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Abstract. Cryptosystems have been developed over the years under the
typical prevalent setting which assumes that the receiver’s key is kept
secure from the adversary, and that the choice of the message to be sent
is freely performed by the sender and is kept secure from the adversary as
well. Under these fundamental and basic operational assumptions, mod-
ern Cryptography has flourished over the last half a century or so, with
amazing achievements: New systems (including public-key Cryptogra-
phy), beautiful and useful models (including security definitions such as
semantic security), and new primitives (such as zero-knowledge proofs)
have been developed. Furthermore, these fundamental achievements have
been translated into actual working systems, and span many of the daily
human activities over the Internet.
However, in recent years, there is an overgrowing pressure from many
governments to allow the government itself access to keys and messages
of encryption systems (under various names: escrow encryption, emer-
gency access, communication decency acts, etc.). Numerous non-direct
arguments against such policies have been raised, such as “the bad guys
can utilize other encryption system” so all other cryptosystems have to
be declared illegal, or that “allowing the government access is an ill-
advised policy since it creates a natural weak systems security point,
which may attract others (to masquerade as the government).” It has
remained a fundamental open issue, though, to show directly that the
above mentioned efforts by a government (called here “a dictator” for
brevity) which mandate breaking of the basic operational assumption
(and disallowing other cryptosystems), is, in fact, a futile exercise. This
is a direct technical point which needs to be made and has not been
made to date.
In this work, as a technical demonstration of the futility of the dictator’s
demands, we invent the notion of “Anamorphic Encryption” which shows
that even if the dictator gets the keys and the messages used in the
system (before anything is sent) and no other system is allowed, there
is a covert way within the context of well established public-key
cryptosystems for an entity to immediately (with no latency) send
piggybacked secure messages which are, in spite of the stringent dictator
conditions, hidden from the dictator itself! We feel that this may be an
important direct technical argument against the nature of governments’
attempts to police the use of strong cryptographic systems, and we hope
to stimulate further works in this direction.

? Università di Salerno, Salerno, Italy. giuper@gmail.com
?? Telecom Paris, Institut Polytechnique de Paris, France. hieu.phan@telecom-paris.fr

? ? ? Google LLC, and Columbia University, USA. motiyung@gmail.com



1 Introduction

Cryptography, like most scientific fields, has a profound impact on our Society,
and even more so as it touches upon one of the most basic human rights, the right
to privacy. The threats to privacy posed by the increased reliance on electronic
forms of communication has been very well identified (see, for example,[DL])
and there has been a very vigorous debate between technologists and politicians
about the ways of limiting the power of encryption as a safeguard to privacy
(see the discussion on escrow systems below). One of the beneficial effects of the
debate has been the increased awareness of the need to protect our privacy; this
is witnessed by the growing use of end to end encryption (E2E encryption) in,
for example, messaging apps [MP16,Wha20].

Cryptography “rearranges power”[Rog15] and it obviously attracts the at-
tention of the institutions and individuals that hold the same power that Cryp-
tography threatens to rearrange. Among these power holding institutions, our
main concerns involve the institutions that have the power to undermine the
two assumptions on which Cryptography relies. As we argue below these as-
sumptions, which have long gone overlooked (or implicit), are rather different
in nature from the usual cryptographic assumptions (e.g., about the computing
power of parties). More precisely, the security guarantees offered by Cryptogra-
phy even for its most basic and classic setting, two-party private communication
[Sha49], rely on two implicit and fundamental assumptions, one regarding the
sender and one regarding the receiver, that can be challenged by exactly those
parties whose power Cryptography threatens to limit. When these assumptions
are challenged, all privacy guarantees are void (this holds for symmetric [Fei73]
as well as for public key [DH76,RSA78,GM84] systems).

Concretely, it is assumed that the encryption and the decryption processes
are conducted freely and privately by the sender and the receiver, respectively.
Specifically, on the receiver’s side, a message, once encrypted, is considered pri-
vate based on the assumption that the receiver’s (Bob’s) private key (regardless
of where it resides) is not compromised. In fact, relying solely on the key not
being compromised and not on other obscurities is known as the Kerckhoffs prin-
ciple and was already formulated in 1883 [Ker83]. On the sender’s side, in turn,
it is concretely assumed that the sender (Alice) is free to pick the message to be
sent.

Indeed, if Alice is not free to pick the message to be sent, we can hardly talk
of communication “from Alice to Bob.” Similarly, if Bob’s secret key is compro-
mised (and the key is the only source of secrecy), we cannot consider the com-
munication to be private. In other words, Cryptography currently implements
private communication assuming that encryption takes as input a message freely
chosen by Alice and that, among all other parties, only Bob has access to the
key necessary for decryption. We call these two assumptions the sender-freedom
assumption and the receiver-privacy assumption, respectively.

Both assumptions are realistic for normal settings, and thus, it is not a big
surprise that the majority of symmetric and asymmetric encryption systems
have been developed under them, and it is so natural that these are implicit
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in the modeling. Yet, these assumptions fail to exist in a dictator-led country
where law enforcement agencies have the (legal) power to get the private key of
citizens to be surrendered upon request (thus undermining the receiver-privacy
assumption). Furthermore, in a dictatorship, individuals can be forced by the
authorities to encrypt and send some adversary selected (e.g., wrong) statements
(thus undermining the sender-freedom assumption). Note that while we charac-
terize the above as a dictator-led country, it is quite prevalent around the world
today for governments (of all types) to ask for at least some of the above powers
when discussing encryption!

Let us now discuss the two assumptions more in depth.

The receiver-privacy assumption. Achieving security without having to rely on
this assumption asks us to consider the classical cryptographic problem of two
parties that wish to privately communicate in the presence of an adversary that
has the ability to eavesdrop on all communication between the two parties and
the power to request the receiver’s secret key1. At first sight, achieving privacy
against such an adversary seems like an impossible task since, by definition, the
secret key allows for the decryption of any ciphertext and, once an adversary
has gained access to the secret key, nothing can stop it from decrypting the
ciphertexts.

Before giving an intuitive idea of how we plan to approach this seemingly
impossible problem, we want to elaborate on the security threat that we address
and how it puts further constraints on the solution space. As mentioned before,
this setting models adversaries of the scale of a nation state whose government
has the “legal” power to force citizens to reveal their secret keys. In such a setting,
it is expected that a citizen would abide by the request as any refusal could be
considered as evidence that the communication was unlawful (or be considered
such in the eyes of the adversary/government); in fact, the citizens may wish
(as an advantage in an hostile environment) to be able to prove the benign
nature of their messages. As we shall see, addressing the needs of privacy in the
presence of such a powerful adversary in an effective way cannot be achieved by
introducing new constructions that would immediately be ruled as illegal, but
rather by showing that existing constructions can be adapted to support the
new need. Indeed, for its own nature, the deployment itself of countermeasures
must be hidden from the adversary as a government has the legal means and the
power to make it illegal.

The sender-freedom assumption. This assumption posits that the sender Alice is
free to choose which message to encrypt; without this assumption, the meaning
of communication originating from Alice is lost. It is not difficult to imagine a
setting in which someone is under duress to send a ciphertext with a fake mes-
sage. Specifically, the sender might be forced to produce a ciphertext ct for a
given message m, the forced message, with respect to a given public key fPK,
the forced public key. In addition the adversary will want to see the coin tosses

1 This is masterly described in xkcd comic 538 (see https://xkcd.com/538).
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R used to produce ct so as to be able to check that ct = Enc(fPK,m;R). Is
there a way for the sender to satisfy the adversary but still send a message other
than m to some other party? Clearly, if the adversary has the power to pick the
message m and the randomness to be used, then the sender has no maneuvering
space. This would be equivalent to the adversary holding Alice’s cellphone and
using it to send messages on Alice’s behalf; clearly (with no freedom to choose
anything) nothing can be done to prevent this (which is a, de facto, imperson-
ation of Alice). Instead, we do not consider impersonation, but rather consider
the setting in which the more remote adversary does select the message to be
sent, lets Alice compute the ciphertext ct and later on Alice is required to ex-
hibit the coin tosses used to compute ct; i.e., the adversary does not completely
control the cryptographic device as in an impersonation attack, it allows strong
cryptography as well, but forces a valid explanation for the ciphertext for mes-
sages it chooses, including possibly some one-way hash post-processing of truly
random bits to produce the random bits used in encryption, to prevent, e.g.,
some meaningful message being part of the randomness used for systems that
encrypt over a message and randomness, and issues of this sort.

Again, in authoritarian regimes, under threats, dissidents are often forced to
send false statements to public and international newspapers. In this situation,
an international human rights organization (HR) that is not under the control of
the dictator can release its public key. When dissidents in a country ruled by a
dictator are forced by the authority to send false statements to an international
newspaper, say AP News under the public key of AP News, dissidents can obey
that request while being able to add hidden messages to HR, for example saying
that what they are saying is false, as an additional protection.

Normative Prescriptions. One may ask: most of Cryptography is based on com-
putational assumptions and this has not slowed down its deployment in real-
world applications; why should we be worried by two extra assumptions? Let
us pause and ask ourselves why we believe in the assumptions we use to de-
sign cryptographic schemes. The assumed hardness of computational problems
reflects our current intuition about and understanding of Nature (and thus, its
representation within mathematical models): randomness, one-way functions,
and trapdoor functions do exist in our current understanding of Nature. On the
other hand, let us look at the receiver-privacy assumption. Why do we believe
that users will not be forced to reveal their private key? Essentially because there
is a normative prescription2 by which forcing someone to do something against
its will is a punishable crime. In other words, society attaches a punishment
to anybody who violates the receiver-privacy assumption. The same holds for
the sender-freedom assumption. However normative prescriptions are not laws
of Nature (not inherent to the way things are!) and they can be modified by a
new social/normative re-order. And this is exactly what a dictator will do. On

2 We do not use the term “law” to mark the conceptual difference from “law of Na-
ture.”
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the other hand, quite obviously, no dictator will ever be able to make a one-way
function efficiently invertible or will be able to predict a random bit3.

Indeed Cryptography can be seen as an effort to replace assumptions based on
normative prescriptions with milder assumptions leveraging our understanding
of Nature and, more specifically, of Computational Complexity (combined with
Information Theory) and/or of Computing Architectures. A primary example of
this effort is the concept of Secure Multiparty Computation (aka Private Func-
tion Evaluation). If we accept assumptions based on normative prescriptions,
then we can identify some individual to act as a trusted third party (TTP); that
is, the TTP receives the private inputs and returns the value of the function to
be computed. A law (a normative prescription) will describe the expected be-
havior of the TTP and identify the penalties for not following the prescription.
On the other hand, the field of Secure multi-party computation [Yao86,GMW87]
has shown how to achieve the same without relying on normative prescriptions
regarding the TTP (replacing it with reliance on computational complexity as-
sumptions and/or architectural separation and isolation of computing elements).

2 Related Works

Having presented the crux of our notion, let us examine related works and notions
dealing with other aspects of violations of the two implicit normative assump-
tions above.

Key-Escrow. The availability and proliferation of E2E encryption for smart-
phone messaging applications (see [MP16,ACD19,Wha20] for two of the most
widely used applications and for some of the formal treatment of the Cryptogra-
phy on which they are based) has renewed the debate between law enforcement
and government security agencies, and technologists. Actually, the debate goes
back to at almost 30 years ago when the Internet became mainstream (early
1990s).The following quote is from [Dak96]:

Presently, anyone can obtain encryption devices for voice or data transmis-
sions. Unfortunately, this group may include criminals, terrorists and drug deal-
ers. Law enforcement groups believe this could soon create a devastating problem
because these authorities commonly rely on electronic surveillance, also known as
”wiretapping,” as a tool for fighting crime. That is, if criminals can use advanced
encryption technology in their transmissions, electronic surveillance techniques
could be rendered useless because of law enforcement’s inability to decode the
message.

Much research in Cryptography has focused on methods to make the strong
privacy guarantees offered by encryption ineffective under very specific and well
identified situations. An early prototypical and pioneering example of this kind
of work is the concept of a Fair Cryptosystem by Micali [Mic] that was one of
the first to consider the possibility of targeted revocation of the privacy offered

3 In “The Game-Players of Titan,” a novel by Philip K. Dick, randomness is the only
weapon humans can use against silicon-based telepath aliens from Titan, called vugs.
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by encryption. Roughly speaking, this was achieved by sharing the secret key
among a number of parties (the majority of which is assumed to be honest, say)
and each would reveal its share, so as to allow reconstruction, only if a court
order to that effect would be produced. In 1993 (essentially at the same time of
Fair Cryptosystems), the US government put forth The Clipper proposal [Cli]
by which all strong encryption systems had to retain a copy of keys necessary to
decrypt information with a trusted third party who would turn over keys to law
enforcement upon proper legal authorization. The Clipper chip was attempting
to bind the ability to identify the key of the sender to facilitate government
access and the ability to decrypt. The proposal had a flaws involving a too small
authentication field [Bla94] and, actually, the binding was shown to be broken
so as to bypass the mechanism [FY93]. All the above systems employed either
trusted hardware or other trusted elements (trustees) added to the Public-Key
Infrastructure setting. An open question at the time was to construct a “software
only” escrow, employing the existing trusted point of the certification authority
within the existing public key infrastructure as a handle (see [YY98]).

Given general security concerns, the report by Abelson et al. [AAB+97] (see
also [AAB+15]) identifies the major threats of such a key-escrow system (pri-
marily, the availability of an access method to the user’s encrypted data which is
not under the user own responsibility). The possibility that a key-escrow system
could be abused by law-enforcement agency to violate the privacy of the users
and to conduct large scale surveillance, which is our main concern in this paper,
and was identified in the first report [AAB+97] that looked into the privacy is-
sues arising from the Clipper chip and from other key-escrow mechanisms. We
note that, obviously, the same concerns and more hold if weak Cryptography,
which can be broken with enough feasible resources, is mandated in our mod-
ern time and with available public computational resources, such Cryptography
simply does not work.

The main approach taken by cryptographers to address the above important
point regarding escrow has been to construct systems relying on cryptographic
tools (mathematical assumptions) that will make it impossible for governments
to infringe on the privacy of the individuals and the guarantees made relying
on a combination of normative assumptions as well as on cryptographic prim-
itives. For example, the guarantee offered by a Fair Cryptosystem rely on the
cryptographic strength of the secret-sharing primitives and on the normative
prescription that the majority of shareholders will only act upon a request from
the recognized authority, which, in turn, relies on the assumption that share
holder are honest and uncoercible. From our point of view it is natural to ask:
What if the authority is a dictator, and thus normative prescriptions have no
effect?

Along these lines, the very recent work of Green et al. [GKVL] offers the
most complete approach by formally defining the desired properties for a law
enforcement access system and putting forth the notion of an abuse-resistant
law enforcement access system (ARLEAS). In addition, they gave a feasibility
result using standard cryptographic techniques. Most systems, including AR-
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LEAS [GKVL], consider three types of parties: users, that employ encryption
to exchange messages; law enforcement, that need to access encrypted messages
produced by users; judiciary, that grants or denies authorizations to the access
requests of the law enforcement. Note that such a system does not offer any
protection against dictatorial states. First of all, in most dictatorships the ju-
diciary is not an independent power thus making the abuse-resistant property
nothing more than a wish. Actually, a key-escrow system makes it even easier for
a dictator to violate the privacy of the users as it is enough to nominate them-
selves, as dictators tend to do, to be the judiciary and law enforcement. Even
more importantly, note that all such systems still rely on the receiver-privacy
and sender-freedom assumptions.

The main technical objective of our work is to show that one can achieve pri-
vacy in communication using existing cryptographic systems even in the presence
of a dictator without relying on any normative prescription.

Deniable Encryption. The concept of Deniable Encryption, put forth by Canetti
et al. [CDNO97], might seem to be relevant to our setting. A deniable encryption
scheme allows the sender to generate fake coin tosses that make the ciphertext
looks like an encryption of another, innocent, cleartext. So whenever the sender
is requested to open a ciphertext by surrendering the coin tosses, he can just
generate fake coin tosses and thus effectively conceal the real plaintext. However,
an assumption in deniable encryption is that the adversary has the power to
approach the sender after the ciphertext was transmitted. It was mentioned in
[CDNO97] that deniability is impossible in the context of direct physical access,
where “Eve [the adversary] approaches Alice [the sender] before the transmission
and requires Alice [the sender] to send specific messages”. It was clearly stated
in the original paper [CDNO97] that “Certainly, if Alice [the sender] must hand
Eve [the adversary] the real cleartext and random bits then no protection is
possible”. Hence, while deniability is an important property, it does not solve
the issue of facing a dictator.

Kleptography. The concept of having a cryptosystem inside another cryptosys-
tem was used in Kleptography [YYa,YY97,YYb]. However, the goal in Kleptog-
raphy is to attack the cryptosystem owner by using inside an implementation (or
a specification) a method to leak exclusively to an adversary. This goal is in fact,
not to help against an adversary, but to covertly introduce an adversary, and is
a tool to help a dictator!. In some sense it can be used as an implicit key escrow,
and in some formal sense it negated the US government plan to distribute cryp-
tography in black-box hardware devices. Due to Snowden revelations, in fact, an
Elliptic Curve variant of the repeated DH kleptogram in the above works was
deployed in the Dual-EC pseudorandom generator standard, as was verified in
[CNE+14]. As a response, nowadays, the cryptographic community is working
on systems and architectures which can mitigate such system subversion attacks
(see [BPR,RTYZ,RTYZ17]).
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Steganography and “chaffing and winnowing”. The other tool to send secret
messages with is steganography, where a message is concealed within another
message (exploiting some redundancy in the message structure and style). This
is always possible, but systems of this nature are hard to deploy widely and
systematically as part of an established large scale computing base in a situation
it is not allowed (by the dictator).

In a response to the US government possibly restricting encryption systems
while allowing authentication method as part of its cryptographic export control,
Rivest proposed in 1998 the “chaffing and winnowing” system [Riv]. This system
shows how sharing a MAC key for authentication is turned into a method for
sending concealed message (in some steganographic sense). This clearly demon-
strated that the separation of cryptography for authentication and cryptography
for confidentiality, proposed by the possible export regulation, is quite artificial,
and gave a way to bypass key escrow using authentication keys which were not
proposed to be part of escrow encryption schemes at the time. Note that in our
scenario of the dictator, the dictator can certainly ask for a MAC (authentica-
tion) key as well and get the concealed message itself.

PublicKey Steganography and Subvertable Backdoored Encryption. von Ahn and
Hopper [vAH04] were the first to study steganographic public key and key ex-
change. Their constructions rely on the existence of a public random string that
cannot be tampered or chosen by the dictator. The work of Horel et al. [HPRV19]
removes this assumptions by showing that steganographic key exchange can be
achieved without resorting to public information. The key exchange is used then
in conjunction with the rejection sampling technique (see Section 5.1).

Comparing our model with the one of [HPRV19], we note that our model
assumes the parties have originally shared (private and thus un-tampered by
dictator) information. This, importantly, allows for zero-latency communication
hidden from the dictator. In Section 5.3 nevertheless, we show how to com-
bine [HPRV19] with our construction thus sacrificing zero-latency and dispens-
ing with the need of shared information. Comparing, in turn, one of our main
solutions (see Section 5.3) with the one of Horel et al. [HPRV19] we note that,
for a ciphertext carrying λ bits, rejection sampling allows to transmit O(log λ)
extra bits whereas our construction carries λ thus achieving bandwidth rate of
1 (as opposed to (log λ)/λ). Such a bandwidth rate is rare in steganographic
systems in general. Our second result in section 6 also achieves zero latency, and
does not need the parties to share a private key.

3 Our approach

In this section, we would like to give a taste of our approach, and present a generic
but limited solution that shows its feasibility. For concreteness, we consider the
receiver’s side.

As we have already observed, there is no hope for preventing an adversary
that is in possession of the secret key from decrypting a ciphertext. In turn,
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one might think of ciphertexts that carry two messages and a different key is
needed for each of them. When asked for the secret key, the receiver might
release only one of the two keys, thus protecting one of the messages. But then,
if the adversary knows that there are two keys, why should he be happy to
receive just one key? Because we will make sure that the adversary believes that
there is no second key! Roughly speaking, we would like to have an encryption
scheme for which it is possible to generate a public key with one secret key or,
alternatively, to generate a public key that has two associated secret keys. More
precisely, the technical core of our proposed solution consists of the concept of
an Anamorphic Encryption scheme, a special encryption scheme whose public
keys can be generated in one of two possible modes: normal or anamorphic.

– A Normal public key is associated with a Normal secret key and it can
be used for the normal encryption functionality: the sender encrypts the
message m using the public key, and the receiver decrypts the ciphertext
using the secret key. An adversarial authority (i.e., the dictator) that is in
possession of a ciphertext can (legally) force the receiver to surrender the
secret key and thus gain access to the message.

– An Anamorphic4 public key instead is associated with two secret keys: a
normal secret key and a double secret key. A ciphertext ct produced with
an anamorphic public key carries two messages: the normal message m0,
that can be obtained by decrypting ct using the normal secret key; and the
anamorphic message m1, only visible to parties that have the double secret
key. When requested to surrender his secret key to allow inspection of the
ciphertexts, the owner of an anamorphic public key will pretend that the
key is normal and reveal the normal secret key. Thus, the dictator will gain
access only to the normal message m0 and the special message m1 is kept
private.

Normal public keys can be used by receivers who do not expect their secret keys
to be requested by the adversarial authority. Actually, these users need not even
know about anamorphic public keys and their operations will not be affected
in any way. Anamorphic public keys could instead be generated by someone
who has reasons to believe that the dictator will want to get the information he
has received; for example, an investigative reporter or an opposition leader. As
an example, consider an investigative reporter Bob who wants to communicate
in a private way with his informant, Alice. Bob sets up his public key as an
anamorphic key and gives Alice the double secret key. Note that Bob publishes
his anamorphic public key for everybody to use. However, when Alice has some
sensitive information for Bob, she uses the double key obtained from Bob to
produce an anamorphic ciphertext carrying two messages: m0 is set equal to
some innocent looking message (for example, a general question about the work

4 The adjective Anamorphic is used to denote a drawing with a distorted projection
that appears normal when viewed from a particular point or with a suitable mirror
or lens. Similarly, an anamorphic ciphertext will reveal a different plaintext when
decrypted with a suitable key.
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of the reporter; recall that in a dictatorship Alice does not even have a free choice
of this message), and message m1 will instead contain the sensitive information
that Alice wishes to communicate to Bob. Should Bob be requested to surrender
his secret key, he will pretend that his public key is just a normal public key and
will reveal the normal secret key. In this way the adversary will be able to read
message m0 (the innocent message containing no sensitive information) and will
gain no access to the potentially incriminating message m1.

Clearly, for this to work the following conditions must be satisfied:

– a pair of anamorphic public and secret keys must be indistinguishable from
a normal corresponding pair; and

– the ciphertexts produced using an anamorphic public key must be indistin-
guishable from those produced by a normal public key.

In addition, we are interested in performance parameters: We would like the
system to have zero-latency in the sense that the anamorphic system is ready
to be used whenever the normal system is ready. Additionally, we are interested
in system where the anamorphic bandwidth rate (i.e, number of anomorphic bit
transmitted divided by the number of normal bits transmitted) is high (whenever
and as much as possible).

A simple solution that does not work. At first, one might think that construct-
ing an Anamorphic Encryption scheme is not difficult and indeed it is possible
to turn any encryption scheme E into a Anamorphic Encryption AME in the
following rather straightforward way by adding redundancy to the ciphertext.
The normal encryption process of AME consists of computing a ciphertext ct ac-
cording to E and then outputting (ct, R), where R is a randomly selected string.
During the decryption process of AME with the normal secret key, the random
string R is ignored and the message is obtained by decrypting ct according to
E . Thus, a normal pair of public and secret key for AME is simply a pair of keys
from E . An anamorphic public key instead is associated also with the secret key
K of a symmetric encryption scheme E ′ with pseudorandom ciphertexts (e.g.,
it is a pseudorandom permutation). During the anamorphic encryption process,
ciphertext ct is an encryption of m0 according to E and the random string R
that is appended to ct is an encryption of m1 with respect to E ′ computed using
key K that, thus, plays the role of the double key. Note that the public keys
are identical and, by the pseudorandomness properties of the ciphertexts of E ′,
a normal ciphertext, in which R is truly random, is indistinguishable from an
anamorphic ciphertext in which R is a ciphertext of E ′.

So, the question is: do we have a satisfactory solutions? Hardly so! The mere
fact of using a standard encryption scheme and augmenting each ciphertext with
a random string is suspicious and, moreover, a user not interested in sending
hidden messages has no incentive to append a random string to the ciphertext
just to attract the attention of the dictator. Rather we are interested in showing
that existing encryption schemes can be used, in the form in which they have been
originally designed, to provide a second channel that is secure also with respect
to an adversary that has access to the secret key of the receiver. In practice,
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this will not raise any suspicion since all ciphertexts will be from a standard
encryption scheme or will be indistinguishable from them. In addition, no extra
action (like generating and appending a random string to each ciphertext) is
required from the normal users who can actually be completely unaware of the
special mode of operation.

In other words the question we ask is not
Can we construct an Anamorphic Encryption scheme?

but rather:
Is any of the existing encryption schemes also Anamorphic?

A positive answer to this question will constitute technical evidence of the
futility of the efforts of governments around the world (dictatorships and democ-
racies) to control encryption.

Our Main Technical Contributions. The rest of this paper consists of identi-
fying encryption schemes that appear in the literature which address the two
limitations we identified above.

– Receiver’s side. We show that the Naor-Yung paradigm for CCA secure
encryption from CPA secure encryption gives receiver-Anamorphic Encryp-
tion schemes (see Def. 1) with a bandwidth rate of 1. That is, each ciphertext
for λ plaintext bits carries λ additional bits that are hidden from the dicta-
tor. Moreover, as in the public key model, communication hidden from the
dictator can start with zero latency.

– Sender’s side. We show that a lattice based cryptosystems from the lit-
erature [Reg05,GPV08] are sender-Anamorphic Encryption (see Def. 3) and
they also achieve hidden communication with zero latency. In addition, they
do not require the sender and receiver to share any secret (just that there is
an additional receiver in the system), thus, enhancing their practicality.

Given these, one can conclude that the “Crypto Wars” which consists of
attacks on the free use of strong cryptography (involving requirements to give
keys of such cryptographic schemes to the dictator) are possibly futile. One may
then conclude that dictators should mandate only weak cryptography! But, due to
earlier battles, we are already know that disallowing strong Cryptography is totally
unhelpful to and imposes limits on the development of advanced information
technology systems, implying dire consequences to the economy and to society.

Roadmap. In Section 4, we put forth the concept of a Receiver-Anamorphic En-
cryption and give a formal notion of security. In Section 5.3, we show that the
Naor-Yung paradigm [NY90] gives Receiver-Anamorphic Encryption with zero
latency and bandwidth rate 1. In Section 6, we define the concept of an Sender-
Anamorphic Encryption that can be used to obtain private communication when
the sender-freedom assumption does not hold. We show that lattice-based cryp-
tosystems have this property (and give some evidence that other public key cryp-
tosystems are not Sender-Anamorphic Encryption). The scheme is zero-latency
as well.
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4 Receiver-Anamorphic Encryption

In this section we present the concept of a Receiver-Anamorphic Encryption
scheme that provides private communication without relying on the receiver-
privacy assumption (while in Section 6 we will present the concept of a Sender-
Anamorphic Encryption scheme.)

A Receiver-Anamorphic Encryption scheme (a Receiver-AM scheme) consists
of two encryption schemes: the normal scheme (KG,Enc,Dec) and the anamor-
phic scheme (aKG, aEnc, aDec). It can be deployed as normal scheme in which
case Bob runs the (real) key generation algorithm KG to obtain a pair of keys
(PK, SK) and, as usual, publishes PK. When Alice wishes to send message m,
she produces ciphertext ct by running the (real) encryption algorithm Enc by
using PK and m. When ct is received by Bob, it is decrypted by running the
(real) decryption algorithm Dec and using SK. Thus, when deployed as normal a
Receiver-AM is just a regular public-key encryption scheme. If the dictator comes
for the secret key, Bob surrenders SK. We are interested in Receiver-AM schemes
in which the normal scheme is an established and already used cryptosystem.

Bob deploys the scheme as anamorphic when he wants to protect the confi-
dentiality of the communication with Alice even in the event that he is forced
to surrender his secret decryption key to the dictator. In this case, Bob runs the
anamorphic key generation algorithm aKG that returns a pair of anamorphic
public-secret keys (aPK, aSK) along with a special key, dkey, called the double
key. As usual, Bob publishes aPK and keeps aSK private but dkey is shared with
Alice. If asked, Bob will surrender aSK to the dictator. The pair (aPK, aSK) is a
fully functional pair of keys: if a message m is encrypted by using Enc and aPK,
it can be decrypted by Dec on input aSK. Key dkey is instead used by Alice to
send Bob messages that remain confidential even if aSK is compromised. Specifi-
cally, whenever Alice has a message m1 that must remain confidential, she picks
an innocent looking message m0 and encrypts (m0,m1) using the anamorphic
encryption algorithm aEnc with dkey. The ciphertext ct produced by aEnc has
the property that it returns m0 when decrypted with the normal decryption
algorithm Dec and with key aSK; whereas it returns m1 when decrypted by run-
ning the anamorphic decryption algorithm aDec on input the double key dkey.
In other words, the authority will obtain m0 and Bob will obtain m1. Clearly,
the ciphertext produced by Alice must indistinguishable from a ciphertext of m1

produced using Enc even to an adversary that has access to aSK.
We stress again that Alice and Bob share a key, dkey, in order to achieve

privacy without having to rely on the secret-key assumption.

4.1 Syntax

In this section we formally define the concept of a Receiver-Anamorphic En-
cryption scheme. Then in Section 4.3 we will present the corresponding security
notion.

Definition 1. An encryption scheme AME = (AME.KG,AME.Enc,AME.Dec) is
a Receiver-Anamorphic Encryption (or, simply, a Receiver-AM) if there exists
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an anamorphic triplet aAME = (AME.aKG,AME.aEnc,AME.aDec) with the fol-
lowing syntax

– AME.aKG takes as input the security parameter 1λ and returns an anamor-
phic public key aPK, an anamorphic secret key aSK and a double key dkey.

– AME.aEnc takes as input the double key dkey and two messages m0 and m1
and returns an anamorphic ciphertext act.

– AME.aDec takes as input the double key dkey and an anamorphic ciphertext
act, computed by running AME.aEnc on input dkey and messages m0 and
m1, and returns message m1.

As we have seen previously, a Receiver-AM scheme can be deployed as normal
or as anamorphic. When Bob deploys the Receiver-AM scheme as anamorphic,
Alice (or any other user that has received dkey from Bob) can use aEnc to
produce ciphertexts. However, Bob cannot instruct all users to use aEnc as that
would be like admitting that he has deployed the scheme as anamorphic; in other
words users that are unaware that the scheme has been deployed as anamorphic
will use Enc. It is thus crucial that the encryption-decryption functionality does
not break for these users, despite using the normal encryption algorithm with
an anamorphic public key. Indeed, the fact that ciphertexts generated by the
normal encryption algorithm cannot be decrypted could be a strong evidence, if
not a proof, that the public key is anamorphic.

Next, we formally identify the four different modes of operations that arise
from mixing normal, and anamorphic algorithms and keys and then in Section 4.3
we present our security notion.

4.2 Modes of Operation

A Receiver-AM scheme AME naturally defines the following four modes of op-
eration, each corresponding to a different scenario. Of these four modes, one
uses the normal keys and three use anamorphic keys. The security definition
(see Definition 4) will require that, roughly speaking, the the normal and the
fully anamorphic mode be indistinguishable. This is sufficient to prove that all
of them are indeed pairwise indistinguishable.

1. The fully anamorphic encryption mode is used when Bob deploys the scheme
as anamorphic and Alice uses dkey to send Bob a private message. This
mode is associated with the triplet of algorithms fAMEm̂ = (AME.aKG3,
AME.aEnc1,m̂,AME.aDec) where, for every message m̂,
– AME.aKG3(1λ) is the algorithm that runs AME.aKG(1λ) obtaining (aPK,

aSK, dkey) and returns dkey. Note that the index in aKG3 denotes the
components of the triplet generated by aKG that is selected to appear in
the output.

– AME.aEnc1,m̂(aPK,m) is the algorithm that returns AME.aEnc(aPK, m̂,m).
Note that index 1 in AME.aEnc1,m̂ denotes that message m̂ will be passed
as first message to algorithm aEnc.

Note that fAMEm̂ is, for every m̂, a symmetric encryption scheme.
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Key Gen. Encryption Decryption
Fully Anamorphic aKG aEnc aDec
Anamorphic with Normal Dec aKG aEnc Dec
Anamorphic with Normal Enc aKG Enc Dec
Normal KG Enc Dec

Fig. 1: The four modes of operation of an anamorphic encryption scheme. The
fully anamorphic mode is used by Bob to communicate privately with Alice.
The anamorphic mode with normal decryption is used by Bob when the dictator
requests the decryption of an anamorphic ciphertext sent by Alice. The anamor-
phic mode with normal encryption is used by Charlie, unaware that Bob has an
anamorphic key, to send a message to Bob. The normal mode is used by Charlie
that sets up his key in normal mode to receive messages from other users. The
normal mode offers no privacy guarantee against the dictator.

2. The anamorphic with normal decryption mode is used when Bob deploys the
scheme as anamorphic (and thus the public key is generated using algorithm
AME.aKG), the ciphertext ct is produced by Alice by running the anamor-
phic encryption algorithm AME.aEnc on input (m0,m1) and the double key
dkey, and the ciphertext is decrypted by the dictator by running the normal
encryption algorithm AME.Dec on input aSK.

More formally, the mode is associated with the triplet andAMEm̂ = (aKG1,2,
aEnc2,m̂,Dec), where, for every m̂,

– andAME.aEnc2,m̂(aPK,m) is the algorithm that returns AME.aEnc(aPK,
m, m̂). Note that the index 2 in AME.aEnc2,m̂ denotes that message m̂
will be passed as second message to algorithm aEnc.

3. The anamorphic with normal encryption mode is used when Bob deploys
the scheme as anamorphic (and thus the anamorphic public key aPK is used
as public key) and a sender encrypts messages using the normal encryption
algorithm AME.Enc. The ciphertexts produced in this way can be read by
the dictator that has the secret key aSK associated with aPK by running the
normal decryption algorithm AME.Dec.

More formally, the mode is associated with the triplet aneAME = (aKG1,2,
Enc,Dec), where

– aKG1,2(1λ) is the algorithm that runs AME.aKG(1λ), obtaining (aPK, aSK,
dkey), and returns the pair (aPK, aSK). Note that the indices in aKG1,2

denote the components of the triplet generated by aKG that are selected
to appear in the output.

4. The normal mode of operation is associated to the triple of algorithms
nAME = (AME.KG,AME.Enc,AME.Dec) and it corresponds to the scenario
in which the scheme is deployed and used in normal mode; that is, the keys
are generated by running KG, the ciphertexts are constructed by running
Enc and decrypted by running Dec.
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4.3 Security Notion

We are now ready to define the notion of a Secure Receiver-AM scheme. As we
shall see, the security notion posits that no PPT dictator can distinguish whether
the Receiver-AM scheme is in normal mode or in fully anamorphic mode. In other
words, it is indistinguishable whether nAME or fAMEm̂, for message m̂, is being
used. We first make two interesting remarks:

– No explicit security requirement is made for the security of the fully anamor-
phic mode; in other words, it is not explicitly required that Alice’s secret
message m1 is actually secret.

– No explicit security and functional requirement regarding the partial anamor-
phic modes of operation, anamorphic with normal encryption and anamor-
phic with normal decryption, is made.

The requirements in both bullets above are clearly desirable: first, we would like
Alice’s secret message to be kept secure from the authorities; and we do not
want the authority to be able to distinguish whether the normal mode or one of
the other anamorphic modes is being used. As we shall see, the security notion
of Definition 2 is sufficient for the requirements in the two bullets above. Let
us now proceed more formally and define the following two games involving a
dictator D.

NormalGameAME,D(λ)

1. Set (PK, SK)← AME.KG(1λ) and send (PK, SK) to D.
2. For i = 1, . . . , poly(λ):

– D issues query (mi
0,m

i
1) and receives ct = AME.Enc(PK,mi

0).
3. Return D’s output.

FullyAGameAME,D(λ)

1. Set (aPK, aSK, dkey)← AME.aKG(1λ) and send (aPK, aSK) to D.
2. For i = 1, . . . , poly(λ):

– D issues query (mi
0,m

i
1) and receives ct =

AME.aEnc(dkey,mi
0,m

i
1).

3. Return D’s output.

Note that in NormalGame the key is normal (that is, output by KG) and the
i-th ciphertext is an encryption of mi

0 computed using Enc. In other words, D
interacts with the scheme in normal mode. On the other hand, in FullyAGame
the key is output by aKG and the i-th ciphertext carries both messages mi

0 and
mi

1. In other words, D with the scheme in fully anamorphic mode. Note that in
both cases, D is given the public key and the associated secret key.

More formally, we denote by pNormalGame
AME,D (λ) (respectively, pFullyAGame

AME,D (λ)) the
probability that NormalGameAME,D(λ) (respectively, FullyAGameAME,D(λ)) out-
puts 1 and we introduce the following definition.
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Definition 2. A Receiver-AM scheme AME = (KG,Enc,Dec) with anamorphic
triplet (aKG, aEnc, aDec) is a Secure Receiver-AM scheme if

1. AME is an IND-CPA scheme;
2. for every message m̂, fAMEm̂ is a symmetric encryption scheme;
3. for all PPT dictators D,∣∣∣pNormalGame

AME,D (λ)− pFullyAGame
AME,D (λ)

∣∣∣ ≤ negl(λ).

In the rest of this section, we prove that the fully anamorphic mode (used by
Alice and Bob to communicate privately) is an IND-CPA private key encryption
scheme, thus addressing the observation in the first bullet above. We start in
Section 4.4 by proving that the anamorphic modes with normal encryption is
indistinguishable from the fully anamorphic mode and from the normal mode.
We then build on this to prove the security of the fully anamorphic mode in
Section 4.5. We will address the observation in the second bullet in the final
version of the paper.

4.4 Properties of the Anamorphic Mode with Normal Encryption

We start by defining game aneGameAME,A, for a Secure Receiver-AM AME and
a PPT adversary A. As usual, we denote by paneGame

AME,A (λ) the probability that
aneGameAME,A(λ) outputs 1. Game aneGame describes the Anamorphic Mode
with Normal Encryption.

aneGameAME,A(λ)

1. Set (aPK, aSK, dkey)← AME.aKG(1λ) and send (aPK, aSK) to A.
2. For i = 1, . . . , poly(λ):

– A issues query (mi
0,m

i
1) and receives ct = AME.Enc(aPK,mi

0).
3. Return A’s output.

We note that A issues encryption queries (mi
0,m

i
1) and that, clearly, A can also

use the keys in its possession to encrypt and decrypt ciphertexts of its choice.
The next lemma proves that aneGame is indistinguishable from NormalGame thus
yielding that the Normal Mode is indistinguishable from the Anamorphic Mode
with Normal Encryption.

Lemma 1. Let AME be a Secure Receiver-AM scheme. Then for all PPT ad-
versaries A, we have∣∣pNormalGame

AME,A (λ)− paneGame
AME,A (λ)

∣∣ ≤ negl(λ).

Proof. Suppose that there exists an adversary A that distinguishes aneGame
from NormalGame. We will use A to construct a dictator D that distinguishes
NormalGame from FullyAGame, thus violating the security of AME. D receives
the challenge pair of keys (PK?, SK?) and runs A on input (PK?, SK?). For each
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query (mi
0,m

i
1) issued by A, D replies by returning Enc(PK?,mi

0). When A stops
and returns b, D outputs b. This terminates the description of D. Note that D
issues no encryption query.

Now observe that if D is playing FullyAGame then (PK?, SK?) are output
by aKG and thus D is simulating aneGame for A. On the other hand, if D is
playing NormalGame then (PK?, SK?) are output by KG and thus D is simulating
NormalGame for A. This concludes the proof.

Transitivity of indistinguishability gives the following lemma.

Lemma 2. Let AME be a Secure Receiver-AM scheme. Then for all PPT ad-
versaries A, we have∣∣∣pFullyAGame

AME,A (λ)− paneGame
AME,A (λ)

∣∣∣ ≤ negl(λ).

4.5 Security of the Fully Anamorphic Mode

We are now ready to prove that the fully anamorphic mode of a Secure Receiver-
AM scheme is IND-CPA even for an adversary that has access to (aPK, aSK) but
not to dkey.

Let us start by formally defining the notion of IND-CPA security of the fully
anamorphic mode of a Secure Receiver-AM scheme. For η = 0, 1, message m̂,
and stateful PPT adversary A, we define game IndCPAηAME,A,m̂ as follows.

IndCPAηAME,A,m̂(λ)

1. Set (aPK, aSK, dkey)← AME.aKG(1λ).
2. (m0

1,m
1
1)← AaEnc(dkey,m̂,·)(aPK, aSK).

3. Compute ct← aEnc(dkey, m̂,mη
1).

4. b← AaEnc(dkey,m̂,·)(ct).

We denote by pcpaηAME,A,m̂ the probability that, in game IndCPAηAME,A,m̂, adver-
sary A outputs 1 . We will prove the following theorem.

Theorem 1. If AME is a Secure Receiver-AM scheme, then, for every message
m̂, fAMEm̂ is IND-CPA secure. That is, for all PPT adversaries A and every
m̂ ∣∣pcpa0AME,A,m̂(1λ)− pcpa1AME,A,m̂(1λ)

∣∣ ≤ negl(λ).

To prove the theorem above, we consider, for η = 0, 1, the hybrid game
Hη

AME,A,m̂, in which all A’s oracle calls to aEnc(dkey, m̂, ·) in IndCPAη are re-
placed with calls to Enc(aPK, m̂) and the challenge ciphertext ct at Line 3 of
IndCPAη is computed as ct← Enc(aPK, m̂). We denote by hcpaηAME,A,m̂(1λ) the

probability that A outputs 1 in Hη
AME,A,m̂ with security parameter λ.

We have the following lemma whose proof relies on Lemma 2 above.
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Lemma 3. If AME is a Secure Receiver-AM then, for η = 0, 1, we have∣∣∣pcpaηAME,A,m̂(1λ)− hcpaηAME,A,m̂(1λ)
∣∣∣ ≤ negl(λ).

Proof. For the sake of contradiction, assume there exists an adversary A that
violates the lemma. We then construct an efficient dictator D that distinguishes
aneGame and FullyAGame thus contradicting Lemma 2.
D receives the pair (aPK, aSK) computed by aKG and has access to an encryp-

tion oracle O(·, ·). D runs A on input (aPK, aSK) and when A issues a query for
m, D returns O(m̂,m). Similarly, when A outputs the pair of messages (m0

1,m
1
1),

D returns O(m̂,mη
1). At the end, D returns A’s output.

If D is playing game aneGame then O(m̂,m) returns Enc(aPK, m̂). Therefore
ct is computed as ct ← Enc(aPK, m̂). This implies that D simulates Hη

A,AME,m̂

for A. On the other hand, if D is playing FullyAGame then O(m̂,m) returns
aEnc(dkey, m̂,m). Therefore ct is computed as ct ← Enc(aPK, m̂,mη

1) and D
simulates IndCPAηA,AME,m̂(1λ) for A. This concludes the proof of the lemma.

We are now ready to prove Theorem 1.

Proof of Theorem 1. The theorem follows from Lemma 3 and from the observa-
tion that game Hη

A,AME,m̂ is independent from η and thus

hcpa0A,AME,m̂(1λ) = hcpa1A,AME,m̂(1λ).

5 Constructions

In this section we present two constructions of AM schemes. We first review the
simple construction for a (log λ)-bit AM scheme discussed in the Introduction
and then, in Section 5.2, we present a construction for poly(λ) bits.

5.1 Rejection Sampling

In this section we present our first construction 1bit, a simple cryptosystem that
gives guarantees even if the secret-key assumption and the sender-freedom as-
sumption do not hold. It is based on the rejection sampling technique inspired by
the biased-ciphertext attack of [BPR] and it is used also by Horel et al. [HPRV19].
We review it here just to give a first example of a Receiver-Anamorphic Encryp-
tion. We note that the objective of the biased-ciphertext attack is to subvert an
encryption scheme so that the private key can be leaked without the legitimate
owner noticing any abnormal behaviour and it is interesting to note that this
technique can be used to setup a dictator setting, as shown in [BPR], as well as
for the opposite of objective, as we show below.

The normal triplet of 1bit is any IND-CPA secure encryption scheme E =
(KG,Enc,Dec) and the anamorphic triplet is defined as follows:
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– 1bit.aKG, on input the security parameter 1λ, runs the key generation al-
gorithm KG of E obtaining (PK, SK) and random seed K for PRF F . The
anamorphic public key is aPK = PK, the anamorphic secret key is aSK = SK

and the double key dkey = (PK,K).
– 1bit.aEnc takes as input the double key dkey = (PK,K) and two messages
m0 and m1 ∈ {0, 1}. Algorithm 1bit.aEnc samples ciphertexts ctEnc(PK,m0)
and the anamorphic ciphertext act is set equal to the first ct such that
F (K, ct) = m1.

– 1bit.aDec takes as input act and dkey and returns m1 = F (K, act).

Note that 1bit can be extended to l-bit of hidden plaintexts at the cost of push-
ing the expect encryption time to O(2l). Therefore l = O(log λ) hidden bits
per ciphertext will keep encryption polynomial and it gives a bandwidth rate of
O((log λ)/λ). To prove that 1bit is a Secure Anamorphic Encryption we observe
that the anamorphic keys have the same distribution as the normal keys. In ad-
dition the only difference between the normal ciphertext ct and the anamorphic
ciphertext act is that the former is randomly distributed over the set of cipher-
texts for PK and m0 whereas act is randomly chosen over the set of ciphertexts
for aPK = PK and m0 such that F (K, act) = m1. From the pseudorandomness
of F and the fact that K is randomly chosen and hidden from the adversary A,
we can conclude that 1bit is secure.

Theorem 2. If F is a PRF and E is an IND-CPA Encryption scheme then 1bit
is a Secure Anamorphic Encryption.

We also observe that the sender of 1bit, should she be forced to encrypt a
given message m and reveal the coin tosses used, can still send a secret bit of her
choice to Bob. In other words, the security of 1bit does not rely on the sender-
freedom assumption. In Section 6, we will show that this can be achieved by
encryption schemes based on lattice hardness assumptions without the sender
and receiver having to share a key beforehand.

5.2 The Naor-Yung transform

In this section we describe the Naor-Yung transform [NY90] (see also [Sah99])
that, when applied to an IND-CPA public-key cryptosystem E and a simulation
sound NIZK Π for a specific polynomial-time relation EqMsgE , gives a CCA
public-key cryptosystem NYE. The formal definitions of the concepts used in
the construction (IND-CPA, simulation sound NIK) are omitted in this version
and can be found in the extended version.

The polynomial time relation EqMsgE is defined by setting the witness for
instance ((PK0, ct0), (PK1, ct1)) to be the triplet (r0, r1,m) of two coin tosses and
one message m such that

ct0 = Enc(PK0,m; r0) and ct1 = Enc(PK0,m; r1).

The key generation algorithm NYE.KG constructs the public key NYE.PK =
(PK0, PK1, Σ) as consisting of two random and independently chosen public keys
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PK0 and PK1 of E and of a random string Σ. The secret key NYE.SK = (SK0)
associated with NYE.PK consists solely of the secret key SK0 associated with PK0.

To encrypt message m, the encryption algorithm NYE.Enc first computes
ciphertexts ct0 = Enc(PK0,m; r0) and ct1 = Enc(PK1,m; r1), using random and
independent coin tosses r0 and r1. Then, it runs the prover’s algorithm of Π to
produce a proof π that ct0 and ct1 encrypt the same message. More precisely,
the prover’s algorithm of Π is run on input instance ((PK0, ct0), (PK1, ct1)) and
witness (r0, r1,m) using Σ found in NYE.PK as reference string. The ciphertext
PK is finally set to (ct0, ct1, π).

The decryption algorithm NYE.Dec, on input ciphertext ct = (ct0, ct1, π),
runs the verifier algorithm of Π to check π and, if successful, outputs m obtained
by decrypting ct0 using SK0.

5.3 The NY Transform Gives Receive-AM Encryption

In this section we describe Receiver − AM scheme NY with bandwidth rate
1 that is derived from NYE. The normal triplet of NY consists of the triple
(NYE.KG,NYE.Enc,NYE.Dec) described in the previous section. Next we define
the anamorphic triplet
(NYE.aKG,NYE.aEnc,NYE.aDec).

– The anamorphic key generation algorithm NYE.aKG constructs the anamor-
phic public key NYE.aPK = (PK0, PK1, Σ) as consisting of two random and
independently chosen public keys PK0 and PK1 of E ; the string Σ instead is
obtained by running simulator S0(1λ) that returns the pair (Σ, aux). The
secret key aSK = (SK0) is set equal to the secret key associated with PK0
whereas the double key is set equal to dkey = (PK0, PK1, SK1, aux).

– The anamorphic encryption algorithm NYE.aEnc takes as input the dkey and
two messages m0 and m1 and starts constructing the anamorphic ciphertext
by computing ct0 = Enc(PK0,m0) and ct1 = Enc(PK1,m1). The proof π
is constructed by running the simulator S1 on input instance ((PK0, ct0),
(PK1, ct1)) and auxiliary information aux. Note that m0 and m1 are two
messages of the same length and thus the construction has a bandwidth rate
of 1

– The anamorphic decryption algorithm NYE.aDec takes an anamorphic ci-
phertext act = (ct0, ct1, π) and uses SK1 found in dkey to decrypt ct1 to
obtain m1.

We next prove that the anamorphic encryption scheme NY is secure ac-
cording to Definition 4; that is, that games NormalGame and FullyAGame are
indistinguishable. To do so, we consider the hybrid game aneG and will show
that aneG and NormalGame are indistinguishable by the security properties of
the NIZK and that aneG and FullyAGame are indistinguishable by the security of
the encryption scheme E . This implies that that NormalGame and FullyAGame are
indistinguishable thus satisfying Definition 4. Let us now proceed more formally
by instantiating game NormalGameNY. We remind the reader that pNormalGame

NY,A (λ)
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denote the probability that adversary A outputs 1 in game NormalGameNY,A.
Next we define game aneGNY that differs from NormalGameNY in the way in
which the public key and ciphertexts cti, replies to A’s queries, are computed.
Specifically, the reference string Σ, that is part of the public key, and the proof
πi, that is part of the i-th ciphertext cti, are computed by running the simu-
lator. We define paneGNY,A(λ) to be the probability that adversary A outputs 1 in
game aneGNY,A.

NormalGameNY,A(λ)

1. Set (PK0, SK0), (PK1, SK1)← E .KG(1λ).
2. Set Σ ← {0, 1}λ.
3. Send PK = (PK0, PK1, Σ) and SK = (SK0) to A.
4. For i = 1, . . . , poly(λ):
A issues query (mi

0,m
i
1) and receives cti computed as follows:

– Set cti0 = Enc(PK0,m
i
0; ri0).

– Set cti1 = Enc(PK1,m
i
0; ri1).

– Set πi ← Prover(((PK0, ct
i
0), (PK1, ct

i
1)), (ri0, r

i
1), Σ).

– Set cti = (cti0, ct
i
1, π

i).
5. A outputs b ∈ {0, 1}.

aneGNY,A(λ)

1. Set (PK0, SK0), (PK1, SK1)← E .KG(1λ).
2. Set (Σ, aux)← S0(1λ) and dkey = (PK0, PK1, SK1, aux).
3. Send PK = (PK0, PK1, Σ) and SK = (SK0) to A.
4. For i = 1, . . . , poly(λ):
A issues query (mi

0,m
i
1) and receives cti computed as follows:

– Set cti0 = Enc(PK0,m
i
0; ri0).

– Set cti1 = Enc(PK1,m
i
0; ri1).

– Set πi ← S1(((PK0, ct
i
0), (PK1, ct

i
1)), aux).

– Set cti = (cti0, ct
i
1, π

i).
5. A outputs b ∈ {0, 1}.

Lemma 4. If Π = (Prover,Verifier) is a NIZK then for all PPT adversaries A∣∣paneGNY,A(λ)− pNormalGame
NY,A (λ)

∣∣ < negl(λ).

Proof. Suppose, for the sake of contradiction, that there exists a PPT A for
which ∣∣paneGNY,A(λ)− pNormalGame

NY,A (λ)
∣∣ ≥ 1/poly(λ).

Then we construct an adversary B that receives a string Σ and has access to an
oracle O that returns proofs and that breaks the zero-knowledge property of Π.

1. B(Σ) sets (PK0, SK0), (PK1, SK1)← E .KG(1λ).
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2. B receives Σ and starts A on input PK = (PK0, PK1, Σ) and SK = (SK0).
3. For i = 1, . . . , poly(λ)

(a) B receives query (mi
0,m

i
1) from A.

(b) B sets cti0 = Enc(PK0,m
i
0; ri0).

(c) B sets cti1 = Enc(PK1,m
i
0; ri1).

(d) B invokes the oracle O on input instance ((PK0, ct
i
0), (PK1, ct

i
1)) and

witness (ri0, r
)
1 and receives proof πi.

(e) B returns cti = (cti0, ct
i
1, π

i) to A.
4. B returns A’s output.

Now observe that if B is playing experiment RealZK, then Σ is randomly
chosen from {0, 1}λ and O = Prover and therefore A’s view is the same as in
NormalGame. On the other hand, if B is playing experiment IdealZK then Σ is
output by S0 and O = Oracle and therefore A’s view is the same as in aneG.
Since we assumed that A distinguishes between NormalGame and aneG then we
can conclude that B breaks the Zero-Knowledge property of Π.

Next we instantiate the anamorphic security game FullyAGameNY. We remind

the reader that pFullyAGame
NY,A (λ) denote the probability that adversary A outputs 1

in game FullyAGameNY,A.

FullyAGameNY,A(λ)

1. Set (PK0, SK0), (PK1, SK1)← E .KG(1λ).
2. Set (Σ, aux)← S0(1λ) and dkey = (PK0, PK1, SK1, aux).
3. Send PK = (PK0, PK1, Σ) and SK = (SK0) to A.
4. For i = 1, . . . , poly(λ):
A issues query (mi

0,m
i
1) and receives cti computed as follows:

– Set cti0 = Enc(PK0,m
i
0; ri0).

– Set cti1 = Enc(PK1,m
i
1; ri1).

– Set πi ← S1(((PK0, ct
i
0), (PK1, ct

i
1)), aux).

– Set cti = (cti0, ct
i
1, π

i).
5. A outputs b ∈ {0, 1}.

We have the following lemma.

Lemma 5. If E is an IND-CPA secure encryption scheme then for all PPT
adversaries A ∣∣∣paneGNY,A(λ)− pFullyAGame

NY,A (λ)
∣∣∣ < negl(λ).

Proof. Suppose, for the sake of contradiction, that there exists a PPT A for
which ∣∣∣paneGNY,A(λ)− pFullyAGame

NY,A (λ)
∣∣∣ ≥ 1/poly(λ).

Then we construct an adversary B that receives a public key PK and has an
encryption oracle O(PK, ·, ·) that returns a ciphertext.

1. B(PK) sets (PK0, SK0) and PK1 = PK.
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2. B sets (Σ, aux) ← S0(1λ) and runs A on input PK = (PK0, PK1, Σ) and
SK = (SK0).

3. For i = 1, . . . , poly(λ):
A issues query (mi

0,m
i
1) and receives cti computed as follows:

– B sets cti0 = Enc(PK0,m
i
0; ri0);

– B sets ct11 = O(PK,mi
0,m

i
1);

– B sets πi ← S1(((PK0, ct
i
0), (PK1, ct

i
1)), aux).

– B sets cti = (cti0, ct
i
1, π

i).
4. B returns A’s output.

Now observe that if B is playing the IndCPA0
E game then O(PK,m0,m1) =

Oracle0(PK,m0,m1) returns an encryption of m0 and therefore A’s view is ex-
actly as in aneGNY. On the other hand, if B is playing the IndCPA0

E game then
O(PK,m0,m1) = Oracle1(PK,m0,m1) returns an encryption of m1 and therefore
A’s view is exactly as in FullyAGameNY. Since we assumed that A distinguishes
between aneGNY and FullyAGameNY, we can conclude that B breaks the IND-CPA
security of E .

Bootstrapping the NY construction. In the description of the anamorphic triplet
for the NY construction we have assumed that the sender and the receiver have a
safe way to exchange dkey. This is a reasonable assumption for most applications
as it is expected that the dictator is able to monitor online communication but
it will be difficult to monitor a physical exchange. We next briefly note how to
use the bootstrap technique of Horel et al. [HPRV19] in combination with the
NY construction. Note that the result scheme does not enjoy the zero-latency
property. Observe that dkey consists of (PK0, PK1, SK1, aux). However PK0 and
PK1 are public and SK1 is not used by the sender and it is only used by the
receiver to decrypt the message. Therefore, it is enough for the two parties to
share the random string used by simulator S0 to generate aux and this can be
achieved by using the two-step bootstrap procedure of Horel et al. [HPRV19].

6 Sender-Anamorphic Encryption

In this section we address the sender-freedom assumption. In the introduction,
and more formally in Section 5.1, we presented a simple cryptosystem whose
security does not rely on the sender-freedom assumption. Specifically, Alice,
fearing that she might be forced by the authorities to send a fake message,
sets up a private shared key K with Bob that allows to produce, for every
adversarially chosen message m0, a ciphertext ct carrying m0 and the coin tosses
used to produce ct such that, when decrypted with K, ct gives a one-bit message
m1 for Bob to receive privately. The main drawback of this setting is that Alice
and Bob must interact in advance to share the key K and this is not always
possible: Alice might not know of Bob when she first sets up her public key or
might not have a way of securely sending K to Bob.

Next, we show that prior communication between Alice and Bob is not nec-
essary and formalize the concept of a Sender-Anamorphic Encryption in this
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context. It seems again impossible (seems like decryption is not well defined?).
However, the existence of other receivers and public channels save the day!

Specifically, when Alice is forced by the authorities to send the forced message
m0 to Carol using Carol’s public key fPK as the forced receiving public key, Alice
might decide to embed a duplicate message m1 in the ciphertext that is revealed
when the ciphertext is decrypted with Bob’s key; that is, the secret key associated
with the duplicate public key dPK. We stress again that dPK, Bob’s public key, is
generated by Bob without even knowing that one day he might receive a message
from Alice and no secret is shared between Alice and Bob. To do so, we equip
Alice with a special coin-toss faking algorithm fRandom that on input the forced
public key fPK, the duplicate public key dPK, the forced message m0, and the
duplicate message m1 outputs coin tosses to produce a ciphertext ct that gives
m0 or m1 depending on whether it is decrypted with the secret key associated
with the forced public key or with the secret key associated with the duplicate
public key.

We next present formal definition for Sender-Anamorphic Encryption. Our
definition is tailored for the no-shared secret setting that we have described.
Similarly to the receiver side, it could be possible to define the notion of Sender-
Anamorphic Encryption also for the case in which sender and receiver share a
secret.

Definition 3. We say that a public-key encryption scheme E = (KG,Enc,Dec)
is a Sender-Anamorphic Encryption scheme (Sender-AM) if there exists a coin-
toss faking algorithm fRandom that, on input the forced public key fPK, and the
forced message m0, and the duplicate public key dPK and the duplicate message
m1, outputs the faking coin tosses R? = fRandom(fPK, m0, dPK, m1) such that

– Let ct = Enc(fPK, m0;R?) be the ciphertext computed using the faking coin
tosses; then Dec(dSK, ct) = m1, except with negligible probability. The prob-
ability is taken over the coin tosses of fRandom and the coin tosses used to
generate fPK and dPK.

To define the concept of a Secure Sender-Anamorphic Encryption we intro-
duce two experiments. In both experiments, the adversary receives one public
key fPK and gives polynomially many pairs of forced and duplicate message and
for each pair receives as a reply a ciphertext for the first message and the ran-
dom coin tosses used to produce it. In the real experiment, the ciphertext is
produced by Alice that uses random coin tosses output by fRandom with respect
to randomly chosen duplicate key. We require the real experiment to be indis-
tinguishable from the ideal experiment in which there is only one public key and
the forced message is encrypted by using truly random coin tosses.
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IdealE,A(λ)

1. Set (fPK, fSK)← KG(1λ) and send fPK to A.
2. For i = 1, . . . , poly(λ):

– A issues query (mi0, m
i
1) and receives ct = Enc(fPK, mi0;Ri),

where Ri are randomly chosen coin tosses.
3. A outputs b ∈ {0, 1}.

RealfRandomE,A (λ)

1. Set (fPK, fSK)← KG(1λ) and send fPK to A.
2. Set (dPK, dSK)← KG(1λ).
3. For i = 1, . . . , poly(λ):

– A issues query (mi0, m
i
1) and receives ct = Enc(fPK, mi0;Ri),

where Ri = fRandom(fPK, mi0, dPK, m
i
1).

4. A outputs b ∈ {0, 1}.

We denote by pIdealE,A (λ) (respectively, pRealE,A(λ)) the probability that IdealE,A
(respectively, RealE,A) outputs 1 and present the following definition.

Definition 4. A Sender-AM scheme E = (KG,Enc,Dec) with coin-toss faking
algorithm fRandom is a SSender-AM scheme if

1. E is an IND-CPA scheme;
2. for all PPT adversaries A,∣∣pIdealE,A (λ)− pRealE,A(λ)

∣∣ ≤ negl(λ).

Difficulties in achieving Sender-AM with no shared key. Not every standard
encryption can be used as AM with no shared key. In order to embed a secret
message in a ciphertext for public key fPK a valid ciphertext for Bob’s public
key PK, it must be the case that the ciphertext is a valid ciphertext for both
keys. From this point of view, the schemes with redundancy (in particular, with
validity check in the decryption) seem difficult to employ because a ciphertext for
Bob should probably be an invalid ciphertext to Carlos. Almost all known CCA
encryption with redundancy (like the one based on the Naor-Yung transform)
cannot be used in this context.

But the lack of redundancy is not sufficient for a scheme to be used as AM
with no shared key. For the schemes that do not have the property of common
randomness, we do not know how to add secret messages to ciphertexts. For
example, in Goldwasser-Micali cryptosystem [GM84], the very first semantically
secure encryption, two users generate two independent moduli N0 and N1 and
the secret key of one system is independent of the other one. Therefore, given a
ciphertext ct for N0, without the knowledge of the factorization of N1, it is hard
to decide whether this ciphertext is a quadratic residue modulo N1. As a result,
Alice does not know the underlying plaintext for the ciphertext ct with respect
to Bob’s key. Consequently, this gives evidence that it seems impossible for Alice,
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in the no-shared-key model, to embed a secret message to a ciphertext in the
Goldwasser-Micali cryptosystem. We next identify a set of sufficient conditions
for AM with no shared key and then we describe some encryption schemes from
the literature that satisfy the conditions.

6.1 Sufficient Conditions for Sender-AM with no shared key

In this section, we introduce three sufficient conditions for a one-bit cryptosystem
E = (KG,Enc,Dec) to be Sender-AM with no shared key.

1. Common randomness property. Public key encryption scheme E satisfies the
common randomness property if:
for every two public keys PK0 and PK1 output by KG and for every ciphertext
ct produced using public key PK0 and coin tosses R there exists a message
m such that ct = Enc(PK1,m;R); that is, ct is a ciphertext also for public
key PK1 with the same coin tosses R.
For example, the Elgamal encryption-s over a public group satisfies this
common randomness property.

2. Message recovery from randomness. A public key encryption scheme E sat-
isfies the common randomness property if:
it is possible to recover the plaintext carried by a ciphertext ct from the
randomness R used to produce it and the public key PK.

3. Equal Distribution of Plaintexts. A one-bit public key encryption scheme
satisfies the property of equal distribution of plaintexts if the following prop-
erties are verified:
– all public keys share the same ciphertext space;
– for a ciphertext ct in the common ciphertext space and for a random

key pair (PK, SK) as sampled by the key generation algorithm, ct is the
ciphertext of the bit 0 with a probability 1

2 .

We now show that, if a one-bit public key encryption satisfies the above three
properties, it is a Sender-AM with no shared key.

Theorem 3. If an IND-CPA secure one-bit public key encryption scheme sat-
isfies the three properties of common randomness, message recovery from ran-
domness, and equal distribution of plaintexts, then it is a Sender-AM scheme
with no shared key.

Proof. Let E = (KG,Enc,Dec) be an IND-CPA secure scheme and define
fRandom(fPK,m0, dPK,m1) as follows:

1. Randomly choose coin tosses R;
2. Compute ct = Enc(fPK,m0;R);
3. By the property of common randomness, ct is also a ciphertext according

to dPK and it is computed using the same coin tosses R.
4. By the property of message recovery from randomness, message m′ carried

by ct w.r.t. to dPK can be computed; that is Enc(dPK,m′;R) is equal to ct.
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5. If m′ = m1 then return (ct, R) and halt; otherwise, go back to Step 1.

The fRandom defined above satisfies Definition 3. Indeed, the correctness is di-
rectly verified. Now observe that the coin tosses R selected at step 1 of fRandom
have probability 1/2 of being the output in the last step, over the choices of ran-
dom dPK, by the equal distribution of plaintexts. As dPK is uniformly distributed
(and unknown) to the adversary, the adversary cannot distinguish the outputted
coin tosses with a real randomness.

6.2 Constructions based on LWE Encryption schemes

Theorem 4. The LWE Encryption and the Dual LWE Encryption are each a
Sender-AM scheme with no shared key.

Proof. A detailed exposition of LWE Encryption, Dual LWE Encryption can be
found in [Reg05,GPV08]. We recall here a quick description of these schemes
and their properties assuring that they are AM schemes with no shared key.

We first recall the LWE encryption [Reg05] in Figure 2. It is parameterized by
some r ≤ ω(

√
logm)), which specifies the discrete Gaussian distribution DZm,r

over the integer lattice Zm from which the secret keys are chosen.

Setup: The system is characterized by m, q and a probability distribution
χ on Znq . All users share a common matrix A ∈ Znmq chosen uniformly
at random, which is the index of the function fA(e) = Ae mod q.

Key Generation:
– Choose s ∈ Znq uniformly at random. The private key is s.
– Choose error vector e ← DZm,r.The public key consists of (A,b =
fA(s) + e)

Encryption: The encryption of a bit x ∈ {0, 1} is done by choosing
a random subset S of [m] and then defining the ciphertext of x as
(
∑
i∈S ai, xb q2c+

∑
i∈S bi)

Decryption: The decryption of (a, b) is 0 if b− 〈a, s〉 is closer to 0 than to
b q2c modulo q, and 1 otherwise.

Fig. 2: LWE public-key encryption

– From the ciphertext (a, b), we see that, for any user, the implicit random
input is the same. This satisfies the property of common randomness.

– From the random input and the public-key, one can get the plaintext. This
satisfies the property of message recovery from randomness.

– For a ciphertext (a, b), with a public key that is returned from the key

generation, the vector ~b is indistinguishable from a randomly chosen vector
in Znq , the underlying plaintext is thus 0 with probability 1

2 . This satisfies
the property of equal distribution of plaintexts.
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We now recall the Dual LWE encryption [GPV08] in Figure 3. It is param-
eterized by two integers m, q and a probability distribution χ on Zq. We show
that it supports AM in the similar way as in the case of the LWE encryption:

– From the ciphertext (p, c), we see that, for any user, the implicit random
input is the same. This gives the property of common randomness.

– From the random input and the public-key, one can get the plaintext. This
satisfies the property of message recovery from randomness.

– For a ciphertext (p, c), with a public key that is returned from the key gen-
eration, the vector uT s is indistinguishable from a randomly chosen vector
in Zq, the underlying plaintext is thus 0 with probability 1

2 . This satisfies
the property of equal distribution of plaintexts.

Setup: all users share a common matrix A ∈ Znmq chosen uniformly at
random, which is the index of the function fA(e) = Ae mod q.

Key Generation:
– Choose an error vector e← DZm,r which is the secret key.
– The public key is the syndrome u = fA(e).

Encryption: to encrypt a bit b ∈ {0, 1}, choose s ∈ Znq uniformly and

p = AT s + x ∈ Zmq , where x ∈ χm. Output the ciphertext (p; c =

uT s + x+ bb q2c) ∈ Zmq × Zq, where x← χ.

Decryption: Compute z = c− eTp ∈ Zq. Output 0 if z is closer to 0 than
to b q2c mod q, otherwise output 1.

Fig. 3: Dual LWE public-key encryption

7 Conclusion

This is the first and most likely not the last work on Anamorphic Encryption as
our framework does not cover all the schemes. In this first work, we have shown
the anamorphic property for some standard encryptions with specific properties.
This does not mean that it is impossible for schemes without these properties.
It is also reasonable to wonder what would happen if the dictator can ban these
schemes from being used. However, in this way, the dictator will always need to
run after our research and this will force the dictator to assure that his children
will get a PhD in Cryptography.

Of course, we leave it to others to determine, based on policy, law, and other
societal aspects beyond pure technology, whether our results are aiming toward
being the final nail in the coffin of governments control of the use of strong
cryptographic systems. Our meta-conjecture (and induced policy implication)
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is that for any standard scheme, there is a technical demonstration (perhaps
employing Anamorphism+stego+klepto) of the futility of the dictator’s demands.
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