setup, KeyGen, Enc, Dec):

Setup(1λ): Takes as input a unary representation of the security parameter λ
and generates a master secret key msk. It also outputs the randomness r that
has been used to generate the master secret key.

KeyGen(msk, C): Takes as input the master secret key msk and a circuit C ∈ Cλ,
and outputs a functional key skC .

Enc(msk, x): Takes as input the master secret key msk, a message x ∈ Xλ to
encrypt, and outputs a ciphertext ct.

Dec(skC , ct): Is a deterministic algorithm that takes as input a functional key
skC and a ciphertext ct and outputs a value y ∈ Yλ.

A scheme FE is (approximate) correct, if for all λ ∈ N, msk← Setup(1λ), C ∈ Cλ,
x ∈ Xλ, when skC ← KeyGen(msk, C), we have Pr [Dec(skC , Enc(msk, x)) = C(x)] ≥
1− negl(λ).

In this work, we define the setup algorithm in such a way that it also outputs
the randomness r that has been used to generate the master secret key. This has
no effects on the security definition of the scheme since the master secret key
msk and the randomness r both remain in the control of the challenger.

Definition 3.2 (Single Key Simulation Security of FE [1]). Let FE be a
functional encryption scheme, C = {Cλ}λ∈N a collection of circuit families indexed
by λ. We define the experiments RealDFEC and IdealDFEC in Fig. 3. A functional
encryption scheme FE is single key simulation secure, if for any polynomial-time
adversary A = (A1,A2,A3), there exists a PPT simulator S and a negligible
function negl such that: |Pr[RealFE(1λ,A) = 1] − Pr[IdealFE(1λ,A,S) = 1]| ≤
negl(λ).

RealFE(1λ,A)
msk← Setup(1λ)
(C, st1)← A1(1λ)
skC ← KeyGen(msk, C)
(x, st2)← A2(skC , st1)
ct← Enc(msk, x)
α← A3(ct, skC , st2)
Output: α

IdealFE(1λ,A,S)
msk← Setup(1λ)
(C, st1)← A1(1λ)
skC ← KeyGen(msk, C)
(x, st2)← A2(skC , st1)
ct← S(msk, C, C(x))
α← A3(ct, skC , st2)
Output: α

Fig. 3: Single Key Simulation Security of FE

The succinctness definition provided in [1] requires some restrictions on the
circuit size of the encryption algorithm, as well as on the size of the functional
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key. In our work, we also require a bounded circuit size for the setup algorithm
and we refer to this notion as strong succinctness.

Definition 3.3 (Strong Succinctness). A functional encryption scheme FE =
(Setup, KeyGen, Enc, Dec) for a circuit class C containing circuits C that take
inputs of length ℓin bits, outputs strings of length ℓout bits and are of depth at
most d is succinct if the following holds:

– The size of the circuit for Setup(1λ) is upper bounded by poly(λ, d, ℓin) for
some polynomial poly.

– Let msk ← Setup(1λ), then the size of the circuit for Enc(msk, ·) is upper
bounded by poly(λ, d, ℓin, ℓout) for some polynomial poly.

– The functional key skC ← KeyGen(msk, C) is of the form (C, aux) where
|aux| ≤ poly(λ, d, ℓout, n) for some polynomial poly.

3.2 Decomposable Functional Encryption Combiner
In this section, we recap the notion of a decomposable functional encryption
combiner (DFEC) as introduced by Ananth et al. [1]. In this definition, we rely on
the definition of a functional encryption scheme, introduced before (Section 3.1).

Definition 3.4 (Decomposable Functional Encryption Combiner). Let
C = {Cλ}λ∈N be a collection of circuit families (indexed by λ), where every
C ∈ Cλ is a polynomial time circuit C : Xλ → Yλ and let {FEi}i∈[n] be the
description of n FE candidates. A decomposable functional encryption com-
biner (DFEC) for the circuit family Cλ is a tuple of five algorithms DFEC =
(Setup, Partition, KeyGen, Enc, Dec):
Setup(1λ, {FEi}i∈[n]): Takes as input a unary representation of the security pa-

rameter λ and the description of n FE candidates {FEi}i∈[n] and generates a
master key mski for each FE candidate mski ← FE.Setupi(1λ) and outputs
msk := {mski}i∈[n].

Partition(n, C): Takes as input the number of parties n and a circuit C and
outputs (C1, . . . , Cn), where each Ci is a circuit of depth polynomial in the
depth of C.

KeyGen(msk, {FEi}i∈[n], (C1, . . . , Cn)): Takes as input the master secret key msk,
the description of n FE candidates {FEi}i∈[n] and a partitioned circuit
(C1, . . . , Cn), and generates a functional key skCi for each FE candidate
skCi ← FE.KeyGeni(mski, Ci) and outputs skC := {skCi}i∈[n].

Enc(msk, {FEi}i∈[n], x): Takes as input the master secret key msk, the description
of n FE candidates {FEi}i∈[n], a message x ∈ Xλ to encrypt, and outputs a
ciphertext ct.

Dec(skC , {FEi}i∈[n], ct): Is a deterministic algorithm that takes as input a func-
tional key skC , the description of n FE candidates {FEi}i∈[n] and a ciphertext
ct and outputs a value y ∈ Yλ.

A scheme DFEC is (approximate) correct, if for all λ ∈ N, msk ← Setup(1λ,
{FEi}i∈[n]), C ∈ Cλ, x ∈ Xλ, when skC ← KeyGen(msk, C), we have

Pr [Dec(skC , Enc(msk, x)) = C(x)] ≥ 1− negl(λ).
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RealDFEC(1λ, {FEi}i∈[n], C,A)
msk← Setup(1λ, {FEi}i∈[n])
(C1, . . . , Cn) = Partition(n, C)
skC ← KeyGen(msk, {FEi}i∈[n],

(C1, . . . , Cn))
(I, st1)← A1(1λ, {FEi}i∈[n], C), where

I ⊂ [n] with |I| = n− 1.
(x, st2)← A2({mski}i∈I , skC , st1)
ct← Enc(msk, {FEi}i∈[n], x)
α← A3(ct, skC , st2)
Output: α

IdealDFEC(1λ, {FEi}i∈[n], C,A,S)
msk← Setup(1λ, {FEi}i∈[n])
(C1, . . . , Cn) = Partition(n, C)
skC ← KeyGen(msk, {FEi}i∈[n],

(C1, . . . , Cn))
(I, st1)← A1(1λ, {FEi}i∈[n], C), where

I ⊂ [n] with |I| = n− 1.
(x, st2)← A2({mski}i∈I , skC , st1)
ct← S(msk, C, C(x))
α← A3(ct, skC , st2)
Output: α

Fig. 4: Single Key Simulation Security of DFEC

To ensure that all the algorithms of the functional encryption combiner are
still polynomial in the security parameter λ and the number of parties n, we
introduce the notion of polynomial slowdown.

Definition 3.5 (Polynomial Slowdown [1]). A decomposable functional en-
cryption combiner DFEC = (Setup, Partition, KeyGen, Enc, Dec) satisifes polyno-
mial slowdown, if the running time of all its algorithms are at most poly(λ, n),
where n is the number of FE candidates that are being combined.

The definition of single key simulation security of a functional encryption
combiner should capture the case that if at least one of the FE candidates is
secure, then the combiner is also secure. In the case of decomposability we give
the adversary even more power by letting it choose a set I of all the corrupted
candidates, which contains all but one party.

Definition 3.6 (Single Key Simulation Security of DFEC [1]). Let DFEC
be a decomposable functional encryption combiner, C = {Cλ}λ∈N a collection of
circuit families indexed by λ and {FEi}i∈[n] n FE candidates of which at least one
is guaranteed to be secure. We define the experiments RealDFEC and IdealDFEC

in Fig. 4. A decomposable functional encryption combiner DFEC is single key
simulation secure, if for any polynomial-time adversary A = (A1,A2,A3) there
exists a PPT simulator S and a negligible function negl such that:

|Pr[RealDFEC(1λ, {FEi}i∈[n], C,A) = 1]
− Pr[IdealDFEC(1λ, {FEi}i∈[n], C,A,S) = 1]| ≤ negl(λ) .

Definition 3.7 (Strong Succinctness). A decomposable FE combiner DFEC =
(Setup, Partition, KeyGen, Enc, Dec) for a circuit class C containing circuits C that
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take inputs of length ℓin bits, outputs strings of length ℓout bits and are of depth
at most d is succinct if for every set of succinct FE candidates {FEi}i∈[n], the
following holds:

– For the circuit of Setup(1λ, {FEi}i∈[n]) it holds that Setup(1λ, {FEi}i∈[n]) ≤
poly(λ, n, d, ℓin).

– Let msk← Setup(1λ, {FEi}i∈[n]). For the circuit of Enc(msk, {FEi}i∈[n], ·) it
holds that Enc(msk, {FEi}i∈[n], ·) ≤ poly(λ, d, ℓin, ℓout, n) for some polynomial
poly.

– The functional key skC ← KeyGen(msk, {FEi}i∈[n], (C1, . . . , Cn)), with
(C1, . . . , Cn) = Partition(n, C), is of the form (C, aux) where
|aux| ≤ poly(λ, d, ℓout, n) for some polynomial poly.

3.3 Multi Key Fully Homomorphic Encryption

Definition 3.8 (Multi-Key Fully Homomorphic Encryption [32]). Let
C = {Cλ}λ∈N be a collection of circuit families (indexed by λ), where every C ∈ Cλ

is a polynomial time circuit C : Xλ → Yλ and n the number of participating parties.
A multi-key fully homomorphic encryption (MFHE) for the circuit family Cλ is a
tuple of four algorithms MFHE = (Setup, Enc, Eval, Dec):

Setup(1λ): Takes as input a unary representation of the security parameter λ
and generates a public key pk and a secret key sk.

Enc(pk, x): Takes as input a public key pk and a message x ∈ Xλ to encrypt, and
outputs a ciphertext ct.

Eval(C, (pki, cti)i∈[ℓ]): Takes as input a circuit C, ℓ different public keys pki and
ciphertexts cti and outputs a ciphertext ct.

Dec({ski}i∈[n], ct): Is a deterministic algorithm that takes as input n secret keys
{ski}i∈[n] and a ciphertext ct and outputs a value y.

A scheme MFHE is perfectly correct, if for all λ ∈ N, i ∈ [n], ℓ ≤ n, rSetup
i ←

{0, 1}λ
, rEnc

i ← {0, 1}λ, (pki, ski)← Setup(1λ; rSetup
i ), C ∈ Cλ, xi ∈ Xλ, we have

Pr
[
Dec({ski}i∈[n], Eval(C, (pki, Enc(pki, xi; rEnc

i ))i∈[ℓ])) = C(x1, . . . , xℓ)
]

= 1.

For n = 1 multi-key FHE is equivalent to FHE. In the introductory paper of
López-Alt, Tromer, and Vaikuntanathan [32], the setup algorithm also outputs
an evaluation key together with the public and secret key. In our work we assume
that the information of the evaluation key is contained in the public key.

Definition 3.9 (IND-CPA security of MFHE). A multi-key fully homo-
morphic encryption scheme MFHE = (Setup, Enc, Eval, Dec) is secure, if for any
PPT adversary A, it holds that

∣∣∣∣ Pr
[
A(pk, Enc(pk, x0)) = 1

∣∣∣∣ (pk, sk)← Setup(1λ)
(x0, x1)← A(pk)

]
− Pr

[
A(pk, Enc(pk, x1)) = 1

∣∣∣∣ (pk, sk)← Setup(1λ)
(x0, x1)← A(pk)

] ∣∣∣∣ ≤ negl(λ).
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Besides the security of a multi-key FHE scheme, we also need to define what
it means for a multi-key FHE scheme to be compact.

Definition 3.10 (Compactness). A multi-key FHE scheme MFHE = (Setup,
Enc, Eval, Enc, Dec) for a circuit class C and n participating parties is called
compact, if |ct| ≤ poly(λ, n), where ct := Eval(C, (pki, cti)i∈[ℓ]) with ℓ ≤ n and
with the description of the circuits Setup, Enc and Dec being polynomial in the
security parameter λ.

We note that this definition implies that public- and secret-key pairs are also
independent from the size of the circuit. We assume familiarity with the notion of
negligible functions, symmetric encryption, digital signatures and commitments
and refer to the full version [14] for the formal definitions.

3.4 Secure Multiparty Computation

The security of a protocol (with respect to a functionality f) is defined by
comparing the real-world execution of the protocol with an ideal-world evaluation
of f by a trusted party. More concretely, it is required that for every adversary A,
which attacks the real execution of the protocol, there exist an adversary S, also
referred to as a simulator, which can achieve the same effect in the ideal-world.
In this work, we denote an ℓ-round MPC protocol as π = (π.Next1, . . . , π.Nextℓ,
π.Out), where π.Nextj , with j ∈ [ℓ] denotes the next-message function that takes
as input all the messages generated by π in the rounds 1, . . . , j − 1 (that we
denote with τj−1) the randomness and the input of the party Pi and outputs
the message msgj,i. Additionally, we assume that all the parties run the same
next message function algorithms (the only difference is the randomness and the
input provided by each party). π.Out denotes the algorithm used to compute the
final output of the protocol. We assume that readers are familiar with standard
simulation-based definitions of secure multi-party computation in the standalone
setting. For self-containment we provide the definition in the full version [14] and
refer to [22] for a more detailed treatment.

In this work we also consider a relaxed notion of security known as privacy
with knowledge of outputs [26, 36]. In this the input of the honest parties is
protected in the standard simulation based sense, but the output of these parties
might be incorrect. To formalize this notion we need to slightly modify the ideal
execution as follows.
1. Send inputs to the trusted party: The parties send their inputs to the

trusted party, and we let x′
i denote the value sent by Pi.

2. Ideal functionality sends output to the adversary: The ideal func-
tionality computes (y1, . . . , yn) := f(x1, . . . , xn) and sends {yi}i∈I to the
adversary A.

3. Output of the honest parties: The adversary S sends either a continue
or abort message or arbitrary values {y′

i}i∈[n]\I to the ideal functionality. In
the case of a continue message the ideal functionality sends yi to the party
Pi, in the case of an abort message every uncorrupted party receives ⊥ and
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in the case that the ideal functionality receives arbitrary values {y′
i}i∈[n]\I it

forwards them to the honest parties.
4. Outputs: S outputs an arbitrary function of its view, and the honest parties

output the values obtained from the trusted party.
The interaction of S with the trusted party defines a random variable

IdealPKO
f,S(z)(k, x) as above.

Having defined the real and the ideal world, we now proceed to define our
notion of security.

Definition 3.11. Let λ be the security parameter. Let f be an n-party random-
ized functionality, and π be an n-party protocol for n ∈ N.

We say that π securely realizes f with knowledge of outputs in the presence
of malicious adversaries if for every PPT adversary A there exists a PPT
adversary S such that for any I ⊂ [n] the following ensembles are computational
indistinguishable:

{Realπ,A(z),I(k, x)}k∈N,⟨x,z⟩∈{0,1}∗ , {IdealPKO
f,S(z),I(k, x)}k∈N,⟨x,z⟩∈{0,1}∗ .

4 k-Delayed-Input Function MPC

In this section, we introduce the new notion of k-Delayed-Input Function MPC.
The classical simulation-based definition of secure MPC requires that the function
to be computed is known at the beginning of the real (and ideal) world experiment,
before the protocol starts. In our construction we are not in this setting, as we
need an MPC protocol in which the parties can influence the function to be
computed by giving an extra input mid-protocol. Concretely, in our protocols,
the function computed by the MPC protocol becomes fully defined in the third
round (i.e., for the circuit-scalable construction the function incorporates the
commitments and the random values sent in the second round).

To capture this, we devise a variant of secure MPC where each party Pi has
two inputs xi and f , where 1) the input xi is known at the beginning of the
real (ideal) world experiment (as in the standard definition of MPC) but 2) the
input f can be any function and it becomes known only in the k-th round. In
this setting we want to guarantee that if all the honest parties input the same
function f , then the adversary either learns the output of f or nothing at all.
More formally, we require the input of the honest parties to be protected in the
standard simulation based manner for the case where the ideal world evaluates
the function f .

A strawman’s approach for such a protocol would be to rely on an ℓ-round
MPC protocol that does not require the input of the parties to compute the first
k− 1 rounds with k ≤ ℓ− 1. We call such protocols delayed-input protocols. More
precisely, one could consider a delayed-input MPC protocol Π for the universal
function g where g takes a pair of inputs from each party Pi denoted with (x, f)
and returns f(x1, . . . , xn).

Unfortunately, it is not guaranteed that this approach works since the standard
security definition of MPC does not capture the scenario in which an input f
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for an honest party is chosen adaptively based on the first k − 1 rounds of the
protocol. Therefore, even if all the honest parties follow the naive approach we
have just described and use the function f as their input, the adversay might
be able compute the output of a function f̃ ̸= f . It should be noted that the
description of the computed function can be part of the output as well, hence,
the honest parties will notice that the wrong function has been computed and
will reject the output. However, the adversary might have gained much more
information from the evaluation of f̃ than it would have gotten by evaluating f .

Syntax & Correctness. Before defining the real and ideal execution, we need
to define the syntax of an ℓ-Round k-Delayed-Input Function MPC protocol
and its correctness. An ℓ-Round k-Delayed-Input Function MPC protocol is
defined as Π = (Next1, . . . , Nextℓ, Out). The next message function Next1 takes
as an input the security parameter in unary form, the input of the party, its
randomness and a parameter m that represents the size of the function that will
be computed, and returns the first message of the protocol. The next-message
function Nextj , with j ∈ [k−1] takes as input all the messages generated by Π in
the rounds 1, . . . , j − 1 (that we denote with τj−1) the input and the randomness
of Pi and outputs the message msgj,i. The next message function Nextj with
j ∈ {k, . . . , ℓ} takes the input of the party Pi, a function f (together with τk−1)
and the randomness of Pi, and returns the message msgj,i. To compute the final
output, each party Pi runs Out on input τℓ, its input and randomness. We now
define the correctness and the security property that a k-delayed-input function
protocol must satisfy.

Definition 4.1 (Perfect Correctness for ℓ-Round k-Delayed-Input Func-
tion MPC Protocols). For any λ, m ∈ N, for any inputs (x1, . . . , xn) ∈
({0, 1}λ)n and for any set of functions {fγ}γ∈[n] with |fγ | = m for all γ ∈ [n], it
must hold for all i ∈ [n] that

– if f1 = · · · = fn then Pr [(Out(τℓ, xi, ri) ̸= f(x1, . . . , xn)] = 0,
– if there exists α, β ∈ [n] s.t. fα ̸= fβ then Pr [(Out(τℓ, xi, ri) ̸= ⊥] = 0,

where msg1,i ← Next1(1λ, xi, m; ri), msgc,i ← Nextc(τc−1, xi; ri) and msgj,i ←
Nextj(τj−1, xi, fi; ri) where ri ← {0, 1}λ, c ∈ {1, . . . , k − 1} and j ∈ [k, . . . , ℓ].

We now proceed to defining the security of k-delayed-input function protocols,
by describing how the real and the ideal world look like.

The real execution. Let us denote x = (x1, . . . , xn) where xi denotes the input
of the party Pi. In the real execution the n-party protocol Π is executed in the
presence of an adversary A. The honest parties follow the instructions of Π. The
adversary A takes as input the security parameter λ, the size of the function
m, the set I ⊂ [n] of corrupted parties, the inputs of the corrupted parties, and
an auxiliary input z. A sends all messages in place of corrupted parties and
may follow an arbitrary polynomial-time strategy. At round k − 1, A picks a
function f and sends it to the honest parties. Then each honest party Pi uses f to
compute the rounds k, k+1, . . . , ℓ of Π. The adversary A continues its interaction
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with the honest parties following an arbitrary polynomial-time strategy. The
interaction of A with a protocol Π defines a random variable RealDIF-MPC

Π,A(z),I(k, x)
whose value is determined by the coin tosses of the adversary and the honest
players. This random variable contains the output of the adversary (which may
be an arbitrary function of its view), the outputs of the uncorrupted parties as
well as the function f chosen by the adversary. We let RealDIF-MPC

Π,A(z),I denote the
distribution ensemble {RealDIF-MPC

Π,A(z),I(k, x)}k∈N,⟨x,z⟩∈{0,1}∗ .

The ideal execution
– Send inputs to the trusted party: Each honest party Pi sends xi to

the ideal functionality. The simulator sends {xj}j∈I and f to the ideal
functionality.

– Ideal functionality sends output to the adversary: The ideal func-
tionality computes (y1, . . . , yn) := f(x1, . . . , xn) and sends {yi}i∈I to the
simulator S and f to Pi for each i ∈ [n] \ I.

– Output of the honest parties: The simulator S sends either a continue or
abort message to the ideal functionality. In the case of a continue message the
ideal functionality sends yi to the party Pi, in the case of an abort message
every uncorrupted party receives ⊥.

– Outputs: S outputs an arbitrary function of its view, and the honest parties
output the values obtained from the trusted party.
The interaction of S with the trusted party defines a random variable

IdealDIF-MPC
S(z),I (k, x) as above. Having defined the real and the ideal world, we

now proceed to define our notion of security.

Definition 4.2 (k-Delayed-Input Function MPC). Let λ be the security
parameter. We say that a protocol Π satisfying Definition 4.1 is k-delayed-input
function in the presence of malicious adversaries if for every PPT adversary
A attacking in the real world (as defined above) there exists an expected PPT
ideal-world adversary S restricted to query the ideal functionality with the same
function f that will appear in the real world experiment output such that for any
I ⊂ [n] the following ensembles are computational indistinguishable

{RealDIF-MPC
Π,A(z),I(k, x)}k∈N,⟨x,z⟩∈{0,1}∗ , {IdealDIF-MPC

S(z),I (k, x)}k∈N,⟨x,z⟩∈{0,1}∗ .

Remark 4.3. We note that Definition 4.2 is very similar to the standard notion of
MPC. Indeed, our ideal world can be thought of as the ideal world of the standard
definition of MPC for the case where the parties want to evaluate the universal
function. We also note that in the ideal world there is no notion of rounds, hence
it is not immediately clear how to translate what happens in the real world
(where the function f is adaptively chosen in the k-th round by the adversary)
into the ideal world (where the ideal world adversary has all the information it
needs from the beginning of the experiment). The way we break this asymmetry
between the ideal and the real world is exactly by restricting the power of the
simulator (i.e., the power of the ideal-world adversary) depending on an event
that happens in the real world. In our specific case, we require the admissible
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Input: ((xi, ki), (fi, τi))i∈[n].
If Verify(ki, fi, τi) = 0 or fi ̸= fj for any i, j ∈ [n], then output ⊥.
Compute y1, . . . , yn := f ′(x1, . . . , xn) with f ′ = fi for any i ∈ [n] and
set yi := y0

i := y1
i for all i ∈ [n].

Output: (y0
i , y1

i ) to the party Pi for each i ∈ [n].

Fig. 5: Description of the function g.

simulators (i.e., the admissible ideal world adversaries) to be those that query
the ideal world functionality using the same function that will appear in the
output of the real world experiment. We note that without this requirement this
definition becomes useless since the simulator might query the ideal functionality
using a function f̃ that is different from the function f used in the real world,
which would allow the simulator to learn more about the honest parties’ inputs
then it would have by querying the ideal functionality with the function f .

From MPC protocols to k-Delayed-Input Function MPC protocols.
To construct an n party ℓ-round k-Delayed-Input Function MPC protocol ΠDIF,
we rely on a 2n party ℓ-round MPC protocol Π that does not require the
input to compute the first k − 1 rounds and a one-time MAC scheme MAC =
(Setup, Auth, Verify). In our protocol ΠDIF, each party Pi controls two parties of
Π. One party uses the private input and a MAC key (which is known from the
beginning) as its input and the other party uses the function f (received at the
end of round k − 1) authenticated with the MAC key as its input. The MPC
protocol Π then checks that the functions are authenticated accordingly to the
MAC key and that they are all equal. If this check is successful, Π evaluates the
function f over the secret inputs of the parties. Finally, the individual outputs of
the function evaluation are returned to one of the two parties of Π controlled by
the party Pi. To show that the described protocol ΠDIF is indeed k-delayed-input
function, we rely on the security of the MPC protocol Π and the unforgeability
of the MAC. The security of the MPC protocol Π ensures that the private inputs
of the parties are protected and the unforgeability of the MAC is used to enforce
that the correct function is used in the protocol execution. Intuitively, if, by
contradiction, there exists an adversary that manages to evaluate the function
f̃ instead of f then we would be able to construct a reduction to the security
of the MAC since the only condition in which Π does not output ⊥ is the one
in which all the parties input the same authenticated function f . If there exists
an adversarial strategy that makes Π parse f as f̃ , then it must be that f̃ has
been authenticated using the MAC key of an honest party. We can extract such
a forgery using the simulator of Π (that extracts the input from the parties
declared as corrupted).

Now, we describe the construction more formally. Let Π be a 2n-party MPC
protocol that realizes the 2n-input function g described in Fig. 5 with the property
that it needs the input of the parties only to compute the rounds k, k + 1, . . . , ℓ
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with 0 ≤ k ≤ ℓ − 1 where ℓ ∈ N represents the round complexity of Π. In
our k-Delayed-Input Function MPC protocol ΠDIF, each party Pi emulates two
parties P 0

i and P 1
i of Π. Let xi be the private input of Pi, then Pi performs the

following steps.
1. Run Setup to sample a MAC key ki.
2. Run the party P 0

i using the input (xi, ki) and P 1
i until the round k − 1.13

3. Upon receiving the function fi compute τi ← Auth(ki, fi) and run P 1
i using

the input (fi, τi).
4. When the protocol Π is finished, Pi outputs the output obtained by P 0

i .

Theorem 4.4. Let Π be a 2n-party ℓ-round MPC protocol that securely realizes
the function f of Fig. 5 and that requires the input only to compute the rounds
k, k + 1, . . . , ℓ with 0 ≤ k ≤ ℓ− 1 and let MAC = (Setup, Auth, Verify) be a one-
time secure MAC scheme, then the protocol ΠDIF described above is an n-party
ℓ-round k-Delayed-Input Function MPC protocol.

The proof for this theorem can be found in the full version [14].

5 Our Compiler: Circuit-Scalable MPC

In this section we prove our main theorems on how to construct a circuit-scalable
MPC protocol that realizes any functionality f with privacy with knowledge of
outputs. We refer to Section 2 for a simplified description of the protocol for
the two-party case and to Fig. 6 for the formal description of our compiler. Our
construction makes use of the following cryptographic tools:

– An ℓ-round k-delayed-input function MPC protocol ΠM = (ΠM.Next1, . . . ,
ΠM.Nextℓ, ΠM.Out) (not necessarily communication efficient) with k ≥ 3. In
the description of our compiler we assume, without loss of generality, that
ΠM is 3-delayed-input function.14

– A strong succinct single-key simulation secure decomposable FE combiner
DFEC = (DFEC.Setup, DFEC.Enc, DFEC.KeyGen, DFEC.Dec, DFEC.Partition)
for n FE candidates.

– A non-interactive computationally hiding commitment scheme Com.

Theorem 5.1. Let DFEC be a single-key simulation secure decomposable FE
combiner with circuit size csSetup for the setup algorithm DFEC.Setup, circuit size
csct for the encryption algorithm DFEC.Enc and functional key size ssk, let Com
be a commitment scheme and let ΠM be the ℓ-round MPC protocol k-delayed-input
function protocol described in Section 4, then ΠFE is an ℓ-round MPC protocol
that realizes the single-output functionality C with knowledge of outputs which
has communication complexity poly(λ, n, csSetup, csEnc, ssk).
13 We recall that P i

0 and P i
1 do not need to use the input to compute the first k − 1

rounds, nonetheless we can specify the input of P 1
i at the very beginning of the

protocol.
14 Any k′-delayed-input function MPC with k′ > 3 can be turned into a 3-delayed-input

function MPC protocol since the function received in round 2 can be ignored up to
round k′ − 1.
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We refer to the full version [14] for the formal proof of the theorem.

The following theorem follows immediately from Theorem 5.1 and the defini-
tion of strong succinct FE combiners.

ΠFE

Each i ∈ [n] party Pi has input xi ∈ {0, 1}∗ as its secret input.

Round 1.
1. Sample ri→i

Setup, ri→k
com , rEnc

i ← {0, 1}λ for all k ∈ [n] and set Ri
com :=

(ri→k
com )k∈[n].

2. Set x′
i := (xi, ri→i

Setup, Ri
com, rEnc

i ) and compute msg1,i ← ΠM.Next1(1λ, x′
i).

3. Sample ri→k
Setup ← {0, 1}λ for all k ∈ [n] \ {i}, compute comi→k

Setup :=
Com(ri→k

Setup; ri→k
com ) and set comi

Setup := {comi→k
Setup}k∈[n].

4. Send (msg1,i, comi
Setup).

Round 2.
1. Let τ1 denote the transcript of the protocol ΠM up to round 1.
2. Compute msg2,i ← ΠM.Next2(τ1).
3. Send (msg2,i, (ri→j

Setup)j∈[n]\{i}).
Round 3.

1. Let τ2 denote the transcript of the protocol ΠM up to round 2.
2. Compute msg3,i ← ΠM.Next3(Cct

comSetup,i,Ri
Setup

, τ2), with comSetup,i :=

{comk
Setup}k∈[n] and Ri

Setup := (rj→k
Setup)j∈[n],k∈[n]\{j}.

3. Send msg3,i.
For each round k ∈ {4, . . . , ℓ− 1}.

1. Let τk−1 denote the transcript of the protocol ΠM up to round k − 1.
2. Compute the second round message msgk,i ← ΠM.Nextk(τk−1).
3. Send msgk,i.

Round ℓ.
1. Let τℓ−1 denote the transcript of the protocol ΠM up to round ℓ− 1.
2. Compute rSetup

i =
⊕

k∈[n] rk→i
Setup.

3. Generate mski ← FEi.Setup(1λ; rSetup
i ), compute the partition of C,

i.e. (C1 . . . , Cn) ← DFEC.Partition(1λ, C) and generate ski ←
FEi.KeyGen(mski, Ci; rKeyGen

i ) with rKeyGen
i ← {0, 1}λ.

4. Compute the fourth round message msgℓ,i ← ΠM.Nextℓ(τℓ−1).
5. Send (msgℓ,i, ski).

Output Computation.
1. Let τℓ denote the transcript of the protocol ΠM up to round ℓ.
2. Compute the output of ΠM as (ct, (r̃k→i

Setup)i∈[n],k∈[n]\{i})← ΠM.Out(τℓ).
3. Output DFEC.Dec(skC , ct) with skC = (sk1, . . . , skn).

Fig. 6: Description of the protocol ΠFE that securely realizes any functionality
with knowledge of outputs.
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Input: (xi, ri→i
Setup, Ri

com, rEnc
i )i∈[n]

• Parse comSetup,i as {comk
Setup}k∈[n] and

comi
Setup as {comi→k

Setup}k∈[n].
• Parse Ri

Setup as (rj→k
Setup)j∈[n],k∈[n]\{j}.

• Parse Ri
com as (ri→k

com )k∈[n] for all i ∈ [n].
• For all i, j ∈ [n] check that comi→j

Setup = Com(ri→j
Setup; ri→j

com ).
If one of the above checks fails then output ⊥, continue
as follows otherwise.
For each i ∈ [n], compute rSetup

i =
⊕

k∈[n] rk→i
Setup and generate

mski ← FEi.Setup(1λ; rSetup
i )

Let msk := (msk1, . . . , mskn), x = (x1, . . . , xn), rEnc :=
⊕

i∈[n] rEnc
i .

Output: ct := DFEC.Enc(msk, x; rEnc) and {rk→j
Setup}j∈[n],k∈[n]\{j} to Pi.

Fig. 7: Circuit Cct
comSetup,i,Ri

Setup
.

Theorem 5.2. Let DFEC be a succinct single-key simulation secure decomposable
FE combiner, then ΠFE is a circuit-scalable secure MPC protocol that realizes
any single-output functionality with knowledge of outputs.

In the full version [14], we give more details on how our compiler can be
instantiated, which leads to the following theorem.

Theorem 5.3. If the LWE assumption holds, then there exists a round optimal
(4-round) circuit-scalable MPC protocol that realizes any single-output functional-
ity with knowledge of outputs.

By relying on the compilers proposed in [3,26,31] we can turn our protocol into
one that computes any function under the standard simulation based definition
of MPC.

6 Our Compiler: Circuit-Independent MPC

We now show how to construct a communication efficient MPC protocol that
realizes any single-output functionality f . We refer to Section 2 for a simplified
description of the protocol for the two-party case and to Fig. 8 for the formal
description of our compiler We make use of the following tools:

– An ℓ-round k-delayed-input function MPC protocol ΠM = (ΠM.Next1, . . . ,
ΠM.Nextℓ, ΠM.Out) (not necessarily communication efficient) with k ≥ 2.

– A multi-key fully homomorphic encryption scheme MFHE = (Setup, Enc,
Eval, Dec) for n keys.

Theorem 6.1. Let MFHE be a multi-key fully homomorphic encryption scheme
with circuit size csSetup for the setup algorithm MFHE.Setup, circuit size csEnc
for the encryption algorithm MFHE.Enc, circuit size csDec for the decryption
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algorithm MFHE.Dec and ciphertext size sct, let ΠM be the ℓ-round MPC protocol
k-delayed-input function protocol, then ΠFHE is an ℓ-round MPC protocol that
securely realizes the single-output functionality C with communication complexity
poly(λ, n, csSetup, csEnc, csDec, sct).

We refer to the full version [14] for the formal proof.

ΠFHE

Initialization: Each i ∈ [n] party Pi has input xi ∈ {0, 1}∗ as its secret input.

Round 1.
1. Sample rSetup

i and rEnc
i ← {0, 1}λ.

2. Set x′
i := (xi, rSetup

i , rEnc
i ) and compute msg1,i ← ΠM.Next1(1λ, x′

i).
3. Compute (pki, ski) := Setup(1λ; rSetup

i ).
4. Compute cti := Enc(pki, xi; rEnc

i ).
5. Send (msg1,i, pki, cti).

Round 2.
1. Let τ1 denote the transcript of the protocol ΠM up to round 1.
2. Compute cti := Eval(C, (pk1, ct1), . . . , (pkn, ctn)).
3. Compute msg2,i ← ΠM.Next2(CDec

cti,Ki , τ1), where Ki := (pkj , ctj)j∈[n].
4. Send msg2,i.

For each round k ∈ {3, . . . , ℓ}.
1. Let τk−1 denote the transcript of the protocol ΠM up to round k − 1.
2. Compute the k-th round message msgk,i ← ΠM.Nextk(τk−1).
3. Send msgk,i.

Output Computation.
1. Let τℓ denote the transcript of the protocol ΠM up to round ℓ.
2. Compute the output of ΠM as y ← ΠM.Out(τℓ).
3. Output y.

Fig. 8: The protocol ΠFHE that securely realizes f .

Input: (xi, rSetup
i , rEnc

i )i∈[n].
• Parse Ki as (pki, cti)i∈[n].
• For all i ∈ [n], check that (pki, ·) = Setup(1λ; rSetup

i ) and
cti = Enc(pki, xi; rEnc

i ) and compute (·, ski) = Setup(1λ; rSetup
i ).

• Compute y := Dec(sk1, . . . , skn, cti).
If one of the above checks fails then output ⊥ else return y to Pi.

Fig. 9: Circuit CDec
cti,Ki
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Due to Theorem 6.1 and the definition of a compact multi-key FHE scheme
we have the following.
Theorem 6.2. Let MFHE be a compact multi-key FHE scheme, then ΠFHE

is a circuit-independent secure MPC protocol that realizes any single-output
functionality.

We can easily modify ΠFHE to obtain a protocol ΠFHE′ which has a communi-
cation complexity of O(Lin) + poly(λ, n, Lout). The protocol ΠFHE′ works exactly
as ΠFHE with the following differences. Every party Pi encrypts a short seed si

of a PRG PRG using the FHE scheme, i.e. Enc(pki, si; rs
i ), and sends it together

with the value wi = PRG(si)⊕ xi to all the other parties Pj with j ∈ [n] \ {i}.
The party Pi, upon receiving (Enc(pkj , s; rs

j ), wj) from all the other parties Pj

with j ∈ [n] \ {i}, computes Enc(pkj , PRG(sj)), using homomorphic operations,
Enc(pkj , wj) by encrypting wj using pkj , and then homomorphically XORs the
resulting ciphertexts to receive Enc(pkj , xj). This ciphertext can now be used to
run the evaluation algorithm and compute Enc({pkj}, f(x1, . . . , xn)). The parties
now check that the ciphertexts {wj}j∈[n] are well formed by running the MPC
protocol as described in Fig. 9.
Theorem 6.3. Let MFHE be a compact multi-key FHE scheme, then ΠFHE′ is
a secure MPC protocol with communication complexity O(Lin) + poly(λ, n, Lout)
that realizes any single-output functionality.

Due to [3, 31,32] we can claim the following.
Corollary 6.4. If the LWE and DSPR assumptions hold and any of the DDH,
QR, Nth Residuosity or LWE assumption hold, or there exists a malicious-secure
OT, then there exists a round optimal (4-round) circuit-independent MPC protocol
that realizes any functionality.
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