
Multi-Designated Receiver Signed Public Key
Encryption

Ueli Maurer1, Christopher Portmann2, and Guilherme Rito1

1 Department of Computer Science, ETH Zürich, Switzerland
{maurer,gteixeir}@inf.ethz.ch

2 Concordium, Zürich, Switzerland
cp@concordium.com

Abstract. This paper introduces a new type of public-key encryption
scheme, called Multi-Designated Receiver Signed Public Key Encryption
(MDRS-PKE), which allows a sender to select a set of designated receivers
and both encrypt and sign a message that only these receivers will be
able to read and authenticate (confidentiality and authenticity). An
MDRS-PKE scheme provides several additional security properties which
allow for a fundamentally new type of communication not considered
before. Namely, it satisfies consistency—a dishonest sender cannot make
different receivers receive different messages—off-the-record—a dishonest
receiver cannot convince a third party of what message was sent (e.g.,
by selling their secret key), because dishonest receivers have the ability
to forge signatures—and anonymity—parties that are not in the set
of designated receivers cannot identify who the sender and designated
receivers are.
We give a construction of an MDRS-PKE scheme from standard as-
sumptions. At the core of our construction lies yet another new type of
public-key encryption scheme, which is of independent interest: Public
Key Encryption for Broadcast (PKEBC) which provides all the security
guarantees of MDRS-PKE schemes, except authenticity.
We note that MDRS-PKE schemes give strictly more guarantees than
Multi-Designated Verifier Signature (MDVS) schemes with privacy of
identities. This in particular means that our MDRS-PKE construction
yields the first MDVS scheme with privacy of identities from standard
assumptions. The only prior construction of such schemes was based on
Verifiable Functional Encryption for general circuits (Damg̊ard et al.,
TCC ’20).

1 Introduction

1.1 Public Key Encryption security properties

The most common use case for cryptography is sending a message to a single
receiver. Here one usually desires to have confidentiality (only the desired receiver
can read the message) and authenticity (the receiver is convinced that the message
is from the declared sender). Although one might be interested in signatures

https://orcid.org/0000-0002-0080-8670

that can be publicly verified (e.g. for a judge to verify a contract), when trying
to protect the privacy of personal communication one often wants the opposite:
not only is the intended receiver the only one that can verify the signature, but
even if this person sells their secret key, no third party will be convinced of the
authenticity of the message. This latter property is called off-the-record in the
Designated Verifier Signature (DVS) literature [12,16,19–21,23,29–31], and is
achieved by designing the scheme so that the receiver’s secret key can be used to
forge signatures. One may take this a step further and require anonymity, i.e.
third parties cannot even learn who the sender and receiver are (this is called
privacy of identities in the (M)DVS literature) [12].3

Another setting of interest is where the message is sent to many recipients.
Consider, for example, the case of sending an email to multiple receivers. Apart
from all the security properties listed above, here one would additionally require
consistency : all the (intended) receivers will get the same email when decrypting
the same ciphertext, even if the sender is dishonest. We note that it is crucial
that a receiver can decrypt ciphertexts using only their secret key, i.e. without
having to use the public key of the sender and other receivers. It is common in the
literature to assume that the receiver knows who the sender and other receivers
are so that their public keys can be used for decryption [6, 22]. But in many
contexts adding this information in plain to the ciphertext would violate crucial
properties, e.g., in broadcast encryption the ciphertext size would not be small
any longer and in MDVS schemes anonymity (privacy) would be violated [22].

Many different schemes have been introduced in the literature that satisfy
some of the properties listed here, see Sect. 1.5. In this work we propose two new
primitives, Public Key Encryption for Broadcast (PKEBC) and Multi-Designated
Receiver Signed Public Key Encryption (MDRS-PKE), which we explain in the
following two subsections.

1.2 Public Key Encryption for Broadcast

The first type of primitive that we introduce, PKEBC, can be seen as an extension
of Broadcast Encryption (BE) [13] which additionally gives consistency guarantees
in the case of a dishonest sender.4 More specifically, we expect PKEBC schemes
to provide the following guarantees:

Correctness If a ciphertext c is honestly generated as the encryption of a
message m with respect to a vector of receivers, say R⃗ := (Bob,Charlie), then
we want that if Bob is honest and decrypts c using its secret key, it obtains a
pair ((pkBob, pkCharlie),m), where pkBob and pkCharlie are, respectively, Bob’s
and Charlie’s public keys;

3 With off-the-record, a third party will know that either the alleged sender or the
receiver wrote the message, whereas anonymity completely hides who the sender and
receiver are. However, anonymity only holds when the receiver is honest whereas
off-the-record provides guarantees against a dishonest receiver.

4 Though BE usually requires the ciphertext size to be sublinear in the number of
receivers, which PKEBC does not.

2

Robustness Let c be the ciphertext from above. We do not want Dave, who is
honest but yet not an intended receiver of c, to think c was meant for himself.
In other words, we do not want Dave to successfully decrypt c.

Consistency Now consider a dishonest party Alice who wants to confuse Bob
and Charlie, both of whom are honest. We do not want Alice to be capable of
creating a ciphertext c such that when Bob decrypts c, it obtains some pair
((pkBob, pkCharlie),m), but when Charlie decrypts c it obtains some different
pair. Instead, we want that if Bob obtains a pair ((pkBob, pkCharlie),m), then
so will Charlie (and vice-versa).

Confidentiality Now, suppose that Alice is honest. If Alice encrypts a message
m to Bob and Charlie (who are both honest), we do not want Eve, who is
dishonest, to find out what m is.

Anonymity Finally, suppose there are two more honest receivers, say Frank
and Grace, to whom Alice could also be sending a message to. If, again,
Alice encrypts a message m to both Bob and Charlie, and letting c be the
corresponding ciphertext, we do not want Eve to find out that the receivers
of ciphertext c are Bob and Charlie; in fact, we do not want Eve to learn
anything about the intended receivers of c, other than the number of receivers.

The formal definitions of PKEBC are given in Sect. 3. In Sect. 4 we show
how to construct a PKEBC from standard assumptions. Our construction is a
generalization of Naor-Yung’s scheme [26] that enhances the security guarantees
given by the original scheme. In particular, as we will see if the underlying
PKE scheme is anonymous, then this anonymity is preserved by the PKEBC
construction.

One important difference from other public key schemes for multiple parties
is that to decrypt, a receiver only needs to know their own secret key; the
decryption of a ciphertext yields not only the underlying plaintext but also the
set of receivers for the ciphertext. This then allows the corresponding public keys
to be used as needed.5

1.3 Multi-Designated Receiver Signed Public Key Encryption

Our main primitive has all of the properties listed in Sect. 1.1. Namely, a
MDRS-PKE scheme is expected to provide the following guarantees:

Correctness If a ciphertext c is honestly generated as the encryption of a
message m from a sender Alice to a vector of receivers R⃗ := (Bob,Charlie)
then we want that if Bob is honest and decrypts c using its secret key, it
obtains a triple (spkAlice, (rpkBob, rpkCharlie),m), where spkAlice is Alice’s
public sending key, and rpkBob and rpkCharlie are, respectively, Bob’s and
Charlie’s receiver public keys;

Consistency Now consider a dishonest party Donald who is a sender and wants
to confuse Bob and Charlie, both of whom are honest. We do not want

5 We note that this is only important since we want to achieve anonymity, otherwise
once could send the public keys of the other parties together with the ciphertext.

3

Donald to be able to create a ciphertext c such that when Bob decrypts
c, it obtains some triple (spkDonald, (pkBob, pkCharlie),m), but when Charlie
decrypts c it obtains some different triple (or does not even decrypt). Instead,
we want that if Bob obtains a triple (spkDonald, (pkBob, pkCharlie),m), then
so will Charlie (and vice-versa).

Unforgeability We do not want that Eve can forge a ciphertext as if it were
from an honest sender, say Alice, to a vector of receivers Bob and Charlie.

Confidentiality If an honest sender Alice encrypts a message m to Bob and
Charlie (who are both honest), we do not want Eve, who is dishonest, to find
out what m is.

Anonymity Suppose there is another honest sender, say Heidi. If Alice encrypts
a message m to Bob, and letting c be the corresponding ciphertext, we do
not want Eve to find out that Alice is the sender or that Bob is the receiver;
Eve should at most learn that someone sent a message to a single receiver.

Off-The-Record Suppose Alice sends a message to Bob, Charlie and Donald.
Donald, being dishonest, might be enticed to try convincing Eve that Alice
sent some message. However, we do not want Donald to have this capability.

The formal definitions of MDRS-PKE are given in Sect. 5. In Sect. 6 we show
how to construct a MDRS-PKE from standard assumptions. As we will see, our
construction essentially consists of using the MDVS scheme to sign messages,
and then using the PKEBC scheme to encrypt the signed messages, together
with their MDVS signatures.

Since an MDRS-PKE scheme is an extension of an MDVS scheme with privacy
of identities and confidentiality, any MDRS-PKE scheme yields an MDVS scheme
with privacy of identities. Since we give an MDRS-PKE scheme which is secure
under standard assumptions, this in particular implies that our construction is
the first achieving privacy of identities from standard assumptions. The only
previous construction of an MDVS scheme with privacy of identities relied on a
Verifiable Functional Encryption scheme for general circuits [12].

1.4 Applications to Secure (Group) Messaging

As we now discuss, one main application of MDRS-PKE schemes is secure
messaging, and in particular secure group messaging.

Suppose Alice and Bob are using a secure messaging application to chat with
each other. Of course, they expect the messenger to provide basic guarantees
such as Correctness—if Alice sends a message to Bob, Bob receives this message—
Confidentiality—no one other than Alice and Bob should learn the contents of
the messages—and Authenticity—if Alice reads a message m, then Bob must
have sent m. Another desirable guarantee they could expect from the messenger
is Anonymity : suppose that in parallel to Alice and Bob’s chat, Charlie and
Dave are also chatting; then, if a third party Eve intercepts a ciphertext c from
Alice and Bob’s chat and Eve cannot a priori tell that c came from and/or is
addressed to Alice or Bob, then Eve should not gain any additional information
about the identity of c’s sender and/or receiver from inspecting the contents of

4

ciphertext c itself (in other words, Eve cannot tell if the ciphertext is from Alice
and Bob’s chat, from Alice and Charlie’s chat, from Bob and Charlie’s chat, or
from Charlie and Dave’s chat). Finally, imagine that Bob, who wants to keep the
history of his chat with Alice, outsources the storage of the chat’s ciphertexts
to an external storage service which reliably, but not authentically, stores these
ciphertexts. An important additional guarantee Alice expects from the messaging
application is Off-The-Record Deniability (Off-The-Record) [10, 12]: if, somehow,
Eve manages to access whatever is stored by Bob’s storage service, Eve cannot
tell by inspecting the stored ciphertexts, even if Bob chooses to cooperate with
Eve6, if these ciphertexts are authentic ones corresponding to real messages sent
by Alice to Bob in their chat, or if they are fake ones generated by Bob (in case
Bob is cooperating with Eve) or generated by anyone else (in case Bob is not
cooperating with Eve) to incriminate Alice.

A related, yet very different property that secure messaging applications
like Signal [11] provide is Forward Secrecy [17]. Informally, Forward Secrecy
guarantees that even if Eve stores any ciphertexts received by Bob and later
hacks into Bob’s computer to learn his secret key, Eve cannot learn the decryptions
(i.e. the plaintexts) of the ciphertexts she previously intercepted. Off-The-Record,
on the other hand, does not give any guarantees about hiding the contents of
previously exchanged messages. However, it hides from Eve whether Alice really
sent a message m to Bob or if Bob faked receiving m. Furthermore, Forward
Secrecy assumes Bob is honest: if Bob were dishonest, he could simply store
the decryptions of the ciphertexts he receives to later disclose them to Eve.
Off-The-Record does not make such assumption: even if Bob is dishonest, Eve
cannot tell if it was Alice sending a message m, or if Bob faked receiving m from
Alice (in case Bob is dishonest), or anyone else faked Alice sending m to Bob (in
case Bob is honest). Finally, as one can deduce, Forward Secrecy is incompatible
with parties keeping a history of their chats, whereas this is not the case for
Off-The-Record. A different problem is Alice’s computer getting hacked by Eve.
In such scenario it would be desirable to still give the Off-The-Record guarantee
to Alice: Eve should not be able to tell if Alice ever sent any message or not.
However, current Off-The-Record notions [12], including the one given in this
paper, do not capture this.

A natural generalization of two party secure messaging is secure group mes-
saging [2, 12]. Suppose Alice, Bob and Charlie now share a group chat. The key
difference between Alice, Bob and Charlie sharing a group chat or having multiple
two party chats with each other is Consistency : even if Charlie is dishonest, he
cannot create confusion among Alice and Bob as to whether he sent a message
to the group chat or not [12]. In other words, honest group members have a
consistent view of the chat. Surprisingly, for the case of MDVS, this guarantee
was only recently introduced by Damg̊ard et al. in [12].

To achieve Off-The-Record in the group messaging case, one must consider
that any subset of the parties participating in the group chat may be dishonest [12].

6 By Bob collaborating with Eve we mean that Bob shares all his secrets (including
secret keys) with Eve.

5

This property, also known as Any-Subset Off-The-Record Deniability (or more
simply Off-The-Record) was first introduced by Damg̊ard et al. in [12]. Returning
to Alice, Bob and Charlie’s group chat, this property essentially guarantees that
regardless of who (among Bob and Charlie) cooperate with Eve in trying to
convince her that Alice sent some message, Eve will not be convinced because
any of them (or the two together) could have created a fake message to pretend
that Alice sent it.

1.5 Related Work

A closely related type of encryption scheme are Broadcast Encryption (BE)
schemes [9, 13]. However, BE schemes do not give the consistency guarantee that
PKEBC give; the main goal of BE schemes is actually making ciphertexts short—
ideally the size of ciphertexts would be independent from the number recipients.
Conversely, the size of the ciphertexts of the PKEBC scheme construction we
give in this paper grows quadratically with the number of recipients. Diament
et al. introduce a special type of BE scheme, called Dual-Receiver Encryption
schemes, which allow a sender to send messages to two (and only two) receivers.
By limiting the number of receivers to two receivers, these schemes allow for
efficient constructions with relatively short ciphertexts and public keys from
standard assumptions.

As already mentioned, PKEBC schemes allow receivers to decrypt a ciphertext
meant for multiple receivers using their secret key only. This problem had been
noticed before by Barth et al. in [6], and by Libert et al. in [22]. Barth et al.
modify the definition of BE schemes in a way that allows receivers to decrypt
ciphertexts without knowing who the other recipients are a priori [6]. Libert et
al. strengthens this by guaranteeing that receivers do not learn who the other
receivers are, even after decrypting ciphertexts.

Other closely related works are Multi-Designated Verifier Signature (MDVS)
schemes [12]. They provide consistency, authenticity, and off-the record and
sometimes also anonymity (called privacy). However, to the best of our knowledge,
MDVS schemes require the public keys of the sender and other designated receivers
to be used to verify signatures, and the existing literature does not discuss how
the receiver gets that information, e.g. sending this information in plain would
violate privacy. Thus, existing constructions of MDVS with privacy can only
be used if the number of combinations of possible sender and receivers is small
enough that all combinations can be tried by the verifier.

2 Preliminaries

We now introduce conventions and notation we use throughout the paper. We
denote the arity of a vector x⃗ by |x⃗| and its i-th element by xi. We write α ∈ x⃗ to
denote ∃i ∈ {1, . . . , |x⃗|} with α = xi. We write Set(x⃗) to denote the set induced
by vector x⃗, i.e. Set(x⃗) := {xi | xi ∈ x⃗}.

6

Throughout the paper we frequently use vectors. We use upper case letters to
denote vectors of parties, and lower case letters to denote vectors of artifacts such
as public keys, messages, sequences of random coins, and so on. Moreover, we use
the convention that if V⃗ is a vector of parties, then v⃗ denotes V⃗ ’s corresponding
vector of public keys. For example, for a vector of parties V⃗ := (Bob,Charlie),

v⃗ := (pkBob, pkCharlie) is V⃗ ’s corresponding vector of public keys. In particular,
V1 is Bob and v1 is Bob’s public key pkBob, and V2 is Charlie and v2 is Charlie’s

public key pkCharlie. More generally, for a vector of parties V⃗ with corresponding

vector of public keys v⃗, Vi’s public key is vi, for i ∈ {1, . . . , |V⃗ |}.

3 Public Key Encryption for Broadcast Schemes

We now introduce the first new type of scheme we give in this paper, namely
Public Key Encryption for Broadcast (PKEBC). A PKEBC scheme Π with
message spaceM is a quadruple Π = (S,G,E,D) of Probabilistic Polynomial
Time Algorithms (PPTs), where:

– S: on input 1k, generates public parameters pp;
– G: on input pp, generates a receiver key-pair;
– E: on input (pp, v⃗,m), where v⃗ is a vector of public keys of the intended

receivers and m is the message, generates a ciphertext c;
– D: on input (pp, sk, c), where sk is the receiver’s secret key, D decrypts c

using sk, and outputs the decrypted receiver-vector/message pair (v⃗,m) (or
⊥ if the ciphertext did not decrypt correctly).

3.1 The Security of PKEBC Schemes

We now state the definitions of Correctness, Robustness, Consistency, and IND-
CCA-2 and IK-CCA-2 security for PKEBC schemes. Before proceeding to the
actual definitions, we first introduce some oracles the game systems from Defini-
tions 1, 2 and 3 use. In the following, consider a PKEBC scheme Π = (S,G,E,D)
with message spaceM. The oracles below are defined for a game-system with
(an implicitly defined) security parameter k:

Public Parameters Oracle: OPP

1. On the first call, compute and store pp← S(1k); output pp;
2. On subsequent calls, output the previously generated pp.

Secret Key Generation Oracle: OSK(Bj)
1. If OSK was queried on Bj before, simply look up and return the previously

generated key for Bj ;
2. Otherwise, store (pkj , skj)← G(pp) asBj ’s key-pair, and output (pkj , skj).

Public Key Generation Oracle: OPK(Bj)
1. (pkj , skj)← OSK(Bj);
2. Output pkj .

Encryption Oracle: OE(V⃗ ,m)

7

1. v⃗ ← (OPK(V1), . . . ,OPK(V|V⃗ |));

2. Create and output a fresh encryption c← Epp,v⃗(m).

In addition to the oracles above, the game systems from Definitions 1 and 2
further provide adversaries with access to the following oracles:

Decryption Oracle: OD(Bj , c)
1. Query OSK(Bj) to obtain the corresponding secret-key skj ;
2. Decrypt c using skj , (v⃗,m)← Dpp,skj (c), and then output the resulting

receivers-message pair (v⃗,m), or ⊥ (if (v⃗,m) = ⊥, i.e. the ciphertext is
not valid with respect to Bj ’s secret key).

Definition 1 (Correctness). Consider the following game played between be-
tween an adversary A and game system GCorr:

– AOPP ,OPK ,OSK ,OE ,OD

A wins the game if there are two queries qE and qD to OE and OD, respectively,
where qE has input (V⃗ ,m) and qD has input (Bj , c), satisfying Bj ∈ V⃗ , the
input c in qD is the output of qE, the output of qD is either ⊥ or (v⃗′,m′) with
(v⃗,m) ̸= (v⃗′,m′), and A did not query OSK on input Bj.

The advantage of A in winning the Correctness game, denoted AdvCorr(A),
is the probability that A wins game GCorr as described above.

We say that an adversary A (εCorr, t)-breaks the (n, dE , qE , qD)-Correctness
of a PKEBC scheme Π if A runs in time at most t, queries OPK , OE and OD

on at most n different parties7, makes at most qE and qD queries to OE and OD,
respectively, with the sum of lengths of the party vectors input to OE being at
most dE , and satisfies AdvCorr(A) ≥ εCorr.

The following notion captures the guarantee that if a ciphertext c is an
honestly generated ciphertext for a vector of receivers R⃗ (for some message), then
no honest receiver B who is not one of the intended receivers of c can successfully
decrypt c (i.e. if B ̸∈ R⃗ then the decryption of c with B’s secret key outputs
⊥). As one might note, this notion is a variant of the Weak Robustness notion
introduced in [1], but adapted to PKEBC schemes.

Definition 2 (Robustness). Consider the following game played between an
adversary A and game system GRob:

– AOPP ,OPK ,OSK ,OE ,OD

A wins the game if there are two queries qE and qD to OE and OD, respectively,
where qE has input (V⃗ ,m) and qD has input (Bj , c), satisfying Bj ̸∈ V⃗ , the input
c in qD is the output of qE, the output of qD is (v⃗′,m′) with (v⃗′,m′) ̸= ⊥, and A
did not query OSK on input Bj.

The advantage of A in winning the Robustness game is the probability that A
wins game GRob as described above, and is denoted AdvRob(A).

7 Here, querying on most n parties means that the number of different parties in
all queries is at most n. In particular, the number of different parties in a query
OE((B1, B2, B3), (. . .)) is 3, assuming B1 ̸= B2 ̸= B3 ̸= B1; the number of different
parties in a query OD(Bj , ·) is 1.

8

An adversary A (εRob, t)-breaks the Robustness of a PKEBC scheme Π if A
runs in time at most t and satisfies AdvRob(A) ≥ εRob.

Remark 1. Correctness and Robustness are properties only relevant to honest
parties. It is common in the literature to either define such security notions without
any adversary or to consider a stronger adversary that is unbounded or has access
to the honest parties’ secret keys. We choose the weaker definitions above for two
main reasons: first, it has been proven that analogous Correctness and Robustness
notions [1, 5] for PKE schemes—also defined with respect to computationally
bounded adversaries who are not given access to the secret keys of honest parties—
imply (corresponding) composable security notions (see [5] and [18]); second, since
the remaining PKEBC security notions (e.g. IND-CCA-2 security) are defined
with respect to computationally bounded adversaries that cannot obtain the
secret keys of honest parties, there is no advantage in considering strengthened
Correctness and Robustness security notions. Nevertheless, as we will see, if the
PKE scheme underlying our PKEBC scheme’s construction satisfies Correctness
against unbounded adversaries, then the PKEBC scheme’s construction can be
proven to satisfy such stronger Correctness and Robustness security notions.

We now introduce the notion of Consistency. Essentially, this notion captures
the guarantee that a dishonest sender cannot create confusion between any pair
of honest receivers as to whether they received some message m with respect to
a vector of receivers R⃗ that includes both parties.

Definition 3 (Consistency). Consider the following game played between an
adversary A and game system GCons:

– AOPP ,OPK ,OSK ,OD

A wins the game if there is a ciphertext c such that OD is queried on inputs
(Bi, c) and (Bj , c) for some Bi and Bj (possibly with Bi = Bj), there is no prior
query on either Bi or Bj to OSK , query OD(Bi, c) outputs some (v⃗,m) satisfying
(v⃗,m) ̸= ⊥ with pkj ∈ v⃗ (where pkj is Bj’s public key), and query OD(Bj , c)
does not output (v⃗,m).

The advantage of A in winning the Consistency game is denoted AdvCons(A)
and corresponds to the probability that A wins game GCons as described above.

We say that an adversary A (εCons, t)-breaks the (n, qD)-Consistency of Π
if A runs in time at most t, queries OSK , OPK and OD on at most n different
parties, makes at most qD queries to OD and satisfies AdvCons(A) ≥ εCons.

Remark 2. Similarly to Remark 1, Consistency is a security property only rele-
vant to honest receivers, for which reason Definition 3 disallows adversaries from
querying for the secret keys of honest receivers. It was proven in [24] that an
analogous Consistency notion for MDVS schemes (introduced in [12]) implies
composable security. Yet, as we will see, if the PKE scheme underlying our
PKEBC scheme’s construction satisfies Correctness against unbounded adver-
saries, then our PKEBC scheme can be proven to satisfy a stronger Consistency
notion in which the adversary can query for any party’s secret key.

9

The two following security notions are the multi-receiver variants of IND-
CCA-2 security (introduced in [27]) and IK-CCA-2 security (introduced in [7]).
The games defined by these notions provide adversaries with access to the oracles
OPP and OPK defined above as well as to oracles OE and OD. For both notions,
OD is defined as follows:

Decryption Oracle: OD(Bj , c)

1. If c was the output of some query to OE , output test;

2. Otherwise, compute and output (v⃗,m) ← Dpp,skj (c), where skj is Bj ’s
secret key.

The OE oracle provided by the IND-CCA-2 games differs from the one provided
by the IK-CCA-2 games; for IND-CCA-2, OE is as follows:

Encryption Oracle: OE(V⃗ ,m0,m1)

1. For game system GIND-CCA-2
b , encrypt mb under v⃗ (the vector of public

keys corresponding to V⃗); output c.

Adversaries do not have access to OSK in either notion.

Definition 4 (IND-CCA-2 Security). Consider the following game played be-
tween an adversary A and a game system GIND-CCA-2

b , with b ∈ {0, 1}:

– b′ ← AOPP ,OPK ,OE ,OD

A wins the game if b′ = b and every query OE(V⃗ ,m0,m1) satisfies |m0| = |m1|.
We define the advantage of A in winning the IND-CCA-2 game as

Adv IND-CCA-2(A) :=
∣∣∣Pr[AGIND-CCA-2

0 = win] + Pr[AGIND-CCA-2
1 = win]− 1

∣∣∣.
For the IK-CCA-2 security notion, OE behaves as follows:

Encryption Oracle: OE(V⃗0, V⃗1,m)

1. For game system GIK-CCA-2
b , encrypt m under v⃗b, the vector of public

keys corresponding to V⃗b, creating a fresh ciphertext c; output c.

Definition 5 (IK-CCA-2 Security). Consider the following game played between
an adversary A and a game system GIK-CCA-2

b , with b ∈ {0, 1}:

– b′ ← AOPP ,OPK ,OE ,OD

A wins the game if b′ = b and every query OE(V⃗0, V⃗1,m) satisfies |V⃗0| = |V⃗1|.
We define the advantage of A in winning the IK-CCA-2 security game as

Adv IK-CCA-2(A) :=
∣∣∣Pr[AGIK-CCA-2

0 = win] + Pr[AGIK-CCA-2
1 = win]− 1

∣∣∣.
10

We say that an adversary A (εIND-CCA-2, t)-breaks (resp. (εIK-CCA-2, t)-breaks)
the (n, dE , qE , qD)-IND-CCA-2 (resp. (n, dE , qE , qD)-IK-CCA-2) security of Π if A
runs in time at most t, queries the oracles it has access to on at most n different
parties, makes at most qE and qD queries to oracles OE and OD, respectively,
with the sum of lengths of all the party vectors input to OE being at most dE ,
and satisfies Adv IND-CCA-2(A) ≥ εIND-CCA-2 (resp. Adv IK-CCA-2(A) ≥ εIK-CCA-2).

Finally, we say that Π is

(εCorr,εRob, εCons, εIND-CCA-2, εIK-CCA-2, t, n, dE , qE , qD)-secure,

if no adversary A:

– (εCorr, t)-breaks the (n, dE , qE , qD)-Correctness of Π;
– (εRob, t)-breaks the Robustness of Π;
– (εCons, t)-breaks the (n, qD)-Consistency of Π;
– (εIND-CCA-2, t)-breaks the (n, dE , qE , qD)-IND-CCA-2 security of Π; or
– (εIK-CCA-2, t)-breaks the (n, dE , qE , qD)-IK-CCA-2 security of Π.

4 A PKEBC Scheme from Standard Assumptions

We now present our construction of a PKEBC scheme. The construction is a
generalization of Naor-Yung’s scheme [26] that enhances the security guarantees
given by the original scheme. In particular, if the underlying PKE scheme is
anonymous, then this anonymity is preserved by the PKEBC construction. First,
while the scheme should preserve the anonymity of the underlying PKE scheme,
parties should still be able to obtain the vector of receivers from ciphertexts,
using only their own secret key. For this reason, the underlying PKE scheme is
used to encrypt not only the messages to be sent, but also the vector of receivers
to which each message is being sent to. As one might note, however, to preserve
the anonymity of the underlying PKE scheme, the NIZK proof that proves the
consistency of the ciphertexts for the various receivers can no longer be a proof for
a statement in which the public keys are part of the statement. This introduces
an extra complication since for some PKE schemes such as ElGamal, for every
ciphertext c and message m, there is a public key pk and a sequence of random
coins r such that c is an encryption of m under pk, using r as the sequence of
random coins for encrypting m. In particular, this means that the NIZK proof
is not actually proving the consistency of the ciphertexts. To solve this issue,
we further add a (binding) commitment to the vector of receiver public keys
used to encrypt each ciphertext, and then use the NIZK proof to show that
each ciphertext is an encryption of this same message under the public keys
of the vector to which the commitment is bound. Note, however, that this is
still not sufficient: despite now having the guarantee that if the NIZK proof
verifies then all ciphertexts are encryptions of the same plaintext with respect a
vector of public keys, since a party can still decrypt ciphertexts not meant for
itself without realizing it, it could happen that a receiver decrypts the wrong
ciphertext, thus getting the wrong vector of receivers-plaintext pair. To avoid

11

this, the commitment additionally commits to the message being sent, and the
sequence of random coins used to create the commitment are now encrypted
along with the vector of public keys of the parties and the message being sent.
This then allows a receiver to recompute the commitment from the vector of
parties and message it decrypted. Given the commitment is binding, this implies
that if the recomputed commitment matches the one in the ciphertext then
decryption worked correctly (as otherwise the recomputed commitment would
not match the one in the ciphertext).

We note that our security reductions are tight, and that there are tightly
secure instantiations of each of the schemes we use as building blocks for our
construction. For instance, ElGamal could be used as the underlying IND-CPA
secure encryption scheme, as it is tightly multi-user multi-challenge IND-CPA
secure [8].8 Furthermore, we could use any perfectly correct PKE scheme as the
statistically binding commitment scheme needed by our scheme (in particular
ElGamal), and the tightly unbounded simulation sound NIZK scheme from [14].

Algorithm 1 gives a construction of a Public Key Encryption for Broadcast
schemeΠ = (S,G,E,D) from a Public Key Encryption schemeΠPKE = (G,E,D),
a Commitment Scheme ΠCS = (GCRS,Commit,Verify) and a Non Interactive
Zero Knowledge scheme ΠNIZK = (GCRS,Prove,Verify,S := (SCRS ,SSim)). Con-
sider relation RCons defined as

RCons :=
{(

(crsCS, comm, c⃗), (ρ, v⃗,m, r⃗)
)
|

|⃗c| = |v⃗|
∧ comm = ΠCS.Commitcrs(v⃗,m; ρ)

∧
(
∀j ∈ {1, . . . , |⃗c|},∀b ∈ {0, 1},

cj,b = ΠPKE.Evj,b(ρ, v⃗,m; rj,b)
)}

.

(4.1)

In Algorithm 1, we consider the language induced by RCons, which is defined as

LCons := {(crsCS, comm, c⃗) |
∃(ρ, v⃗,m, r⃗)(
(crsCS, comm, c⃗), (ρ, v⃗,m, r⃗)

)
∈ RCons}.

(4.2)

4.1 Security Analysis of PKEBC Construction

We now prove the security of our PKEBC scheme construction. Refer to [25] for
a full proof of the following results.

Theorem 1. If ΠPKE is

(εPKE-Corr,εPKE-IND-CPA, εPKE-IK-CPA,

tPKE, nPKE, qEPKE, qDPKE,Corr)-secure,
(4.3)

8 In the full version of this paper, we show that ElGamal is also tightly multi-user
multi-challenge IK-CPA secure under the DDH assumption (see [25]).

12

Algorithm 1 Construction of a PKEBC scheme Π = (S,G,E,D).

S(1k)

return (1k, ΠNIZK.GCRS(1
k), ΠCS.GCRS(1

k))

G(pp := (1k, crsNIZK, crsCS))

(pk0, sk0)← ΠPKE.G(1k)

(pk1, sk1)← ΠPKE.G(1k)

return
(
pk := (pk0, pk1), sk := ((pk0, sk0), (pk1, sk1))

)
E(pp := (1k, crsNIZK, crsCS), v⃗ :=

(
(pk1,0, pk1,1), . . . , (pk|v⃗|,0, pk|v⃗|,1)

)
,m ∈ M)

ρ← RandomCoins
comm← ΠCS.CommitcrsCS

(v⃗,m; ρ)

for (pkj,0
′, pkj,1

′) ∈ v⃗ do

(rj,0, rj,1)← (RandomCoins,RandomCoins)
(cj,0, cj,1)← (ΠPKE.Epkj,0

(ρ, v⃗,m; rj,0), ΠPKE.Epkj,1
(ρ, v⃗,m; rj,1))

r⃗ :=
(
(r1,0, r1,1), . . . , (r|v⃗|,0, r|v⃗|,1)

)
c⃗ :=

(
(c1,0, c1,1), . . . , (c|v⃗|,0, c|v⃗|,1)

)
p← ΠNIZK.ProvecrsNIZK

(
(crsCS, comm, c⃗) ∈ LCons, (v⃗,m, ρ, r⃗)

)
return (p, comm, c⃗)

D(pp := (1k, crsNIZK, crsCS), skj :=
(
(pkj,0, skj,0), (pkj,1, skj,1)

)
, c := (p, comm, c⃗))

if ΠNIZK.VerifycrsNIZK

(
(crsCS, comm, c⃗) ∈ LCons, p

)
= valid then

for i ∈ {1, . . . , |⃗c|} do(
ρ, v⃗ :=

(
(pk1,0

′, pk1,1
′), . . . , (pk|v⃗|,0

′, pk|v⃗|,1
′)
)
,m

)
← ΠPKE.Dskj,0

′ (ci,0)

if (ρ, v⃗,m) ̸= ⊥ ∧ (pkj,0, pkj,1) = (pki,0
′, pki,1

′) then

if comm = ΠCS.CommitcrsCS
(v⃗,m; ρ) then

return (v⃗,m)

return ⊥

ΠNIZK is

(εNIZK-Complete,εNIZK-Sound, εNIZK-ZK, εNIZK-SS,

tNIZK, qPNIZK, qV NIZK)-secure,
(4.4)

and ΠCS is

(εCS-Hiding,εCS-Binding, tCS, qCS,Binding)-secure, (4.5)

then no adversary A (ε, t)-breaks Π’s

(n := nPKE, dE := qEPKE, qE := qPNIZK,

qD := min(qV NIZK, qDPKE))-Correctness,

with ε > εCS-Binding + εPKE-Corr + εNIZK-Complete, and tCS, tPKE, tNIZK ≈ t+ tCorr,
where tCorr is the time to run Π’s GCorr game.

Proof Sketch. Algorithm 1 is composed of a CS, a NIZK and a PKE scheme. The
correctness error of this PKEBC protocol is essentially the sum of the errors
of these underlying schemes. We prove this by game hoping: we replace each
scheme with a perfect version of itself, until the final game has correctness error
0. The advantage in distinguishing between the first and the last game is then
the sum of advantages in distinguishing between the underlying schemes and the
corresponding perfect versions. ⊓⊔

13

Remark 3. Theorem 1 states that Π’s Correctness holds against computationally
bounded adversaries who do not have access to the secret keys of honest parties.
However, since we use an underlying PKE with correctness against unbounded
adversaries, the proof of Theorem 1 implies something stronger, namely that Π
is Correct according to a stronger Correctness notion wherein adversaries are
allowed to query for the secret key of any honest receiver.

Theorem 2. If ΠCS is

(εCS-Hiding,εCS-Binding, tCS, qCS,Binding)-secure, (4.6)

then no adversary A (ε)-breaks Π’s Robustness, with ε > εCS-Binding.

Proof Sketch. To violate robustness, the same ciphertext must be the encryption
of two plaintexts that have different vectors of receivers. But since a commitment
to this vector (along with the message) is part of the ciphertext, there must be
two vectors of receivers (and messages) that produce the same commitment. And
the probability of this happening is bounded by εCS-Binding. ⊓⊔

Remark 4. Note that Theorem 2 states that Π’s Robustness holds against com-
putationally unbounded adversaries; such adversaries can compute the private
key of any party from its public key.

In the following we assume, without loss of generality for any practical purpose,
that the NIZK proof verification algorithm is deterministic. For instance, the
NIZK scheme given in [14] has deterministic proof verification and is tightly
unbounded simulation sound. The reason for this assumptions is that an adversary
could potentially come up with a NIZK proof for a valid statement which would
only be considered as valid by the NIZK verification algorithm sometimes.

Theorem 3. If ΠPKE is

(εPKE-Corr,εPKE-IND-CPA, εPKE-IK-CPA,

tPKE, nPKE, qEPKE, qDPKE,Corr)-secure,
(4.7)

ΠNIZK is

(εNIZK-Complete,εNIZK-Sound, εNIZK-ZK, εNIZK-SS,

tNIZK, qPNIZK, qV NIZK)-secure,
(4.8)

ΠCS is

(εCS-Hiding,εCS-Binding, tCS, qCS,Binding)-secure, (4.9)

and ΠNIZK.V is a deterministic algorithm, then no adversary A (ε, t)-breaks Π’s

(n := nPKE, qD := qV NIZK)-Consistency,

with ε > εCS-Binding + εNIZK-Sound+ εPKE-Corr and with tPKE, tCS, tNIZK ≈ t+ tCons,
where tCons is the time to run Π’s GCons game.

14

Proof Sketch. As in the proof of Theorem 1, we proceed by game hoping and
replace the CS and NIZK by ideal versions. We then show that if the underlying
PKE has perfect correctness, consistency cannot be violated. Hence the final
error is that of the CS, the soundness of the NIZK and the correctness of the
PKE. ⊓⊔

Remark 5. Theorem 3 states that Π’s Consistency holds against computationally
bounded adversaries who do not have access to the secret keys of honest parties.
However, similarly to Remark 3, its proof implies something stronger, namely
that Π is Consistent with respect to a stronger Consistency notion which allows
adversaries to query for the secret key of any honest receiver.

Theorem 4. If ΠPKE is

(εPKE-Corr,εPKE-IND-CPA, εPKE-IK-CPA,

tPKE, nPKE, qEPKE, qDPKE,Corr)-secure,
(4.10)

ΠNIZK is

(εNIZK-Complete,εNIZK-Sound, εNIZK-ZK, εNIZK-SS,

tNIZK, qPNIZK, qV NIZK)-secure,
(4.11)

and ΠCS is

(εCS-Hiding,εCS-Binding, tCS, qCS,Binding)-secure, (4.12)

then no adversary A (ε, t)-breaks Π’s

(n := nPKE, dE := qEPKE,

qE := min(qPNIZK, qCS), qD := qV NIZK)-IK-CCA-2 security,

with

ε > 4 · (εPKE-IND-CPA + εPKE-Corr)

+ 2 · (εNIZK-ZK + εPKE-IK-CPA + εNIZK-SS)

+ εCS-Hiding,

tPKE, tCS ≈ t+ tIK-CCA-2 + qE · tSSim
+ tSCRS

,

tNIZK ≈ t+ tIK-CCA-2,

where tIK-CCA-2 is the time to run Π’s GIK-CCA-2
b game experiment, tSSim

is the
runtime of SSim, and tSCRS

is the runtime of SCRS.

Proof Sketch. The definition of IK-CCA-2 security bounds the ability of the
adversary to distinguish between two games, one of which generates challenge
ciphertexts encrypted for the vector of receivers V⃗0 and the other for V⃗1. The full
proof is a simple generalization of the one from [28] and consists of 16 game hops
that bound an adversary’s advantage in distinguishing the two game systems.
Here we highlight the main ideas in this proof.

15

The first step in the proof is replacing the NIZK proofs with simulated
ones, as this allows creating valid NIZK proofs for false statements. Recall
that each PKEBC ciphertext includes, for each receiver, two encryptions of the
same plaintext under the two different (and independent) public keys of the
receiver. This allows being able to answer the adversary’s decryption queries
while only knowing one of the two secret keys of the receiver, which is crucial
for the reductions to the IND-CPA and IK-CPA security for the underlying PKE
scheme. Another key step in the proof is relying on the Simulation Soundness of
the underlying NIZK scheme to be able to change the key used for answering
decryption queries. Finally, the last main technical idea in the proof is making
the sequence of random coins ρ encrypted using the underlying PKE scheme
independent of the random coins actually used by the underlying Commitment
Scheme when reducing to its Hiding property. ⊓⊔

Theorem 5. If ΠPKE is

(εPKE-Corr,εPKE-IND-CPA, εPKE-IK-CPA,

tPKE, nPKE, qEPKE, qDPKE,Corr)-secure,
(4.13)

ΠNIZK is

(εNIZK-Complete,εNIZK-Sound, εNIZK-ZK, εNIZK-SS,

tNIZK, qPNIZK, qV NIZK)-secure,
(4.14)

and ΠCS is

(εCS-Hiding,εCS-Binding, tCS, qCS,Binding)-secure, (4.15)

then no adversary A (ε, t)-breaks Π’s

(n := nPKE, dE := qEPKE,

qE := min(qPNIZK, qCS), qD := qV NIZK)-IND-CCA-2 security,

with

ε > 4 · (εPKE-IND-CPA + εPKE-Corr)

+ 2 · (εNIZK-ZK + εNIZK-SS)

+ εCS-Hiding

tPKE ≈ t+ tIND-CCA-2 + qE · tSSim
+ tSCRS

,

tNIZK, tCS ≈ t+ tIND-CCA-2,

where tIND-CCA-2 is the time to run Π’s GIND-CCA-2
b game, tSSim

is the runtime of
SSim, and tSCRS

is the runtime of SCRS.

Proof Sketch. The proof of this theorem is a simple adaptation of the proof of
Theorem 4, but where one no longer makes game hopping on the IK-CPA security
of the PKE scheme ΠPKE underlying PKEBC scheme Π’s construction. ⊓⊔

16

5 Multi-Designated Receiver Signed Public Key
Encryption Schemes

We now introduce the second new type of scheme we give in this paper: Multi-
Designated Receiver Signed Public Key Encryption (MDRS-PKE). An MDRS-PKE
scheme Π = (S,GS ,GV ,E,D) with message space M is a five-tuple of PPTs,
where:

– S: on input 1k, generates public parameters pp;
– GS : on input pp, generates a sender key-pair;
– GV : on input pp, generates a receiver key-pair;
– E: on input (pp, ssk, v⃗,m), where ssk is the secret sending key, v⃗ is a vector

of public keys of the intended receivers, and m is the message, generates a
ciphertext c;

– D: on input (pp, rsk, c), where rsk is the receiver’s secret key, D decrypts c
using rsk, obtaining a triple sender/receiver-vector/message (spk, v⃗,m) (or
⊥ if decryption fails) which it then outputs.

5.1 The Security of MDRS-PKE Schemes

Below we state the definitions of Correctness, Consistency, Unforgeability, IND-
CCA-2 security, IK-CCA-2 security, and Off-The-Record for MDRS-PKE schemes.
Before proceeding to the actual definitions, we first introduce some oracles the
game systems for MDRS-PKE use. In the following, consider an MDRS-PKE
scheme Π = (S,GS ,GV ,E,D) with message space M. The oracles below are
defined for a game-system with (an implicitly defined) security parameter k:

Public Parameter Generation Oracle: OPP

1. On the first call, compute pp← S(1k); output pp;
2. On subsequent calls, simply output pp.

Sender Key-Pair Oracle: OSK(Ai)
1. On the first call on input Ai, compute and store (spki, sski)← GS(pp);

output (spki, sski);
2. On subsequent calls, simply output (spki, sski).

Receiver Key-Pair Oracle: ORK(Bj)
1. Analogous to the Sender Key-Pair Oracle.

Sender Public-Key Oracle: OSPK(Ai)
1. (spki, sski)← OSK(Ai); output spki.

Receiver Public-Key Oracle: ORPK(Bj)
1. Analogous to the Sender Public-Key Oracle.

Encryption Oracle: OE(Ai, V⃗ ,m)
1. (spki, sski)← OSK(Ai);
2. v⃗ ← (ORPK(V1), . . . ,ORPK(V|V⃗ |));

3. Output c← Epp(sski, v⃗,m).
Decryption Oracle: OD(Bj , c)

1. (vpkj , vskj)← ORK(Bj);

17

2. Output (spk, v⃗ := (rpk1, . . . , rpk|v⃗|),m)← Dpp(vskj , c).

We now introduce the game-based notions. Let Π = (S,GS ,GV ,E,D) be an
MDRS-PKE.

Definition 6 (Correctness). Consider the following game played between an
adversary A and game system GCorr:

– AOPP ,OSPK ,OSK ,ORPK ,ORK ,OE ,OD

A wins the game if there are two queries qE and qD to OE and OD, respectively,
where qE has input (Ai, V⃗ ,m) and qD has input (Bj , c), satisfying Bj ∈ V⃗ ,
the input c in qD is the output of qE, the output of qD is (spki

′, v⃗′,m′) with
(spki

′, v⃗′,m′) = ⊥ or (spki
′, v⃗′,m′) ̸= (spki, v⃗,m)—where spki is Ai’s public key

and v⃗ is the corresponding vector of public keys of the parties of V⃗— and A did
not query OSK on Ai nor ORK on Bj.

The advantage of A in winning the Correctness game, denoted AdvCorr(A),
is the probability that A wins game GCorr as described above.

As already noted in Remark 1, Correctness is a property only relevant to
honest parties. As these parties are not corrupted, their keys do not leak to the
adversary. Definition 6 hence disallows adversaries from querying for the secret
keys of honest parties. Note that the analogous Correctness notion for MDVS
schemes introduced in [24]—which also does not allow adversaries to query for
the secret keys of honest parties—is known to imply the composable security of
MDVS schemes (see [24]). As noted in Remark 9, the MDRS-PKE construction
we give actually satisfies a stronger Correctness notion analogous to the one
mentioned in Remark 1, as long as both of the underlying (PKEBC and MDVS)
schemes satisfy analogous Correctness notions.

The following notion captures Consistency for MDRS-PKE schemes, and is
analogous to the PKEBC Consistency notion.

Definition 7 (Consistency). Consider the following game played between an
adversary A and game system GCons:

– AOPP ,OSPK ,OSK ,ORPK ,ORK ,OE ,OD

A wins the game if there is a ciphertext c such that OD is queried on inputs (Bi, c)
and (Bj , c) for some Bi and Bj (possibly with Bi = Bj), there is no prior query
on either Bi or Bj to ORK , query OD(Bi, c) outputs some (spkl, v⃗,m) satisfying
(spkl, v⃗,m) ̸= ⊥, spkl is some party Al’s public sender key (i.e. OSPK(Al) =
spkl) and rpkj ∈ v⃗ (where rpkj is Bj’s public key), and query OD(Bj , c) does
not output the same triple (spkl, v⃗,m).

The advantage of A in winning the Consistency game is denoted AdvCons(A)
and corresponds to the probability that A wins game GCons as described above.

The following security notion is analogous to the EUF-CMA security notion for
Digital Signature Schemes. For the case of a single receiver, it informally states
that if a sender A is honest, then no dishonest party can forge a ciphertext that
fools an honest receiver into believing A sent it some message that A actually
did not send.

18

Definition 8 (Unforgeability). Consider the following game played between
adversary A and game system GUnforg:

– AOPP ,OSPK ,OSK ,ORPK ,ORK ,OE ,OD

We say that A wins the game if there is a query q to OD on an input (Bj , c) that
outputs (spki, v⃗,m) ̸= ⊥ with spki being some party Ai’s sender public key (i.e.

OSPK(Ai) = spki), there was no query OE(Ai, V⃗ ,m) where V⃗ is the vector of
parties with corresponding public keys v⃗, OSK was not queried on input Ai, and
ORK was not queried on input Bj.

The advantage of A in winning the Unforgeability game is the probability that
A wins game GUnforg as described above, and is denoted AdvUnforg(A).

We say that an adversary A (ε, t)-breaks the (nS , nR, dE , qE , qD)-Correctness,
Consistency, or Unforgeability of Π if A runs in time at most t, queries OSPK ,
OSK , OE and OD on at most nS different senders, queries ORPK , ORK , OE and
OD on at most nR different receivers, makes at most qE and qD queries to OE

and OD, respectively, with the sum of lengths of the party vectors input to OE

being at most dE , and A’s advantage in winning the (corresponding) security
game is at least ε.

The following security notions are the MDRS-PKE variants of Definitions 4
and 5. The games defined by these notions provide adversaries with access to
the oracles OPP , OSPK , OSK and ORPK defined above as well as to oracles OE

and OD. For both notions, OD is defined as follows:

Decryption Oracle: OD(Bj , c)
1. If c was the output of some query to OE , output test;
2. Otherwise, compute (spki, v⃗,m) ← Dpp,skj (c), where skj is Bj ’s secret

key; output (spki, v⃗,m).

The OE oracle provided by the IND-CCA-2 games differs from the one provided
by the IK-CCA-2 games; for IND-CCA-2, OE is as follows:

Encryption Oracle: OE(Ai, V⃗ ,m0,m1)
1. For game system GIND-CCA-2

b , encrypt mb under sski (Ai’s sender secret

key) and v⃗ (V⃗ ’s corresponding vector of receiver public keys); output c.

Definition 9 (IND-CCA-2 Security). Consider the following game played be-
tween an adversary A and a game system GIND-CCA-2

b , with b ∈ {0, 1}:

– b′ ← AOPP ,OSPK ,OSK ,ORPK ,OE ,OD

A wins the game if b′ = b and for every query OE(Ai, V⃗ ,m0,m1):

– |m0| = |m1|; and
– there is no query on Ai to OSK .

We define the advantage of A in winning the IND-CCA-2 game as

Adv IND-CCA-2(A) :=
∣∣∣Pr[AGIND-CCA-2

0 = win] + Pr[AGIND-CCA-2
1 = win]− 1

∣∣∣.
19

For the IK-CCA-2 security notion, OE behaves as follows:

Encryption Oracle: OE((Ai,0, V⃗0), (Ai,1, V⃗1),m)
1. For game system GIK-CCA-2

b , encrypt m under sski,b (Ai,b’s secret key)

and v⃗b (the vector of public keys corresponding to V⃗b), creating a fresh
ciphertext c; output c.

Definition 10 (IK-CCA-2 Security). Consider the following game played be-
tween an adversary A and a game system GIK-CCA-2

b , with b ∈ {0, 1}:

– b′ ← AOPP ,OSPK ,OSK ,ORPK ,OE ,OD

A wins the game if b′ = b and for every query ((Ai,0, V⃗0), (Ai,1, V⃗1),m) to OE:

– |V⃗0| = |V⃗1|; and
– OSK is not queried on neither Ai,0 and Ai,1.

We define the advantage of A in winning the IK-CCA-2 security game as

Adv IK-CCA-2(A) :=
∣∣∣Pr[AGIK-CCA-2

0 = win] + Pr[AGIK-CCA-2
1 = win]− 1

∣∣∣.
We say that an adversary A (ε, t)-breaks the (nR, dE , qE , qD)-IND-CCA-2

security or IK-CCA-2 security of Π if A runs in time at most t, queries ORPK ,
OE and OD on at most nR different receivers, makes at most qE and qD queries
to OE and OD, respectively, with the sum of lengths of the party vectors input to
OE being at most dE , and has at least ε advantage in winning the corresponding
security game.

Remark 6. The IND-CCA-2 and IK-CCA-2 security notions for MDRS-PKE schemes
capture, respectively, confidentiality and anonymity. Even though one could de-
fine stronger variants of these notions wherein the adversary is allowed to query
for the secret key of any sender, we chose these definitions because they are
weaker, but yet strong enough to imply composable security (see [3, 4, 15] for the
analogous case of the Outsider Security Model for Signcryption). Nonetheless,
our MDRS-PKE construction satisfies the stronger IND-CCA-2 and IK-CCA-2
security notions in which the adversary is allowed to query for the secret key of
every sender.

The following notion captures the Off-The-Record property of MDRS-PKE
schemes, and resembles the (Any-Subset) Off-The-Record security notion in-
troduced in [12] for MDVS schemes. This notion defines two game systems,

GOTR-Forge
0 and GOTR-Forge

1 , which are parameterized by an algorithm Forge. The
game systems also provide adversaries with access to an oracle OE , whose behav-
ior varies depending on the underlying game system, i.e. depending on b ∈ {0, 1}.
OE behaves as follows:

Encryption Oracle: OE(type ∈ {sign, forge}, Ai, V⃗ ,m,D)
For game system GOTR-Forge

b , the oracle behaves as follows:

20

1. c0 ← Epp(sski, v⃗,m);

2. c1 ← Forgepp(spki, v⃗,m, {rskj}Bj∈D);

3. If b = 0, output c0 if type = sign and c1 if type = forge;

4. Otherwise, if b = 1, output c1.

Definition 11 (Off-The-Record). Let Forge be a PPT algorithm that on input
pp, spki∗ , v⃗, m

∗ and {rskj}Bj∈D∗ , outputs a forged ciphertext c′. For b ∈ {0, 1},
consider the following game played between an adversary A and game system
GOTR-Forge

b :

– b′ ← AOPP ,OSPK ,OSK ,ORPK ,ORK ,OE ,OD

A wins the game if b′ = b and for every query (type, Ai, V⃗ ,m,D) to OE, and
letting c be the output of OE, all of the following hold:

1. D ⊆ Set(V⃗);

2. for every query Bj to OV K , Bj ̸∈ Set(V⃗) \ D;
3. for every query Al to OSK , Al ̸= Ai; and

4. for all queries OD(Al, Bj , V⃗
′,m′, c′) with Al = Ai and V⃗ ′ = V⃗ , c′ ̸= c.

A’s advantage in winning the Off-The-Record security game with respect to
Forge is defined as

AdvOTR-Forge(A) :=
∣∣∣Pr[AGOTR-Forge

0 = win] + Pr[AGOTR-Forge
1 = win]− 1

∣∣∣.
We say that an adversary A (εOTR, t)-breaks the (nS , nR, dE , qE , qD)-Off-The-
Record security of Π with respect to algorithm Forge if A runs in time at most t,
queries OSPK , OSK , OE and OD on at most nS different senders, queries ORPK ,
ORK , OE and OD on at most nR different receivers, makes at most qE and qD
queries to OE and OD, respectively, with the sum of lengths of the party vectors
input to OE being at most dE , and satisfies AdvOTR-Forge(A) ≥ εOTR.

Finally, we say that Π is

(εCorr, εCons, εUnforg,εIND-CCA-2, εIK-CCA-2, εOTR,

t, nS , nR, dE , qE , qD,Forge)-secure,

if no adversary A:

– (εCorr, t)-breaks the (nS , nR, dE , qE , qD)-Correctness of Π;

– (εCons, t)-breaks the (nS , nR, dE , qE , qD)-Consistency of Π;

– (εUnforg, t)-breaks the (nS , nR, dE , qE , qD)-Unforgeability of Π;

– (εIND-CCA-2, t)-breaks the (nR, dE , qE , qD)-IND-CCA-2 security of Π;

– (εIK-CCA-2, t)-breaks the (nR, dE , qE , qD)-IK-CCA-2 security of Π; or

– (εOTR, t)-breaks the (nS , nR, dE , qE , qD)-Off-The-Record security of Π with
respect to Forge.

21

Remark 7. As one may note, due to the Off-The-Record property of MDRS-PKE
schemes (see Definition 11), any receiver Bj can generate a ciphertext that
decrypts correctly under Bj ’s own receiver secret key using only its own secret
key and the public keys of the sender and any other receivers. It is thus crucial
that, when defining ciphertext Unforgeability (see Definition 8), the adversary is
not allowed to query for the secret key of any receiver with respect to which it is
trying forge a signature.

It is equally important that the adversary is not allowed to query for the secret
keys of honest receivers in the Off-The-Record security notion (Definition 11):
as honest receivers do not participate in the ciphertext forgery, due to the
Unforgeability of ciphertexts (Definition 8)—which in particular guarantees that
if a receiver is honest, then it only decrypts ciphertexts generated by the actual
sender, assuming the sender is honest—if an adversary could query for the secret
key of an honest receiver Bj , it would be able to distinguish real ciphertexts
generated by the sender—which Bj would decrypt successfully using its secret
key—from fake ciphertexts generated by dishonest receivers—which, by the
Unforgeability of ciphertexts, Bj would not decrypt successfully.

Finally, the adversary can also not be given access to the secret key of any
honest receiver Bj in the Consistency game of Definition 7, as otherwise, by the
Off-The-Record guarantee (Definition 11), it would be able to use Bj ’s receiver
secret key to forge a ciphertext c that Bj would decrypt successfully (as if it
really had been sent by the actual sender), whereas any other honest (designated)
receiver’s decryption of c would fail.

6 A Multi-Designated Receiver Signed Public Key
Encryption Scheme from Standard Assumptions

In this section we give a construction of an MDRS-PKE scheme from a PKEBC
scheme and an MDVS scheme (see Algorithm 2). The construction essentially
consists of using the MDVS scheme to sign both the messages and the vectors
of public PKEBC keys of the receivers, and then using the PKEBC scheme to
encrypt the signed message, together with its MDVS signature, the public MDVS
signer key of the sender and the vector of public MDVS verifier keys of the
receivers.

Remark 8. Even though our MDRS-PKE construction allows parties to locally
generate their keys, to achieve the Off-The-Record guarantee it is required that
dishonest receivers know their secret keys. This is only so as otherwise one could
mount attacks that break the Off-The-Record guarantee. For instance, consider
an honest sender Alice that sends a message m to Bob. Bob, who is dishonest
wants to convince a non-designated receiver, Eve, that Alice sent m. To do that,
Bob could have Eve generating the keys for Bob herself, and give him only the
public key (that Bob would claim as being his public key). When Alice sends m,
Eve can now learn that Alice sent m as it can use Bob’s secret key. Furthermore,
since no one other than Eve has Bob’s secret key, Eve knows that it cannot be

22

Algorithm 2 Construction of an MDRS-PKE scheme Π = (S,GS ,GV ,E,D)
from a PKEBC scheme ΠPKEBC = (G,S,E,D), and an MDVS scheme ΠMDVS =
(Setup,GS ,GV ,Sign,Vfy).

Setup(1k)

ppMDVS ← ΠMDVS.Setup(1
k)

ppPKEBC ← ΠPKEBC.S(1k)
pp := (ppMDVS, ppPKEBC)
return pp

GS(pp := (ppMDVS, ppPKEBC))
(spkMDVS, sskMDVS)← ΠMDVS.GS(ppMDVS)
spk := spkMDVS
ssk := (spk, sskMDVS)
return (spk, ssk)

GV (pp := (ppMDVS, ppPKEBC))
(vpkMDVS, vskMDVS)← ΠMDVS.GV (ppMDVS)
(pkPKEBC, skPKEBC)← ΠPKEBC.G(ppPKEBC)
rpk := (vpkMDVS, pkPKEBC)

rsk :=
(
rpk, (vskMDVS, skPKEBC)

)
return (rpk, rsk)

Epp(sski, v⃗,m)
With

pp := (ppMDVS, ppPKEBC)
sski := (spki, sskMDVSi)

v⃗ :=
(
rpk1, . . . , rpk|v⃗|

)
for each i ∈ {1, . . . , |v⃗|}

rpki := (vpkMDVSi
, pkPKEBCi

)

v⃗PKEBC ← (pkPKEBC1
, . . . , pkPKEBC|v⃗|)

v⃗MDVS ← (vpkMDVS1
, . . . , vpkMDVS|v⃗|)

σ ← ΠMDVS.SignppMDVS
(sskMDVSi, Set(v⃗MDVS), (v⃗PKEBC,m))

return ΠPKEBC.EppPKEBC

(
v⃗PKEBC, (spki, v⃗MDVS,m, σ)

)
Dpp(rskj , c)

With
pp := (ppMDVS, ppPKEBC)

rskj :=
(
rpkj , (vskMDVSj , skPKEBCj)

)
rpkj := (vpkMDVSj

, pkPKEBCj
)(

v⃗PKEBC, (spki, v⃗MDVS,m, σ)
)
← ΠPKEBC.DppPKEBC

(skPKEBCj , c)

if
(
v⃗PKEBC, (spki, v⃗MDVS,m, σ)

)
= ⊥ ∨ |v⃗PKEBC| ̸= |v⃗MDVS| then

return ⊥
v⃗ :=

(
(vMDVS1, vPKEBC1), . . . , (vMDVS|v⃗PKEBC|, vPKEBC|v⃗PKEBC|)

)
if rpkj ̸∈ v⃗ then

return ⊥
if ΠMDVS.VfyppMDVS

(spki, vskMDVSj , Set(v⃗MDVS), (v⃗PKEBC,m), σ) ̸= valid then

return ⊥
return (spki, v⃗,m)

23

a fake message, implying that it must be Alice’s message. Current composable
notions capturing the security of MDVS schemes solve this problem by assuming
a trusted third party which generates all key-pairs and gives everyone access to
their own key-pair [24]9. This in particular implies that Bob would have access
to its own secret key, and so even if Eve would know Bob’s secret key, she would
not be able to tell if Alice was the one sending messages or if Bob was faking
Alice’s messages.

6.1 Security Analysis of the MDRS-PKE Construction

The security of our MDRS-PKE scheme follows from the security of the underlying
PKEBC and MDVS schemes. For a full proof of these results, refer to [25].

Theorem 6. If ΠPKEBC is

(εPKEBC-Corr,εPKEBC-Rob, εPKEBC-Cons, εPKEBC-IND-CCA-2, εPKEBC-IK-CCA-2,

tPKEBC, nPKEBC, dEPKEBC, qEPKEBC, qDPKEBC)-secure,
(6.1)

and ΠMDVS is

(εMDVS-Corr,εMDVS-Cons, εMDVS-Unforg, εMDVS-OTR, εMDVS-PI,

tMDVS, nSMDVS, nV MDVS, dSMDVS,

qSMDVS, qV MDVS,ForgeMDVS)-secure,

(6.2)

then no adversary A (ε, t)-breaks Π’s

(nS := nSMDVS,

nR := min(nPKEBC, nV MDVS),

dE := min(dEPKEBC, dSMDVS),

qE := min(qEPKEBC, qSMDVS),

qD := min(qDPKEBC, qV MDVS))-Correctness,

with ε > εPKEBC-Corr + εMDVS-Corr, and tPKEBC, tMDVS ≈ t+ tCorr, where tCorr is
the time to run Π’s GCorr game.

Proof Sketch. To prove this theorem one introduces an intermediate game that
assumes the correctness of theΠPKEBC scheme underlyingΠ’s construction. Then,
one shows that the advantage of any adversary in winning this intermediate
game can only differ from the advantage in winning the original game by at most
the advantage that an adversary could have in winning the Correctness game
of ΠPKEBC. Finally, one shows that the advantage in winning the new game is
bound by the advantage in winning the Correctness game of the MDVS scheme
ΠMDVS underlying Π’s construction. ⊓⊔
9 The composable notions capturing the security of MDVS given in [24] actually assume
something even stronger: every dishonest party has access to the secret keys of every
other dishonest party.

24

Remark 9. Similarly to Remark 3, if ΠPKEBC’s correctness holds even when the
adversary is allowed to query for the secret key of any receiver, and ΠMDVS’s
correctness holds even when the adversary is allowed to query for the secret keys
of any signer or verifier, then Π’s Correctness holds even when the adversary is
allowed to query for the secret keys of any sender and receiver.

Theorem 7. If ΠPKEBC is

(εPKEBC-Corr,εPKEBC-Rob, εPKEBC-Cons, εPKEBC-IND-CCA-2, εPKEBC-IK-CCA-2,

tPKEBC, nPKEBC, dEPKEBC, qEPKEBC, qDPKEBC)-secure,
(6.3)

and ΠMDVS is

(εMDVS-Corr,εMDVS-Cons, εMDVS-Unforg, εMDVS-OTR, εMDVS-PI,

tMDVS, nSMDVS, nV MDVS, dSMDVS,

qSMDVS, qV MDVS,ForgeMDVS)-secure,

(6.4)

then no adversary A (ε, t)-breaks Π’s

(nS := nSMDVS, nR := min(nPKEBC, nV MDVS), dE := dSMDVS,

qE := qSMDVS, qD := min(qDPKEBC, qV MDVS))-Consistency,

with ε > εPKEBC-Cons + εMDVS-Cons, and tPKEBC, tMDVS ≈ t+ tCons, where tCons
is the time to run Π’s GCons game.

Proof Sketch. To win the Consistency game, an adversary has to make two queries
OD(Bi, c) and OD(Bj , c) such that OD(Bi, c) outputs some (spkl, v⃗,m) ̸= ⊥—
where spkl is some party Al’s public sender key and Bj ’s public key is in v⃗, query
OD(Bj , c) does not output the same as OD(Bi, c), and there is no query to ORK

on Bi or Bj . Note that this is the only possible way to win the Consistency game.
With this, one then shows that an adversary winning the Consistency implies
that it either broke the consistency of the PKEBC scheme ΠPKEBC underlying
Π’s construction, or that it broke the consistency of the MDVS scheme ΠMDVS

underlying Π’s construction. ⊓⊔

Theorem 8. If ΠMDVS is

(εMDVS-Corr,εMDVS-Cons, εMDVS-Unforg, εMDVS-OTR, εMDVS-PI,

tMDVS, nSMDVS, nV MDVS, dSMDVS,

qSMDVS, qV MDVS,ForgeMDVS)-secure,

(6.5)

then no adversary A (ε, t)-breaks Π’s

(nS := nSMDVS, nR := nV MDVS, dE := dSMDVS,

qE := qSMDVS, qD := qV MDVS)-Unforgeability,

with ε > εMDVS-Unforg, and tMDVS ≈ t+ tUnforg, where tUnforg is the time to run
Π’s GUnforg game.

25

Proof Sketch. Any adversary for Π’s Unforgeability game can be easily reduced
into an adversary for the Unforgeability game of the MDVS scheme ΠMDVS

underlying Π’s construction that has the same advantage in winning ΠMDVS’s
Unforgeability game. ⊓⊔

Theorem 9. If ΠPKEBC is

(εPKEBC-Corr,εPKEBC-Rob, εPKEBC-Cons, εPKEBC-IND-CCA-2, εPKEBC-IK-CCA-2,

tPKEBC, nPKEBC, dEPKEBC, qEPKEBC, qDPKEBC)-secure,
(6.6)

then no adversary A (ε, t)-breaks Π’s

(nR := nPKEBC, dE := dEPKEBC,

qE := qEPKEBC, qD := qDPKEBC)-IND-CCA-2 security,

with ε > εPKEBC-IND-CCA-2, and tPKEBC ≈ t+ tIND-CCA-2, where tIND-CCA-2 is the
time to run Π’s GIND-CCA-2 games.

Proof Sketch. Distinguishing Π’s (MDRS-PKE) IND-CCA-2 security games can
be trivially reduced to distinguishing ΠPKEBC’s (PKEBC) IND-CCA-2 security
games with the same advantage. ⊓⊔

Remark 10. Note that Definitions 9 and 10 do not allow an adversary to query
for the secret keys of any sender Ai that is given as input to a query to OE . Yet,
the proofs of Theorems 9 and 10 actually show something stronger. Namely, that
Π is secure according to even the stronger IND-CCA-2 and IK-CCA-2 security
notions in which an adversary is allowed to query for the secret key of any sender.

Theorem 10. If ΠPKEBC is

(εPKEBC-Corr,εPKEBC-Rob, εPKEBC-Cons, εPKEBC-IND-CCA-2, εPKEBC-IK-CCA-2,

tPKEBC, nPKEBC, dEPKEBC, qEPKEBC, qDPKEBC)-secure,
(6.7)

then no adversary A (ε, t)-breaks Π’s

(nR := nPKEBC, dE := dEPKEBC,

qE := qEPKEBC, qD := qDPKEBC)-IK-CCA-2 security,

with ε > εPKEBC-IND-CCA-2 + εPKEBC-IK-CCA-2, and tPKEBC ≈ t+ tIK-CCA-2, where
tIK-CCA-2 is the time to run Π’s GIK-CCA-2 games.

Proof Sketch. To prove this theorem we introduce an intermediate game which
is just like GIK-CCA-2

0 except that the OE oracle behaves slightly differently: for

each query ((Ai,0, V⃗0), (Ai,1, V⃗1),m), OE behaves exactly as GIK-CCA-2
0 ’s OE oracle

would behave, except that now it encrypts the PKEBC ciphertext using the vector
of public PKEBC keys corresponding to V⃗1, rather than using the vector of public
keys corresponding to V⃗0. An adversary trying to distinguishing GIK-CCA-2

0 from
this intermediate game can be trivially reduced to an adversary distinguishing

26

the two IK-CCA-2 game systems for the underlying ΠPKEBC with the same
distinguishing advantage; an adversary distinguishing the intermediate game
from GIK-CCA-2

1 can be (again trivially) reduced to an adversary distinguishing
the two IND-CCA-2 game systems for the underlying ΠPKEBC with the same
distinguishing advantage. ⊓⊔

Algorithm 3 Forge algorithm for the construction given in Algorithm 2. In
the following, let ΠMDVS and ΠPKEBC respectively be the MDVS and PKEBC
schemes underlying the construction given in Algorithm 2, ForgeMDVS be a
signature forging algorithm for ΠMDVS, and {rskj′}Bj′∈D be the set of secret
receiver keys of D, the set of dishonest parties.

Forgepp(spki, v⃗,m, {rskj′}Bj′∈D)

With
pp := (ppMDVS, ppPKEBC)
spki := spkMDVSi
for each rskj ∈ {rskj′}Bj′∈D

rskj :=
(
(vpkMDVSj

, pkPKEBCj
), (vskMDVSj , skPKEBCj)

)
v⃗ :=

(
rpk1, . . . , rpk|v⃗|

)
for each i ∈ {1, . . . , |v⃗|}

rpki = (vpkMDVSi
, pkPKEBCi

)

v⃗PKEBC ← (pkPKEBC1
, . . . , pkPKEBC|v⃗|)

v⃗MDVS ← (vpkMDVS1
, . . . , vpkMDVS|v⃗|)

σMDVS ← ForgeMDVSppMDVS
(spkMDVSi

, Set(v⃗MDVS), (v⃗PKEBC,m), {vskMDVSj′}Bj′∈D)

return ΠPKEBC.EppPKEBC

(
v⃗PKEBC, (spkMDVSi

, v⃗MDVS,m, σMDVS)
)

Theorem 11. In the following let Forge denote Algorithm 3. If ΠMDVS is

(εMDVS-Corr,εMDVS-Cons, εMDVS-Unforg, εMDVS-OTR, εMDVS-PI,

tMDVS, nSMDVS, nV MDVS, dSMDVS,

qSMDVS, qV MDVS,ForgeMDVS)-secure,

(6.8)

then no adversary A (ε, t)-breaks Π’s

(nS := nSMDVS, nR := nV MDVS, dE := dSMDVS,

qE := qSMDVS, qD := qV MDVS,Forge)-Off-The-Record security,

with ε > εMDVS-OTR, and tMDVS ≈ t+ tOTR, where tOTR is the time to run Π’s
GOTR games.

Proof Sketch. Any adversary for Π’s Off-The-Record games can trivially be
reduced into an adversary for the Off-The-Record games of the ΠMDVS scheme
underlying Π’s construction that has the same advantage in winning the MDVS
Off-The-Record games of ΠMDVS. ⊓⊔

27

Remark 11. It is easy to see from the proof of Theorem 11 that if ΠMDVS satisfies
a stronger Off-The-Record notion in which the adversary is allowed to query for
the secret key of any sender, then Π would also satisfy the analogous stronger
Off-The-Record notion for MDRS-PKE schemes in which the adversary is allowed
to query for the secret key of any sender.

7 Acknowledgments

The authors would like to thank Dennis Hofheinz for helpful discussions and
for suggesting Naor-Yung’s scheme [26] together with a Simulation Sound NIZK
scheme [28] and a Binding Commitment scheme as a starting point to construct
the PKEBC scheme. The authors would also like to thank Christian Badertscher,
Daniel Jost and Chen-Da Liu-Zhang for helpful discussions.

References

1. Abdalla, M., Bellare, M., Neven, G.: Robust encryption. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg (Feb 2010).
https://doi.org/10.1007/978-3-642-11799-2˙28

2. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improve-
ments for the IETF MLS standard for group messaging. In: Micciancio, D., Risten-
part, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 248–277. Springer,
Heidelberg (Aug 2020). https://doi.org/10.1007/978-3-030-56784-2˙9

3. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption.
In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer,
Heidelberg (Apr / May 2002). https://doi.org/10.1007/3-540-46035-7˙6

4. Badertscher, C., Banfi, F., Maurer, U.: A constructive perspective on signcryption
security. In: Catalano, D., De Prisco, R. (eds.) SCN 18. LNCS, vol. 11035, pp. 102–
120. Springer, Heidelberg (Sep 2018). https://doi.org/10.1007/978-3-319-98113-0˙6

5. Badertscher, C., Maurer, U., Portmann, C., Rito, G.: Revisiting (R)CCA security
and replay protection. In: Garay, J. (ed.) PKC 2021, Part II. LNCS, vol. 12711,
pp. 173–202. Springer, Heidelberg (May 2021). https://doi.org/10.1007/978-3-030-
75248-4˙7

6. Barth, A., Boneh, D., Waters, B.: Privacy in encrypted content distribution using
private broadcast encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS,
vol. 4107, pp. 52–64. Springer, Heidelberg (Feb / Mar 2006)

7. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (Dec 2001). https://doi.org/10.1007/3-540-45682-1˙33

8. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
Security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (May 2000). https://doi.org/10.1007/3-
540-45539-6˙18

9. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast en-
cryption with short ciphertexts and private keys. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (Aug 2005).
https://doi.org/10.1007/11535218˙16

28

https://doi.org/10.1007/978-3-642-11799-2_28
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1007/3-540-46035-7_6
https://doi.org/10.1007/978-3-319-98113-0_6
https://doi.org/10.1007/978-3-030-75248-4_7
https://doi.org/10.1007/978-3-030-75248-4_7
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/11535218_16

10. Borisov, N., Goldberg, I., Brewer, E.A.: Off-the-record communication, or, why not
to use PGP. In: Atluri, V., Syverson, P.F., di Vimercati, S.D.C. (eds.) WPES 2004.
pp. 77–84. ACM (2004), https://doi.org/10.1145/1029179.1029200

11. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. Journal of Cryptology 33(4),
1914–1983 (Oct 2020). https://doi.org/10.1007/s00145-020-09360-1

12. Damg̊ard, I., Haagh, H., Mercer, R., Nitulescu, A., Orlandi, C., Yakoubov, S.:
Stronger security and constructions of multi-designated verifier signatures. In: Pass,
R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 229–260. Springer,
Heidelberg (Nov 2020). https://doi.org/10.1007/978-3-030-64378-2˙9

13. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.)
CRYPTO’93. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (Aug 1994).
https://doi.org/10.1007/3-540-48329-2˙40

14. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 1–27. Springer, Heidelberg (May 2016). https://doi.org/10.1007/978-
3-662-49890-3˙1

15. Gjøsteen, K., Kr̊akmo, L.: Universally composable signcryption. In: López, J.,
Samarati, P., Ferrer, J.L. (eds.) EuroPKI 2007. LNCS, vol. 4582, pp. 346–353.
Springer (2007), https://doi.org/10.1007/978-3-540-73408-6 26

16. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U.M. (ed.) EUROCRYPT’96. LNCS, vol. 1070, pp. 143–
154. Springer, Heidelberg (May 1996). https://doi.org/10.1007/3-540-68339-9˙13

17. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: Almost-optimal guar-
antees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019,
Part I. LNCS, vol. 11476, pp. 159–188. Springer, Heidelberg (May 2019).
https://doi.org/10.1007/978-3-030-17653-2˙6

18. Kohlweiss, M., Maurer, U., Onete, C., Tackmann, B., Venturi, D.: Anonymity-
preserving public-key encryption: A constructive approach. In: De Cristofaro, E.,
Wright, M.K. (eds.) PETS 2013. LNCS, vol. 7981, pp. 19–39. Springer, Heidelberg
(Jul 2013). https://doi.org/10.1007/978-3-642-39077-7˙2

19. Laguillaumie, F., Vergnaud, D.: Multi-designated verifiers signatures. In: López, J.,
Qing, S., Okamoto, E. (eds.) ICICS 04. LNCS, vol. 3269, pp. 495–507. Springer,
Heidelberg (Oct 2004)

20. Laguillaumie, F., Vergnaud, D.: Designated verifier signatures: Anonymity and
efficient construction from any bilinear map. In: Blundo, C., Cimato, S. (eds.)
SCN 04. LNCS, vol. 3352, pp. 105–119. Springer, Heidelberg (Sep 2005).
https://doi.org/10.1007/978-3-540-30598-9˙8

21. Li, Y., Susilo, W., Mu, Y., Pei, D.: Designated verifier signature: Definition,
framework and new constructions. In: Indulska, J., Ma, J., Yang, L.T., Ungerer,
T., Cao, J. (eds.) UIC 2007. LNCS, vol. 4611, pp. 1191–1200. Springer (2007),
https://doi.org/10.1007/978-3-540-73549-6 116

22. Libert, B., Paterson, K.G., Quaglia, E.A.: Anonymous broadcast encryption: Adap-
tive security and efficient constructions in the standard model. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 206–224. Springer,
Heidelberg (May 2012). https://doi.org/10.1007/978-3-642-30057-8˙13

23. Lipmaa, H., Wang, G., Bao, F.: Designated verifier signature schemes: Attacks, new
security notions and a new construction. In: Caires, L., Italiano, G.F., Monteiro,
L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 459–471.
Springer, Heidelberg (Jul 2005). https://doi.org/10.1007/11523468˙38

29

https://doi.org/10.1145/1029179.1029200
https://doi.org/10.1007/s00145-020-09360-1
https://doi.org/10.1007/978-3-030-64378-2_9
https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-540-73408-6_26
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-642-39077-7_2
https://doi.org/10.1007/978-3-540-30598-9_8
https://doi.org/10.1007/978-3-540-73549-6_116
https://doi.org/10.1007/978-3-642-30057-8_13
https://doi.org/10.1007/11523468_38

24. Maurer, U., Portmann, C., Rito, G.: Giving an adversary guarantees (or: How to
model designated verifier signatures in a composable framework). In: Tibouchi,
M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13092, pp. 189–219. Springer
(2021), https://doi.org/10.1007/978-3-030-92078-4 7

25. Maurer, U., Portmann, C., Rito, G.: Multi-designated receiver signed
public key encryption. Cryptology ePrint Archive, Report 2022 (2022),
https://eprint.iacr.org/2022

26. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC. pp. 427–437. ACM Press (May 1990).
https://doi.org/10.1145/100216.100273

27. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO’91. LNCS, vol. 576, pp.
433–444. Springer, Heidelberg (Aug 1992). https://doi.org/10.1007/3-540-46766-
1˙35

28. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS. pp. 543–553. IEEE Computer Society Press
(Oct 1999). https://doi.org/10.1109/SFFCS.1999.814628

29. Steinfeld, R., Bull, L., Wang, H., Pieprzyk, J.: Universal designated-verifier sig-
natures. In: Laih, C.S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 523–542.
Springer, Heidelberg (Nov / Dec 2003). https://doi.org/10.1007/978-3-540-40061-
5˙33

30. Steinfeld, R., Wang, H., Pieprzyk, J.: Efficient extension of standard Schnorr/RSA
signatures into universal designated-verifier signatures. In: Bao, F., Deng, R., Zhou,
J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 86–100. Springer, Heidelberg (Mar 2004).
https://doi.org/10.1007/978-3-540-24632-9˙7

31. Zhang, Y., Au, M.H., Yang, G., Susilo, W.: (strong) multi-designated verifiers
signatures secure against rogue key attack. In: Xu, L., Bertino, E., Mu, Y. (eds.) NSS
2012. LNCS, vol. 7645, pp. 334–347. Springer (2012), https://doi.org/10.1007/978-
3-642-34601-9 25

30

https://doi.org/10.1007/978-3-030-92078-4_7
https://eprint.iacr.org/2022
https://doi.org/10.1145/100216.100273
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1007/978-3-540-40061-5_33
https://doi.org/10.1007/978-3-540-40061-5_33
https://doi.org/10.1007/978-3-540-24632-9_7
https://doi.org/10.1007/978-3-642-34601-9_25
https://doi.org/10.1007/978-3-642-34601-9_25

	Multi-Designated Receiver Signed Public Key Encryption

