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Abstract. We build the first construction of a partially oblivious pseu-
dorandom function (POPRF) that does not rely on bilinear pairings.
Our construction can be viewed as combining elements of the 2HashDH
OPRF of Jarecki, Kiayias, and Krawczyk with the Dodis-Yampolskiy
PRF. We analyze our POPRF’s security in the random oracle model via
reduction to a new one-more gap strong Diffie-Hellman inversion assump-
tion. The most significant technical challenge is establishing confidence
in the new assumption, which requires new proof techniques that enable
us to show that its hardness is implied by the q-DL assumption in the
algebraic group model.
Our new construction is as fast as the current, standards-track OPRF
2HashDH protocol, yet provides a new degree of flexibility useful in a
variety of applications. We show how POPRFs can be used to prevent
token hoarding attacks against Privacy Pass, reduce key management
complexity in the OPAQUE password authenticated key exchange pro-
tocol, and ensure stronger security for password breach alerting services.
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1 Introduction

An oblivious pseudorandom function (OPRF) [23, 32] allows a client holding
a private input x and a server holding a key sk for a PRF f to engage in
a protocol to obliviously evaluate fsk on x. The client learns (and optionally
verifies) the evaluation fsk(x) while the server learns nothing. Partially-oblivious
PRFs (POPRF), first introduced by Everspaugh et al. in the context of the
Pythia password hardening system [20], extend this functionality to include a
public input (or metadata tag) t for the PRF evaluation. A client learns (and,
optionally, verifies) fsk(t, x) where t is known by both server and client; the
private input x remains hidden.

OPRFs are increasingly becoming a critical cryptographic tool for privacy-
preserving protocols. Examples include one-time use anonymous credentials for
spam prevention [18], private set intersection (PSI) for checking compromised



credentials [36, 42], de-identified authenticated logging [26], and password au-
thenticated key exchange [28,30]. In all these applications, we observe that there
is a need to “partition” the PRF in a productive manner, i.e., allowing computa-
tion of fsk(t, x) using domain separation on some public value t. OPRF blinding
protocols do not support this in a secure manner, because the server cannot ver-
ify what t is used within a client’s oblivious request. Most OPRF applications
therefore use a separate key instance for each t, with an associated increase in
key management complexity. POPRFs directly provide this functionality. While
one can simply use a standard PRF with a master key to derive a key for each t
(see, e.g., [29]), there is no known way to make this efficiently verifiable. The only
known POPRF supporting efficient verification relies on bilinear pairings [20],
which slows performance relative to the best known OPRF and also complicates
deployment given the lack of widespread implementation support for pairings.

In this work, we introduce a new POPRF that combines aspects of the
2HashDH OPRF of Jarecki et al. [28], that is the de facto standard used in
practice, with the Dodis-Yampolskiy (DY) verifiable random function [19]. Our
POPRF is also closely related to a signature scheme suggested by Zhang, Safavi-
Naini, and Susilo (ZSS) [46, 47]. Our new POPRF, called 3HashSDHI, is essen-
tially as performant as 2HashDH and does not rely on pairings, thereby enabling
support for a public input virtually for free. While 3HashSDHI’s protocol is sim-
ple, its analysis is not, requiring a new interactive discrete log (DL) assumption
whose security we reduce to q-DL in the algebraic group model [24]. We also pro-
vide new formal security notions for POPRFs and (as a special case) OPRFs,
which we believe will be of independent interest.

Formal syntax and security notions for POPRFs. We start with the latter
contribution. We provide a new formalization for POPRFs, including syntax,
semantics, and security definitions. Our formal syntax builds off of [20] and
previous OPRF formalizations [28, 32]. In terms of security, we propose new
property-based security definitions that cover pseudorandomness (in the face
of malicious clients) as well as request privacy and verifiability (in the face of
malicious servers). Our property-based security games avoid the ideal function
based formulations inherited from 2PC and used in prior works on OPRFs; they
also avoid the non-standard “one-more” PRF security definition of [20].

Our pseudorandomness notion for POPRFs guarantees that the evaluation
outputs look random to a malicious client, even when the malicious client has
access to a blinded evaluation oracle. It is formalized with a simulation-based
indistinguishability game that takes rough inspiration from the UC-style all-in-
one OPRF security definition of [28] and prior notions for partially blind signa-
tures [1]. Here an adversary must distinguish between real evaluations of the PRF
given access to a blind evaluation oracle, and evaluations of a random function
given access to a simulated blind evaluation oracle. The simulator can receive
random function evaluations on a limited number of points for any given public
input t, where the limit is determined by the number of times the adversary has
queried the blind evaluation oracle for that t. This restriction captures that only
one random function evaluation is learned for each blind evaluation. Note that



our accounting is more granular than the general “ticketing” approaches of blind
UC protocols [22, 28, 33]), due to the need of tying invocations to particular t
values.

Our next notion is request privacy which captures that nothing about a client
message x should leak to a malicious server during an oblivious evaluation, and,
moreover, the server should not be able to associate an output fsk(t, x) to the
particular oblivious request transcript used to produce fsk(t, x). The latter is
often referred to as a linking attack, and is problematic in various applications
of POPRFs. Our request privacy notion comes in two flavors, depending on
whether the malicious server behaves passively or actively. The former allows us
to analyze the privacy of schemes that do not allow verification that a server le-
gitimately computed the blinded evaluation protocol; the latter requires schemes
to allow client-side verification of the server’s response.

Finally we formalize a notion of uniqueness. It ensures that a malicious server
cannot trick clients into accepting inconsistent evaluations, relative to a shareable
public key associated to the secret key sk. This is similar to the property of
verifiability, which, informally, states that servers prove in zero-knowledge that
output fsk(t, x) corresponds to the public key associated with sk.

The 3HashSDHI construction. The main contribution of this work is a new
construction of a POPRF, which we call 3HashSDHI. The name refers to its
use of three hashes and its reliance on the strong Diffie-Hellman inversion as-
sumption. Its starting point is the 2HashDH construction of Jarecki et al. [28],
whose full PRF evaluation we define as 2HashDH.Ev(sk, x) = H2(x,H1(x)sk). The
blinded evaluation protocol has the client send B = H1(x)r for random r, and
the server respond with B′ = Bsk . The client can unblind to (B′)1/r = H1(x)sk

in order to complete the evaluation of the function. Here operations are over
a prime-order group (written multiplicatively) such as an elliptic curve. Proof
of evaluation consists of a simple Chaum-Pedersen proof of discrete log equal-
ity [15] proving logg pk = logB B

′ where pk = gsk is the server’s public key. As
mentioned, 2HashDH is already in use in practice [18, 26, 42] and is on track to
become a standard [17].

We want a way to extend 2HashDH to allow public tags. To do so, we take
inspiration from the Dodis-Yampolskiy PRF, whose evaluation is defined as
DY.Ev(sk, t) = g1/(sk+t). Put together, the 3HashSDHI scheme gives a PRF
evaluated as:

3H.Ev(sk, t, x) = H2

(
t, x,H1(x)1/(sk+H3(t))

)
.

It can therefore be interpreted as evaluating the Dodis-Yampolskiy PRF on
the public input t over a random generator determined by the private input x,
followed by a final hashing step. The basic structure of H1(x)1/(sk+H3(t)) was also
described in an attempt to build secure partially blind signatures by ZSS [46].
Their analysis is incorrect, as we discuss further below and in Section 4.

To perform a blind evaluation, the client hashes and blinds their private input
as B = H1(x)r using a random scalar r and sends B to the server holding sk.
The server computes and sends back to the client the strong Diffie-Hellman



inversion B′ = B1/(sk+H3(t)) of the blinded element using the secret key and
public hash of the public input t. The client can unblind by computing (B′)1/r =
H1(x)1/(sk+H3(t)) and then complete the evaluation by hashing appropriately.
To provide verifiability, the server uses a Chaum-Pedersen zero-knowledge proof
(ZKP) of discrete log equality to prove logg pk

′ = logB′ B where pk′ = pk ·gH3(t)

which can be easily computed from public values by the client.

Our protocol incurs minimal overhead on top of the OPRF blind evaluation
of 2HashDH, requiring only an extra hash computation, group operation, and
scalar inversion. It makes use of the same Chaum-Pedersen proof for verifiability,
which, as has been observed for 2HashDH, allows for evaluation of a batch of
inputs whilst only constructing one Chaum-Pedersen proof [17,18] (provided the
batch is for the same public metadata tag t).

We formally show request privacy against passive adversaries (without ZKP)
holds based just on the randomness of the blinding, and that request privacy
against malicious adversaries holds additionally assuming the ZKP is sound. The
key technical challenge is proving the new POPRF is pseudorandom.

As is seemingly requisite for schemes with blinded evaluation protocols, we
prove the pseudorandomness security of our scheme with respect to a one-more
gap style assumption [4,8]. In fact the algebraic structure exposed to adversarial
clients by the 3HashSDHI blinded evaluation protocol — raising an arbitrary
group element Y to 1/(sk + H3(t)) for adversarial t — requires new proof tech-
niques compared to prior approaches. We start by introducing a new one-more
gap strong Diffie-Hellman inversion (OM-Gap-SDHI) assumption, based on the
perceived hardness of computing Y 1/(x+c) for any base Y and (restricted) scalars
c. We show via a relatively straightforward proof that this assumption is suf-
ficient to prove POPRF pseudorandomness for 3HashSDHI, modeling the hash
functions as random oracles. Additionally, the verifiable version requires that
the ZKP is zero-knowledge.

The main difficulty is analyzing the security of our new computational as-
sumption. In particular, for given distinct constants c1, . . . , cn, the assumption
considers a setting with an oracle SDH returning B1/(x+ci) on input (B, i). Given
some additional random group elements Y1, . . . , Ym, it requires it to be hard to

compute ` elements Y
1/(x+ci)
i1

, . . . , Y
1/(x+ci)
i`

, for any i ∈ [n] and for distinct
i1, . . . , i` ∈ [m], using fewer than ` queries SDH(·, i). The challenge is that we
do not restrict the number of queries SDH(X, j) for j 6= i, and this could be for
group elements of X that depend on ci (e.g., X is a prior output of an SDH(·, i)
query). Ultimately, we show in the algebraic group model (AGM) [24] that the
assumption reduces to one of the uber assumptions from Bauer, Fuchsbauer, and
Loss [3], and therefore, in turn, is implied by the q-DL assumption, where q is a
bound on the number of oracle queries. This AGM analysis implies hardness of
the new assumption in the generic group model (GGM) [37,40].

In terms of concrete security, our analysis shows that, roughly speaking,
3HashSDHI is as hard as breaking the q-DL problem. Actually our main AGM
proof is loose by a factor that is the maximum number of blind evaluation
queries made by an adversary. Whether this AGM analysis can be tightened is



an open question, but we observe in the body that a slight alternative to our
AGM analysis gives a tight reduction in the GGM. We suggest using this tighter
analysis to drive parameter selection: the best known attack against q-DL is
due to Cheon [16] and indicates that a 256-bit group suffices for 80-bit security
and a 384-bit group for 128-bit security. Importantly this matches the situation
for 2HashDH, and so moving to 3HashSDHI does not require changing group
parameters to achieve the desired security levels.

Partially-blind signatures. Our techniques provide a new approach to build-
ing partially-blind signatures [1]. Whereas an OPRF requires access to the pri-
vate key to verify a given input, a blind signature protocol only requires the
public key. This property is useful for a number of applications and deployment
settings. For example, in settings where multiple instances of a verifier may check
the output of the OPRF, each instance would either (a) require access to the
private key or (b) request verification from an entity which holds the private key.
The former may be problematic if instances that verify outputs do not mutually
trust one another or cannot otherwise share private key material, and the lat-
ter may be problematic because it incurs a network performance penalty. Blind
signatures avoid both problems by allowing each instance to use the public key
for verification.

Blind signatures are used in one-time use anonymous credentials, and are also
being proposed as a tool for private click measurement (PCM) in the W3C [45].
One limitation in these use cases is that the protocols do not admit public
metadata in the signature computation. PCM, for example, would benefit from
binding additional context to signature computations [45].

As previously mentioned, the 3HashSDHI construction is closely related to
the ZSS partially blind signature scheme [46], which uses pairings. As we explain
in Section 4, the original unforgeability proof is however incorrect. We rectify
this situation and provide the first formal analysis of the security of ZSS using
our new techniques in the full version [43]. To the best of our knowledge, this
result provides the most efficient partially-blind signature supporting arbitrary
public metadata; previous RSA-based constructions [1,2] require the set of public
metadata tags to be incorporated during parameter setup, previous Schnorr-
based constructions [2, 25] are vulnerable in the concurrent signing setting [7],
and other existing constructions are more heavyweight as they are tailored for
the anonymous credential setting [10].

Finally, we also show how any unique (partially) blind signature scheme
can be used to generically construct a POPRF by hashing the signature using
a random oracle. This is apparently a folklore result for OPRFs, and we are
unaware of any formal treatment it. We provide one that also covers partial
obliviousness/blindness. See the full version [43].

Applications of our POPRF. Equipped with our new POPRF and the under-
lying design of 3HashSDHI, we return to our motivating applications and show
how swapping in a POPRF for the existing OPRF can lead to various benefits
for deployments.



One-time use anonymous credentials. Privacy Pass [12, 18] is a protocol in
which clients may be issued one-time use tokens that can later be redeemed
anonymously to authenticate themselves. It has been proposed for use in the
context of content distribution networks and web advertising, requiring users to
authenticate with a token, and thereby reducing malicious web requests, pro-
tecting against, e.g., denial-of-service attacks and fraudulent advertisement con-
versions. Tokens are issued to users that prove trustworthiness, e.g., through a
CAPTCHA challenge. The protocol is being considered for standardization by
both the IETF and the World Wide Web Consortium (W3C), and a prototype
deployment is already in production use by Cloudflare, hCaptcha, and others.

An OPRF is the core component of the protocol. Tokens are issued via an
OPRF in which users obtain evaluations at random points, storing the point x
and evaluation y. Redeeming a token simply involves showing the pair (x, y),
which the server can check is valid, but cannot link x back to an issuance due to
the oblivious evaluation. The server stores a strikelist of used tokens to prevent
double spending. Additionally, all servers perform a global double-spend check
to avoid clients from exploiting the possibility of spending tokens more than
once against distributed token checking systems. The use of an OPRF leads to a
more efficient issuance protocol than alternate approaches for keyed-verification
anonymous credentials that support attributes and proofs over attributes [13,14].

An abuse of the protocol that has been observed in its early use is individual
users (or groups of users) gathering tokens over a long period of time and redeem-
ing them all at once, e.g., in an attempt to overwhelm a website. We refer to such
behavior as a hoarding attack. A conceptually easy way to mitigate the damage
of a hoarding attack is to expire old unspent tokens after an amount of time: the
way to do this with an OPRF is by rotating the OPRF key. But key rotations
are complex, limiting their frequency: establishing trust in a frequently-rotating
key is a challenging problem. Trustworthy keys are important in this context,
as a server that equivocates on their public key can link token issuances and
redemptions, by, for example, using a unique public key for each issuance. As we
show, POPRFs address the issue of expiring tokens without the need of rotating
keys by using the public metadata input to encode an expiration epoch.

Bucketized PSI for checking compromised credentials. Password breach alert-
ing protocols [36,42] allow a user to query to determine if their username, pass-
word pair (u, pw) has appeared in a dataset D of known breaches. If so, the
user is vulnerable to credential stuffing attacks and should change their pass-
word. Current services for breach alerting rely on an ad hoc 2HashDH-based
private-set membership protocol that achieves scalability via bucketization: the
user sends a truncated hash H(u) of their username to identify a subset B ⊆ D
that have matching truncated username hash. A 2HashDH-based protocol is
then performed over B: the client obliviously evaluates 2HashDH.Ev(sk, u ‖ pw)
with sk held by server, and also obtains the OPRF outputs for all the values in
the bucket B. Bucketization ensures scalability by limiting |B| despite |D| being
on the order of billions of username, password pairs.



One issue is that currently deployed protocols provide no cryptographic bind-
ing between the bucket identifier H(u) and the blinded OPRF output: a malicious
client can query for arbitrary usernames, not just ones that match H(u). Whether
this is a significant security problem in practice is not clear, but we note that
POPRFs easily rectify it by replacing 2HashDH above with 3HashSDHI and
setting t = H(u).

Asymmetric password-authenticated key exchange. Password authenticated
key exchange (PAKE) protocols [6] allow a client and server to establish a
shared session key authenticated by a short password. Strong asymmetric PAKE
(SaPAKE) protocols [30] additionally ensure that the server stores what amounts
to private salted hashes of user passwords. Since these salted hashes are private,
an attacker cannot perform offline pre-computation that would lead to instan-
taneous compromise of user passwords upon the event of a server breach. The
OPAQUE [30] SaPAKE protocol uses an OPRF as one of its core components; it
is currently being considered for standardization by the IETF [34]. The OPRF
suggested for use is 2HashDH.

In OPAQUE the server uses a separate OPRF key for each user. We show
how we can instead use our 3HashSDHI POPRF to allow OPAQUE to work
with a single master key pk; diversity across users can then be provided using
usernames as the public input t to 3HashSDHI. We believe that this will simplify
deployments and potentially improve their security, as discussed in the body.

2 Preliminaries

2.1 Algebraic Group Model

In some of our security proofs, we consider security against algebraic adver-
saries which we model using the algebraic group model, following the treatment
of [24]. We call an algorithm A algebraic if for all group elements Z that are
output (either as final output or as input to oracles), A additionally provides
the representation of Z relative to all previously received group elements. The
previous received group elements include both original inputs to the algorithm
and outputs received from calls to oracles. More specifically, if [X]i is the list
of group elements [X0, . . . , Xn] ∈ G that A has received so far, then, when pro-
ducing group element Z, A must also provide a list [z]i = [z0, . . . , zn] such that
Z =

∏
iX

zi
i .

2.2 Random Oracle Model

We will prove security using ideal primitives, modeling hash functions as ran-
dom oracles. Since our schemes will make use of more than one hash function,
it will be useful to have a general abstraction for the use of ideal primitives,
following the treatment of [27]. An ideal primitive P specifies algorithms P.Init
and P.Eval. The initialization algorithm has syntax stP←$ P.Init(1λ). The state-
ful evaluation algorithm has syntax y←$ P.Eval(x : stP). We sometimes use AP



as shorthand for giving algorithm A oracle access to P.Eval(· : stP). While, the
stateful formulation of the ideal primitive is used to allow for efficient instan-
tiation in our security proofs, e.g., by “lazy sampling”, ideal primitives should
be essentially stateless [27] to prevent contrived behavior. For example, a ran-
dom oracle can be written to be stateless, but it would inefficient to have to
store a huge random table. We can combine access to multiple ideal primitives
primitives P = P1 × . . .× Pm as follows:

P.Init(1λ)

[stP,i]
m
i
←$

[
Pi.Init(1λ)

]m
i

Return [stP,i]
m
i

P.Eval(x : [stP,i]
m
i

)

(i, x)← x

y←$ Pi.Eval(x : stP,i)

Return y

To concretize the above, we focus on random oracles. We define a random oracle
that takes arbitrary input and produces random output from a sampling algo-
rithm Samp. It is captured by the ideal primitive RO[Samp] = (RO.Init,RO.H)
defined as follows. When the range is clear from context, Samp may be omitted.

RO.Init(1λ)

T ← [·]
Return T

RO.Eval(x : T )

If x 6∈ T then T [x]←$ Samp()

Return T [x]

When clear from context and in an abuse of notation (since we will use Hi to
denote a hash function as well), we will write P = H1 × · · · × Hm as the ideal
primitive that gives access to m random oracles, accessible by querying directly
an oracle labeled Hi.

Algebraic algorithms in the random oracle model. As in [25], to support
algebraic algorithms, we will require the structure of the domain and range to
be specified for any random oracle RO. We assume an input can be efficiently
checked to be a valid member of the domain and perform such checks implicitly
returning ⊥ if they fail. We will require that algebraic algorithms provide repre-
sentations for any group element input, specified as part of the domain of RO.
And similarly, any group element output of RO is included in the list of received
group elements for the algebraic adversary.

2.3 Non-interactive Zero Knowledge Proofs

We define a non-interactive proof system NiZK over an efficiently computable
relation R defined over pairs (x,w) where x is called the statement and w is
called the witness. It is made up of the following algorithms. The setup al-
gorithm produces the public parameters for execution, pp←$ NiZK.Setup(λ).
The proving algorithm takes a witness and statement and produces a proof,
π←$ NiZK.ProveP

pp(w, x)4. The verification algorithm verifies the proof for a

statement, b← NiZK.VerP
pp(x, π). We define the following security properties.

Completeness. A proof system is complete if given a true statement, a prover
with a witness can convince the verifier. We will make use of a proof system

4 P is an arbitrary ideal primitive.



Game SoundANiZK,R,P(λ)

pp←$ NiZK.Setup(λ)

stP ←$ P.Init(λ)

(x, π)←$AP(pp)

Return∧NiZK.VerP(x, π)

6 ∃w : (x,w) ∈ R



Game ZKA,bNiZK,R,S,P(λ)

pp1←$ NiZK.Setup(λ)

stP ←$ P.Init(λ)

(stS, pp0)←$ S.Init(λ)

b′←$APrim,Prove(ppb)

Return b′

Oracle Prove(x,w)

Require (x,w) ∈ R
π1←$ NiZK.ProveP(x,w)

π0←$ S.Prove(x : stS)

Return πb

Oracle Prim(x)

y1←$ P.Eval(x : stP)

y0←$ S.Eval(x : stS)

Return yb

Fig. 1: Soundness (left) and zero knowledge (right) security games for non-interactive
zero knowledge proof systems.

with perfect completeness. A proof system has perfect completeness if for all
(x,w) ∈ R,

Pr
[
NiZK.VerP

pp(x,NiZK.ProveP
pp(w, x)) = 1

]
= 1 .

Knowledge soundness. A proof system is computationally knowledge sound
if whenever a prover is able to produce a valid proof for a statement x, it is a
true statement, i.e., there exists some witness w such that (x,w) ∈ R. Knowl-
edge soundness is defined by the security game SoundANiZK,R,P(λ) (Figure 1)
in which an adversary is tasked with finding a verifying statement and proof
where the statement is not in R. The advantage of an adversary is defined as
Advsound

NiZK,R,P,A(λ) = Pr[SoundANiZK,R,P(λ) = 1] with respect to ideal primitive P.

Zero knowledge. A proof system is computationally zero-knowledge if a proof
does not leak any information besides the truth of a statement. Zero knowledge
is defined by the security game ZKA,bNiZK,R,S,P(λ) (Figure 1) in which an adversary
is tasked with distinguishing between proofs generated from a valid witness and
simulated proofs generated without a witness. The advantage of an adversary is
defined as

Advzk
NiZK,R,S,P,A(λ) =

∣∣∣Pr[ZKA,1NiZK,R,S,P(λ) = 1]− Pr[ZKA,0NiZK,R,S,P(λ) = 1]
∣∣∣ ,

with respect to simulator algorithm S and ideal primitive P.

Fiat-Shamir heuristic for Sigma protocols. Our protocol requires a non-
interactive zero knowledge proof for the relation including two pairs of group
elements with equivalent discrete logs:

R = {(g, U, V,W ), (α) : U = gα ∧W = V α} .
This relation falls into a general family of relations of discrete log linear ho-
momorphisms for which there exist so-called “Sigma protocols” [9] to construct
interactive proofs of knowledge. These can be made non-interactive using the
Fiat-Shamir heuristic in the standard way. We denote ΣR[GGen] (shortened to
ΣR for simplicity) as the resulting non-interactive proof system for R known
as the Chaum-Pedersen protocol [15] (shown in Figure 2); it is perfectly com-
plete, computationally sound, and perfectly zero-knowledge in the random oracle
model.



ΣR.ProveH(α, (g, U, V,W ))

r←$ Zp
sU ← gr ; sW ← V r

c← H(g ‖ U ‖ V ‖ W ‖ sU ‖ sW )

z ← r − cα
π ← (z, c)

Return π

ΣR.VerH((g, U, V,W ), π)

(z, c)← π

sU ← gzUc ; sW ← V zW c

Return c = H(g ‖ U ‖ V ‖ W ‖ sU ‖ sW )

R = {(α), (g, U, V,W ) : U = gα ∧W = V α}

Fig. 2: Description of Chaum-Pedersen discrete log equality Sigma protocol [15].

3 Partially Oblivious Pseudorandom Functions

We provide a new formalization for POPRFs, including syntax, semantics, and
security. Our formalization builds off that from [20], but we offer new security
notions that cover simulation-based security as a PRF (in the presence of a
blinded evaluation oracle), client input privacy, and verifiability.

Syntax and semantics. A partially-oblivious pseudorandom function (POPRF)
scheme, Fn, is a tuple of algorithms

(Fn.Setup,Fn.KeyGen,Fn.Req,Fn.BlindEv,Fn.Finalize,Fn.Ev) .

The setup and key generation algorithm generate public parameters pp and a
public key, secret key pair (pk, sk), respectively. Oblivious evaluation is carried
out as an interactive protocol run between client and server. The protocols we
consider in this work make use of only a single round of interaction, so we sim-
plify the syntax of the interactive oblivious evaluation protocol into algorithms
(Fn.Req, Fn.BlindEv, Fn.Finalize) that work as follows:

(1) First, a client runs the algorithm Fn.ReqP
pp(pk, t, x), which takes input a

public key pk, tag (or public input) t, and private input x, and outputs
a local state st and a request message req. The message req is sent to a
server.

(2) A server runs algorithm Fn.BlindEvP
pp(sk, t, req), using as input a secret key,

a tag t, and the request message. It produces a response message rep that
should be sent back to the client.

(3) Finally, the client runs the algorithm Fn.Finalize(rep : st) and outputs a
PRF evaluation or ⊥ if the response message is rejected, for example, due
to the verification check failing.

The unblinded evaluation algorithm Fn.Ev is deterministic, and takes as input a
public key, secret key pair (pk, sk), an input pair (t, x), and outputs a PRF eval-
uation y. We also define sets Fn.SK, Fn.PK, Fn.T, Fn.X, and Fn.Out representing
the secret key, public key, tag, private input, and output space, respectively. We
define the input space Fn.In = Fn.T × Fn.X. We assume efficient algorithms for
sampling and membership queries on these sets. When it is clear from context,
we drop the prefix Fn and subscript pp from algorithm names.



For correctness, we require that Ev is a function, and that the blinded and
unblinded evaluations are consistent. To formalize the latter: we require that for
any pp output from Setup, any pk, sk output by KeyGen, and any t, x, it holds
that Pr[Ev(sk, t, x) = y] = 1 where the probability is taken over choice of y via
the following process:

(st, req)←$ ReqP(pk, t, x) ; rep←$ BlindEvP(sk, t, req) ; y←$ FinalizeP(rep : st) .

Security. We introduce three new security definitions for POPRFs. We use
code-based games mostly following the framework of Bellare and Rogaway [5].

Pseudorandomness. The first definition captures pseudorandomness, i.e., in-
distinguishability of the POPRF from a random function, even for malicious
clients that have access to a blinded evaluation oracle. We borrow some ele-
ments from the UC definition for standard OPRFs from [28], but opt for what
we believe to be a simpler, standalone formulation. We also extend to handle
partial obliviousness, which has some subtleties.

A pseudocode game appears in Figure 3. The game is parameterized by a
security parameter λ, an adversaryA, a challenge bit b, a POPRF Fn, a simulator
S = (S.Init,S.BlindEv,S.Eval), and an ideal primitive P. The last will be used for
random oracles in our main result. A simulator is a triple of algorithms that
share state (explicitly denoted by stS in the game). Algorithm S.Init initializes
the simulator state and outputs a public key for the game. Algorithm S.BlindEv
simulates blinded evaluation response messages while S.Eval simulates random
oracle queries. Importantly, S.BlindEv and S.Eval can obtain Ev outputs, but
they can only do so in a circumscribed way: the simulator has oracle access to
LimEv which limits the number of full evaluations it can obtain to be at most the
number of queries so far made by the adversary to the BlindEv. Importantly,
this limit is per-metadata value t (indicated via the subscript): the LimEv query
on any particular t is bound by the total number of blinded evaluation queries on
that particular t. This follows from similar granular restrictions in the partially
blind signatures literature [1].

A weaker version of the game would simply cap the total number of queries
to LimEv by the total number of queries to BlindEv. This notion is, however,
too weak for applications because we would like to ensure that querying, say,
three times on public input t1 cannot somehow help an adversary complete the
evaluation for another public input t2 6= t1. We note that a recent preprint [41]
contained this weaker notion, couched in the context of Privacy Pass. (We discuss
this paper further in Section 4.)

We let the advantage of a POPRF adversary A be defined by

Advpo-prf
Fn,S,P,A,(λ) =

∣∣∣Pr
[
POPRFA,1Fn,S,P(λ)⇒ 1

]
− Pr

[
POPRFA,0Fn,S,P(λ)⇒ 1

]∣∣∣
where the probability spaces are taken over the random choices made in the
games and the events signify that the game outputs the value one.

One could relax our definition in various ways. For example, by setting a
parameter qt,max that upper bounds the total number of BlindEv queries on



Game POPRFA,bFn,S,P(λ)

RandFn←$ FnGen(Fn.In, Fn.Out)

stP ←$ P.Init(λ)

pp←$ Fn.Setup(λ)

(sk, pk1)←$ Fn.KeyGenP
pp()

(stS, pk0)←$ S.Init(pp)

b′←$AEv,BlindEv,Prim(pp, pkb)

Return b′

Oracle Ev(t, x)

y1 ← Fn.EvP(sk, t, x)

y0 ← RandFn(t, x)

Return yb

Oracle LimEv(t, x)

qt,s ← qt,s + 1

If qt,s ≤ qt then

Return Ev(t, x)

Return ⊥

Oracle BlindEv(t, req)

qt ← qt + 1

rep1 ← Fn.BlindEvP(sk, t, req)

(rep0, stS)←$ S.BlindEvLimEv(t, req : stS)

Return repb

Oracle Prim(x)

y1←$ P.Eval(x : stP)

(y0, stS)←$ S.EvalLimEv(x : stS)

Return yb

Fig. 3: Simulation-based security definition for pseudorandomness against malicious
clients, with granular accounting for metadata in queries. The LimEval oracle limits
the number of evaluations the simulator can make on a per-metadata tag basis.

tag t over the course of the game and letting the simulator — at any point
in the game — obtain qt,max full evaluations. This would seem to still provide
qualitatively the same level of security, but our schemes meet the stronger notion
that restricts the simulator over the course of the game. Another relaxation that
does not preserve the same level of security would be to allow the simulator
more queries than qt,max, for example, 2 · qt,max. But this degrades the security
guarantee as it means that in q queries to BlindEv on some t a malicious client
can potentially compute up to 2q POPRF outputs for that tag t.

Request privacy and unlinkability. Our second goal is to capture privacy for
clients. This means not only that requests should hide the private input portion
x, but also that request/response transcripts and output POPRF values should
be unlinkable. We formalize two models for this goal, corresponding to the level
of maliciousness by a misbehaving server.

Game POPRIV1 (Figure 4, left game) captures an indistinguishability ex-
periment in which the adversary can query to obtain full transcripts (including
output) resulting from honest blinded evaluation of a POPRF. The transcripts
are either returned properly (b = 0) or with the request-response pairs swapped
relative to the outputs (b = 1). Intuitively, if the adversary cannot distinguish
between these two worlds, then there is no way to link a POPRF output value
to a particular blinded evaluation, despite the adversary knowing the secret
POPRF key. This captures also input privacy security: if a request reveals some
information about the input x this can be used to win the POPRIV1 game. We
sometimes refer to this as request privacy against passive adversaries, because
the adversary cannot interfere with the server’s proper execution.

The advantage of a POPRIV1 adversary A in the P-model is defined by

Advpo-priv1
Fn,P,A (λ) =

∣∣∣Pr
[
POPRIV1A,1Fn,P(λ)⇒ 1

]
− Pr

[
POPRIV1A,0Fn,P(λ)⇒ 1

]∣∣∣
where the probability spaces are taken over the random choices made in the
games and the events signify that the game outputs the value one. We say a Fn
scheme is perfectly private if Advpo-priv1

Fn,P,A (λ) = 0 for all adversaries A.



Game POPRIV1A,bFn,P(λ)

pp←$ Fn.Setup(λ)

(pk, sk)←$ Fn.KeyGen(pp)

stP ←$ P.Init(λ)

b′←$ATrans,P(pp, pk, sk)

Return b′

Oracle Trans(t, x0, x1)

(st0, req0)←$ Fn.ReqP(pk, t, x0)

(st1, req1)←$ Fn.ReqP(pk, t, x1)

rep0←$ Fn.BlindEvP(sk, t, req0)

rep1←$ Fn.BlindEvP(sk, t, req1)

y0 ← Fn.FinalizeP(rep0; st0)

y1 ← Fn.FinalizeP(rep1; st1)

τ ← (reqb, repb, y0)

τ ′ ← (req1−b, rep1−b, y1)

Return (τ, τ ′)

Game POPRIV2A,bFn,P(λ)

pp←$ Fn.Setup(λ)

stP ←$ P.Init(λ)

i← 0

b′←$AReq,Fin,P(pp)

Return b′

Oracle Req(pk, t, x0, x1)

i← i+ 1

(sti,0, req0)←$ Fn.ReqP(pk, t, x0)

(sti,1, req1)←$ Fn.ReqP(pk, t, x1)

Return (reqb, req1−b)

Oracle Fin(j, rep, rep′)

If j > i then return ⊥
yb ← Fn.FinalizeP(stj,b, rep)

y1−b ← Fn.FinalizeP(stj,1−b, rep
′)

If y0 = ⊥ or y1 = ⊥ then

Return ⊥
Return (y0, y1)

Fig. 4: Security definitions for honest-but-curious server unlinkability (left) and mali-
cious server unlinkability (right).

POPRIV1 security does not capture malicious servers that deviate from the
protocol. So, for example, it doesn’t rule out attacks in which the server replies
with garbage to a blinded evaluation request.

Our next game POPRIV2 allows the adversary to choose the public keys
used for request generation and leaves to the adversary how to reply to requests.
The game therefore splits transcript generation across two oracles, a request
oracle (Req) and finalize oracle (Fin). The first oracle replies with a randomly
ordered pair of request messages based on the challenge bit, and the second
oracle can be queried with adversarially chosen response messages. The game
requires that neither y0 nor y1 is equal to ⊥ — if either is then the finalize
oracle returns ⊥. This prevents the trivial attack of corrupting one reply but not
the other.

The advantage of a POPRIV2 adversary A in the P-model is defined by

Advpo-priv2
Fn,P,A (λ) =

∣∣∣Pr
[
POPRIV2A,1Fn,P(λ)⇒ 1

]
− Pr

[
POPRIV2A,0Fn,P(λ)⇒ 1

]∣∣∣
where the probability spaces are taken over the random choices made in the
games and the events signify that the game outputs the value one.

POPRIV2 is strictly stronger than POPRIV1. Looking ahead our new
POPRF meets POPRIV1 when verification is omitted, and POPRIV2 when
verification is required.

Uniqueness. Lastly, we discuss an additional property that is relevant in the
verifiable setting when clients want to ensure that servers honestly perform blind
evaluations. This means that the output of the blind evaluation protocol should
be consistent relative to the public key pair, i.e., consistent with the output of
unblinded evaluation using the secret key. Our correctness definition requires this



is the case for honest execution of the algorithms. We formalize this correctness
property for malicious servers as a uniqueness definition POUNIQ, taking inspi-
ration from definitions used previously for verifiable random functions (c.f., [19]).
In short, no malicious server should be able to convince a client into accepting
two different outputs for the same (pk, t, x). We show that uniqueness is implied
by correctness and POPRIV2. The complete definition for POUNIQ, theorem
statement, and proof are deferred to the full version [43].

Relation to partially blind signatures. POPRFs are related to two-move
partially blind signatures, which were introduced by Abe and Fujisaki [1]. A
partially blind signature is a tuple of algorithms

DS = (DS.Setup,DS.KeyGen,DS.Sign,DS.Ver,DS.Req,DS.BlindSign,DS.Finalize)

where the first four algorithms define a standard digital signature scheme for
message space consisting of pairs (t,m), called the public input (or tag) and
private message, respectively. Signatures can also be generated via an interactive
protocol which, like we did for POPRFs, we formalize simply as a single round
trip protocol initiated by a client running DS.Req(pk, t,m) to generate a request
message req and client state st, sending the former to the server which runs
DS.BlindSign(sk, req) to generate and send a response rep back to the client,
which then computes a signature via DS.Finalize(st, rep). This protocol should
achieve blindness, which can be defined similarly to our request privacy definition
above for POPRFs.

The main security property targeted is one-more unforgeability, which, roughly
speaking, states that an adversarial client can’t generate q + 1 unique message-
signature pairs (m1, σ1), . . . , (mq+1, σq+1) that all verify under a public key pk
and public tag t even when given the ability to query a blind signing oracle with
the only restriction being that only q queries can be made for the chosen public
tag t. This intuitively enforces that each query to the blind signing oracle only
results in one learned signature, and queries for a different public tag do not help
in forging a signature for the target tag. We present a complete formal treatment
of partially blind signatures in the full version [43].

A partially blind signature is unique if DS.Sign is deterministic and its output
on (pk, t,m) matches that of the interactive protocol when initiated on the same
triple. A blind signature is just a partially blind signature with t omitted. [28]
observed that one can transform unique blind signatures into OPRFs by hash-
ing the signature. A similar transform exists to build a POPRF from a unique
partially blind signature. We provide details and proof of this transform in the
full version [43] for both cases, with and without public input). (As far as we
are aware there has been no formal treatment of this observation.)

Most prior partially blind signature schemes are not unique, e.g., [1, 2]. The
only unique scheme we are aware of is due to Zhang, Safavi-Naini, and Susilo
(ZSS) [46], but it relies on bilinear pairings and so this generic transformation will
not achieve our goals for a POPRF. Moreover as mentioned in the introduction,
the security analysis in ZSS is wrong. That said, our construction shares much of
the underlying structure from the ZSS one. Using our new proof techniques, we



furthermore provide the first complete proof of the ZSS partially blind signature
scheme (see the full version [43] ).

4 The 3HashSDHI POPRF

We now turn to our main result: providing a new POPRF. Our construction
combines elements of the 2HashDH construction with a technique used by Dodis
and Yampolskiy for their verifiable PRF; it is also related to a partially blind
signature scheme suggested by Zhang, Safavi-Naini, and Susilo. We call our
construction 3HashSDHI, which we often abbreviate to 3H. The name refers to its
use of three hashes and reliance on the strong inverse Diffie-Hellman assumption.

Algorithms. Our protocol relies on a group G of prime order p and with gen-
erator g. As mentioned in the introduction, the 3HashSDHI protocol computes
a PRF output as

3H.Ev(sk, t, x) = H2

(
t, x,H1(x)1/(sk+H3(t))

)
where H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → {0, 1}γ2 , and H3 : {0, 1}∗ → {0, 1}γ3 are
the titular hash functions. Note that H1 has range the group G, whereas the
second and third hashes output bit strings of length γ2 and γ3. By default we
set γ2 = λ and γ3 = 2λ. The third hash must be collision resistant for security to
hold. Looking ahead to the security analysis, we will model the hash functions
as random oracles. The setup, key generation, and full evaluation algorithms are
shown in pseudocode below.

3H.Setup(λ)

(p, g,G)←$ GGen(λ)

pp ← (p, g,G)

Return pp

3H.KeyGenH1×H2×H3 (pp)

(p, g,G)← pp

sk←$ Zp ; pk ← gsk

Return (pk, sk)

3H.EvH1×H2×H3 (sk, t, x)

Y ← H1(x)1/(sk+H3(t))

Z ← H2(t, x, Y )

Return Z

Here, GGen denotes a group parameter generator outputting a triple (p, g,G)
consisting of a prime p, (the description of) a group G of order p, and a genera-
tor g of G.

The blind evaluation protocol has a client compute H1(x) and mask the
resulting group element by raising it to a random scalar r. The client can send
the resulting blinded value B to the server, who can then raise B to 1/(sk+H3(t))
and return the result. The client then finalizes by raising the returned value to
1/r in order to remove the blinding, followed by the final step of computing the
final hash H2. The blinding ensures request privacy.

We optionally can extend this blinded evaluation protocol to include a proof
that the server properly exponentiated B. This is necessary to have the protocol
enjoy POPRIV2 security, which is important in some (but not all) applications.
At first, it may not be obvious how to prove to the client that the server is
returning B′ = B1/(sk+H3(t)) relative to the public key gsk , because the sum
appears in the denominator. However, we can use the following trick: the server
generates a standard DL proof that B = (B′)k for some k. The client runs



3H.ReqH1×H2×H3×H4 (pk, t, x)

r←$ Zp ; B ← H1(x)r

Return ((pk, r, t, x), B)

3H.FinalizeH1×H2×H3×H4 (B′, π; (pk, r, t, x))

Y ← (B′)1/r

Require ΣR.VerH4 ((g, gH3(t) · pk, B′, B), π)

Z ← H2(t, x, Y )

Return Z

B, t
−−−−−−−−−−→

B
′
, π

←−−−−−−−−−−

3H.BlindEvH1×H2×H3×H4 (sk, t, B)

k ← sk + H3(t)

B′ ← B1/k

π←$ ΣR.ProveH4 (k, (g, gk, B′, B))

Return (B′, π)

Fig. 5: Blind evaluation for our 3H POPRF construction. All three algorithms have
implicit input the parameters pp = (p, g,G) that describe the group used. The NIZK
uses relation R = {(g, U, V,W ), (α) : U = gα ∧W = V α}.

verification by explicitly reconstructing gk = pk · gH3(t) = gsk+H3(t). This means
that the verification procedure checks the special structure of the exponent k.

The full protocol, including the NIZK (which uses its own hash H4), is shown
in Figure 5. Here we show that t is sent from the client to server, though in
some applications the server may receive t out-of-band. Execution requires just
one round trip. It requires just two group exponentiations on the client side
(and, when using the NIZK, those used for its verification). The server uses one
exponentiation plus one for the NIZK proof.

Relation to partially blind signatures. 3HashSDHI is closely related to
a partially blind signature suggested by Zhang, Safavi-Naini, and Susilo [46]. It
uses groups G1,G2,GT each of order p, with generators g1, g2, gT , and that come
equipped with an efficient-to-compute pairing e : G1 × G2 → GT such that for
any α, β ∈ Zp it holds that e(gα1 , g

β
2 ) = gαβT . Their signature is defined as

ZSS1.Ev(sk, t, x) = HG2
(x)1/(sk+H3(t))

where HG2
: {0, 1}∗ → G2 hashes onto the group G2 and H3 is as defined above

for 3HashSDHI. We use ZSS1 to differentiate from our suggested modifications,
which we call ZSS2 and discuss in the full version [43]. As can be seen, 3HashS-
DHI uses essentially the same structure, combined with a final hash but we
dispense with the use of bilinear pairings using instead NIZKs to provide verifi-
ability. We also comment on two aspects of the original security analysis of the
partially blind signature scheme in [46]: (1) the analysis of one-more unforgeabil-
ity is incorrect; and (2) it contains an incorrect claim that so-called “exponential”
blinding (see below for discussion in the context of OPRFs) is insecure. More
precisely, for (1), the claimed security proof relies on a lemma (stated without a
proof) which says that if the scheme is secure, in terms of one-more unforgeabil-
ity, for any fixed public input, then it is secure as a partially-blind signature –
such lemma does not appear to be provable; for (2), the claimed distinguishing
test does not work, rather it identifies every pair of signature and signing tran-
script as a match, regardless of whether they are associated. Our new techniques,



in particular a variant of the new gap assumption discussed in the next section,
enable a new proof of unforgeability for the ZSS partially blind signature, and we
also provide a proof that exponential blinding is secure. See the full version [43]
for the details.

Comparison to prior (O)PRFs. Recall that the 2HashDH OPRF is defined
by 2HashDH.Ev(sk, x) = H2(x,H1(x)sk). On the other hand, the DY PRF [19] is
evaluated on a message t via DY.Ev(sk, t) = h1/(sk+t) for generator h. Thus, our
3HashSDHI can be seen as blending of the two approaches, basically defining, for
each x, a separate instance of the DY PRF with generator h = H1(x) and input
message t. The way we combine them retains the simple blinding mechanism of
2HashDH to allow hiding x. Despite the similarity to the prior constructions,
analyzing security requires new techniques (see the next section).

2HashDH is often formulated using an alternative “multiplicative” blinding
strategy as opposed to the “exponential” blinding presented here. Multiplicative
blinding enables client-side performance improvements of fixed-base exponentia-
tion with precomputation over variable-base exponentiation, but has been shown
to have some security drawbacks in the non-verified setting [31]. 3HashSDHI
is not compatible with the multiplicative blinding protocol used by 2HashDH,
however the full version [43] presents an alternative multiplicative blinding pro-
tocol [46] that enjoys the same performance benefits.

Miao et al. construct an oblivious evaluation protocol for the DY PRF [38].
Their approach makes use of the additive-homomorphic Camenisch-Shoup en-
cryption scheme [11] and related proofs of discrete log representation. In contrast,
3HashSDHI uses the more efficient oblivious evaluation approach of 2HashDH
and uses the structure of DY to tie in the public metadata, meaning the more
expensive DY oblivious evaluation techniques are avoided.

Pythia [20] provided the first POPRF. It uses pairing-friendly groups G1,G2,GT
each of order p, with generators g1, g2, gT . Then, the Pythia POPRF is defined
by

Pythia.Ev(sk, t, x) = e(HG1
(t),HG2

(x))sk

where HG2
and HG2

are hash functions that map to the groups G1,G2. This con-
struction enables blinded evaluation by sending B ← HG2

(x)r, and having the
server respond with e(HG1

(t)sk , B). It also has some other features that were de-
sirable in the password hardening context for which Pythia was designed, specif-
ically, that one can have compact key rotation tokens of the form ∆ = sk′/sk.
The token ∆ can be shared with a client to help it update previously computed
POPRF values for any t, x. Compared to Pythia’s POPRF, 3HashSDHI avoids
use of pairings. This makes it faster to compute and saves bandwidth.

That said, the 3HashSDHI construction does not support key rotations even
if one omits the final H2 evaluation. To expand, consider using a (non-compact)
key rotation in a way analogous to Pythia, i.e., distributing to a client ∆t1 =
(sk + H3(t1))/(sk′+ H3(t1)) and ∆t2 = (sk + H3(t2))/(sk′+ H3(t2)). This would
allow rotating (unhashed) POPRF outputs on public inputs t1 and t2 from an
old key sk to a new key sk′. But this also trivially reveals sk and sk′, given



that H3(t1) and H3(t2) are publicly computable. While in the applications we
explore in Section 7 we do not need key rotation tokens, the question of finding
a POPRF that avoids pairings yet supports key rotations remains open.

Jarecki et al. [29] propose construction of a POPRF F from OPRF F1 and
PRF F2 as F.Ev(sk, t, x) = F1.Ev(F2.Ev(sk, t), x). They go on to propose a con-
struction instantiating F1 with 2HashDH and F2 with a symmetric PRF (e.g.,
HMAC); this construction is highly efficient but does not provide verifiability
due to the non-algebraic choice of F2. 3HashSDHI can be thought of as fol-
lowing this approach composing 2HashDH with the algebraic VRF of Dodis-
Yampolskiy [19].

We also compare to the recent attribute-based verifiable OPRF (AB-VOPRF)
suggested by Huang et al. of Facebook [26] for use with Privacy Pass. An
attribute-based VOPRF is a POPRF that separates out an explicit algorithm
for converting a secret key and attribute t (what we call a tag) into a tag-specific
public key, secret key pair. As with other VOPRFs, there is a verifiable, blinded
evaluation protocol by which a client can obtain an output on some (t, x) pair
without revealing x. Any AB-VOPRF gives a POPRF, and vice versa.

Again following the blueprint of [29], Facebook’s proposed construction [26] of
an AB-VOPRF combines the 2HashDH OPRF with the Naor-Reingold PRF [39].
Evaluation is defined by

FB.Ev(sk, t, x) = H1(x)a0·
∏
i a
t[i]
i

where sk = a0, a1, . . . , a|t| and t[i] indicates the ith bit of t. To make this veri-
fiable, the scheme must provide a more complex NIZK involving |t| group ele-
ments, making it expensive to transmit and verify, particularly in applications
where a wide variety of tags t will be used. In comparison 3HashSDHI is as
efficient as 2HashDH.

Finally, a concurrent, independent work by Silde and Strand [41] describe
what we call the 3HashSDHI protocol and how it could be useful for Privacy
Pass and the Facebook de-identified logging application. They formalize a notion
of anonymous token security that is more tailored to Privacy Pass style applica-
tions (compared to our general POPRF definitions), but this definition contains
the aforementioned problem (see Section 3) of not performing query accounting
on a per public input basis, making it too weak of a security notion for their
applications. In addition, the security analysis relative to this notion is incom-
plete, and so the paper does not yet provide a proof even of this weaker security
notion. Nevertheless, their work underscores the benefits of the 3HashSDHI pro-
tocol in the applications they explore and our proof techniques (in particular,
the new one-more gap SDHI assumption discussed in the next section) should
enable improvements to their analysis.

Extension to private metadata bit. Recall a primary application of OPRFs
is in the construction of anonymous tokens. We have thus far been concerned with
adding support for public metadata, but there are also settings that benefit from
being able to associate private metadata to tokens that can only be identified by
the issuer. To prevent trivial linking attacks by a malicious server, it is necessary



that the private metadata space remain small. Kreuter et al. propose a variant
of Privacy Pass (based on the 2HashDH OPRF) that supports a single private
metadata bit [35]. The high level approach is to simply maintain two keys and
prove in zero knowledge that the token is issued under one of the two keys.
However, they observe that a deterministic primitive (like a PRF) is insufficient
to achieve indistinguishability between private metadata bits. Therefore, the core
of their construction is a new anonymous token protocol that can be considered
as a randomized variant of 2HashDH. It is likely similar techniques can be applied
to construct a randomized version of 3HashSDHI to support public metadata
as well as a private metadata bit; we leave the details of such a construction to
future work. Silde and Strand propose a construction along these lines, but as
mentioned before, the security analysis is incomplete [41].

5 Security Analysis

We show formally that the 3HashSDHI PO-PRF enjoys pseudorandomness and
request privacy. The former is the more complex analysis; we start with it.

5.1 Pseudorandomness

The main technical challenge is showing that 3HashSDHI meets our pseudoran-
domness definition, captured by game POPRF (Figure 3 in Section 3). We start
with an overview of our proof strategy, and then state our main result.

Proof strategy. Our proof of pseudorandomness proceeds in several steps.
First, we introduce a new discrete log (DL) type cryptographic hardness as-
sumption: the one-more gap strong Diffie-Hellman inversion problem, denoted
(m,n)-OM-Gap-SDHI for parameters m,n that we will explain. The new as-
sumption is a generalization of prior one-more DL assumptions, but extended
with two oracles and a more involved one-more winning condition which depends
on the number of queries with a specific form to one of the oracles. We show
that we can build a POPRF simulator such that, in the ROM, distinguishing
between the real (b = 1) and ideal worlds (b = 0) reduces to breaking an instance
of (m,n)-OM-Gap-SDHI where m is the number of H3 queries made by A and n
is the number of H1 queries. We note that use of random oracles here allows us
to avoid the more complex proof techniques used by Dodis and Yampolskiy [19],
and indeed it is unclear what kind of analysis could work for this step without
random oracles.

In the second step, we analyze the security of our new assumption, showing
that, in the Algebraic Group Model (AGM) [24] it reduces to one of the uber
assumptions from Bauer, Fuchsbauer, and Loss (BFL) [3]. In turn, we can use a
result from BFL to finally show that our new assumption is implied (again, in
the AGM) by the q-DL assumption. This provides good evidence of the difficulty
of the problem, and allows us to derive precise concrete security bounds.



The one-more gap SDHI assumption. Game (m,n)-OM-Gap-SDHI is
shown in Figure 7. The game generates a group instance and a challenge se-
cret sk. The adversary A = (A1,A2) runs in two stages. In the first stage it
receives the group description p,G and outputs a sequence of n scalar values
c1, . . . , cn. Importantly A1 does not receive g, forcing it to commit to the ci
values in a way independently of the generator g. We assume that g is randomly
chosen; this will be important in our analysis. Then, the second stage A2 is run
on input the generator g, gsk , and a vector of m group elements gy1 , . . . , gyn .
The adversary is given access to two oracles. The SDH oracle returns B1/(sk+ci)

for arbitrary B and one of the previously specified ci values. The SDDH oracle
is a decision oracle that helps the adversary determine whether Z = Y 1/(sk+ci)

for arbitrary Y,Z and one of the previously specified ci values.

The adversary outputs a distinguished index γ indicating a cγ value, as well
as a set of ` pairs (Zi, αi) ∈ G× [0..m]. The adversary wins if ` > qγ and Zi =

Y
1/(sk+cγ)
αi for all 1 ≤ i ≤ `. Here qγ is the number of queries to the SDH with

second input set to γ. Without the “one more” restriction of ` > qγ , it is trivial
to win. We define the (m,n)-OM-Gap-SDHI-advantage of an adversary A by

Adv
(m,n)-om-gap-sdhi
GGen,A (λ) = Pr

[
(m,n)-OM-Gap-SDHI

A
GGen(λ)⇒ true

]
.

An adversary A has query budget (~q, qSDDH) for ~q = [~q1, . . . , ~qn] if at the end of
the game A has made at most ~qi queries to SDH with index i and has made
at most qSDDH queries to SDDH. Requiring fixed query budgets is an artifact
of existing analysis approaches to Diffie-Hellman inversion-like assumptions; we
leave it as an open question whether the per-tag query budget can be handled
adaptively.

We note that a weakening of the assumption dispenses with the more granular
per-c-value accounting, instead just asking that the adversary can’t come up with
` > q solutions for any mixture of Yi and cj values. This variant is much easier
to analyze in the AGM, but is not sufficient for our analysis.

Reducing (m,n)-OM-Gap-SDHI to q-DL. In two steps, we show how to
reduce this assumption, in the AGM, to the difficulty of q-DL. The latter involves
a game q-DL (Figure 6) that generates a group instance p, g,G for security

parameter λ, and gives an adversary g, gx, gx
2

, . . . , gx
q

for a random scalar x.
The adversary must output x. We define the advantage of a q-DL-adversary A
to be Advq-dl

GGen,A(λ) = Pr
[
q-DLAGGen(λ)⇒ true

]
.

As a convenient middle layer, we rely on BFL’s “Uber-assumption” [3], for-
malized via the game m-Uber in Figure 8. It involves a game where the ad-
versary can obtain gρ(~x) by querying an arbitrarily chosen m-variate polynomial
ρ( ~X) to an oracle Ev, for a secret vector ~x←$ Zmp . The adversary wins if it

outputs successfully gµ(~x) for some polynomial µ( ~X) which is independent of the

polynomials ρ1( ~X), . . . , ρq( ~X) queried to Ev, i.e., µ( ~X) cannot be expressed as

an affine combination µ( ~X) = α1ρ1( ~X) + · · ·+αqρq( ~X) + β. The adversary can

also query an additional Decide oracle with a polynomial ρ( ~X), as well as group



Game (m,n)-OM-Gap-SDHIAGGen(λ)

(p, g,G)←$ GGen(λ)

sk←$ Zp ; [yi]
m
i ←$ [Zp]mi

(stA, [ci]
n
i )←$A1(p,G)

Require ∀ni6=jci 6= cj

(γ, [Zi, αi]
`
i)←$ASDH,SDDH

2

(
g, gsk , [gyi ]mi : stA

)
Require qγ < ` ∧ ∀`i6=jαi 6= αj

Return [Zi]
`
i =

[
gyαi/(sk+cγ )

]`
i

Oracle SDH(B, i)

Require i /∈ [1, n]

qi ← qi + 1

Z ← B1/(sk+ci)

Return Z

Oracle SDDH(Y, Z, i)

Return Z = Y 1/(sk+ci)

Fig. 7: The one-more gap strong Diffie-Hellman inversion security game.

Game m-UberAGGen(λ)

(p, g,G)←$ GGen(λ)

Q← {}
~x = [xi]

m
i ←$ [Zp]mi

(U, µ( ~X))←$AEv,Decide(p,G, g)

Return
(
U = gµ(~x) ∧Q ⊥⊥ {µ( ~X)}

)

Oracle Ev(ρ( ~X))

Q← Q ∪ {ρ( ~X)}
Return gρ(~x)

Oracle Decide(ρ( ~X), [Yi]
n
i )

~y = [yi]
n
i ←

[
logg Yi

]n
i

Return ρ(~y) ≡p 0

Fig. 8: The interactive, flexible-output, polynomial uber assumption with decision ora-
cle. Here, ⊥⊥ denotes algebraic independence.

elements gy1 , . . . , gym , and learn whether gρ(y1,...,ym) = 0 or not. We denote the
corresponding advantage as Advm-uber

GGen,A(λ) = Pr
[
m-UberAGGen(λ)⇒ true

]
.

Game q-DLAGGen(λ)

(p, g,G)←$ GGen(λ)

x←$ Zp
x′←$A

(
p,G, g,

[
gx
i
]q
i=1

)
Return x = x′

Fig. 6: The q-type discrete log se-
curity game.

We prove the following theorem in the full
version [43]. Here and subsequently we use ‘≈’
to denote that runtimes are equal up to small
constant factors.

Theorem 1. For any algebraic adversary
Asdhi of (m,n)-OM-Gap-SDHI with query
budget (~q = [q1, . . . , qn], qSDDH), and any GGen
outputting (p, g,G), where g is a uniformly
chosen element of G, we give adversary Auber

such that

Adv
(m,n)-om-gap-sdhi
GGen,Asdhi

(λ) ≤ (qmax+1)·Adv
(m+1)-uber
GGen,Auber

(λ)+
q

p
,

where q =
∑n
i qi and qmax = max{qi}ni . Also, Auber makes at most q queries

to its polynomial evaluation oracle with maximum degree q + 1, and outputs a
polynomial of degree at most q. Further, T (Asdhi) ≈ T (Auber).

It is important here to note that the theorem assumes that the query budgets
qi corresponding to different i’s are fixed a priori, rather than being chosen
adaptively.

Combined with a basic reduction from [3], this gives us the following imme-
diate corollary.



Corollary 1. For any algebraic adversary Asdhi of (m,n)-OM-Gap-SDHI, with
query budget (~q = [q1, . . . , qn], qSDDH), and any GGen outputting (p, g,G), where
g is a uniformly chosen element of G, we give adversary Adl such that

Adv
(m,n)-om-gap-sdhi
GGen,Asdhi

(λ) ≤ (qmax + 1) · Adv
(q+1)-dl
GGen,Adl

(λ) +
q

p
,

where q =
∑n
i qi and qmax = max{qi}ni . Further, T (Asdhi) ≈ T (Adl).

The main difficulty of the proof of Theorem 1 in the full version [43] stems
from the one-more requirement ` > qγ in the winning condition, which is defined
in a way that depends on the specific number of queries qγ to SDH(·, γ). To gain
some intuition, it is convenient to think of the game in algebraic terms (and this
point of view is also accurate when casting our proof in the AGM).5 Specifically,
let us describe exponents of the elements provided to A2 as formal polynomials
X0 (standing for the secret key) and X1, . . . , Xm (for the values y1, . . . , ym). Ini-
tially, the adversary has these polynomials available, and now a call to SDH(P, i)
can also be thought of as dividing some polynomial P (or more generally, a ratio-
nal function) by (X0+ci). The rational function P can be any affine combination
of the functions obtained so far, and SDH(P, i) adds a new rational function to
this set of available rational functions. In other words, consecutive queries induce
a transcript τ consisting of the initial functions X0, X1, . . . , Xm, and the func-
tions returned by SDH. The goal of the adversary is to ensure that, for some γ,
the span6 of τ contains ` > qγ functions of the form

Xα1

X0 + cγ
, . . . ,

Xα`

X0 + cγ
.

An adversary cannot achieve this goal naively by querying SDH(Xαj , γ) for
j ∈ [`] without violating the query budget. Still, the key difficulty here is that
the adversary could, after learning (say) X1/(X0 +cγ) make a further query that
would give X1/(X0 + cγ)(X0 + cγ′) for some γ′ 6= γ. This second query would
not count towards qγ , and could potentially be helpful, as it does involve cγ .

The bulk of our proof shows that arbitrary queries to SDH cannot, in fact,
help the adversary. We do so via a careful inductive analysis which shows that
the transcript τ can be rewritten in an equivalent way, call it τ ′, without affecting
its span. In particular, τ ′ only involves rational functions whose denominators
have form (X0 + ci)

k for some i and k, but no products involving multiple ci’s
appear in the denominators. We leverage this structure to show that the span
of such τ ′ can include at most qγ rational functions of the form Xi

X0+cγ
.

Now, given the above algebraic game cannot be won, an adversary winning
the game must necessarily produce an output (γ, [Zi, αi]

`
i) where for at least one

i ∈ [`], we have that the polynomial Xαi/(X0+ci) is not in the span of the queries

5 We ignore the SDDH oracle in this discussion, and it will be easy to handle in the
actual proof via the Decide oracle.

6 By “span” we mean the set of rational functions that can be obtained by taking
affine combinations of the functions in τ .



to SDH. This lends itself naturally to a reduction to the Uber-assumption, which
we describe in full in the proof.

Reducing to (m,n)-OM-Gap-SDHI. We now turn to showing that we can
reduce the pseudorandomness security of 3HashSDHI to our new assumption. We
focus on the verifiable version of 3HashSDHI; an analysis for the non-verifiable
version is easily derived from our analysis here. Our analysis is in the RO model;
we model all four hash functions as ROs.

We start by describing the simulator used in the proof. The simulator’s goal
is to respond to blind evaluation and RO queries so that the resulting transcript
of values is indistinguishable from real responses. Importantly, the simulator
must do this without making too many calls to the full evaluate oracle for each
BlindEval-queried public input t. Intuitively, achieving this security enforces
that a malicious client can not exploit the blinded evaluation oracle to do more
than help it compute a single POPRF output for the particular requested t.

The simulator works as follows. It chooses its own secret key sk and answers
the H1 and H3 queries with random group elements and scalars, respectively.
To answer a blinded evaluation query, it runs the scheme’s blind evaluation
algorithm Fn.BlindEv(sk, B), except that it uses the NIZK’s simulator to generate
the proof π (and to simulate any ideal primitive underlying the NIZK, i.e., H4).
The key challenge is in simulating H2 queries, that which enables the adversary
to “complete” a blinded evaluation. The simulator must arrange that the value it
returns in response to H2 queries is consistent with the random value returned by
Ev. To do so, the simulator checks whether a queried point (t, x, Y ) is such that
Y = H1(x)1/(sk+H3(t)) and, if so, it queries LimEv(t, x) and returns the output.
Otherwise, it chooses a random point to return. The simulator can perform this
check because it chose sk. See the full version [43] for the full details of the
simulator.

The simulation can fail should the adversary be able to query it on a point
Y = H1(x)1/(sk+H3(t)) when the simulator cannot make another call to LimEv
for that value t. This can only arise should the adversary query H2 on more such
values t, Y than queries it so far made to BlindEv on that t. We show that an
adversary, that can do so, can also win the (m,n)-OM-Gap-SDHI game where
m,n are the total number of queries involving a distinct x value and distinct t
value, respectively. (We define this more precisely below.) This step also relies
on the collision resistance of H3, which holds in the ROM.

To formalize this, we state below a theorem using the ideal primitive model in
which P = H1×H2×H3×H4 for random oracles over H1 : ∗ → G, H2 : ∗×∗×G→
{0, 1}λ, H3 : ∗ → Zp, H4 : G6 → Zp for (p,G) determined by GGen(λ). Here ‘∗’
denotes the set of arbitrary inputs. We define the query budget for an adversary
Aprf in the P model to be a tuple (m,n, qE, ~q, qH1 , qH2 , qH3 , qH4) where:

• m is the maximum number of distinct x values queried by Aprf to H1 or H2;

• n is the maximum number of distinct t values queried by Aprf to BlindEv,
H2, or H3;



• ~q = [~q1, . . . , ~qn] is a vector where each ~qi is the maximum number of queries
by Aprf to BlindEv(ti, req) for any req and where t1, . . . , tn are the (at
most) n values ti queried in the course of the game in the order of when
they are queried. (That is, t1 is the first t value queried, t2 is the second,
etc.) In words, the adversary is limited to some number n of public inputs t
that it can target, and makes a limited number of blinded evaluation queries
for each of those inputs t.

• qE, qH1
, qH2

, qH3
, and qH4

are the maximum number of queries made by Aprf

to the Ev, H1, H2, H3, and H4 oracles, respectively.

Note that our query budget requirement ~q does not restrict which values t the
adversary can use; these can be picked adaptively. But the number of times
each t value is queried is restricted by the order in which they are queried. The
granular accounting of blinded evaluation queries via ~q will be important when
combining the following theorem with Theorem 1.

Theorem 2. Let Aprf be a P-model POPRF adversary against 3H with query
budget (m,n, qE, ~q, qH1

, qH2
, qH3

, qH4
). Then we give a H4-model adversary Azk,

an adversary Asdhi, and a simulator S such that

Advpo-prf
3H,S[SΣ ],P,Aprf

(λ) ≤ Advzk
ΣR,R,H4,SΣ ,Azk

(λ) + Adv
(m,n)-om-gap-sdhi
GGen,Asdhi

(λ) +
n2

p
,

Adversary Azk makes qH4
queries to its random oracle and Asdhi has query budget

(~q, qH2
). Further, T (Aprf) ≈ T (Azk) ≈ T (Asdhi).

A detailed proof is given in the full version [43]. It proceeds via a sequence of

games, starting with the real world POPRF
Apo-prf,1
3H,P,S (λ) and first transitioning to

a game that replaces the NIZK π with one generated by the NIZK simulator SΣ .
Then we change how Ev queries are handled. Instead of computing the POPRF
using sk, we pick a random value and add it to a table R. We also modify the
handling of H2 queries to check if R has been set on a relevant value and, if so,
patch up H2’s response so that it maintains consistency. This does not change
the distribution of responses to the adversary. Finally, we are in position to
perform a reduction to (qH1 , qH3)-OM-Gap-SDHI: the only difference between

this game and the ideal world POPRF
Aprf,0

3H,P,S[SΣ ](λ) is when H2 needs to repair

a R value more often than queries to BlindEv. This reduction step is made
relatively simple by our new assumption, which provides the values and oracles
necessary to simulate Aprf’s view in a straightforward way.

We can combine the two main theorems with a standard result about the
NIZK that we use (restated in Section 2) to give the following corollary.

Corollary 2. Let Aprf be a P-model POPRF adversary against 3H with query
budget (m,n, qE, ~q, qH1

, qH2
, qH3

, qH4
) and GGen any group parameter generator

outputting (p, g,G), where p is a prime g is a uniformly chosen element of G.



Then, we give adversary Adl and simulator S such that

Advpo-prf
3H,S[SΣ ],P,Aprf

(λ) ≤ (qmax + 1) · Adv
(q+1)-dl
GGen,Adl

(λ)

+
q + n2

p
+

3q2 + q(qH4
+ 4) + 2

2λ
,

where q =
∑n
i qi, qmax = max{qi}ni . Further, T (Aprf) ≈ T (Adl).

Concrete security and parameter selection. Corollary 2 is interpreted best
in the generic-group model (GGM) [37, 40], as this yields an absolute bound in
terms of Aprf’s resources. The advantage of a generic algorithm Adl running in
time T (or more precisely, making T queries to the generic-group oracle) against

(q+ 1)-DL in a group of order p is Adv
(q+1)-dl
GGen,Adl

(λ) ≤ (T + q + 2)2(q + 1)/(p− 1)
(see, e.g., [3] for a proof). This advantage is multiplied by qmax to obtain the
dominating term in our final bound. We conjecture however that the bound is
somewhat pessimistic, and that the factor qmax is an artifact of the proof. In
fact, as we discuss below, a different interpretation of our proof flow, which is
particularly meaningful in the GGM, avoids this factor altogether. This improved
bound omitting qmax is also essentially tight, since Cheon’s attack [16] extracts7

the secret key from q BlindEval queries in time
√
p/q, as long as q divides

p− 1 or p+ 1.
Cheon’s attack can therefore guide parameter selection, as is also done for

2HashDH deployments. For example, a 256-bit group may be sufficient to achieve
security for up T = 280, as this would still accommodate up to q ≈ 296 blind
evaluations without violating our bounds. In contrast, to ensure security up to
T = 2128, moving to a 384-bit curve appears necessary. The conclusion being
that our choice of parameters is consistent with that for 2HashDH, meaning we
achieve the same group operation performance while adding public inputs.

We also note that our reduction to the uber assumption requires the gener-
ator to be uniformly chosen. We cannot envision any security issues when the
generator is instead fixed, and the need for uniformly chosen generators is likely
just an artifact of our proof technique.

Tighter GGM bound. We only sketch the main idea behind the tighter GGM
proof, as it is the result of a minor modification of our AGM proof flow. First,
note that the (qmax +1) factor in Corollary 2 is inherited from Theorem 1 and is
due to our inability to efficiently find, within the adversary Auber, a good index
j ∈ [`] that leads to a break of the uber-assumption. Therefore, we are left with
guessing. However, an alternative is to find such j by computing all ` possible
polynomials µ( ~X), and outputting the one which is independent from those input
to Ev. Unfortunately, this is computationally expensive, and requires time at
least Ω(q2

max). In other words, we could make the proof tight with respect to

7 Define x = (sk + H3(t))−1 for some fixed t. Then, the attacker can just obtain,

via consecutive iterative queries, the values gx, gx
2

, . . . , gx
q

, and then recover x via
Cheon’s attack. Finally, sk = x−1 − H3(t).



advantage while losing tightness with respect to time complexity. While in our
proof flow in the AGM this needs to be taken into account, in the GGM only the
number of group operations matters (i.e., the number of oracle calls), whereas
“additional” running time (enumerating polynomials and testing independence)
is for free. Thus, if Aprf makes T queries to its GGM oracles, our proof flow
yields (with the proposed modification) an adversary Adl with roughly the same
number of GGM queries and advantage against (q + 1)-DL.

5.2 Request Privacy

We now turn to request privacy, which is simpler to analyze. Intuitively, 3HashS-
DHI client requests leak no information because the blinding makes them inde-
pendent of other requests and finalized outputs. The following theorem formal-
izes this for the case of POPRIV1 for the non-verifiable version of 3HashSDHI.

Theorem 3. For any POPRIV1 adversary Apo-priv1 against 3H (without client

verification) we have that Advpo-priv1
3H,Apo-priv1

(λ) = 0.

Note that the theorem makes no assumptions about the hash functions or
group, instead privacy derives directly from the information-theoretic blinding.

Proof. Let G be the same as game POPRIV1A,b3H,P(λ) except that we replace

(reqd, repd) = (H1(xd)
rd , H1(xd)

rd·sk) with (reqd, repd) = (grd , grd·sk) for d ∈
{0, 1} and where r0, r1 are the random exponents chosen in the two invocations
of 3H.Req. Observe that in game G the values returned by Req are independent
of the challenge bit b. Then we have that

Pr
[
POPRIV1A,13H,P(λ)⇒ 1

]
= Pr [ G⇒ 1 ] = Pr

[
POPRIV1A,03H,P(λ)⇒ 1

]
.

�

Non-verifiable PO-PRFs, including the non-verifiable version of 3HashSDHI,
cannot achieve our stronger notion of malicious request privacy. The attack is
straightforward since the adversary can simply replace one of the two responses
with garbage, and determine the challenge bit. In detail for the case of 3H,
adversary Apo-priv2 can pick sk ∈ G arbitrarily, let pk = gsk , and then query
Req(pk, t, x0, x1) for some arbitrary t, x0, x1. It obtains back from the oracle
req, req′, and then parses req as a pair (B, t). It then queries Fin(B1/(sk+H3(t)), g)
to get back reply (y0, y1). It checks if y0 = H2(H3(x0)1/(sk+H3(t))) and returns 0
if so. Otherwise it returns one. This adversary wins with probability 1.

The verifiable version of 3HashSDHI achieves our stronger notion of malicious
request privacy, due to the ZKP forcing the malicious server to respond honestly
to blinded requests (relative to the public key being used). The following theorem
formalizes this, where we model the hash used by the ZKP as a random oracle,
and all other hashes as standard model.



Theorem 4. Let Apo-priv2 be a POPRIV2 adversary in the P-model against 3H

that makes at most q queries to Fin. We give in the proof below a SoundANiZK,R,H4

adversary Bsound such that

Advpo-priv2
3H,P,Apo-priv2

(λ) ≤ 4q · Advsound
NiZK,R,H4,Bsound

(λ)) .

Further, T (Bsound) ≈ T (Apo-priv2).

Proof. Consider game POPRIV2
Apo-priv2,1
3H,P (λ). We consider the event that, in the

course of the game, a Fin(j, (B′1, π1), (B′2, π2)) query is made such that either

1. B′1 6= B
1/(sk+H3(tj)
j,b but ΣR.VerH4((g, gH3(tj) · pkj , B′1, Bj,b), π1) = 1; or

2. B′2 6= B
1/(sk+H3(tj)
j,1−b but ΣR.VerH4((g, gH3(tj) · pkj , B′2, Bj,1−b), π2) = 1.

Here pkj , tj are the values queried to the jth call to Req and we let skj =
dlogg pkj . Recall that here R = {(g, U, V,W ), (α) : U = gα ∧W = V α}, and
verification is therefore checking, in case (1), that

B′2 = B
H3(tj)+skj
j,b ⇔ (B′2)1/(skj+H3(tj)) = Bj,b

and a similar equality for case (2). So if this event occurs, this means the adver-
sary has violated the soundness of the ZKP: only a single value α = skj + H3(tj)
can be the witness for R.

To formally reduce to ZKP soundness, first let game G0 be the same as

POPRIV2
Apo-priv2

3H,P,b (λ) but the bit b is chosen at random from {0, 1}. Let “G0⇒ b”
be the event in game G0 that the game returns the value b. (We use this event
notation for subsequent games analogously.) Further we let G0bad be the same
as G0 except that within each Fin it first computes skj = dlogg pkj and checks
if conditions (1) and (2) hold. If either does not, then it sets a flag bad. Clearly
G0bad is not computationally efficient; our reduction will avoid this computa-
tionally inefficient step. Finally we let G1 be the same as game G0 except that
all Fin(j, rep, rep′) queries are handled by first replacing rep and rep′ with the

correct values, i.e., rep ← B
skj
j,b and rep′ ← B

skj
j,1−b where skj ← dlogg(pkj).

Notice that G0bad and G1 are identical until the first query, if any, that sets the
flag bad. We have that

Advpo-priv2
3H,P,Apo-priv2

(λ) = 2 · Pr [ G0⇒ b ]− 1 .

and that

Pr [ G0⇒ b ] = Pr [ G0bad ⇒ b ] ≤ Pr [ G1⇒ b ] + Pr [ G0bad sets bad ] ,

where the inequality comes from the fact that G0bad and G1 are identical-until-
bad and application of the fundamental lemma of game playing [5]. We now
bound the probability that Pr[G0bad sets bad ] via reduction to the soundness of
the ZKP.

Adversary Bsound works as follows. First, it randomly chooses a number
q∗ ∈ [1, 2q] to serve as its guess for which ZKP π will be forged by the ad-
versary. Here q is the maximum number of Fin queries made by Apo-priv2; each
such query includes two proofs. Then Bsound runs G0, stopping when Apo-priv2

has made j = dq∗/2e queries to Fin. At this point, Bsound stops outputting



((g, gH3(tj)pkj , B
′
1, Bj,b), π1) if q∗ is odd and ((g, gH3(tj)pkj , B

′
2, Bj,1−b), π2) oth-

erwise. Adversary Bsound avoids computing skj ; it simply guesses which of the
proofs would have caused bad to be set to true, had skj been computed and the
conditions (1) and (2) been checked. A standard argument yields that

Pr [ G0bad sets bad ] ≤ 2q · Advsound
NiZK,R,P,Bsound

(λ) .

To finish the proof, we can observe that G1 always correctly computes responses,
and a similar argument as we used for POPRIV1 gives that the transcript
observed by Apo-priv2 is independent of the challenge bit b, and so Pr[G1⇒ b] =
1/2. Combining all the above yields the advantage statement in the theorem.

�

6 Performance Evaluation

We implemented 3HashSDHI to measure the computational cost of the proto-
col in comparison to related protocols, including the baseline 2HashDH VO-
PRF from [17], Pythia [20], and the recent attribute-based VOPRF (ABVO-
PRF) from Facebook [26]. Each protocol was implemented in a minimal fashion,
e.g., by omitting domain separating hash function invocations, in order to em-
phasize the cost of core public key operations. Our implementations use the
ristretto255 group [44] where prime-order groups are required, and the bn256
curve for Pythia, where pairing-friendly curves are required. We implemented
each protocol in Go using the CIRCL experimental cryptographic library [21]
and bn256 package. These benchmarks were evaluated on a machine with a 2.6
GHz 6-Core Intel Core i7 CPU and 32 GB RAM running macOS 10.15.7. We
defer the results of our benchmarks to the full version [43].

7 Applications

POPRFs provide a new degree of flexibility that we observe to be useful in a
variety of applications. Essentially anywhere an OPRF is used we see opportu-
nity for POPRFs to provide potential benefits in terms of increasing deployment
flexibility, reducing key management challenges, and/or improving security. In
the full version [43], we discuss further three previously mentioned motivat-
ing applications: anonymous one-time-use tokens, password breach alerting, and
password-based authenticated key exchange.
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