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Abstract. We introduce a new class of succinct arguments, that we call
elastic. Elastic SNARKs allow the prover to allocate different resources
(such as memory and time) depending on the execution environment
and the statement to prove. The resulting output is independent of the
prover’s configuration. To study elastic SNARKs, we extend the streaming
paradigm of [Block et al., TCC’20]. We provide a definitional framework
for elastic polynomial interactive oracle proofs for R1CS instances and
design a compiler which transforms an elastic PIOP into a preprocessing
argument system that supports streaming or random access to its inputs.
Depending on the configuration, the prover will choose different trade-offs
for time (either linear, or quasilinear) and memory (either linear, or
logarithmic). We prove the existence of elastic SNARKS by presenting
Gemini, a novel FFT-free preprocessing argument. We prove its security
and develop a proof-of-concept implementation in Rust based on the
arkworks framework. We provide benchmarks for large R1CS instances
of tens of billions of gates on a single machine.

Keywords: succinct non-interactive arguments; interactive oracle proofs

1 Introduction
Succinct non-interactive arguments of knowledge (SNARKs) allow for efficient
verification of NP statements. They are an essential component for a number
of protocols, including private transactions [BCG+14; Zcash], verifiable compu-
tation [BCTV14; BCG+18; GGPR13], and anonymous credentials [BCC+09;
GGM14]. Recent years have seen a surge of interest in SNARKs, and after much
dedicated research reducing communication complexity and verifier complex-
ity [PGHR13; BCC+16; Tha13], the cost of running the prover algorithm has
emerged as the most relevant bottleneck.
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Today, the most important factors are the time and memory required to run
the prover algorithm. For example, in zk-rollups4, some nodes in the network
(called relayers) must produce a SNARK proving validity of a large amount of
transactions. Here, the instance being proven may contain billions of constraints.
Even more resource-intensive is the Filecoin network: daily, Filecoin generates
proofs for about 930B constraints5. In both cases, the ability to prove massive
statements efficiently is critical, yet many SNARK implementations today can’t
prove circuits of tens of billions of constraints. This work investigates time- and
space-efficient SNARKSs, and the possible compromises that can be made within
the same proving algorithm to get the best of both worlds.

Fast prover. A colossal effort has been put into reducing computational
overheads for the prover. A long line of works [Set20; BCG20; BCG+17; BCG+18;
XZZ+19] focusing on prover efficiency has led to SNARKs whose prover algorithm
runs in linear (or almost-linear) time with respect to the instance and the witness.
Some works [ZWZ+21; JW17] even rely on specialized hardware to accelerate
prover computation. Unfortunately, most linear-time provers [Tha13] exploit
dynamic programming techniques and as a consequence also require random
access to both instance and witness, and demand space linear in the instance size.
When proving large instances, this makes them prohibitively greedy in terms of
memory.

Slim prover. A recent research direction [HR18; BHR+20; BHR+21] investi-
gated, from a theoretical perspective, the possibility of a space-efficient prover.
This line of work considers provers that have streaming access to the inputs (the
statement and the witness), rather than random access to them. It has been
shown [BHR+20] that a space-efficient prover needs only logarithmic memory
space throughout their entire execution, but requires quasilinear computation
time.

Serving diverse computing environments. Each of the above lines of
research aims to optimise for a single type of complexity measure. Works which
optimise for prover time assume that large amounts of memory are available,
which is unlikely to be the case for considerably large instances. On the other
hand, for works which focus on optimising for prover space, time efficiency is not
a priority, and time overheads may be problematic in practice. In the best case,
one could envisage a SNARK which simultaneously runs in linear time and uses
only logarithmic memory space by accessing its inputs via streams. Unfortunately,
constructing such SNARKs remains a challenging open problem. Complexity-
preserving SNARKs [BC12; BCCT13], which aim to preserve both time and space
complexity, are a step in the right direction. Sadly, the notion of complexity-
preservation in this works allows polylogarithmic blow-ups in time and space,
and this looseness makes complexity preserving SNARKs inefficient in practice.
In this work, our goal is to meaningfully relax the goal of complexity preservation,

4 https://ethereum.org/en/developers/docs/scaling/layer-2-rollups/
5 https://research.protocol.ai/sites/snarks/

https://ethereum.org/en/developers/docs/scaling/layer-2-rollups/
https://research.protocol.ai/sites/snarks/
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in a way that allows us to serve many different computing environments in a
concretely-efficient manner.
1.1 Our results

(i) Elastic SNARKs. Roughly speaking, we consider SNARKs whose
prover admits two different implementations:
– the time-efficient prover Pt, which receives as input instance and

witness;
– the space-efficient prover Ps, which has streaming access to the same

inputs.
Provided with this “dual-mode” framework, an elastic prover can choose
which implementation to use, and allocate resources depending on the exe-
cution environment and the instance size. In addition, the two algorithms
are compatible in such a way that during the execution of the protocol
the space-efficient prover can stop and transcribe a (compressed) prover
state. Then, the prover can switch to the time-efficient implementation,
enjoying the benefits of a fast prover.
To achieve the above, we extend the notion of streams of Block et
al. [BHR+20]: we study stream composition, and provide a definitional
framework for streaming holographic polynomial IOPs for Rank-1 Con-
straint Systems (R1CSs) instances. We construct a compiler that trans-
forms an elastic PIOP into a preprocessing argument using elastic polyno-
mial commitment schemes.

(ii) An elastic SNARK for R1CS. We realize the above notion by con-
structing a novel argument system for R1CS, whose prover admits a
time-efficient mode and a space-efficient mode. The two modes are com-
patible in such a way that it is possible to migrate state from one to
the other, and produce the same final proof independently of the prover
configuration.

Definition 1. The R1CS problem asks: given a finite field F, coefficient
matrices A,B,C ∈ FN×N each containing at most M = Ω(N) non-zero
entries,6 and an instance vector x over F, is there a witness vector w such
that z := (x,w) ∈ FN and Az ◦Bz = Cz?

Above, “◦” denotes the entry-wise product. We use standard Landau
notation. When referring to time efficiency, the asymptotic number of
cryptographic operations (that is, group operations) will be denoted by
Oλ, to distinguish them from (less expensive) field operations, that instead
we denote with standard big-O notation. Our main contribution is the
following theorem:

Theorem 1 (informal). There exists an elastic SNARK for RR1CS whose
prover admits two implementations:

6 Note that M = Ω(N) without loss of generality because if M < N/3 then there are
variables of z that do not participate in any constraint, which can be dropped. Thus
the main size measure for R1CS is the sparsity parameter M .
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– the time-efficient prover runs in Oλ(M) time and O(M) space;
– the space-efficient prover runs in Oλ(M log2 M) time and O(logM)
space,

where M is the number of non-zero entries in the R1CS instance. The
proof can be verified in Oλ(|x|+ logM) time, and has size O(logM).

To achieve the above, we study the commitment of Kate et al. [KZG10]
from the perspective of an elastic commitment scheme, which involves
constructing a streaming interface for commitment and opening algorithms.
Then, we construct an elastic scalar product protocol that runs in linear-
time and linear-space, or quasi-linear time and log-space. Our scalar
product argument is based on the sumcheck protocol which, thanks to its
recursive nature, allows us to easily migrate from a space-efficient instance
to a time-efficient one. Using the above elastic scalar product protocol, we
build a polynomial IOP [BCS16] for R1CS.
Finally, we give a compiler which uses elastic polynomial commitment
schemes and elastic polynomial IOPs to construct elastic cryptographic
arguments. This modularity is beneficial not only for protocol design but
also reflects the actual implementation. On the one hand, when studying a
complex protocol, one can still isolate the cryptographic components from
the information-theoretic part to study its complexity and its security. On
the other hand, the implementation can benefit from an abstraction layer
that reduces the implementation overhead.
Using similar techniques, we provide a preprocessing SNARK with the
same complexity.

(iii) Implementation. We implement the construction of Theorem 1 in Rust
using the arkworks ecosystem [ark]. Our implementation consists of the
main preprocessing argument, and a non-preprocessing argument (where
the verification procedure is assumed access to the R1CS instance in full).
Extending the library with streaming-friendly primitives required a notable
engineering effort that we believe could be of independent interest for
future space-efficient projects. In Section 2.7, we give an overview of the
relevant design choices and provide a number of algorithmic optimizations.

(iv) Evaluation. While there are plenty of benchmarks publicly available
for time-efficient SNARKs, few works evaluate SNARKs on large circuits.
To the best of our knowledge, the largest instance size ever proven in the
literature is DIZK [WZC+18], with a maximal instance of size 231, and
using a cluster of 20 machines in 256 executors.
Our benchmarks, described more in-depth in Section 2.8 show the following:
– Gemini is able to prove instances of arbitrary size. In particular, using a

single machine with around 1 GB of memory budget, we are able to run
benchmarks with instances of 232 for the preprocessing argument. If the
verifier is allowed to read the entire circuit (that is, a non-preprocessing
argument), we were able to carry out proofs for 235 constraints. In
contrast, the largest instance ever proven in the literature [WZC+18] is
only 231.
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– Gemini is concretely and economically efficient. The preprocessing
protocol can prove instances of size 231 within two days and save about
82% (about 400 USD) of expenses when comparing with DIZK on
Amazon EC2.

– Gemini provides succinct proofs and verifiers. For instances of size 235,
the proof size is about 27 KB and the verification time is below 30 ms.

1.2 Related work
There is a long line of work on improving the time complexity of SNARK provers,
both asymptotically and concretely; this has culminated in SNARKs with linear-
time provers. See [GLS+21] and references therein. However, these optimizations
typically come at the expense of space complexity, which is typically linear in
the computation size either due to the use of FFTs or dynamic programming
algorithms.

Simultaneously optimizing for time and space efficiency was first considered
for succinct arguments in [BC12], via the notion of complexity preservation.
This roughly means that the time and space to prove a computation must
be asymptotically close to those for merely running the computation itself.
Further constructions of complexity preserving succinct arguments were given
in [BCCT13; HR18; BHR+20; BHR+21]. In all of these constructions space
efficiency is achieved at the expense of a somewhat higher time complexity, due
to the need for either a non-black-box use of cryptography or the need to perform
multiple (indeed, logarithmically many) passes on the computation transcript.

Our goal in this work is to study succinct arguments that offer multiple
algorithms for the same prover that optimize for different settings, e.g., for time
efficiency or space efficiency. Moreover, prior works that study streaming SNARK
provers were theoretical, while in this work we additionally study streaming
implementations with concrete efficiency.

2 Techniques
In Section 2.1, we outline the streaming model. After setting some terminology,
we state our main theorem, which is based on elastic polynomial commitment
schemes and elastic probabilistic proofs. We describe then the two components
separately: first, we describe an elastic polynomial commitment based on KZG
in Section 2.3, and then we construct a polynomial PIOP for R1CS, which is
itself based on a novel elastic scalar-product argument.
2.1 Elasticity and a streaming model
The notion of elasticity refers to having multiple realizations of the same algorithm
(more precisely, function) for use in different situations. Specifically in this work:

Elasticity means that we aim for two realizations: a time-efficient real-
ization for a setting where time complexity is most important, possibly
at the expense of space complexity; and a space-efficient realization
for a setting where space complexity (i.e., memory consumption) is most
important, possibly at the expense of time complexity.
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This means that in theorem statements, and in their proofs, we will consider
two realizations with different complexities for the same functionality (e.g., the
SNARK prover algorithm).

Time-efficient algorithms are a familiar concept. To discuss space-efficiency,
however, we must consider streaming algorithms, which receive their inputs in
streams (small pieces at a time) so that we can design algorithms that use less
memory than the size of their inputs. Below we describe: (i) a formal model
of streams, and (ii) a notion of streaming algorithms, and how their efficiency
behaves under composition.

Streams and streaming oracles. A stream is a tuple consisting of an alphabet
Σ, a well-ordered countable set I, and a sequence K ∈ ΣI . Streams can be
accessed via special oracles: if K is a sequence, the streaming oracle S(K) of K
takes two input commands, start and next; the oracle simply responds to the i-th
next command with the i-th element of K; the stream S(K) can be reset to the
first element in the sequence using the start command, in case earlier elements
of the stream need to be viewed again. However, the streaming oracle does not
allow random access to elements of K. In the full version, we define streaming
relations in which the instance and the witness are given as streams.

Streaming algorithms. A streaming algorithm is an algorithm that has access
to all of its inputs via streaming oracles and produces a stream as its output, by
yielding the next element on upon receiving the next command. The complexity
of a streaming algorithm is measured in terms of its time complexity, space
complexity, and the number of passes that it makes over each input stream.

Any binary operation over an alphabet can be viewed as a streaming algorithm
which takes as input two sequences K and K ′ over the same alphabet Σ that are
indexed by the same set I. In this case, the binary operation acts on successive
pairs of elements of K and K ′, to produce a new stream on the fly. For instance,
let f ,g be two vectors over a prime field F of order p, and S(f), S(g) (respectively)
their canonical streams.7 The stream S(f + ρg) for two vectors f ,g over a field
F and scalar ρ ∈ F can be evaluated as a new stream using S(f) and S(g), by
responding to each next query in the following way: first query S(f) to obtain the
i-th entry fi of f , then query S(g) to obtain gi, and finally respond with fi + ρgi.

Since a streaming algorithm produces a stream as output, multiple streaming
algorithms can be composed so that the output stream produced by one algorithm
acts as the input stream for the next algorithm. The time and space complexity
and number of input passes of streaming algorithms behave predictably under
composition. If A is a streaming algorithm with time complexity tA, space
complexity sA, and kA input passes, and B is a streaming algorithm with time
complexity tB, space complexity sB, and kB input passes, then A composed with
B has time complexity tA + kAtB, space complexity sA + sB, and kAkB input
passes.

7 The canonical stream of a vector consists of the sequence of its entries, from last to
first.
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2.2 A modular construction of elastic SNARKs
Many succinct arguments are built in two steps. First, construct an information-
theoretic probabilistic proof in a model where the verifier has a certain type of
query access to the prover’s messages. Second, compile the probabilistic proof
into an interactive succinct argument, via a cryptographic commitment scheme
that “supports” this query access.8 Finally, if non-interactivity is desired, apply
the Fiat–Shamir transformation [FS86]. This modular approach has enabled
researchers to study the efficiency and security of simpler components, which has
facilitated much progress in succinct arguments.

We observe that the techniques used in [CHM+20; BFS20] to build a compiler
from IOPs to preprocessing arguments preserve elasticity: if the ingredients to
the approach are elastic then the resulting SNARK is elastic. In more detail, the
compiler involves two ingredients.
– Polynomial IOPs. A probabilistic proof in which the prover sends polynomial

oracles to the verifier, who accesses them via polynomial evaluation queries.
This is an interactive oracle proof [BCS16; RRR16] where query access to
prover messages is changed from “point queries” to “polynomial evaluation
queries”.

– Polynomial commitments. A cryptographic primitive that enables a sender
to commit to a polynomial f ∈ F[X] of bounded degree, and later prove that
f(z) = v for given v, z ∈ F.

If the polynomial IOP is additionally holographic then the resulting succinct
argument is a preprocessing argument, which means that it is possible, in an
offline phase, to perform a public computation that enables sub-linear verification
later on. The lemma below summarizes how elasticity is preserved. The formal
statement (and its proof) are relative to the formalism for streaming algorithms
that we outlined in Section 2.1.

Theorem 2 (informal). Suppose that we are given the following ingredients.

– A public-coin polynomial IOP for a relation R with: (i) time-efficient prover
time tP ; (ii) space-efficient prover space sP with kP passes; (iii) s oracles;
(iv) query complexity q (v) verifier complexity tV

– A polynomial commitment scheme PC with (i) time-efficient commit and open
time tPC.Com; (ii) space-efficient commit (and open) space sPC.Com with kPC.Com
passes; and (iii) checking time tPC.Check.

Then there exists an interactive argument system for the relation R with (i) time-
efficient prover time tP + s · tPC.Com + q · tPC.Com; (ii) space-efficient prover
space sP + s · sPC.Com with q · kPC.Com · kP passes; and (iii) verifier complexity
tV + q · tPC.Check. Moreover, the argument system is preprocessing if the given
polynomial IOP is holographic (with time and space properties similarly preserved
by the transformation).

8 The argument prover and argument verifier emulate the underlying probabilistic
proof, with the argument prover sending commitments to proof messages and sending
answers to queries together with commitment openings to authenticate those answers.
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Roughly speaking, the argument prover commits to each polynomial oracle
via the polynomial commitment scheme, and answers polynomial evaluation
queries by sending the evaluation along with a proof that it is consistent with
the corresponding polynomial commitment. The security and most efficiency
measures are studied in [CHM+20; BFS20]. Less obvious is how space complexity
is affected.

A streaming implementation of the PIOP prover does not necessarily produce
all of its output polynomial streams one by one, and therefore the space complexity
of the resulting argument prover is not, e.g., just the sum sP + sPC.Com of the
PIOP prover space and the PC commitment algorithm space. Indeed, if the
PIOP prover’s message polynomials all depend on the same input stream, it
might be advantageous to produce two polynomials at the same time to avoid
making extra passes over the input stream.9 Furthermore, the commitment
algorithm may require several passes over a single input polynomial, so that the
argument prover must run the PIOP prover several times in order to completely
commit to each polynomial, keeping partially computed commitments to each
polynomial in memory. Such considerations lead to the space-efficient argument
prover having space complexity sP + s · sPC.Com with q · kPC.Com · kP passes. Our
PIOP construction actually satisfies the strong property that each polynomial
can be produced independently without rerunning the entire prover algorithm,
which reduces the space complexity to sP + sPC.Com.

Remark 1 (types of polynomials). The above discussion is deliberately ambiguous
about certain aspects: are the polynomials univariate or multivariate? are the
polynomials represented as vectors of coefficients or as vectors of evaluations (or
vectors in some other basis)? These details do not matter for Theorem 2 as long
as the two components “match up”: if the PIOP outputs polynomials represented
in a way that is compatible with how the PC scheme expects inputs. Nevertheless,
in this paper we focus on the case of univariate polynomials represented as vectors
of coefficients, because our construction and implementation are in this setting.

Remark 2 (multilinear vs. univariate). The fact that the approach in [CHM+20;
BFS20] preserves space efficiency in the case of multilinear polynomials repre-
sented over the boolean hypercube was used in [BHR+20; BHR+21]. Theorem 2
is a straightforward observation about [CHM+20; BFS20] that additionally con-
siders elasticity. In particular, we believe that the constructions in [BHR+20;
BHR+21] could be shown to have elastic realizations, by showing that the under-
lying multilinear PIOP and multilinear PC schemes have elastic realizations. We
choose to work with univariate polynomials, instead of multilinear polynomials,
because they have seen more success in real world deployments, and thus focus
our investigation on the concrete efficiency of elastic SNARKs based on univariate
polynomials. We leave the study of concrete efficiency of elastic SNARKs based
on multilinear polynomials to future work.
9 For example, if one polynomial consists of all of the even coefficients of another, one
can produce streams of the coefficients of both polynomials simultaneously, in half
the number of passes required to compute streams of each polynomial one at a time.
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Remark 3 (elastic setup and indexer). For any succinct argument, elasticity
is a desirable property as the size of the statement to be proven increases. In
particular, we are going to focus on elasticity of the prover, which is the current
bottleneck for proving large instances.
– Setup. We assume the existence of a setup algorithm that samples the public

parameters of the system. Despite its complexity can be linear (or more!) in
the statement size, we do not discuss setup algorithms in this paper for two
reasons: (i) known setup algorithms have straightforward realizations that are
simultaneously efficient in time and space (that is, there is less of a tension
between optimizing for time or for space as there is for the prover); (ii) public
parameters are typically sampled via “cryptographic ceremonies” that realize
the setup functionality via secure multi-party protocols [BGM17], and so it is
more relevant to discuss the time and space efficiency of these ceremonies.

– Indexer. In the case of preprocessing arguments, there is an indexer algorithm
that produces the so-called proving key and verification key. The indexer in our
construction and implementation is elastic, but we will not focus on it since
all ideas relevant for the indexer can be inferred from the proving algorithm.

2.3 An elastic realization of the KZG polynomial commitment
scheme

We use a univariate polynomial commitment scheme from [KZG10] to construct
our SNARK (see Section 2.2). Below we review this scheme and explain how to
realize it elastically.
Review: a polynomial commitment from [KZG10]. The setup algorithm
samples and outputs public parameters for the scheme to support polynomials of
degree at mostD ∈ N: the description of a bilinear group (G1,G2,GT , q, G,H, e);

10

the commitment key ck := (G, τG, . . . , τDG) ∈ GD+1
1 for a random field el-

ement τ ∈ Fq; and the receiver key rk := (G,H, τH) ∈ G1 × G2
2. The com-

mitment to a polynomial p ∈ Fq[X] of degree at most D is computed as
C := 〈p, ck〉 = p(τ)G ∈ G1. Subsequently, to prove that the committed poly-
nomial p evaluates to v at z ∈ Fq, the committer computes the witness poly-
nomial w(X) := (p(X) − p(z))/(X − z), and outputs the evaluation proof
π := 〈w, ck〉 = w(τ)G ∈ G1. Finally, to verify the evaluation proof, the receiver
checks that e(C − vG,H) = e(π, τH − zH).
Elastic realization. An elastic realization of the above scheme requires a
time-efficient realization and a space-efficient realization for each relevant algo-
rithm of the scheme. Here we do not discuss the setup algorithm, as it has a
natural time-and-space-efficient realization (cf. Remark 3). We do not discuss
the verification algorithm either, because it only involves a constant number of
scalar multiplications and pairings. Our focus is thus on the commitment and
opening algorithm.
– Commitment algorithm. We are given streams of the commitment key elements
{τ iG}di=0 and of the coefficients {pi}

d
i=0 of the polynomial p(X) =

∑d
i=0 piX

i

10 Here |G1| = |G2| = |GT | = q, G generates G1, H generates G2, and e : G1×G2 → GT

is a non-degenerate bilinear map.
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to be committed. We compute the commitment C =
∑d
i=0 piτ

iG by multiplying
each coefficient-key pair (pi, τ

iG) together and adding them to a running
total. Each scalar-multiplication of pi · τ

iG is performed via a double-and-add
algorithm in constant space and linear time.
The above operation is also known as multi-scalar multiplication or multi-
exponentiation in the literature, and there exists different algorithms, such
as Pippenger’s [Pip80], that can greatly improve the concrete efficiency of
the multi-scalar multiplication by reducing the number of group operations.
Unfortunately, the algorithm requires random access to the vectors of scalars
(p) and bases (ck) and, despite Pippenger itself can be transformed into a
streaming algorithm (trading off constant memory), the best performance in
practice is achieved by setting a constant buffer and computing the result
C = 〈p, ck〉 via multiple executions of Pippenger’s algorithm. We investigate
more non-naïve streaming algorithms in Section 2.7.

– Opening algorithm. We are given the same streams as above, and an opening
location z. By rearranging the expression for the witness polynomial w(X) =
(p(X)− p(z))/(X − z), we can stream the coefficients {wi}

d−1
i=0 of w(X) via

Ruffini’s rule: wi := pi+1 + wi+1z. The evaluation proof π =
∑d−1
i=0 wiτ

iG is
computed in the same way as the commitment algorithm.

Note that the recurrence relation in the opening algorithm uses wj+1 to compute
wj , which means that w(X) is computed from its highest-order coefficient to
its lowest. In turn, this means that the commitment key ck and the polynomial
p(X) are streamed from highest-degree to lowest-degree coefficient. Setup and
commitment algorithms are agnostic to the order elements are being streamed.
The above discussion implies the following (informal) lemma.

Lemma 1 (informal). The polynomial commitment scheme of [KZG10] has
an elastic realization.

2.4 An elastic scalar-product protocol
A scalar-product protocol enables the prover to convince the verifier that the
scalar product of two committed vectors equals a certain target value. In the
literature, scalar-product protococols [BCG20] are also known as inner-product
arguments or IPAs [BCC+16; DRZ20; BMM+21]. Many constructions of succinct
arguments internally rely on scalar-product protocols as their main component
for proving NP statements [BCC+16; PLS19; BCG20]. The PIOP for R1CS that
we construct in Sections 2.5 and 2.6 relies on a PIOP for scalar products where
the prover has two realizations: (i) one that runs in linear-time and linear-space;
and (ii) one that runs in quasilinear-time and logarithmic-space.
Definition 2. A PIOP for scalar products is a PIOP where the verifier
receives as input (F, N, u) and has (polynomial evaluation) query access to f ,g ∈
FN , and checks with the help of the prover that 〈f ,g〉 = u.

Theorem 1 (informal). There is a PIOP for scalar products with proof length
O(N), query complexity O(logN), verifier time O(logN), and prover that has
two realizations:
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– a time-efficient realization that runs in time O(N) and space O(N);
– a space-efficient realization that runs in time O(N logN) and space O(logN)
in O(logN) passes.

In the remainder of this section, we outline the scalar-product protocol,
deferring to the full version formal security proofs and a more in-depth discussion
of the protocol. We also note that our construction uses two slightly different
protocols, one for twisted scalar-products [BCG20], where 〈f ◦ y,g〉 = u for a
vector y of the form y = (1, ρ0)⊗ (1, ρ1)⊗ · · · ⊗ (1, ρn−1) where n := logN (we
recall that by log we denote the ceil of the logarithm base 2), and one for verifying
Hadamard product relations f ◦ g = h. These only require small modifications to
the scalar-product protocol.

We proceed in three steps. First, in Section 2.4.1 we describe how to reduce
checking a scalar product to checking tensor products of univariate polynomi-
als. Then, we describe a tensor product protocol in Section 2.4.2. Finally, in
Section 2.4.3 we describe how to realize this protocol in an elastic way.

2.4.1 Verifying scalar products using the sumcheck protocol

Consider two vectors f , g ∈ FN with 〈f ,g〉 = u as in Definition 2. The verifier has
polynomial evaluation query access to polynomial evaluations of f and g. That
is, the verifier can obtain evaluations of the polynomials f(X) =

∑N−1
i=0 fiX

i

and g(X) =
∑N−1
i=0 giX

i at any point x ∈ F. Note that the product polynomial
h(X) := f(X) · g(X−1) has 〈f ,g〉 =

∑N−1
i=0 figi as the coefficient of X0, because

for every i, j ∈ [N ] the powers of X associated with fi and gj multiply together
to give X0 if and only if i = j. Therefore, to check the scalar-product 〈f ,g〉 = u,
it suffices to check that the coefficient of X0 in the product polynomial h(X)
equals u.

However, this check must somehow be performed without the prover actually
computing h(X). This is because the fastest algorithm for computing h(X)
requires O(N logN) time and O(N) space (via FFTs), which is neither time-
efficient nor space-efficient. On the other hand, the scalar product 〈f ,g〉 = u
can be checked (directly) in time O(N) and space O(1), which leaves open
the possibility of a scalar-product protocol where the prover does better than
computing h(X) explicitly (and then running some protocol).

This issue is addressed in prior work if the verifier can query the multilinear
polynomials f̂(X) and ĝ(X) associated to the vectors f ,g ∈ FN : we index
the entries of f using binary vectors, and fi = fb0,...,bn−1

is the coefficient of
X
b0
0 · · ·X

bn−1
n−1 , where (b0, . . . , bn) is the binary decomposition of i. From previous

results [Tha13; XZZ+19; BCG20], we have the following lemma.

Lemma 2. Let F be a finite field and N be a positive integer. Define n = logN ;
the sumcheck protocol for

1
2n

∑
ω∈Hn

(f̂ · ĝ)(ω) = u . (1)
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for H = {−1, 1} and two multilinear polynomials f̂(X0, . . . , Xn−1) and ĝ(X0, . . . ,
Xn−1) has the following properties: soundness error is O(logN/|F|) (as a re-
duction to claims about polynomial evaluations); round complexity is O(logN);
the prover uses O(logN) field operations; and the verifier uses O(logN) field
operations.

Then, one can use the (multivariate) sumcheck protocol of [LFKN92] to reduce
〈f ,g〉 = u to two evaluation queries f̂(ρ) and ĝ(ρ), where ρ := (ρ0, . . . , ρn−1) ∈ Fn

are the random verifier challenges used in the sumcheck protocol. Crucially, the
prover algorithm in the sumcheck protocol applied to the two product of two
multilinear polynomials also has a space-efficient realisation which runs in time
O(N logN) and space O(logN) [CMT12], which would provide an elastic solution
in this multilinear regime.

In our setting the verifier can only query the univariate polynomials f(X)
and g(X) associated with the vectors f ,g ∈ FN . Nevertheless, we follow a similar
approach, by running the sumcheck protocol on the multivariate polynomials
f̂(X) and ĝ(X), producing two claimed evaluations f̂(ρ) = u and ĝ(ρ) = u′. We
check that these claimed evaluations are consistent with f and g using evaluations
of the univariate polynomials f(X) and g(X).

Remark 4 (unstructured fields). While other probabilistic proofs using univariate
polynomials, such as the low-degree test in [BBHR18], require the size of the field
F to be smooth, so that the field contains high-degree roots of unity or structured
linear subspaces. In contrast, using the strategy above, our scalar-product protocol
works with univariate polynomials over any sufficiently large field. This allows a
much wider range of parameter choices for the [KZG10] polynomial commitment
scheme which is likely to lead to better concrete efficiency.

2.4.2 A tensor-product protocol

Consider the claimed evaluation f̂(ρ) = v. To check that this is correct using
univariate polynomial evaluations, note that f̂(X) and f(X) have the same
coefficients, and moreover partially evaluating f̂(X) by setting X0 equal to ρ0,
the polynomial f̂(ρ0, X1, . . . , XlogN−1) has the same coefficients as the polynomial
f ′(X) := fe(X) + ρ0 · fo(X). Here, fe(X) and fo(X) are the unique odd and even
parts of f(X), defined by f(X) = fe(X

2) +Xfo(X
2).

This suggests a protocol where the prover sends f ′(X) to the verifier. If
the verifier can check that f ′(X) was correctly computed from f(X), then the
original problem of consistency between f(X) and an evaluation of f̂(X0, . . . ,
XlogN−1) is reduced to checking consistency between f ′(X) and an evaluation of
f̂(ρ0, X1, . . . , XlogN−1). Repeating this reduction with every value ρj , the prover
and verifier eventually arrive at a claim about constant-degree polynomials, which
the prover can send to the verifier allowing the verifier to check autonomously.

To check that f ′(X) is consistent with f(X), the verifier can sample a random
challenge point β ∈ F× (where F× denotes the multiplicative group of F), and
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make polynomial evaluation queries in order to check the following equations:

f ′(β2) = fe(β) + ρ0 · fo(β) = f(β) + f(−β)
2 + ρ0 ·

f(β)− f(−β)
2β . (2)

This is reminiscent of a similar reduction in [BBHR18] used to construct a low-
degree test for univariate polynomials. By the Schwartz–Zippel lemma, the check
passes with small probability unless f ′(X) was computed correctly.

Noting that f̂(ρ) = 〈f ,⊗n−1
j=0 (1, ρj)〉, this procedure gives a univariate polyno-

mial IOP for the following relation:

Definition 3. The tensor-product relation RTC is the set of tuples

(i,x,w) = (⊥, (F, N, ρ0, . . . , ρn−1, u), f)

where n = logN , f ∈ FN , u ∈ F, and 〈f ,⊗j(1, ρj)〉 = u.

We give full details of the tensor-product protocol in the full version of this
paper. In fact, the tensor check will be useful not only as part of our scalar-
product protocol, but also more generally as part of simple checks that take place
as part of our R1CS protocols (as described in Sections 2.5 and 2.6).
2.4.3 Elastic realization of the prover algorithm
Most complexity measures claimed in Theorem 1 follow straightforwardly from
the sumcheck protocol described in Lemma 2. What remains is to describe an
elastic realization of the prover algorithm for the tensor-product protocol.

The prover’s task is to compute the polynomials f (j) for each round j ∈ [n].
Given f (j−1), which has degree O(N/2j), the prover can compute f (j) in O(N/2j)
operations via Equation 2. Summing up the prover costs for j ∈ [n] gives O(N)
operations. Therefore, it is easy to see that the tensor-product protocol has a
linear-time prover realisation.

Next, we give a space-efficient prover realisation that uses logarithmic space.
Logarithmic space. We aim for the prover to run in logarithmic space com-
plexity, given streaming access to f and g. This is more challenging than the
time-efficient case, as the prover cannot store f (j−1) to help it compute f (j),
as this would require linear space complexity (for small j). Instead, the prover
computes each f (j) from scratch using streams of f .

We begin by explaining how the prover can produce a stream of f (j) efficiently,
given streaming access to f , in a similar way to streaming evaluations of multivari-
ate polynomials and low-degree extensions in [BHR+21; BHR+20; CMT12]. Our
main contribution here is to show that f (j) can be evaluated in O(N) time and
O(logN) space, saving a logarithmic factor over prior work. Then, we explain
how to perform the consistency checks.

– Streaming f (j). Let f =
∑N−1
i=0 fiX

i. We can compute f ′ =
∑N/2−1
i=0 (f2i +

ρf2i+1)Xi from a stream of coefficients of f by reading each pair of coefficients
f2i, f2i+1 from the stream, and produce the next coefficient f ′i := f2i + ρf2i+1
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Fig. 1: A streaming algorithm for computing the coefficients of f (j) from f (0) := f .
Nodes in blue denote the coefficients that are stored in memory at any moment.

of f ′. This process uses a constant amount memory space, storing f2i, and
f2i+1 and deleting them immediately after computing f ′i . Each coefficient of f ′
costs two arithmetic operations to compute.
The prover can produce the stream S(f (j)) for f (j) by applying the same
idea recursively as follows. Initialise a stack Stack consisting of pairs (j, x) ∈
[logN ]× F, and a list of challenges ρ0, . . . , ρj . To generate S(f (j)), the prover
• If the top element in the stack is of the form (j, y) for some y ∈ F, pop it
and return y.

• If the top two elements in the stack are of the form (k′, x′) and (k, x) with
k = k′ (and k < j), then pop them and push (k+1, x+ρk x

′), where x+ρk x
′

is equal to f (j)
k+1 (recall that the values are streamed from last to first index);

• Otherwise, query the stream S(f) for the next element x ∈ F and add (0, x)
to the stack.

The stack Stack must be initialized with some zero-entries if N 6= 2n (for
instance, where N is odd) for correctness, but we avoid discussing this case
here for simplicity. A visual representation of this process is displayed in
Figure 1. This procedure produces a stream of f (j) from a stream of f in O(N)
and using logN memory space (since the stack Stack holds at most logN
elements at any time).

– Space-efficient tensor check. The verifier must perform consistency checks to
make sure that each polynomial f (j) was correctly computed from f (j−1), and
similarly for g(j). This check requires the computation of f (0), . . . , f (n−1). We
compute them in parallel with a minor modification to the folding algorithm
illustrated in Figure 1. Instead of returning only when the top of the stack has
a particular index, we always output the top element in the stack. We thus
construct a streaming algorithm S(f (0), . . . , f (n−1)) that returns elements of
the form (j, x) ∈ [n]× F where x is the next coefficient of the polynomial f (j).
With the above stream, it is possible to simulate the streaming oracle S(f (j))
and the evaluations f (j)(β2), f (j)(+β), f (j)(−β), for each j ∈ [n]. In particular
computing each evaluation requires storing a single F-element; therefore, the
total consistency check uses n = logN memory and N time. This allows to
check Equation 2, substituting f ′ = f (j), f = f (j−1) for j ∈ [n].

Based on the costs of maintaining the stacks for f and g, and computing
the coefficients of q(j) incrementally, it follows that each round takes time O(N)
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and space O(logN). Therefore, summing over the O(logN) rounds, the protocol
requires time O(N logN) and space O(logN).

Remark 5. Based on our tensor product protocol in Section 2.4.2, one can con-
struct a linear-time univariate sumcheck protocol with proof length O(N) and
query complexity O(logN), which we believe could be of independent interest for
future research. There are other univariate sumcheck protocols in the literature;
however, these protocols cannot be used in our setting.

The univariate sumcheck protocol in [BCR+19] is a 1-message PIOP with
proof length O(N) and query complexity O(1). That protocol does not seem
useful here, because the prover requires O(N logN) time and O(N) space due
to the use of FFTs. In contrast, our protocol achieves elasticity, at the cost of
logarithmic round complexity and logarithmic query complexity.

Drake [Dra20] sketches a Hadamard product protocol based on univariate
polynomials that does not use FFTs. That protocol, also inspired by the low-
degree test in [BBHR18], may conceivably lead to a univariate sumcheck protocol
that is elastic. However, no details (or implementations) of the protocol are
available.

2.5 Warm-up: an elastic non-holographic PIOP for R1CS
We describe an elastic PIOP for R1CS (Definition 1), based on the elastic scalar-
product protocol from Section 2.4. Due to the large verifier complexity of this
protocol, we note that the verifier can also be made elastic using similar techniques
to the elastic prover. We will build on this construction later in Section 2.6, and
construct a holographic polynomial IOP with logarithmic verifier complexity.

Theorem 2 (informal). For every finite field F, there is a PIOP for RR1CS
over F with the following parameters:
– soundness error O(N/|F|);
– round complexity O(logN);
– proof length O(N) and query complexity O(logN);
– a time-efficient prover that runs in time O(M) and space O(M);
– a space-efficient prover that runs in time O(M log2 N) and space O(logN)
(with O(logN) input passes);

– a time-efficient verifier that runs in time O(M) and space O(M); and
– a space-efficient verifier that runs in time O(M logN) and space O(logN).
Above, N is the matrix size and M the number of non-zero entries in an R1CS
instance.

The theorem holds for any finite field F, and in particular does not require any
smoothness properties for F.

To make the space-efficient realisation of the prover well-defined, we must
explain how to stream an R1CS instance. Below we describe a concrete choice of
streams that (i) suffices for the theorem; (ii) is realistic (as we elaborate shortly).
After that we outline the polynomial IOP for R1CS .
Streaming R1CS. The R1CS problem is captured using the following indexed
relation:
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Definition 4. The indexed relation RR1CS is the set of all triples:

(i,x,w) =
(
(F, N,M,A,B,C),x,w

)
where F is a finite field, A,B,C are matrices in FN×N , each having at most M
non-zero entries, and z := (x,w) is a vector in FN such that Az ◦Bz = Cz.

We define streams for each of i, x andw, with A, B and C in sparse representation.

Definition 1. Let U ∈ FN×N be a matrix with M non-zero entries. The sparse
representation of U consists of its coordinate-list representation. That is, the
stream S(U) of U is the sequence of elements in the support as tuples (row, column,
value), sorted by row index or column index. We denote by Srow(U) the row-major
coordinate list (that is, ordering the entries of the matrix in lexicographic order
with row index before column index), and by Scol(U) the column-major coordinate
list.

In our definition of streams for R1CS, we allow the computation trace (Az, Bz, Cz)
of an R1CS instance to be streamed as part of the witness.

Definition 2 (streaming R1CS). The streams associated with the R1CS
instance ((F, N,M,A,B,C),x,w) are:
– the index streams: streams S(A), S(B), S(C), the coordinate lists of the
R1CS matrices, in row-major and column-major.

– the instance stream: stream of the instance vector S(x) ;
– the witness streams: stream of the witness S(w) and the computation trace
vectors S(Az),S(Bz),S(Cz).

The field description F, instance size N , and maximum number M of non-zero
entries are explicit inputs.

Including steams for S(Az), S(Bz), and S(Cz) makes our polynomial IOPs
for R1CS space efficient even when matrix multiplication by A, B and C requires
a large amount of memory and Az, Bz and Cz cannot be computed element
by element on the fly given streaming access to x and w. On the other hand,
for R1CS instances defined by many natural computations, such as a machine
computation which repeatedly applies a transition function to a small state, the
matrices A, B and C are banded; that is, their non-zero entries all lie in a thin,
central diagonal band. In this case, it is easy to generate a stream of S(Az), for
example, using streams S(x), S(w) and the column-major matrix stream Scol(A).
The polynomial IOP construction. We outline the PIOP construction which
proves Theorem 2. The protocol adopts standard ideas from [BCR+19] and an
optimization from [Gab20] for concrete efficiency. In the time-efficient realisation
of our protocol, the prover takes i, x and w as input, and the verifier receives
i and x. In the space-efficient realisation, these inputs are provided as streams
according to Definition 2.

In the first step of the protocol, the prover sends z to the verifier. To check
that Az ◦ Bz = Cz, the verifier replies by sending a random challenge υ ∈ F×
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to the prover, which the prover expands into a vector yC := (1, υ, υ2, . . . , υN−1).
Then, multiplying Az ◦Bz = Cz on the left by yᵀC , the prover and verifier will
check that

〈Az ◦ yC , Bz〉 = 〈Cz,yC〉 . (3)

The prover will send the value uC := 〈Cz,yC〉 ∈ F to the verifier. At this point,
the prover will convince the verifier that Equation 3 holds by reducing the two
claims 〈Az ◦ yC , Bz〉 = uC and 〈Cz,yC〉 = uC to tensor consistency checks on
z, for which we can apply the tensor-product protocol in Section 2.4.

As a sub-protocol for the first claim, the prover and verifier run a twisted
scalar product protocol, as described in Section 2.4. This generates two new
claims, one about each of Az and Bz, leaving us with a total of three claims:

〈Az,yB ◦ yC〉 = uA ,

〈Bz,yB〉 = uB ,

〈Cz,yC〉 = uC .

(4)

Here, yB := ⊗j(1, ρj), where ρ0, ρ1, . . . , ρn−1 ∈ F× are the random challenges
sent by the verifier during the sub-protocol. Setting yA := yB ◦ yC , and moving
the matrices A, B and C into the right input argument of the scalar-product
relation, we have

〈z, â〉 = uA ,

〈z, b̂〉 = uB ,

〈z, ĉ〉 = uC ,

(5)

where â := yᵀAA, and similarly for b̂ and ĉ. Although yB , yC , and yA all have a
tensor structure, â, b̂ and ĉ will not generally have the same structure, which
means that Equation 5 cannot be checked directly using the tensor-product
protocol. Thus, the verifier sends another random challenge η ∈ F× to the prover.
Taking linear combinations of the three claims in Equation 5 using powers of η
yields a single scalar-product claim

〈z, â + η · b̂ + η2 · ĉ〉 = uA + η · uB + η2 · uC . (6)

The prover and verifier run a second twisted scalar-product protocol for Equa-
tion 6. This produces two new claims

〈z,y〉 = uD , (7)
〈â + η · b̂ + η2 · ĉ,y〉 = uE , (8)

where again, y is a vector with the same tensor structure as described in Sec-
tion 2.4, generated using random challenges produced by the verifier.

Finally, the prover and the verifier engage in a tensor-product protocol to
check Equation 7. The verifier can check Equation 8 directly, since â, b̂ and ĉ
can be computed directly from the R1CS matrices A, B and C, along with the
random challenges used throughout the R1CS protocol.
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Time-efficient prover. The prover runs in linear time if the prover algorithms
for the underlying scalar-product and tensor-product sub-protocols can be realized
in linear time. Note that the cost of computing â, b̂ and ĉ is linear in the number
of non-zero entries in A,B,C. As a result, the verifier also runs in linear time.

Space-efficient prover. We start by noting that the streams S(Az), S(Bz)
S(Cz) are provided as input to the prover, and that the stream S(z) can be
produced by chaining the instance stream S(x) with the witness stream S(w).
In order to run the first twisted scalar-product protocol (cf. Eq. 3), the prover
must compute also the stream for the tensor product vector yC = ⊗j(1, υ

2j

).
This stream can be generated in linear time: during the i-th iteration, the
stream of any vector of the form ⊗j(1, υj) must return the product

∏
j,bj 6=0 υj ,

where i = (b0, . . . , bn−1)2 in binary. Consider the bit-string representing i: af-
ter yielding the i-th element

∏
j,bj 6=0 υj , the next element in the stream has

index (i− 1), and it can be either obtained by clearing the last multiplication
(that is, multiplying the previous element by υ−1

0 ) or multiplying the previ-
ous element by υ−1

k υk−1 · · · υ0 (when the subtraction has a carry bit propa-
gating k times). The stream, during the initialization phase, stores the incre-
mental products υ0, υ0υ1, υ0υ1υ2, . . . , υ0υ1 · · · υn−1 and the “carry elements”
υ−1

0 , υ−1
1 v0, . . . , υ

−1
n−1υn−2 · · · υ0 Initialisation of the stream costs O(logN) field

operations and O(n) space; and each new element is produced with a single field
multiplication. Using the same idea, it is possible to produce the streams S(yA)
and S(yB).

In the second sumcheck (cf. Eq. 6), the stream for S(â) = S(yᵀAA) (respec-
tively, S(b̂) and S(ĉ)) are not implemented using trivial matrix multiplication
from the row-major stream of Srow(A) (resp. Srow(B), Srow(C)) with the above
tensor product. Instead of using O(N) passes over the stream vector, we compute
the i-th element on the fly: using the stream Srow(A), all elements of i-th row
(i, j, ai,j) produced by the stream are multiplied by υi and accumulated in the
final result. Overall, producing the next element costs O(logN) multiplications.

Composing the above streams with the space-efficient realisations of the scalar
product and tensor-product sub-protocols described in Section 2.4, we obtain a
space-efficient prover algorithm which runs in quasilinear time and logarithmic
space: overall, the non-holographic protocol can be run in O(M log2 N) time and
O(logN) space.

2.6 Elastic holographic PIOP for R1CS

The verifier complexity in the non-holographic protocol for R1CS described in
Section 2.5 is linear in the size of the R1CS instance. This is because in order to
run a scalar-product protocol to check Equation 6, the verifier must compute
â, b̂, ĉ via expensive matrix-vector multiplications involving all of the non-zero
entries of matrices A, B and C.

In this section, we explain how to construct a holographic polynomial IOP
protocol for R1CS, in which the verifier’s direct access to A, B and C is replaced
by query access, as in [CHM+20; COS20]. In this construction, the prover can
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either run in linear-time and linear-space, or quasilinear-time and log-space, and
the verifier runs in log-time and log-space.

Theorem 3 (informal). There exists an elastic holographic polynomial IOP
for RR1CS, whose prover admits two implementations:

– the time-efficient prover runs in O(M) time and O(M) space;
– the space-efficient prover runs in O(M log2 M) time and O(logM) space,

where N is the size of the R1CS input, and M is the number of non-zero entries
in the R1CS instance. The verifier runs in O(|x|+ logM) time and space.

High-level overview. Our holographic protocol follows the same strategy as
prior work [BCG20]. Roughly speaking, the core difference between the holo-
graphic protocol in this section and the non-holographic protocol in Section 2.5
is that the prover and verifier use an alternative strategy to check Equation 5.
Instead of reducing Equation 5 to Equation 6, and then verifying Equation 6 via
â, b̂ and ĉ, the prover sends extra oracle messages to the verifier, corresponding
to partial computations of Equation 5. Then, the prover and the verifier engage
in various sub-protocols to check that the partial computations were performed
correctly. As in prior works [BCG20], the key sub-protocols are a look-up protocol
and an entry-product protocol (also known as grand product argument [Set20]).

Our main contribution is a space-efficient realisation of these sub-protocols,
which leads to a space-efficient holographic R1CS protocol. The main challenge
is to show that it is possible to generate the prover’s extra messages in a space-
efficient manner from a streaming R1CS instance (Definition 2). This places
particular restrictions on the design of a space-efficient look-up protocol, which
we explain how to deal with in Section 2.6.1. We explain how to construct a
space-efficient entry-product protocol in Section 2.6.2.
Achieving holography. For a matrix U ∈ {A,B,C}, consider the vectors row,
col, val ∈ FM , such that, for each i ∈ [M ], vali ∈ F is the (rowi, coli)-entry of
U , ordered column-major. In the construction of a holographic PIOP, we will
assume that the matrices A, B and C have the same support, which means that
row := rowA = rowB = rowC and col := colA = colB = colC . This can easily be
achieved by padding valA, valB and valC with zeroes as required, and increases
the length of row, col and val by at most a factor of 3.

The prover constructs the following vectors and sends them to the verifier as
oracle messages:

r∗A := yA|row , r∗B := yB |row , r∗C := yC |row , z? := z|col . (9)

In Equation 9, r∗A is the vector whose i-th element is the (rowi)-th element
of â, and similarly for r∗B, r∗C and z?. Using Equation 9, Equation 4 can be
reformulated as:

〈r∗A ◦ valA, z?〉 = uA ,

〈r∗B ◦ valB , z?〉 = uB ,

〈r∗C ◦ valC , z?〉 = uC .

(10)
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Then, the verifier must check the three claims of Equation 10, and that r∗A,
r∗B, r∗C and z? were correctly computed. The prover and verifier run a twisted
scalar-product protocol for the three claims. To check that r∗A, r∗B, r∗C and z?
were correctly computed, the prover and verifier run a look-up protocol, which
we describe in more detail in Section 2.6.1.
Elastic realization. The twisted scalar-product protocol and look-up protocol
are elastic protocols with both time and space-efficient prover realization, and a
succinct verifier. Our holographic protocol for R1CS inherits a time-efficient prover
and succinct verifier from these sub-protocols. However, to give a space-efficient
prover realisation, we must show that the prover can produce streams of r∗A, r∗B ,
r∗C , using input R1CS streams and the verifier challenges. The R1CS streams
Scol(A), Scol(B) and Scol(C) of the matrices A,B and C produce elements of
the form (i, j, e) ∈ [N ]× [N ]× F. Streaming only the first element of the triple
produces the stream Scmrow(A) = Scmrow(B) = Scmrow(C) of the vector row (we
recall that we assumed the support of A,B,C to be the same, and that row is
ordered column-major).

Similairly, the second element of the triple induces a stream Scmcol(A) of the
vector col, which is also equal to Scmcol(B) and Scmcol(C), again since the support
is the same. Additionally, Scmcol(A) is non-increasing: the column indices, in the
dense representation of the matrix, are sorted in decreasing order when streamed
column-major. As a result, the entries of z? can be produced one by one in O(1)
space from streams S(z) and Scol(A): examine each entry of Scmcol(A), advance
forwards z if the column changed, and output that same entry as long as the
next element of Scmcol(A) stays unchanged.

The streams Scmval(A) (respectively, Scmval(B) and Scmval(C)) are defined by
projecting onto the third element of the streams Scol(A) (respectively, Scol(B)
and Scol(C)), and produce the streams for the vectors valA, valB, and valC in
column-major order.

For r∗A, r∗B and r∗C , recall that yB = ⊗j(1, ρj), yC = ⊗j(1, υ
2j

), and yA =
yB ◦ yC = ⊗j(1, ρjυ

2j

). Thus, any entry of r∗B or r∗C (and hence r∗A) can be
computed in O(logN) operations from υ ∈ F× and ρ0, . . . , ρn−1 ∈ F×.
2.6.1 Lookup protocol
Lookup protocols enable the prover to convince the verifier that all of the entries
in a vector g∗ ∈ FM appear as entries of another vector g ∈ FN according to the
data stored in the address vector addr ∈ [N ]M , i.e.:

{(g∗i , addri)}i∈[M ] ⊆ {(gj , j)}j∈[N ] .

We denote this condition by “(g∗, addr) ⊆ (g, [N ])”. In order to verify that r∗U
and z? were correctly computed, the verifier must check four lookup relations:

(r∗A, row) ⊆ (â, [N ]) , (r∗B , row) ⊆ (b̂, [N ]) ,

(r∗C , row) ⊆ (ĉ, [N ]) , (z?, col) ⊆ (z, [N ]) .
(11)

Note that since yA = yB ◦ yC , and r∗A, r∗B and r∗C come from looking up the
entries of yA, yB and yC at the indices specified by row. Therefore, instead of
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checking that (r∗A, row) ⊆ (yA, [N ]), it suffices to check the Hadamard product
relation yA = yB ◦ yC . This can be done using an extension of the twisted scalar
product protocol. This leaves four look-up relations to check.
Polynomial identities for look-up relations. To verify look-up relations,
we use the polynomial identity derived by Gabizon and Williams [GW20], and
similar strategies to Bootle et al. [BCG20] to construct a polynomial IOP to
verify the identity.

We reduce the lookup conditions
(
r∗U , row

)
⊆
(
yU , [N ]

)
and

(
z?, col

)
⊆(

z, [N ]
)
to simpler inclusion conditions such as f∗ ⊆ f , where each entry in the

vector f∗ equals some entry in the vector f . To do so, for each matrix U = A,B,C,
algebraically hash the pairs (r∗U , row), (yU , [N ]), (z?, col) and (z, [N ]) into single
vectors by considering a random linear combination of each pair, using a random
challenge from the verifier. Let sort(g, f) denote the function that sorts the entries
of g || f according to order of appearance in f .

Lemma 3 ([GW20, Claim 3.1]). Let f∗ ∈ FM and f ∈ FN . Then f∗ ⊆ f if
and only if there exists w ∈ FM+N such that the equation below in F[X,Y ] is
satisfied:

M+N−1∏
j=0

(
Y (1 + Z) + wj+1 + wj · Z

)
=

(1 + Z)M
M−1∏
j=0

(Y + fj)
N−1∏
j=0

(
Y (1 + Z) + fj+1 + fj · Z

)
(12)

where indices are taken (respectively) modulo M +N , N . If f∗ ⊆ f , then w :=
sort(f∗, f) satisfies Equation 12.

The strategy in the look-up protocol is for the prover to compute w and prove
that Equation 12 is satisfied for every look-up relation that needs to be checked.
In the protocol, the prover computes w and sends it to the verifier. Then, the
verifier sends random challenges υ, ζ ∈ F× to the prover, who computes each of
the three product expressions in Equation 12, evaluated at υ and ζ:

e0 =
M+N−1∏
i=0

(
υ(1 + ζ) + wi+1 + wi · ζ

)
,

e1 =
M−1∏
i=0

(υ + f∗i ),

e2 =
N−1∏
i=0

(
υ(1 + ζ) + fi+1 + fi · z

)
.

(13)

where (again) indices are taken (respectively) modulo M + N , N . The prover
then sends the three product values e0, e1 and e2 to the verifier. The verifier
checks Equation 12 holds at υ and ζ by checking that e0 = (1 + ζ)Me1e2, and
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uses three entry-product sub-protocols, which we describe in Section 2.6.2, to
prove that e0, e1 and e2 were correctly computed from f∗, f and w.

This approach requires polynomial query access to f∗�, the cyclic right-shift
of f∗, since the inputs to the entry product protocols depend on f∗�. The look-up
protocol of Bootle et al. [BCG20] uses an additional shift sub-protocol to check
this condition. By contrast, we remove this additional step by considering instead
the lookup protocol over vectors with a leading zero coefficient. Now, queries on
the right-shift f∗� can be related to queries on f∗ with a single evaluation query,
since the leading coefficient is known in advance. We explain this optimisation
further in the full version of this paper.

Elastic realization. As shown in prior work [BCG20], if the underlying entry
product protocols have a linear-time prover realisation and succinct verifier, then
the same is true for the look-up protocol. Therefore, we focus on explaining
a space-efficient prover realisation of the look-up protocol. Assuming that the
entry-product protocol has a suitable space-efficient realisation, it suffices to
explain how to simulate streaming access to look-up protocol vectors f∗, f and
w using previously derived streams.

First we consider (z?, col) and (z, [N ]). Recall that each pair is algebraically
hashed into vectors f∗ and f . It is simple produce the streams S(f∗) and S(f) from
the streams S(z?), Scmcol(A), S(z) and S([N ]), by applying the same algebraic
hash function to pairs of entries on-the-fly. The same applies to input pairs
(r∗U , row) and (yU , [N ]).

Now, we explain how to generate a stream of w = sort(f∗, f) using little
memory space. This is more challenging because storing the entire vectors f∗ and
f and sorting them requires O(M +N) memory. In the case of inputs (z?, col)
and (z, [N ]), as col is a non-decreasing sequence, it turns out that Scmcol(A) is
already sorted into a suitable order, and it suffices to merge the streams of f∗ and
f together to produce a stream for w. The same can’t be said for row, which is not
necessarily ordered. However, the vector row in non-decreasing form is already
available from the inputs: it can be streamed from the dense representation of
the matrix in row-major ordering Srow(A). To apply the same idea to input pairs
r∗U and row, we build Srmrow(A), which is non-decreasing, and use it to produce
the stream of the sorted vector for the lookup protocol. We describe our look-up
protocol in more detail in the full version.

On alternative proof techniques for look-up relations. Prior work such
as [Set20] checks look-up relations using an offline memory-checking [BEG+91;
CDD+03] abstraction in which the prover shows that g∗ was correctly constructed
entry by entry from g using read and write operations. This leads to an alternative
polynomial identity replacing Equation 12, which uses a list of timestamps
recording when a particular element of g∗ was read from g. In this case though,
it is unclear how to generate the timestamps required for by this method without
storing linear memory. While in the argument of Gabizon and Williams [GW20]
the polynomial relation is independent from the ordering of the matrix S(A)
(row- or column-major), memory-checking arguments require random access to



Gemini: Elastic SNARKs for Diverse Environments 23

the vector row in order to access the last visited timestamps, which cannot be
performed in log-space.
2.6.2 Entry product protocol

Let f = (f0, . . . , fN−1) ∈ FN such that e = f0 · · · fN−1. We describe an entry-
product protocol, building on Bootle et al. [BCG20, Sec. 6.4], that reduces an
entry product statement

∏
i fi = e to a single scalar-product relation, using

polynomial evaluation query access to f .
Compared with the prior work, our work exploits the structure of univari-

ate polynomials to simplify the scheme and remove the need for cyclic-shift
tests [BCG20, Sec. 6.3]. We propose additional optimizations in Section 2.7 which
improve the concrete efficiency of our protocol.
High-level overview. Let f be as above, with fN−1 = 1.11 Let ψ ∈ F× and
let y′ = (1, ψ, . . . , ψN−1). Let g be the vector of partial products of the entries
of f , that is:

g := (
∏
i≥0 fi,

∏
i≥1 fi, . . . , fN−2fN−1, fN−1) (14)

Then, observe that:

〈g ◦ y′, f�〉 =
N−1∑
i=1

gifi−1ψ
i + g0fN−1

=
N−1∑
i=1

gi−1ψ
i + e+ gN−1ψ

N − gN−1ψ
N

= ψg(ψ) + e− ψN

(15)

In the entry product protocol, the prover sends the oracle g to the verifier, and
the verifier replies with the random challenge ψ ∈ F×, and makes a polynomial
evaluation query g(ψ) = v. Then, both parties engage in a twisted scalar product
protocol to verify Equation 15. Polynomial evaluation queries f�(x) for x ∈ F
made as part of the twisted scalar-product protocol can be computed using
evaluation queries f(x). To do this, note that f�(x) = xf(x) − xN + 1 since
fN−1 = 1; thus the verifier can compute f�(x) from f(x) in O(logN) operations.
The partial products in Equation 14 are computed starting with fN−1 because
Elastic realization. As with other sub-protocols, the entry-product protocol
inherits a linear-time prover realisation and succinct verifier from the underlying
twisted scalar-product protocol.

To give a space-efficient realisation, it suffices to show that g can be generated
element-by-element given access to the stream S(f): the partial products of
11 This restriction is merely didactical. Given any f ∈ FN , representing the coefficients

of a degree N − 1 polynomial, it is easy to simulate polynomial-evaluation query
access to (f , 1) using the polynomial f(X)+XN+1. For any evaluation query in x ∈ F,
forward evaluation queries to f and add xN+1 before returning. This costs O(logN)
F-ops.
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elements of f can be produced by streaming each successive element of S(f) and
multiplying it into a running product. Note that the partial products in g are
computed from the last entry to the first, starting with fN−1. This is because
streams of polynomials move from the highest-order coefficient to the lowest
to be compatible with space-efficient commitment algorithms, as explained in
Section 2.3.

2.7 Implementation and optimizations

We implemented the elastic argument from Sections 2.5 and 2.6 by leveraging and
extending arkworks [ark], a Rust ecosystem for developing and programming
with zk-SNARKs. Our implementation, called ark-gemini12, is open-source and
freely available under MIT license. The code structure follows the modular design
of the protocol, which involves combining an elastic polynomial commitment
scheme and an elastic (holographic) PIOP. We deem each of the single components
of the protocol (the streaming infrastructure, the commitment scheme, and the
sub-protocols for sumcheck, tensor check, entry product, lookup protocol, etc.)
to be independent interest for future space-efficient projects. Below, we provide
an overview of the streaming infrastructure and the algorithmic optimizations
that were adopted in the implementation.

2.7.1 Streaming infrastructure

We extend the arkworks framework with support for streams in order to express
our space-efficient protocols. A stream is simply a wrapper over iter::Iterator,
the Rust interface for dealing iterators. Streams can be restarted and iterated
over multiple times. We use Rust’s borrow abstractions to produce streams that
avoid copying elements whenever possible: a stream either returns a field element,
or a reference to a field element. In other words, we have zero-copy interface
where data structures do not require to be copied from memory, unless really
needed. In practice, input streams could be instantiated with arrays (for instance,
a memory-mapped files), or a concurrent stream of data downloaded from the
web. Our design supports stream compositions and could be potentially extended
to new front-ends.

A recent work by Baum, Malozemoff, Rosen, and Scholl [BMRS21] also studies
streaming provers, and provides a space-efficient proving algorithm in Rust. To
achieve a space-efficient prover, they rely on Rust’s concurrency features (also
known as Rust async), which is a more specific interface compatible with our
framework based on iterators.

2.7.2 Practical optimizations

We introduce several algorithmic optimizations that improve the concrete perfor-
mance of our scheme.
Elastic provers. One of the benefits of the elastic SNARK is that it allows
switching from the space-efficient implementation to the time-efficient one. For
example, in the scalar product, if the prover has enough memory, then it can
12 See https://github.com/arkworks-rs/gemini

https://github.com/arkworks-rs/gemini
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transcribe the folded sumcheck claim and proceed with the time-efficient imple-
mentation of the prover function. This allows for a more fine-grained control of
the memory for the prover, and benefit from the speed-up of the time-efficient
prover for the last few rounds of the protocol. Since the prover’s messages are the
same in both modes, this does not affect the end result. In our implementation,
it is possible to enforce a memory budget that, once hit, allows the prover to
stop and store the intermediate claim entirely in memory. Once the claim has
been stored, it is possible to proceed with the time-efficient implementation.
Batch [KZG10] . Boneh et al. [BDFG20] proposed an optimization of [KZG10]
to batch evaluation proofs for a set of evaluation points over different polynomials,
exploiting the special structure of univariate polynomials.

We adapt these optimizations to our elastic polynomial commitment scheme,
and implement them. In particular, although our tensor product protocol may
require the verifier to query different polynomials at a set of different evaluation
points, a single constant-size evaluation will have to be sent. This renders the
concrete size of the proof significantly better than multi-linear approaches such
as [ZGK+17; ZGK+18], which require a logarithmic-size opening proof.
Offline memory-checking. As discussed in Section 2.6.1, the offline memory-
checking protocol is not compatible with the space-efficient prover, because the
computation of timestamps may require random-access over non-zero entries.
However, we also observe that given a particular ordering of the non-zero entries, it
might be possible to apply the offline memory-checking partially in our polynomial
IOP. In the particular implementation of our protocol, the offline memory checking
can be used to prove the lookup for

(
z?U , colU

)
⊆
(
z, [N ]

)
.

We view the offline memory-checking as an optimization because it is con-
cretely more efficient than the plookup protocol. That is because the sender in
the plookup protocol must send additional commitments to the verifier; whereas,
the commitments in the offline memory-checking can be precomputed by the
indexer.

2.8 Evaluation
We run extensive benchmarks over Gemini (both preprocessing and non-pre-
processing SNARKs), over an Amazon AWS EC2 c5.9xlarge instance, with
36 cores. We enable multi-threading using rayon, a Rust library for parallelism,
and use it for efficiently computing multi-scalar multiplications and to run the
batched sumcheck in the preprocessing SNARK protocol, where multiple sumcheck
instances can be run in parallel. We select BLS12-381 as the pairing-friendly
elliptic curve, but we note however that smaller elliptic curves are suitable, due
to the remark in Remark 4. Our chosen field F is the scalar field of BLS12-381.

We perform tests for different instance sizes N , with M = N , for the range
N = 218 up to 235. These instance sizes are much larger than what is commonly
covered in the literature, and are meant to illustrate the behavior of a proving
system over very large instances.
Proving space. We show that the Gemini prover can support instances with
arbitrary sizes. In Fig. 2 it is possible to observe that the memory trace remains
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constant across large instance sizes, and that is stays consistently below 1GB
of required memory, while the preprocessing SNARK protocol demands slightly
more than 1GB to run. Two main constants influence the overall memory trace
of the program:

– the memory budget allocated for multi-scalar multiplication (MSM). Despite
the MSM operation can also be implemented in a streaming fashion, either
with trivial scalar-multiplication, or by making small changes over Pippenger’s
algorithm, we noted that, in practice, best performance is achieved by perform-
ing Pippenger over buffers of fixed sizes, and then accumulating the partial
result. We set the buffer to host 220 field elements.

– the sumcheck round threshold, after which the elastic prover will transcribe
the sumcheck instance and proceed with the time-efficient algorithm. We set
the threshold to 22. That is, the last 22 rounds of the sumcheck will always be
performed with the time-efficient prover.

The memory footprint stays constant because the constants chosen for the multi-
scalar multiplication buffer and sumcheck round threshold are much larger than
the asymptotic factors of the proving algorithm. The difference in memory is
related solely to the batched sumcheck step in the preprocessing SNARK protocol,
where multiple instances are being transcribed in memory at the same time once
the round threshold hits.

Our benchmarks stop at 235 for the non-preprocessing SNARK and the 232

for the preprocessing one, but the upper limit in our benchmarks is arbitrary:
as long as it is possible to generate the input streams for the time prover, then
prover will be able to carry out in full the proving algorithm, and keeping the
memory footprint very small. Prior works, such as Setty [Set20] and Chiesa et
al. [CHM+20] provide public benchmarks for sizes up to 220. When running
benchmarks ourselves to compare our work with previous literature such as
Marlin13, we were unable to proceed over size 224 due to out of memory crashed.
Even if we instruct the kernel to allow for memory over-commitment14, the kernel
will refuse to allocate new memory and eventually Rust will panic due to memory
allocation failures. Our own prover, when run as a purely time-efficient prover,
cannot successfully prove instances of size 225 and 227.
Proving time. We present the proving time of elastic provers. The elastic
prover will switch to the time-efficient mode if the intermediate state can be
loaded within the memory budget. So when the instance size is small, the elastic
prover will run purely in the time-efficient mode. As far as runtime is concerned,
we make an important initial remark: the most expensive operations in our
protocol are given by the cryptographic operations, namely the multi-scalar
multiplications. For this reason, in Fig. 2, where we show the running times
for for different values of N , with M = N , it is possible to observe a graph
that evolves almost linearly. The squared logarithmic factor does not influence
13 cf. https://github.com/arkworks-rs/marlin.
14 This is vm.overcommit=2. See https://www.kernel.org/doc/Documentation/vm/

overcommit-accounting.

https://github.com/arkworks-rs/marlin
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
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Fig. 2: Runtimes (above) and memory usage (below) for the elastic prover in
the preprocessing protocol (blue) and the non-preprocessing protocol (red), for
different R1CS sizes with N = M . The black squares indicate the size for which
the time-efficient prover triggers an out-of-memory crash.

noticeably the overall runtime, as far as we were able to measure within the
window of instance sizes of our benchmarks.

We also measure the economic cost of running the Gemini prover. Roughly
speaking, the cost per gate of the preprocessing SNARK prover is around than
7.6× 10−5 seconds per gate. Using the AWS estimator15 (on-demand hourly cost
1.836 USD), we are able to conclude that, roughly speaking, the cost for the
preprocessing SNARK is about 2.30 × 10−5 USD per gate. In particular, the
estimated cost for an instance of 231 gates is 89 USD. In contrast, the cost of
DIZK [WZC+18] is much higher and around 500 USD for an instance of 231,
because DIZK has to run the computation on 20 more powerful and expensive
machines (r3.8xlarge EC2 instances with on-demand hourly cost 2.656 USD)
for about 10 hours. In the case of non-preprocessing SNARK, the cost is a bit
lower and around 40 USD for a circuit of 235.
Verification time and proof size. We measure the proof size and verification
time for the preprocessing protocol. Note that the verifier can easily verify the
proof for large instances since it does not need to read and load the instance into
the memory. For instance size ranging from 212 to 235, the proof size is about
13− 27 KB, and the verification time is about 16− 30 ms.
15 source: https://calculator.aws
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